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Spatial partitioning is commonly used for parallel simulation of spatial–temporal systems,
such as simulations of wildfires. Achieving effective spatial partitioning is a challenging
task due to the dynamic behavior of the simulation models. This paper presents a partition-
ing method named profile-based spatial partitioning for parallel simulation of large scale
wildfires. The profile-based partitioning exploits the dynamic behavior of a wildfire spread
simulation model and uses it as a profile to guide the spatial partitioning for parallel sim-
ulations. Experimental results show that the profile-based partitioning can increase the
degree of parallelism and improve the scalability of parallel simulations of large-scale
wildfires.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

Recent years have witnessed an increasing number of wildfires with increased burned areas as well as damages to the
environment. Understanding the behavior of wildfires and predicting the fire intensity, rate of spread, and spread direction
can support better management and control of wildfires. Towards this goal, several wildfire spread simulation models have
been developed, including FARSITE [15], BehavePlus [14], Hfire [34], and DEVS-FIRE [9,12]. Simulating large-scale wildfires is
a computation-challenging task because of the complexity of the fire spread model and the large size and long duration of
the simulations. To improve the performance of wildfire simulations, parallel simulation techniques are needed.

To support parallel simulations we need to divide the simulation tasks and assign them to multiple processing units
(PUs). This step of task partitioning is critical and can have significant impact on the performance of a parallel simulation.
Wildfire simulation models are characterized by their dynamic behavior in both space and time. Due to the spatial–temporal
behavior, spatial partitioning is commonly employed for parallel simulations of wildfires. In spatial partitioning, the space is
divided into multiple regions, which are distributed to multiple PUs. When a fire spreads to a new region, it triggers the com-
putation of the PU in charge of that region. This paper considers spatial partitioning for parallel simulation of wildfire spread
using the DEVS-FIRE model. DEVS-FIRE is a discrete event wildfire spread and suppression model based on the DEVS formal-
ism [2]. It employs a two dimensional cellular space model composed from multiple individual cells to represent the wildfire
area. When simulating large-scale wildfires modeled by a large number of cells, there is a need to improve the simulation
performance using parallel simulation techniques.

An effective spatial partitioning for parallel simulation of wildfires should increase the degree of parallelism and improve
the scalability as well. For the DEVS-FIRE model, one approach of spatial partitioning is to divide the cell space into several
. All rights reserved.
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size-equivalent sub cell spaces corresponding to the number of PUs, and then allocate each sub cell space (also called a par-
tition) to a PU for parallel simulation [22]. However, this approach is ineffective because the execution sequence of the sim-
ulation tasks heavily depends on the fire spreading behavior, which is influenced by many factors such as ignition point,
vegetation, terrain, and weather [23]. The dynamic fire spreading behavior can cause different PUs to have significantly dif-
ferent computation load at a given time. To provide a simple example, let us consider a simulation where a wildfire is ignited
at a location far from the partitioning boundary. In this case, it will take a long time for the fire to spread to other partitions to
trigger them to start the simulation. As a result, in the beginning of the simulation only one PU containing the ignition point
engages in computation; while others are idle waiting for the fire to spread to their partitions. This type of temporally unbal-
anced load of computation degrades the simulation performance.

In order to overcome the problem mentioned above, this paper presents a profile-based spatial partitioning method to
improve the performance of large scale simulation of wildfires. The profile-based spatial partitioning is motivated from the
observation of fire spreading behavior in DEVS-FIRE: the simulation focuses on the burning frontline of the fire that is the
active area; no computation is needed for the area that is not ignited or already burned out. Thus if all PUs can concen-
trate on the active area of the fire, the time of waiting will be greatly reduced so that better parallelism can be achieved.
Motivated by this, the profile-based partitioning method exploits the model behavior, i.e., the spatial–temporal wildfire
spreading behavior, and uses it as a profile for guiding the task partitioning for parallel simulation. In our work, the behav-
ior profile is obtained from a simulation using low resolution GIS data. The ignition sequence of the cells from the low
resolution simulation represents a behavior profile of the high resolution simulation. This profile is used to partition
the cell space for parallel simulation of DEVS-FIRE. A low resolution simulation runs much faster than the high resolution
simulation. As will be shown later, the time spent in generating the profile (using the low resolution simulation) can be
easily compensated by the performance gains from the profile-based partitioning. In this paper, the parallel simulation
algorithm that we employed is based on the time warp algorithm [10], which is an optimistic approach of time manage-
ment [26] that uses a rollback mechanism to recover violations of local causality in order to maintain the local causality
constraint. We note that an alternative approach of parallel simulations is based on conservative algorithms (see e.g., [6]).
Conservative algorithms rely on the concept of lookahead in order to achieve concurrent processing of events. The wildfire
simulation model considered in this paper does not have good lookahead properties because its fire spreading behavior
depends on the dynamic changing wind speed/direction as well as the non-uniform slope, aspect, and fuel model of
the forest cells. Also note that in this paper, we only consider static partitioning where the partitions are divided and as-
signed to PUs before a simulation starts.

The remainder of this paper is organized as follows. Section 2 reviews the related work in task partitioning. Section 3
gives an overview of the DEVS-FIRE model. Section 4 presents the profile-based spatial partitioning method for parallel sim-
ulation of large scale wildfire. Section 5 gives a theoretical performance analysis of the profile-based method. Section 6 pro-
vides experiment results and Section 7 concludes this work.
2. Related work

Parallel simulation has long been studied and many algorithms and optimizations techniques are developed. P-DEVS [18]
is a DEVS-based formalism for the specification of complex concurrent systems organized as an interconnection of atomic
and coupled interacting models. It provides means of handling simultaneous scheduled events, while keeping all the major
properties of the standard DEVS. Since P-DEVS eliminates serialization constraints, it enables improved execution of models
in parallel and distributed environments. The work of [30] describes the Aurora2 architecture and issues pertinent to parallel
discrete event simulation (PDES) [7] executions in a desktop grid environment that must be addressed when distributing
back-end services across multiple machines. This improved architecture allows large scale PDES applications to take advan-
tage of the master/worker style of parallel workload distribution and execution across desktop grids and public resource
computing infrastructures. In [33], the authors developed a model interoperability layer in the PDES environment by con-
forming to its event-object paradigm. The model interoperability layer uses a proxy-based approach to enable object models
in a PDES to ‘‘publish’’ and ‘‘subscribe’’ their attributes similar to mechanisms in high level architecture (HLA) [1]. Their de-
sign is especially optimized for executing in cluster-like environment. Experimental results show that the optimization im-
proves Data Distribution Management performance up to 12 times in a cluster environment compared with the un-
optimized design. The work of [28] presents a new technique that combines multi-dimensional parallelism coherently for
efficient parallel simulation of large-scale DEVS-based models on the IBM Cell processor, which has one Power Processing
Element (PPE) and eight Synergistic Processing Elements (SPEs). The proposed technique tries to explore multi-dimensional
parallelism to overcome the bottlenecks in simulations. The underlying design methodology is illustrated with detailed sim-
ulation profiles of two example Cell-DEVS models, which simulate wildfire propagation and flooding scenarios respectively.
The developed algorithms attained overall speedups up to 70.6 and 83.32 in the fire and flood simulations respectively over
the baseline implementation on PPE by using parallelized FC Synchronization Kernel (FSK) on 8 SPEs. In [5], Cicirelli et al.
proposed an agent infrastructure (Theatre) for distributed simulations based on Java over high-level architecture/RunTime
Infrastructure (HLA/RTI). The basic building blocks of their architecture are actors (agents) which have a public message
interface and encapsulate a state of local variables and a behavior patterned as finite state machine. Theatres, which are
mapped onto HLA federates, work as the execution platforms for actors. Actors can migrate between theatres to achieve
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load-balancing. They demonstrated an application to a complex simulation model based on unmanned aerial vehicles
(UAVs).

