
December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

International Journal of Modeling, Simulation,
and Scientific Computing
Vol. 8, No. 4 (2017) 1750055 (21 pages)
c© World Scientific Publishing Company
DOI: 10.1142/S1793962317500556

Hybrid simulation using implicit solver
coupling with HLA and FMI

Muhammad Usman Awais∗

National University of Computing and
Emerging Science, Lahore, Pakistan

usman.awais@hotmail.com

Milos Cvetkovic and Peter Palensky

Department of Electrical Engineering,

Mathematics and Computer Science
TU Delft Building 36, Room B36-LB 03.230
Mekelweg 4, 2628, CD Delft, Netherlands

Received 2 September 2016
Accepted 25 April 2017

Published 1 June 2017

Hybrid systems such as Cyber Physical System (CPS) are becoming increasingly popu-
lar, mainly due to the involvement of information technology in different aspects of life.
For analysis and verification of hybrid system models, simulation is used extensively. As
parts of a common hybrid system may belong to different domains of study, it is some-
times beneficial to use specialized simulation packages (SPs) for each domain. In this
case, parts of a system are simulated in different SPs. The idea may seem simple, but
coupling more than one simulation component presents challenges related to numerical
stability. The presented article suggests an implicit solver coupling technique enhanced to
facilitate simulation of hybrid models using multiple simulation components. The tech-
nique is developed using two of the most popular simulation interoperability standards,
namely, the High Level Architecture and the Functional Mock-up Interface. By using
these standards, the developed algorithm will be useful for a large number of practition-
ers and researchers. The developed algorithm is described using a generic distributed
computation model, which makes it reproducible even without using the standards. For
the verification of results, the algorithm is tested on two case studies. The results are
compared to a monolithic simulator and the proximity of results initiates the validity of
the developed algorithm.

Keywords: Distributed simulation algorithms; co-simulation; distributed simulation; par-
allel simulation; continuous simulation; simulation interoperability; DEVS; OpenModel-
ica; Modelica.

∗Corresponding author.

1750055-1

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

http://dx.doi.org/10.1142/S1793962317500556

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

1. Introduction

Modeling and simulation have become cornerstones for verification of mathematical
phenomenon found in nature. Development of simulation packages (SPs) follows
the same pattern of fragmentation which is usual to the study of natural phenom-
ena. Physicists, chemists, mathematicians and mechanical engineers have developed
simulation packages suitable for their own domains. Most popular SPs either focus
on one domain of problems or on a specific type of system specification. The dif-
ferences in approach and domain imply algorithmic and mathematical challenges,
when coupling more than one simulation component.

Hybrid systems are prevalent in every day life. For example, Cyber Physical
System (CPS) is a class of systems where a physical system is augmented by infor-
mation technology. When analyzing such systems, mostly cyber and physical parts
are simulated using separate SPs. For example, the simulation of an optimized
model-predictive control of an urban power system is likely to have a power grid
simulator along with an ICT simulator.

Using already verified models to construct a simulation of a larger system is very
beneficial. However, the benefits cannot be fully utilized if the developed technique
itself requires modification of the SPs. Intuitively, the most useful technique could
only be the one which follows already developed standards of simulation interoper-
ability. Using standards can make the technique acceptable and accessible in both
industry and research.

This paper suggests a distributed algorithm which can be used to couple more
than one simulation component. The coupled simulation components are allowed
to be hybrid in nature, meaning some simulation components can contain discrete
events and others be purely continuous. The algorithm is implemented using the
High Level Architecture (HLA) and the Functional Mock-up Interface (FMI), in
order to make it operable for a wide range of SPs (for details on HLA and FMI,
see supplemental material Sec. S-1). According to the knowledge of the authors,
there has been no algorithm presented before which allows the hybrid simulation of
more than two independent simulation components. The word independent means
that each simulation component has its own solver. Previously, an implicit solver
coupling algorithm was proposed in Ref. 1, which only allowed continuous simula-
tion components to be coupled, no discrete event component was allowed. In other
efforts, only one continuous time and one discrete event-based simulation compo-
nents were coupled.2 The presented algorithm does not put any restriction on the
number or types of the simulation components. Any number of continuous time
and discrete event-based simulation components can be used.