Task partitioning is a critical step in parallel simulations. An effective partitioning is pivotal to enable parallel simulations
to achieve high degree of parallelism. Himmelspach et al. [24] introduce a simulation algorithm and present partitioning and
load balancing techniques that are tailored to the efficient distributed execution of PDEVS. They base their elaborations on
the idea of minimizing interprocessor communication, which is a major bottleneck in distributed PDEVS simulation. Hersh-
berger et al. [8] proposed a scheme for a stream of multidimensional points. This scheme provides a general-purpose sum-
mary of the spatial distribution of the points and can answer a wide variety of queries. In particular, their adaptive spatial
partitioning method can be used to solve spatial versions of several classical data stream problems, including hot spots and
approximate range counting. Nandy and Loucks [29] presented a static partitioning algorithm for conservative parallel logic
simulation. The algorithm attempts to minimize the communication overhead and to uniformly distribute the execution load
among the processors. It starts with an initial random partition and then iteratively moves processes between clusters until
no improvements can be found (a local optimum). In [3], a simple partitioning scheme based upon the pair wise exchange
was developed by Boukerche to reduce the overhead of the rollbacks of a hybrid parallel simulation of wireless networks.
The synchronization protocol makes use of both conservative and time-warp paradigms. Sislak et al. in [13] present a dis-
tributed architecture for situated large-scale agent-based simulations with predominately local interactions. They spatially
partitioned the simulated virtual environment and allocated a dedicated processing core to the environment simulation
within each partition. The dynamic load-balancing is also integrated into the work so that their partitioning can greatly im-
prove the scalability of the simulation platform. In their work, they used their approach to extend the AGENTFLY air-traffic
test-bed. Thorough evaluation of the system is performed which confirms the improvement in scalability.

The agent-based community also makes great efforts and contributes for the research of the distributed simulation of
large-scale models. Logan and Theodoropoulos [27] developed a framework for the distributed simulation of Multi-Agent
Systems (MAS). Their systems employ the notion of ‘‘spheres of influence’’ as a basis to dynamically partition the shared state
of the simulation model into logical processes. They define the ‘‘sphere of influence’’ of an event as the set of state variables
read or updated as a consequence of the event. An algorithm is sketched for dynamically partitioning the simulation to per-
form load balancing. Chen et al. [4] proposed two routing approaches to access the shared states: the address-based ap-
proach, which locates data according to their address information, and the range-based approach, whose operation is
based on looking up attribute value range information along the paths to the destinations. The two approaches are discussed
and analyzed in the context of the systems in [27]. Suryanarayanan et al. [31] present a system for performing logical-time
synchronized Range Queries over data in the context of parallel and distributed simulations of MAS by extending [4]. The
design is evaluated from the perspective of the volatility of the data structure under different query and update loads and
its performance in terms of service latency and execution time. A strong correlation between the data structure’s volatility
and its performance as a simulation kernel suggests that reducing the volatility has potential improvement over the system.
There are contributions from others, too.

Spatial resolution is an important concept in spatial–temporal simulations, such as simulations of wildfires. In [25], Hu
and Ntaimo develop a dynamic multi-resolution cellular space model for forest fire simulation. In their work, the change
of cells’ spatial resolutions happens dynamically and adaptively as the simulation proceeds. Buss and Ahner in [17] present
a low-resolution, constructive entity-level simulation framework called Dynamic Allocation of Fires and Sensors (DAFS),
which can rapidly configure, execute and complement complex high-resolution combat models. It allows an analyst to very
quickly create a simulation model that captures the first-order effects of a scenario. DAFS can be used to explore large areas
of the parameter space and identify interesting regions where high-resolution models can provide more detailed informa-
tion. In the work of [19], the authors propose high-dimensional data clustering as a key interfacing component between sim-
ulation modules with different resolutions and use unsupervised learning schemes to recover the patterns for high-
resolution simulation results. In [20], the authors present a multi-resolution simulation methodology which uses numerical
optimization as a tool for maintaining external consistency between models of the same phenomena operating at different
levels of temporal and/or spatial resolution.
3. DEVS-FIRE overview

Before describing the profile-based partitioning method, we give an overview of the DEVS-FIRE model this work is based
on. Our overview focuses on the aspect that is related to the profile-based method presented in this paper. Other aspects and
more details of the DEVS-FIRE model can be found in [12].

DEVS-FIRE is an integrated simulation environment for surface wildfire spread and containment simulation based on the
Discrete Event System Specification (DEVS) formalism. It employs a two dimensional cell space to model the field where the
fire occurs. The cells in the cell space are rectangular, whose sizes depend on the resolution of the GIS data (fuel, slope and
aspect) [16]. The cell space contains individual forest cells each of which contains the GIS data and weather conditions as-
sumed to be uniform within the cell. Each cell in the cell space is represented as a DEVS atomic model in the simulation and
is coupled with its eight neighbor cells located at the N, NW, W, SW, S, SE, E, and NE directions respectively, as shown in
Fig. 1. Consequently, the forest cell space is a coupled model composed of a number of coupled forest cell models. Fire
spreads from one cell to another is enabled via message passing between the two cells. As a result, the fire spreading is



Fig. 1. Examples of 2D cell space: (a) 9 � 9 high resolution cell space with smaller cells (b) 3 � 3 low resolution cell space with larger cells.

Fig. 2. A simulation scenario in DEVS-FIRE.
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modeled as a propagation process where burning cells ignite their unburned neighbor cells. Fig. 1 shows two cell space mod-
els at different spatial resolutions for the same forest area. Fig. 1a shows a 9 � 9 cell space model and Fig. 1b shows a 3 � 3
cell space model, where each cell corresponds to 3 � 3 cells in Fig. 1a. The arrows in Fig. 1 represent the output couplings
from the center cell to its eight neighbors.

In DEVS-FIRE, all cells are initially set to the unburned (passive) state. If a cell receives an ignition message and its fire line
intensity is larger than its burning threshold, its state changes to burning. A cell, once ignited, calculates its rate of spread and
spread direction using Rothermel’s fire behavior model [16] based on its fuel, slope, aspect, and weather data. The rate (and
direction) of spread is then decomposed into eight directions corresponding to its eight neighbor cells (see [12,32] for more
details). Based on these rates of spread and the center-to-center distances between the cell and its neighbors, the cell sched-
ules to ignite its neighbors (through message passing) according to the corresponding time delays. Finally, a burning cell
changes to the burned state after it is burned out. From the simulation point of view, a cell is active when it is in the burning
state. When a cell is active, the simulation needs to compute the cell’s fire spread speed and direction, and to schedule igni-
tion events for this cell to ignite its neighbors. On the other hand, if a cell has not been ignited or it is burned out, there is no
computation needed for the cell. Fig. 2 displays a simulation scenario, where the unburned, burning, and burned out areas
are marked. As illustrated in Fig. 2, in wildfire spread simulations all the burning cells form one or multiple spatially active
areas, where intensive computation occurs. If we can concentrate all the computing power only on these active areas, it will
accelerate the performance of large scale simulations. This motivates us to develop the profile-based partitioning method for
parallel simulations of DEVS-FIRE.