In the next section, first the state of the art with respect to the presented work
is discussed. Later, a brief overview of only the relevant parts of the HLA and the
FMI standards are discussed. After describing the distributed computation model
applicable to the algorithm, the algorithm itself is discussed in detail. Although the
algorithm is developed using the HLA and the FMI, it is described in a generic way,

1750055-2

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

so it can be implemented without even knowing the details of these standards. For
verification of algorithm, results from two case studies are presented. Finally, the
paper ends with conclusions.

2. Related Work

Different attempts to tackle the problem of simulation interoperability have been
made in the past. Some addressed the problem from a mathematical point of view,
while others devised standards to interface the components. Here we present a brief
overview of the already proposed solutions with their shortcomings.

On the mathematical side, there are quite a few scientists who suggested for-
mal methods for coupling simulation components. To name a few, Tseng and Hul-
bert suggested a simulation coupling technique for multibody simulation.3 Kübler
and Schiehlen, in their paper,4 discussed different mathematical issues related to
simulator coupling. Recently, Schweizer et al. have discussed issues like numerical
stability and step size control of implicit,5 explicit6 and semi-implicit7 coupling
techniques. None of the articles mentioned above discusses the interfacing portion
of the problem.

Discrete EVent Specification (DEVS) is a recognized modeling and simulation
technique. DEVS provides a systematic way of converting a continuous simulation
into a discrete event simulation,8 in effect, the DEVS professes that any hybrid
system can be simulated using DEVS. Zeiglar et al.9 have mentioned the challenges
faced while simulating DEVS specific simulation components over the HLA, but the
approach used for some solutions is less than correct, as argued in Ref. 10. Besides
other mathematical issues,11 the biggest drawback of DEVS is the difficulty in cou-
pling arbitrary SPs with the DEVS-specific simulation package. Only those SPs
are favorable for coupling that produce DEVS-specific simulation components. The
numerical stability of different solvers used with DEVS paradigm is discussed in
Ref. 11.

Ptolemy II12 is another attempt to make development of heterogeneous sim-
ulations easier and faster. There have been efforts to interface it with the FMI
compliant components.13 By adding support for FMI and enabling FMUs to be
executed in different processes, Ptolemy II may be considered as a tool which sup-
ports distributed simulation. The biggest disadvantage of using Ptolemy II is its
lack of flexibility. Although the methods for implementing a new solver or incorpo-
rating a new “director” are well documented, yet there are some limitations imposed
by the Ptolemy II kernel. For example, how it treats the events in the queue, and
when and how it processes them. The behavior can only be changed by changing
the kernel of Ptolemy II.

Due to the introduction of ICT into the management of power grids, it has
become vital to simulate models of power grids in conjunction with a communication
technology. In the recent past, there have been quite a number of efforts to couple
ICT network simulators with power system simulators14 to analyze models of cyber

1750055-3

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

physical energy systems, or in other words smart grids.15 There are a few limitations
in the proposed simulation systems, as discussed below.

Most smart grid simulators do not try to couple more than one continuous
system. Often, only one continuous power system simulator is coupled with another
discrete event-based network simulator. In this case, the model does not have any
“algebraic” relationship among the simulation components, which makes things
much easier and manageable, but this is a limitation too. For example, consider
the scenario of a large city having a thermal supply and a power supply connected
to each other. To simulate such a scenario, a thermal energy simulator has to
be included in the coupled simulation of power grid and the ICT infrastructure.
Current smart grid simulators will not be able to simulate such a scenario due to
their incapacity of coupling more than one continuous simulator.

Many of smart grid simulators are built on implicit assumptions about the
underlying mechanism of distributed simulation. For example, many smart grid
simulators seem to assume that the time synchronization is a solved problem, so
they do not mention how they addressed the problem. It is not mentioned whether
there is any level of parallelism involved or not. If yes, then how the problems of
numerical stability, data sharing and time synchronization were addressed?

In many solutions, it is not mentioned clearly how the simulation time is pro-
gressed, in a fixed time stepped fashion, with the help of discrete events, or with
a step size control mechanism? Some power system SPs used in aforementioned
solutions only support fixed time stepped execution, which is problematic when a
discrete event does not occur right at the boundary of a fixed time step.11

3. Model of Distributed Computation

To explain the forthcoming algorithm, it is necessary to describe the relevant dis-
tributed computation model. As mentioned in Ref. 16, a system having different
processes connected via a networking medium is best described as an “asynchronous
message passing system”. A “message passing system” is a system where different
processes communicate with each other with the help of messages. This is in con-
trast to a “shared memory system”, where processes do not send messages, rather
they communicate using a shared memory space. One of the benefits of a mes-
sage passing system is their lesser dependency on concurrency control structures,
as compared to shared memory systems. The model of the HLA RTI is close to
the representation of an asynchronous message passing system. The only difference
with a traditional asynchronous message passing system described in textbooks16

like the “Time Stamped Ordered delivery” or TSO delivery. In an asynchronous
model, there is no relation between the order of messages sent and received. Con-
trarily, in TSO delivery, there is always a “time stamp” on each and every mes-
sage sent, and the same order is retained when the messages are received on the
receiver end. The messages sent with the same time stamp need not follow any
order.

1750055-4

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

A system is considered to be an “asynchronous message passing system” when
there is no fixed upper bound on the messages to reach at the destination, or there
is no fixed time limit on how much time should be spent on any step. Due to these
conditions, if there are two messages m1 and m2 sent from processors p1 and p2

to a destination process pd, then there is no guarantee which message will reach
the destination first. In the proposed modified model with TSO delivery, m1 must
reach before m2, if it has a time stamp less than m2. If both were sent on the same
time stamp, then there is no order enforced.

For a formal description of the algorithm, the RTI is considered as a sepa-
rate process rather than merely a simulation message bus. The process for the
RTI is referred to as prti. Describing the complete procedure of the RTI is far
beyond the scope of this paper, but it is useful to have a small description of the
prti for the algorithm under consideration. The description contains the information
how the RTI is assumed to react on certain messages under consideration, according
to the HLA standard, without going into the details of their implementation.

The RTI follows two different models of communication which correspond to the
two main communication protocols namely, TCP and UDP. When “reliable” mode
of communication is desired, the TCP protocol is used, while in case of the “best-
effort” mode, the UDP protocol is used.17 Here it is assumed that the “reliable”
mode is being used for the implementation of the described algorithm.

Since the proposed algorithm assumes a message passing system, it must be kept
in mind that all the processes are executing in separate binaries, remote or local, and
they take actions on receiving a message similar to an interrupt driven system. As
the distributed processors assume an infinite execution of the processes,16 a special
state terminate is introduced in order to represent the state where they do not
respond to any new messages. Any distributed process acts in a specified manner
on receiving a message. In the algorithm, a message is identified by 〈Message〉.
A message may contain different parameters, like the simulation time associated
to the message, and the values of some attributes. Sometimes, all these values
are not mentioned in the algorithm to avoid cluttering of information. In such
a case, the text and the supplemental material contain the required explanation
separately.

The algorithm is developed using a master-slave configuration. Figure 2 shows
how the master is connected to all slaves via the RTI. The RTI works as a medium
for data and time synchronization, but the master is the real orchestrator. The
master drives all the slaves, guides them through different states, and commands
them to reach a common goal. Slaves, on the other hand, are the work horses. Each
one of them contains an FMU inside, so they are called FMU-Federates. The master,
on the contrary, does not contain any FMU, it just executes the algorithm. Each
slave fulfills the commands sent from the master, some of these commands require to
take action on the FMU, like setting or getting state variables and input variables,
and setting or getting time of the FMU. The internal integration of each FMU takes
place at the slave level. At certain points in time (called as communication points),

1750055-5

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

Fig. 1. Figure shows how the master, slaves and the RTI are connected together. The dotted
lines for responses show that for some commands master may not be expecting a response.

the slaves share the data according to the directions imposed by the algorithm
executed at the master level.

4. Hybrid Simulation Using Implicit Solver Coupling

The waveform relaxation method uses implicit solver coupling. It was first pro-
posed in Ref. 1. The idea is to use repetitive evaluation and sharing of coupling
state variables, until they converge to one set of values. For each time step, the
loop to achieve convergence is executed. Figure 1 shows the concept of Waveform
Relaxation (WR) scheme. The WR algorithm proposed in Ref. 1 is not capable of
handling discrete events, it is only proposed for continuous systems. The algorithm
proposed in the presented article introduces how discrete event simulators can be
coupled with continuous time simulators. There is no boundary on the number of
continuous time or discrete event simulators. Moreover, the presented technique
uses the FMI and the HLA standards to make it applicable for a wide range of real
life problems.