4. Profile-based spatial partitioning for parallel simulation of large-scale wildfires

Based on the active area concept described above, we propose a profile-based spatial partitioning method for parallel sim-
ulation of large scale wildfire using DEVS-FIRE. The basic idea is to employ the result from a low resolution simulation as a
profile of the fire spreading behavior to guide the partitioning process of the cell space among available PUs. The profile is an
ignition sequence of the low resolution cells in the low resolution simulation. Although not as precise as the high resolution
simulation, it contains knowledge regarding how the active area evolves in the high simulation. Once we have this profile,



Fig. 3. Architecture of the profile-based spatial partitioning method.
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we partition the cells among participating PUs so that all PUs are devoted to the predicted active area at an early stage of the
parallel simulation. Fig. 3 shows the architecture of the profile-based spatial partitioning method. The architecture includes
four parts that represent four major steps of the profile-based spatial partitioning method: (1) producing low resolution GIS
data, (2) producing profile, (3) profile-based partitioning, and (4) parallel simulation of DEVS-FIRE based on the partitioning.
Below we describe these four components in detail.
4.1. Producing low resolution GIS data

In order to obtain the profile from the low resolution simulation, we need a way to generate low resolution GIS data. Dif-
ferent resolution GIS data can be generated using dedicated software from the source files, e.g., satellite images. However
this approach needs to have access to the source files and to use dedicated software. In our work, we produce low resolution
GIS data from the original GIS data that already exist. We define R as the resolution factor from the original GIS data to the
low resolution GIS data. This resolution factor specifies how many cells (in both horizontal and vertical dimensions) in the
original GIS data are converted into one cell in the low resolution GIS data. For example, when R = 3, every 3 � 3 cells in the
original GIS data are converted into one cell in the low resolution GIS data (see Fig. 1 for an illustration).

There are three types of GIS data used in DEVS-FIRE: fuel, aspect and slope. Different types of GIS data require different
rules to transfer from high resolution to low resolution. In this paper, we follow the idea ‘‘dominant fuel, averaged aspect and
slope’’ to generate the low resolution GIS data. We note that although these rules are arbitrary defined, they serve the pur-
pose in our work to enable low resolution simulation for generating a profile of fire spreading behavior.

The idea of ‘‘dominant fuel’’ is to select the fuel type that has the maximum number of occurrence within an R � R par-
tition in the high resolution cell space as the fuel type of the corresponding cell in the low resolution cell space, where R is
the resolution factor. When there are several fuel types that have the equal maximum occurrence within the partition, we
randomly choose one of them as the fuel type of the corresponding cell in the low resolution cell space. The idea of ‘‘averaged
aspect and slope’’ is to use the average value of all the aspect/slope within the R � R partition as the slope or aspect of the
corresponding cell in the low resolution cell space. Fig. 4 illustrates an example of this rule with R = 4. In Fig. 4a, the numbers
represent the fuel types. On the left of Fig. 4a, there are nine occurrences of fuel type 7 in the 4 � 4 sub cell space. So fuel 7 is
chosen to be the fuel type in the corresponding cell of the low resolution GIS data. On the right, each fuel type has 4 occur-
rences so a randomly chosen fuel type, in this case fuel type 9, is used as the fuel type in the corresponding cell of the low
resolution GIS data. In Fig. 4b, the numbers on the left represent slope data and the numbers on the right represent aspects.
On the left of Fig. 4b, the slope sum of 16 cells is 100. So the average slope 6.25 is calculated to be the slope of the corre-
sponding cell in the low resolution GIS data. The aspect is calculated in a similar manner.

Fig. 5 shows an example of producing low resolution GIS data (with resolution factor R = 4) and the simulation results
using the high resolution and low resolution GIS data. The low resolution GIS data are displayed in Fig. 5b, which are gen-
erated from a set of high resolution GIS data displayed in Fig. 5a. In Fig. 5a, the size of the cell space is 200 � 200 and the size
of each cell is 2.5 m � 2.5 m. In Fig. 5b, the size of the cell space is 50 � 50 and the size of each cell is 10 m � 10 m. From the
figures we can see that the ‘‘dominant fuel, averaged aspect and slope’’ rule is effective in that the low resolution GIS data
conforms to the high resolution GIS data in all three different types. We conducted two simulations using these two sets of
GIS data. The ignition point of the low resolution simulation locates at (24, 24) and the ignition point of the high resolution
simulation locates at (99, 99). Both simulations use the same wind speed and wind direction (from south to north). The sim-
ulation results on both resolutions at time = 7200 s are displayed on the right in Fig. 5a and b respectively. The simulation
results show that the fire shape of low resolution simulation is similar to that of high resolution simulation at the given vir-
tual time. This means the low resolution simulation is able to provide a good profile about the fire spread behavior (in a



Fig. 4. Examples of ‘‘dominant fuel, averaged slope and aspect’’ rule: (a) ‘‘dominant fuel’’ and (b) ‘‘averaged aspect and slope’’.

Fig. 5. An example using our ‘‘dominant fuel, averaged slope and aspect’’ algorithm: (a) high resolution GIS data and simulation result at time 7200 s (b)
low resolution GIS data and simulation result at time 7200 s.
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much faster execution time) of the high resolution simulation. However, it is important to note that the low resolution sim-
ulation cannot replace the high resolution simulation because it trades the simulation accuracy for speed.

4.2. Produce profile queue

The second step of the profile-based spatial partitioning method is to produce a profile using the generated low resolution
GIS data. To produce the profile, we use the low resolution GIS data to run a low resolution simulation via DEVS-FIRE on a
single machine. The low resolution simulation uses the same weather data as that in the high resolution simulation. The igni-
tion point in the low resolution simulation is converted from that in the high resolution simulation based on the following
formula, where xLR and yLR denote the x and y coordinates of the ignition point in the low resolution simulation, xHR and yHR

denote the x and y coordinates of the ignition point in the high resolution simulation, and R is the resolution factor.
xLR ¼ xHR=R; yLR ¼ yHR=R



Fig. 6. Producing profile using low resolution GIS data: the sequence in the PQ represents the order this cell is ignited.

(a) (b)

 (c)                    (d) 
Fig. 7. Examples of partitioning with different granularities: (a) g = 1, (b) g = 2, (c) g = 3, (d) g = 4.
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In the low resolution simulation, once a cell is ignited, we record a virtual ignited time (VIT) that indicates when this cell is
ignited. If a cell cannot be ignited, its VIT is infinity. After the simulation is finished, we sort the VIT of all cells from small to
large and use the sequence of sorted cells to represent the fire spread behavior. In our work, a queue is used to store the
profile. Each item in the queue contains the x and y coordinates of the cell as well as its corresponding VIT. We name this
queue as the profile queue (denoted as PQ). The profile queue includes two types of information: (1) the ignition sequence
of the cells, and (2) the time of ignition of the cells. The profile queue is defined as follows,
PQ ¼ fðxLR; yLR;VITÞij0 6 xLR < LLR;0 6 yLR < WLR;0 6 VITi 6 VITj;0 6 i < j < LLRWLRg
where the subscript i denotes the order of the cell in the queue, xLR and yLR are the coordinates of the cell, LLR is the length of
the low resolution cell space and WLR is the width of the low resolution cell space. Fig. 6 shows an example of how to produce
the profile and PQ. The top part of the figure shows the cells in the cell space (on the left) and their ignition sequence (on the
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right) in the low resolution simulation. The bottom part of the figure shows the profile queue based on the low resolution
simulation. For simplicity, all cells’ virtual ignition time are denoted as VIT in the figure.

4.3. Profile-based partitioning with spatial granularity

To support parallel simulation, the cellular space needs to be divided among multiple PUs. In the profile-based spatial
partitioning, the cellular space is divided according to the profile queue (PQ) generated in the previous step. The basic idea
is to allocate the items in PQ sequentially to the PUs. Note that each item in PQ represents a block of cells (specified by the
resolution factor R) in the high resolution cell space. Allocating the items individually can effectively support load balance
among the PUs. However, it may not achieve optimal result because each item is a relatively small block (especially when the
resolution factor R is small). Dividing the space according to these small blocks will result in frequent message passing
among the PUs and thus lead to high communication cost and cause more rollbacks in the time warp algorithm. To increase
the block size, we introduce a spatial granularity factor (denoted as g) that allows the user to specify the granularity of
partitioning.

With the granularity g, the partitioning method allocates a g � g sub cell space to a PU each time according to the profile
queue. Fig. 7 illustrates examples of partitioning with different granularities. Fig. 7a shows the ignition sequence of the cells in
a 6 � 6 cell space. If the granularity g equals to 1, the partitioning process of the cells strictly follows the profile: the first ig-
nited cell is allocated to PU1, the second ignited cell is allocated to PU2, . . . , the nth ignited cell will be allocated to PUN (where
N is the total number of PUs), and the (n + 1)th ignited cell will be allocated to PU1 again, and so on. Fig. 7b illustrates the
partitioning process when the granularity g equals to 2. In this case, the ignition order of each 2 � 2 sub cell space is decided
by the next earliest ignited cell it contains. For example, the 2 � 2 sub cell space with ‘‘1st’’ on it contains the first ignited cell;
thus this sub cell space will be allocated to PU1. After that, since the second and the third ignited cells have already been as-
signed to PU1, the 4th ignited cell will be the next earliest ignited cell. Thus, the 2 � 2 sub cell containing this cell is marked as
‘‘2nd’’ and is allocated to PU2. This continues until the whole cell space is finished. Fig. 7c illustrates the partitioning sequence
when the granularity g is 3 and Fig. 7d illustrates the partitioning sequence when the granularity g is 4.

We define the profile queue with granularity (denoted as PQG) as the adjusted profile queue according to the granularity
described above. Given a PQ and the granularity g, the algorithm of producing PQG is given below.

Algorithm (Producing PQG)

Input: profile queue PQ; granularity g; dimension of the low resolution cell space WLR and LLR; number of

participating PUs N.

Output: profile queue with granularity PQG.
n  0;

for each item in PQ, do

if item is not allocated, do

h_start (item. x/g) � g)

h_end h_start + g

if h_end > LLR�1,do
h_end LLR�1

end if

v_start  (item. y/g) � g
v_end v_start + g

if v_end > WLR�1, do
v_end WLR�1

end if

for each item in PQ, do

if h_start <= item.x < h_end and v_start <= item.y < v_end, do

PQ.remove(item);

PQG.push_back (item, n)

end if

end for

n (n + 1)% N

end if

end for

return PQG

After partitioning PQG, each PU obtains a sub set of PQG. Since each item in the PQG represents a block of cells in the high
resolution cell space, the sub sets of PQG are then converted to the corresponding high resolution cells. These are the spatial
partition for the PUs.
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4.4. Parallel simulation based on the profile-based spatial partitioning

After the spatial partitioning, we run parallel simulation using the time warp algorithm for DEVS models [11]. Under a
single PU environment, when an event that represents the fire spreading from one cell to another is scheduled by the sim-
ulator in DEVS-FIRE, an ignition message will be sent from the burning cell to the unburned cell. This is achieved by inserting
the ignition message into the recipient’s input message list in time stamp order. When the simulation is initiated under a
parallel environment, an ignition message can be destined to a cell that is not located on the same PU. Thus, we divide
the ignition messages into two categories: inter-messages and intra-messages. For a cell, intra-messages are sent from its
neighbor cells that locate on the same PU. Since both the source and destination are on the same PU, intra-messages are di-
rectly inserted into the target cell’s input messages list. Inter-messages are needed when the source cell and destination cell
are not on the same PU. When an inter-message is initiated, it is sent out from the source cell to the destination cell and it is
up to the destination cell to process this inter-message. When an inter-message is received, it will first be stored in a mes-
sage queue (MQ) which holds all the inter-messages a PU receives. The MQ keeps all its messages in ascending order based on
their timestamps (TSs). That is the message that is at the head of the MQ has the smallest TS and the message that is at the tail
of the MQ has the largest TS.

Since we are using time warp algorithm, rollbacks will be produced. To reduce the rollbacks, we propose a mechanism
called watch dog in this paper. The basic idea of the watch dog is to exploit the VIT in the profile as a ‘‘watch dog’’ to screen
the incoming inter-messages (sent from other PUs). The goal is to use the VIT to distinguish ‘‘out-of-order’’ ignition messages,
that is, the messages that will cause rollbacks, and postpone processing them. This is based on the assumption that the VIT
obtained in the low resolution simulation holds some ‘‘truth’’ about the high resolution simulation and thus can be utilized.
Below we describe how the watch dog works. Because a cell in the low resolution simulation represents a block of cells
(R � R cells) in the high resolution simulation, in our method the VIT obtained in the low resolution simulation is shared
by all the cells in the R � R block. This time is denoted as Twatch_dog. The watch dog mechanism is checked only when receiv-
ing an inter-message sent from other PUs. Specifically, when a cell receives an inter-message, it checks if any cell within its
R � R block is already ignited. If yes, the message is processed. This is because an ignited block has already processed inter-
messages before and thus there is no need to hold follow-on inter-messages. However, if this block has not been ignited, the
TS associated with the incoming message is compared with Twatch_dog. If TS > Twatch_dog, this means other inter-messages
(from other PUs) that contain a timestamp smaller than TS are likely to be received later (because the low resolution sim-
ulation indicates the block should be ignited earlier). If we process this message to ignite the block, it may cause rollbacks
when those messages with smaller TSs are received. Thus the watch dog mechanism holds this message without processing
it. We note it is possible that the Twatch_dog obtained from the low resolution simulation is inaccurate. Thus to ensure the
correctness of the parallel simulation, the held messages are not discarded and are stored in the MQ for later processing.
As the simulation proceeds, when the local simulation time of the PU reaches a held message’s ignition time, the held mes-
sage will be re-processed. Therefore, even if the Twatch_dog obtained from the low resolution simulation is not precise, the
watch dog mechanism will not cause errors in the parallel simulation. In the extreme case, all of the real ignition messages
may have the TSs all greater than the Twatch_dog of the corresponding block, which may cause the simulation to be stalled. At
this situation, we compare the smallest TS with the Global Virtual Time (GVT). If this TS is equal to the GVT, we will accept this
message because it is time to process it. To update the GVT, we followed the algorithm in [21]. When an inter-message is sent
or received, we update local Message Matrix (MM) and Table of Forcing Vectors (TFV) according to the steps in ‘‘Update on
Send’’ or ‘‘Update on Receive’’ specified in [21]. If it is time to calculate GVT, the minimum of all the lvts and the ts in all the
forcings in the TFV is selected as the GVT. To focus on the watch dog, we omit the detail of GVT update part in the description
of the algorithm. Next, we provide the algorithm of the simulation with the watch dog mechanism. In the algorithm, WATCH-
DOG[lx][ly] represents the virtual ignition time Twatch_dog obtained from the profile for partition block at (lx, ly), message. TS
are the time stamps associated with the message. More information about the time warp algorithm for DEVS models can be
found in [11].

Algorithm (watch dog mechanism)

Input: MQ; dimension of the low resolution cell space WLR and LLR; resolution factor R;

while terminating condition is not met, do

// process messages in the message queue MQ. Note that the MQ contains not only new received messages,

but also previously received ‘‘out-of-order’’ messages that might be screened out by the watchdog

mechanism.

for each message in MQ, do

if message has not been used for GVT, update TFV and MM according to [21];
lx message.x/R;

ly message.y/R;

if partition block at (lx, ly) is ignited or message.type is ROLLBACK, do

remove message from MQ and insert message into the local target cell(message.x, message.y)’s

input messages list;
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else if partition block at (lx, ly) is not ignited, do

if message.TS == GVT or message.TS <= WATCHDOG[lx][ly] or message.TS <= LVT, do

remove message from MQ and insert message into the local target cell(message.x,

message.y)’s input messages list;

else

put messageback into the MQ;

end if

end if

end for

get all the imminents;

for each imminent imm, do

run the simulation using the time warp algorithm for DEVS models[11] on each imm. Specially,
when sending out a message, it includes sending intra-messages to the cells on the same PU, inter-

messages to the cells not on this PU. When sending messages to another PU, MM and TFV are updated and

then piggy-backed in the inter-messages according to [21]. If this cell is ignited, the partition

block that contains this cell is marked as ignited. When a collision between the external

transition function and the internal transition function happens to the imm, the confluent

function occurs, in which the internal transition function executes first and then the external

transition function executes.

// When imminents execute output functions, the output messages are transferred to be the

input messages of some models. These models may be in imminent or may not. The models that are not in

imminent are called influenced models.

get all the influenced models;

for each influenced model, do

run the simulation using the time warp algorithm for DEVS models[11]on the influenced

model.

Reschedule the imminents and schedule the influenced models;

update LVT by using the smallest lvt of all the scheduled models;

update this PU’s lvt in TFV using LVT

if it is time to update GVT, do the calculation specified in [21];
end while
In the above algorithm, we note that although multiple blocks may be partitioned together based on the granularity factor g,
in the algorithm each block still uses its own Twatch_dog. In other words, the granularity factor g acts as a partitioning factor
only. It does not mean the different blocks in the same partition will use the same Twatch_dog. We also note that the watch dog
mechanism can only alleviate the problem of rollback to some extent. There are other (important) situations that the watch
dog cannot prevent rollbacks. Performance analysis about how significant the watch dog can reduce rollbacks is given in Sec-
tion 5.

5. Performance analysis

To help to see the performance impacts of the profile-based spatial partitioning method, in this section we present per-
formance analysis for the profile-based spatial partitioning method. We carry out this analysis by comparing with a uniform
spatial partitioning method where the cellular space is partitioned into size-equivalent sub cell spaces according to the num-
ber of PUs. The analysis includes both time complexity analysis and overhead analysis.

5.1. Time complexity analysis

Conceptually, the total execution time (denoted as T) of an optimistic parallel simulation consists of two parts: the time
for computing the fire spread (denoted as Tc), and the overhead time (denoted as To) incurred by the optimistic parallel sim-
ulation algorithm. In wildfire spread simulation, it is important to note that a PU cannot start the simulation if no cell in its
partition is ignited. In this case, the PU has to wait until an ignition message is received (from other PUs) to ignite its cells.

For the purpose of our analysis, Tc can be further broken into two parts: the time when only some (not all) PUs are active
while other PUs are idle, and the time when all PUs are active in computing the simulation tasks. The first part refers to the
situation where the computation loads among PUs are imbalanced, thus some PUs are active while others are idle. This time
is denoted as Tc_imbalanced. The second part refers to the situation where all PUs are active. This is denoted as Tc_balanced. As a
result,
T ¼ Tc imbalanced þ Tc balanced þ To
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In an ideal case where all PUs have the same processing speed, and the tasks are perfectly balanced (evenly distributed
among the PUs), and the overhead time is zero,
Fig
T ¼ T fire spread=N ¼ M2Tone cell=N
where M is the size of the cell space, N is the total number of participating PUs, Tfire_spread is the time spent in computing the
entire fire spread simulation process, and Tone_cell is the time spent in simulating one cell, which can be treated as the same
for different cells.

For a given fire spread simulation where the total computation tasks (Tfire_spread) are fixed, to reduce T we should decrease
Tc_imbalanced and increase Tc_balanced as much as possible and reduce To too. This means we should partition the cell space in a
way that all PUs are active in computing the fire spread for some cells at most of the times during the simulation, regardless
of the fire spread behavior. Next, we analyze the time complexity of two sample simulation scenarios for both the uniform
spatial partitioning and the profile-based partitioning.
5.1.1. Time complexity analysis for the uniform spatial partitioning method
For our analysis we consider a uniform spatial partitioning where four PUs are used and the space is divided into four sub

spaces as shown in Figs. 8 and 9. We analyze Tc for the uniform spatial partitioning method, which is influenced by the fire
spread behavior. Since a pure theoretic analysis of time complexity is intractable due to the complexity of fire spread behav-
ior, we consider two sample simulation scenarios with different fire spread behaviors as two study cases. In these examples,
four PUs are employed and the size of the cell space is M �M. Our analysis is based on the assumption that all the PUs have
the same computing speed and the simulation ends when all the cells in the cell space are burned out. Note that in this sec-
tion we do not consider the overhead (e.g., overhead due to rollback). The goal of this analysis is to compare with the profile-
based partitioning method in terms of the parallelism.

Fig. 8 shows an example with one ignition point locating at the bottom left corner of the partition on PU0 and the three
figures represent three different simulation stages. In Fig. 8a, only PU0 has been active so far. PU1, PU2 and PU3 are idle be-
cause the fire has not spread onto their partitions. After the stage shown in Fig. 8a and before the stage shown in Fig. 8b, PU0,
PU1 and PU3 are active while PU2 is still idle. After that the partition on PU0 is finished and PU1, PU2 and PU3 are all active.
This continues until to the stage as shown in Fig. 8c. Then PU1 and PU3 finish computing their partitions and only PU2 is
active. Therefore, in this example there is no time interval when all four PUs are active, which leads to poor parallelism.

Fig. 9 displays the second example, in which each partition has an ignition point as shown in Fig. 9a. In this case, since all
four PUs have the same computing speed, the fire spreads as illustrated in Fig. 9. Thus, this case has a high level of parallelism
because all four PUs run in parallel from the beginning to the end.
. 8. One ignition point in the bottom left partition. The dashed line in (a–c) represents the front line of the fire at different simulation times.

Fig. 9. Four ignition points and four partitions. The dashed lines in (a–c) represent fire spread at different simulation times.
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5.1.2. Time complexity analysis for the profile-based spatial partitioning method
In this section, we analyze the time complexity for the profile-based spatial partitioning method using the same two fire

spread examples describe above. Similarly, we consider four PUs and assume all PUs have the same processing speed. The
resolution R is set to 4 and the granularity g is set to 2. For the profile-based spatial partitioning method, the time cost spent
on producing the profile (denoted as Tc_profile) can be represented by
Tc profile ¼ ðM=RÞ2Tone cell
This is the execution time for the low resolution simulation. When R = 4, Tc_profile is 1/16 of the execution time for the high
resolution simulation on a single machine. In the experiments that will be described in Section 6, R is set to 10, thus the time
for producing the profile is 1/100 of the high resolution time, which is insignificant.

Fig. 11 illustrates how the profile-based spatial partitioning method works for the two examples considered in the pre-
vious section. For clarity the figure displays only the low resolution cell space. The numbers in the figure represent the IDs of
the PUs. From the figure we can see that in both cases all four PUs are running in parallel most of time. Comparing Figs. 10a
and 8, one can see that at any stage there are more PUs engaged in the computation than that when using the uniform spa-
tial partitioning method. The Tc_imbalanced in the profile-based partitioning method is much smaller because the space is di-
vided into smaller blocks and assigned to the PUs according to the sequence of ignition. As the result, the fire in one PU can
quickly spread to other PUs and thus engage them in the computation. Fig. 10b shows the partitioning result for the second
Fig. 11. A scenario after partition: R = 3.

Fig. 10. Partitioning results using profile-based spatial partitioning R = 4 and g = 2.
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example where there are four ignition points. Although the partitioning results are different from those in the uniform par-
titioning, the profile-based partitioning method results in the same high level of parallelism because all PUs start the sim-
ulation from the very beginning and last to the end. Fig. 10 illustrates an important feature of the profile-based partitioning
method: the method can achieve high degree of parallelism regardless the fire spread behavior, e.g., where the ignition
points are and which direction the fire spreads to.

From Fig. 10 one can also see how the granularity g can play a role in the simulation performance for the profile-based
partitioning method. As g increases, the space is divided into larger blocks to be assigned to PUs. This has two aspects of
impacts on the simulation performance. On one hand, the larger blocks may increase the portion of imbalanced computation
because it takes longer for the fire in one PU to spread to other PUs. On the other hand, the larger blocks can reduce the com-
munication overhead, and more importantly, can reduce the number of rollbacks because there is less message passing
among the PUs. Some performance results measuring the impact of granularity g are provided in Section 6.2. We note the
uniform spatial partitioning shown above can be considered as a special case of the profile-based partitioning by setting
granularity g to be large enough so the space is divided into size-equivalent blocks according to the number of PUs.

5.1.3. Overhead analysis
The overhead analysis mainly focuses on the rollback of the parallel simulation. When using the uniform spatial partition-

ing, there are larger partitions and fewer partitioning boundaries. Thus, more communications among neighboring cells will
be carried out by intra-messages. The profile-based spatial partitioning method results in smaller partitions and more par-
titioning boundaries. This means a lot of communications happen between neighboring cells via inter-messages instead of
intra-messages. The increasing number of inter-messages potentially increases the number of rollbacks, and thus incurs
more overhead than the uniform spatial partitioning method. Our experiment results in Section 6 show this.

As described in Section 4.4, a watch dog mechanism has been implemented to attempt to reduce the number of rollbacks.
The goal of the watch dog mechanism is to use the VITwatch_dog obtained from the low resolution simulation to filter the ‘‘out-
of-order’’ messages and postpone processing them. Specifically, the watch dog mechanism can filter an ‘‘out-of-order’’ mes-
sage (and thus reduce rollbacks) in the following condition:
VITwatch dog < Tearly but false
where VITwatch_dog represents the virtual ignition time obtained from the low resolution simulation for the cell, and
Tearly_but_false represents the time contained in the ‘‘out-of-order’’ message that arrives early and should be postponed pro-
cessing. Fig. 11 illustrates one situation where the watch dog effects. In Fig. 11, suppose the cell (3, 3) of the block on
PU1 should be ignited by the message from the cell (3, 2) of the block on PU3. Without the watch dog, the cell (3, 3) could
be ignited by either the message from the cell (2, 3) of the block on PU2 or the message from the cell (2, 2) of the block on
PU0 if those two messages arrives earlier than the message from cell (3, 2). If so, a rollback will be triggered when the right
message from the cell (3, 2) arrives. However, if the watch dog is used and VITwatch_dog can successfully screen out the incor-
rect messages from the cell (2, 3) or the cell (2, 2), the rollback will not be necessary. The watch dog mechanism can only
alleviate the rollback problem to some extent due its dependency on the VITwatch_dog. If VITwatch_dog is not accurate, the con-
tribution of the watch dog mechanism is quite limited. We note that the effect of the watch dog mechanism is best observed
when the PUs have different processing speeds. Section 6.4 shows some experiment results to demonstrate this.

To summarize, the profile-based partitioning method has the advantage of better parallelism and can be easily scaled to
any number of PUs. On the negative side, it needs produce the profile by running a low resolution simulation and it incurs
overhead due to more rollbacks. Although the uniform spatial partitioning method can work well in some special situations,
its performance is greatly affected by the fire spread behavior.
6. Experiment results

In this section, several experiments based on different measurements are developed to test performance of the parallel
simulation using both the uniform spatial partitioning method and the profile-based spatial partitioning method. Based
on the Section 5, we consider several factors in our experiments: including number of PUs, granularity g and the initial loca-
tions of ignition points. We choose the values of these factors in order to demonstrate the advantages and limitations of the
profile-based partitioning method. For example, we vary the ignition point location and the granularity factor g in different
experiments to show how they affect the performance results. The experiment environment is on Cheetah, a Linux cluster
with five nodes and four GPUs, 18.0G memory and CentOS release 5.4 (Final). The software employed in the experiments are
mvapich2/gnu [36] and adevs-2.1 [35]. We implemented the time warp algorithm for DEVS models specified in [11] on top of
adevs-2.1 by using MPI as our parallel mechanism. We also implemented our own version of [21] to update GVT on top of the
time warp algorithm [11]. All the parallel simulations are conducted on a 1000 � 1000 cell space. In all of our experiments,
the wind speed is constant and the wind direction is from south to north. The simulations stop when all the burnable cells in
the 1000 � 1000 cell space are burned out. Each simulation is conducted five times, and the average of the experiment re-
sults is calculated. In all the experiments using the profile-based spatial partitioning method, the resolution factor is set to
10, which allows us to generate a reasonably meaningful profile in a fast time compared to the high resolution simulation.
This means the low resolution simulation for producing the profile is based on a cell space with dimension 100 � 100. The
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GVT is updated every ten seconds. The execution time results for the profile-based partitioning also includes the time spent
on the low resolution simulation.

6.1. Simulations with different ignition locations and multiple ignitions points

This section shows how the fire spread behavior can influence the simulation performance for the two spatial partitioning
methods. To produce different fire spread behavior we vary the location and the number of the ignition points in the wildfire
spread simulations. For the profile-based spatial partitioning method, granularity g is set to 10. Together with the resolution
factor of 10, this means each partitioning block for the spatial partitioning method corresponds to 100 � 100 cells in the high
resolution simulation. Four PUs are used for both the uniform spatial partitioning method and the profile-based spatial par-
titioning method.

The first set of simulations (shown in Fig. 12) tests the impact of the ignition location on the simulation performance
when there is only one ignition point. In this set of simulations, the locations of the only ignition points are set at (0, 0),
(249, 249) and (499, 499) respectively. Fig. 12a illustrates the ignition points in the cell space under the uniform spatial par-
titioning method. When the ignition point locates at (0, 0), it is far away from the partitioning boundary. When the ignition
point locates at (499, 499), it is right at the partitioning boundary. When the ignition point locates at (249, 249), it is at the
center of the partition on PU0. Fig. 12b shows the ignition point in the cell space under the profile-based spatial partitioning
method. Compared to the uniform spatial partitioning, there are more partitions and each partition is much smaller. When
the ignition point locates at (0, 0), it is much closer to the partitioning boundary in Fig. 12b than that in Fig. 12a. When the
ignition point locates at (249, 249) or (499, 499), they are right at the partitioning boundary.

Fig. 13 shows the execution time (Fig. 13a) and the number of rollbacks (Fig. 13b) for both the profile-based spatial par-
titioning method and the uniform spatial partitioning method. For the profile-based spatial partitioning, the time spent on
producing the profile and the partitioning process is also included in Fig. 13a, which is only a small portion of the execution
time as shown in the figure. To show the effect of the parallel simulations Fig. 13a also displays the simulation execution
time when using a single-processor (denoted as 1PU in Fig. 13a). From the figure, we can see that when using the uniform
spatial partitioning the execution time decreases as the ignition point moves towards the center of the space. This is
expected because the center of the space is right to the partitioning boundary. The closer the ignition point locates to the
Fig. 12. Different locations of the ignition point in the cell space: (a) uniform partitioning (b) profile-based partitioning.

Fig. 13. Experiment result: (a) execution time (b) total number of rollbacks of all PUs.



Fig. 14. Work load diagrams: (a) uniform partitioning and ignition point at (0, 0), (b) uniform partitioning and ignition point at (249, 249), (c) uniform
partitioning and ignition point at (499, 499), (d) profile-based partitioning and ignition point at (0, 0), (e) profile-based partitioning and ignition point at
(249, 249), (f) profile-based partitioning and ignition point at (499, 499).
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partitioning boundary, the faster the fire spreads onto other partitions on other PUs. Different from that in the uniform spa-
tial partitioning, the execution time of the profile-based partitioning is more stable when the ignition location changes. The
execution time for location (0, 0) is a little bit higher than those for the other two locations. This is because the other loca-
tions are right at the partitioning boundary thus it takes less time for the fire to spreads to all four PUs. Fig. 13a also shows
when the ignition point locates at (0, 0) and (249, 249), the profile-based spatial partitioning has better performance (less
execution time) than the uniform spatial partitioning. This is because both these two locations are far away from the par-
titioning boundary (see Fig. 12a) for the uniform spatial partitioning. Thus the computation load is unbalanced in the first
stage of the simulation for the uniform spatial partitioning because the fire exists in only one PU. When the ignition point
is at (499, 499), the uniform spatial partitioning produces better performance result. This is mainly due to the number of
rollbacks as explained below.

Fig. 13b shows the total number of rollbacks of all PUs for the two partitioning methods. The result confirms our analysis
in Section 5 that the profile-based spatial partitioning produces more rollbacks than the uniform spatial partitioning does.



Table 1
The speed up of both partitioning methods.

Ignition locations (0, 0) (249, 249) (499, 499)
Profile-based spatial partitioning 2.41 2.48 2.46
Uniform spatial partitioning 1.65 1.82 2.68

Table 2
Locations of the ignitions.

Name Ignition locations

Random 4(a) (388, 595), (148, 102), (993, 870), (997, 463)
Random 4(b) (18, 26), (487, 17), (19, 387), (492, 267)
Random 20 (419, 30), (431, 114), (127, 125), (798, 860), (133, 174), (311, 513), (979, 592), (155, 701), (691, 810), (779, 277), (531, 289),

(186, 879), (342, 210), (946, 521), (207, 853), (261, 626), (236, 44), (92, 715), (521, 890), (576, 654)
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When the ignition point locates at (0, 0) and (249, 249), the profile-based method produces about 80,000 more rollbacks in
total than that of the uniform partitioning method. When the ignition point locates at (499, 499), the profile-based partition-
ing method produces about 120,000 more rollbacks than that of the uniform partitioning method. In this case, both parti-
tioning methods lead to balanced work load among the PUs (see Fig. 14 later). However, the less number of rollbacks
make the uniform spatial partitioning has better performance. Table 1 lists speedup of both partitioning methods compared
to the single-processor simulation for the different ignition locations. The speedup of the profile-based partitioning is stable
for different ignition locations, while the speedup of the uniform spatial partitioning varies as the ignition location changes.

To better examine the execution time and its relationship with the load balance, Fig. 14 shows the work load of the two
methods. The horizontal axis represents the execution time and the vertical axis represents amount of computation (calcu-
lated as the number of simulation iterations) during every time interval of 10 s. The figure confirms that for the profile-based
partitioning, all four PUs participated in the computation from the very beginning and lasted to the end of the simulation.
However, for the uniform spatial partitioning, the PUs have balanced work load only for the case of location (499, 499). In the
two other cases, different PUs started and ended their computations at different time points. For example, in Fig. 14a, in the
first 40 s only PU0 was active and then from time 170 s, only PU3 was active while all other PUs were idle. The profile-based
partitioning method is superior to the uniform spatial partitioning method in temporally balanced workload as shown in
Fig. 14, and thus leads to better performance results.

To further examine how fire spread behavior can influence the simulation performance, our second set of simulations use
multiple ignition points. We keep all the other configurations same as before, except that the number of the ignition points is
increased. The locations of the ignition points in this set of simulations are randomly generated. Table 2 shows the number
and locations of the ignition points. In random 4(a) and random 4(b), four ignition points with random locations are used. In
random 20, twenty ignition points with random locations are used. If the uniform spatial partitioning method is used, there
is one ignition point on each PU for the situation random 4(a). For the situation random 4(b), the four ignition points locate
on one PU. For the situation random 20, there is at least on ignition point on each PU. If the profile-based partitioning method
is used, each PU will obtain at least one ignition point in all three situations in Table 2. Fig. 15 shows the experiment results
of all three situations using both partitioning methods.

From Fig. 15, one can see that the uniform spatial partitioning method has slightly better performance when there is at
least one ignition point on each PU as shown in random 4(a) and random 20. This is because in these cases all PUs can start
the simulation at the very beginning and achieve high parallelism. For the case random 4(b) where all four ignition points
Fig. 15. Experiment results: (a) execution time (b) total number of rollbacks of all PUs.



Fig. 16. Experiment results: (a) execution time (b) total number of rollbacks of all PUs.
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locate in one partition, the execution time of the uniform spatial partitioning increases and is larger than that of the profile-
based partitioning. This is due to the poor parallelism as explained before. On the contrary, the performance of the profile-
based partitioning is stable as the ignition points vary. This set of experiments confirms with the previous experiments that
the profile-based partitioning was able to achieve good parallelism independent of the fire spread behavior.
6.2. Simulations with different granularities

This experiment varies the granularity g and shows the impact of this factor on the performance of the profile-based spa-
tial partitioning method. Similar as before, we use four PUs to run the parallel simulations. The granularity g is set to 1, 5, 10,
and 25 respectively. We use only one ignition point and its location is set at (0, 0) in the first case and (149, 149) in the sec-
ond case. Fig. 16 shows the execution time and the number of rollbacks as the granularity g increases.

For the first case where the ignition point locates at (0, 0), Fig. 16a shows that the execution time is reduced when g in-
creases from 1 to 5. The total number of rollbacks is also reduced as g increases from 1 to 5. When g = 1, each partition block
is a 10 � 10 (R � g = 10) sub cell space. When g = 5, each partition block is a 50 � 50 (R � g = 50) sub cell space. Since the fire is
ignited at (0, 0), it takes more time for the fire to spread out of a 50 � 50 cell space (thus to ignite other partitions in other
PUs) than that of a 10 � 10 cell space. However, as analyzed the number of rollbacks will be reduced when the granularity g
increases. Fig. 16b shows that the number of rollbacks decreases about 50,000 when g increases from 1 to 5. Thus, even
though it takes more time for the fire to spreads out of a 50 � 50 cell space, the decrement of rollbacks dominates the time
difference and makes the execution time reduced when g increases from 1 to 5. When g further increases to 10, the size of
each partition block increases to 100 � 100 (R � g = 100) while the number of rollbacks only slightly drops a little. In this case,
the time spent on spreading out of the 100 � 100 sub cell space dominates. Therefore, the execution time increases as g in-
creases from 5 to 10. When g is 25, the size of each partition block is 250 � 250 (R � g = 250). The number of rollbacks drops
about 100,000. However, it takes longer time for the fire to spread out of the partition block and this time dominates. As a
result, the execution time increases too.

For the second case where the ignition point locates at (149, 149), the result curves are similar to those in the first case
but with less execution time. This is because when g is 1 and 5, ignition point (149, 149) locates at the partitioning boundary.
The fire will immediately spread onto other partitions on other PUs. When g is 10 and 25, the ignition point (149, 149) lo-
cates much closer to the partitioning boundary than in the first case. Thus, it takes less time for the fire originating from the
ignition point (149, 149) to reach the partitioning boundary, which leads to less execution time as shown in Fig. 16a.

This experiment shows that the granularity g can have impact on the simulation performance. Different g leads to differ-
ent partitioning results. In general, as g increases, the size of the partition block increases. This means it takes longer time for
a fire to spread to other partition blocks. Thus it increases the simulation execution time due to unbalanced work load, e.g.,
one PU is active while others are waiting for the fire to spread to their partitions. On the other hand, when g increases, the
number of rollbacks reduces because the number of message passing among PUs is reduced. The less number of rollbacks
decreases the performance overhead (see analysis in Section 5). Therefore, how to choose the granularity g needs to consider
both sides of the performance impacts as explained above.
6.3. Simulations with different number of pus

This experiment varies the number of participating PUs to test the scalability of the profile-based spatial partitioning
method. In these simulations, the resolution R is 10 and granularity g is 10. Thus, the 1000 � 1000 cell space is divided into
one hundred 100 � 100 blocks. The ignition point is set to (0, 0). The number of participating PUs varies from 4 to 8. As a
result, each PU will obtain the same amount of cells when the number of participating PUs is 4 and 5. When the number



Fig. 17. Experiment results: (a) execution time (b) total number of rollbacks of all PUs.

Table 3
Speedup of different number of PUs.

4 5 6 7 8

Speedup 2.41 2.86 3.19 3.49 3.70
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of participating PUs is 6, 7 and 8, the load is a little unbalanced on each PU. The load difference is 10,000 (one 100 � 100
block) cells. In this experiment, we only consider the profile based method. This is because the uniform spatial partitioning
method works best when the number of PUs is k2 (k is an integer) [23] or there are ignitions in each partition after the uni-
formly spatial partitioning (see Section 5). When there is only one ignition point, the execution is nearly linear: PU contain-
ing the ignition point will run first and all other PUs will wait until an ignition message is received. Fig. 17 show the
experiment results, from which we can see that the execution time decreases as the number of participating PUs increases.
Table 3 lists the speedup of the parallel simulations compared to a single-processor simulation.

Although the execution time decreases as the number of PUs increases, the curve of decreasing becomes less steep as
shown in Fig. 17a. This is partially due to the nature of wildfire spread behavior and how the profile-based partitioning meth-
od works. Based on the profile-based spatial partitioning method, some PUs will obtain their first partitions that are close to
the ignition points; while other PUs will obtain their first partitions having a distance from the ignition point. As the number
of PU increases, the distance between the ignition point and the first partitions of some PUs will increases as well. Together
with the nature of fire spread behavior (a partition has no computation until it is ignited); some PUs will have to wait until
the fire ignites their first partitions to start their simulations. The larger the number of PUs, the more PUs will wait and the
longer time they will wait. To the extreme case when the number of PUs is equal to the number of partitions, the execution of
the simulation is nearly sequential. This is no better than running on a single machine.
6.4. Simulations with ‘‘Watch Dog’’ mechanism

In this section we examine the ‘‘watch dog’’ mechanism described in Section 4.4 for reducing rollbacks. In this experi-
ment, we employ two ignition points as shown in Fig. 18: one at (249, 249) and the other at (999, 999). Four PUs are used.
For the profile-based spatial partition, the resolution R is set to 10 and granularity g is set to 5. In our experiment, LIMIT is set
Fig. 18. Experiment scenario.



Fig. 19. Experiment results: (a) execution time (b) total number of rollbacks of all PUs.
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to 20. We carry out the experiments using simulations with the watch dog mechanism and simulations without the watch
dog mechanism and compare their experiment results.

Since the wind direction is from south to north, the burning area originating from ignition point (249, 249) should be lar-
ger than that originating from ignition point (999, 999) (because the fire is spreading to north). However, in a parallel sim-
ulation environment, the burning area originating from ignition point (999, 999) can be larger than the burning area
originating from ignition point (249, 249) if ignition point (999, 999) is assigned to a faster PU and ignition point
(249, 249) is assigned to a slower PU. If that is the case, when the burning area originating from ignition point (249, 249)
eventually encounters the burning area originating from ignition point (999, 999), rollbacks will be triggered to ensure
the correctness of the parallel simulation. The more area mistakenly ‘‘burnt’’ originating from ignition point (999, 999) which
otherwise should be burnt originating from ignition point (249, 249), the more rollbacks will be triggered later on when the
two burning areas encounter. When the watch dog mechanism is implemented, each partition block can check the ignition
time of the incoming ignition message and compare it with the watch dog time VITwatch_dog obtained from the low resolution
simulation to screen out the potential ‘‘out of order’’ incoming ignition messages. To better demonstrate this effect of the
watch dog mechanism, we make the PU containing ignition point (999, 999) faster than other PUs by adding a delay to
all other PUs. The delay is achieved by the sleep system call and it is varied from 0 s (which means no delay) to 0.02 s.
We measure the performance difference between the one using watch dog and the one without watch dog to see the effects
of watch dog when there is difference in computing speed among participating PUs. Fig. 19 shows the experiment results.

From Fig. 19 we can see that the simulation performance is improved by using the watch dog mechanism. When the delay
is zero, the watch dog nearly has little effect. This is because all the PUs have the same processing speed so that the fire orig-
inating from ignition point (999, 999) does not burn too much area. As the delay increases, more area is burnt by the fire
originating from ignition point (999, 999). Thus, the number of rollbacks increases as well. After the watch dog is used, both
the number of rollbacks and the execution time are reduced. The gaps between the two curves in both figures become larger
when the delay increases. This indicates the watch dog screens out more ‘‘out of order’’ ignition messages. From this exper-
iment we can see that the effect of the watch dog becomes more obvious when the PUs’ processing speeds vary largely.
7. Conclusions

We present a partitioning method named profile-based spatial partitioning for parallel simulation of large scale wildfires.
The profile-based partitioning exploits the dynamic behavior of a wildfire spread model and uses it as a profile to guide the
spatial partitioning for parallel simulations. The profile is generated from a low resolution simulation using low resolution
GIS data. It contains information including the ignition sequence and the time of ignition of the cells, which is exploited by
the partitioning method. Performance analysis including the advantage and overhead of the profile-based partitioning meth-
od is carried out. Experimental results show that the profile-based partitioning leads to stable performance improvement
regardless of the wildfire spread behavior. It increases the degree of parallelism and improves the scalability of parallel sim-
ulations of large-scale wildfires. On the negative side, it incurs more rollbacks due to the smaller size of the partition blocks.
Future work includes developing methods to further exploit the profile of fire spread to develop dynamic partitioning meth-
ods based on the profile for improving the performance of large-scale wildfire simulations, and developing better ways to
make watch dog more accurate. We will also study if the profile-based partitioning method can be generalized to other spa-
tial–temporal simulations similar to the simulations of wildfire spread.
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