4.1. Algorithm description

Referring back to Fig. 2, there are three main components needed to imple-
ment the proposed scheme, according to the distributed computation model dis-
cussed in Sec. 3. A master, an RTI, and different FMU-Federates act as slaves.
The relevant code for all three components is included in supplemental material,
Section S-2. Algorithm S.A-1 contains the implementation details for the master,
Algorithm S.A-2 is the code for slave, and Algorithm S.A-3 shows how the RTI
behaves according to HLA specifications. The outputs of the FMUs loaded in slave

1750055-6

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

Fig. 2. Figure shows how WR method proposes to repetitively solve the coupled simulation
components while sharing the coupling state variables. The position of internal integration points
t0, t1, t1 and s0, s1 is independent of the communication points Tn and Tn + 1. Here y1 and y2

represent outputs and u1 and u2 represent inputs to the system.

processes are sent to the master in form of tuples. A typical tuple has three elements,
a name, a value and the time. The time element stores the information when
the value of an output variable was changed, with respect to the simulation time.
Its value is also used to identify a discrete event. The value element is used by the
master to decide whether the iteration has converged or not. To access elements of
a tuple, the following notation is adopted. The time is accessed as time(x), value as
value(x) and name as name(x), where x represents a single tuple or an element in
the set of inputs or outputs. Generally, when an element from the set of inputs or
outputs is sent to the master using a message, it has all three elements. Federates
also communicate among themselves using tuples, but in that case, the element
time is not present in the tuple.

Inputs and outputs are only communicated through the 〈Update〉 message. The
second parameter of the 〈Update〉 message is the name of the class, and the third
is the name of the attribute of the class to be updated. When an update is des-
tined for the master, the second parameter of 〈Update〉 is “Master”. When slaves
communicate the updates among themselves, the second parameter is “Slave”. In
a Federation Object Model (FOM) the “Master” and the “Slave” represent classes.
Although there are many different ways to create a FOM for the presented algo-
rithm, it is assumed for a better understanding that each output of the system
has a unique name which is represented as an attribute in classes “Master” and
“Slave”. The “Master” is used for the updates destined for the master and class
“Slave” is used for slaves. When slaves communicate updates among themselves,
there is no need to associate time of update with the value because in this context,

1750055-7

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

the information is meaningless. The representation of update messages as described
above serves well to comply with the implementation. Still, the presented model is
abstract enough to remove the HLA (or HLA RTI) from the picture, if needed. Such
an implementation is only possible if the constraints imposed by the distributed
computation model are kept intact.

The main idea of hybrid simulation algorithm revolves around the WR method
of implicit solver coupling.1 If the lines from 27 to 34 are replaced by one single
line 33 in Algorithm S.A-1, then the algorithm will only be able to solve coupled
continuous systems. Lines from 27 to 31 constitute the portion which is responsible
for detecting and taking care of a discrete event. When a discrete variable changes
its state, the respective slave FMU-Federate sends a negative value as the update
time of the state variable. The statement is listed at line 27. With the negative
value of update time, the master identifies that a discrete event has occurred.

From Listing S.A-1, it is clear that there are two main loops in the algorithm.
One accounts for the simulation, in which the time is advanced. The second, inner
loop, is for the convergence checking. During the execution of the inner loop, if
there is a discrete event detected by the if statement at line 27, then the execu-
tion branches out to a procedure called ProcessDiscreteEvent. The procedure is
responsible for finding the exact time of the discrete event and then handling the
discrete event.

The easiest way to handle a discrete event is to “abort” the processing of the
communication step and rollback to the previous state as soon as a discrete event
is detected. Then reduce the step size to the minimum, and start simulating that
communication time step once again. When the discrete event is detected for the
second time, then exchange the discrete state variable among all other components,
and proceed as normal. Reducing the communication time step to the minimum
can cause performance issues. The procedure can be made faster by introducing
stage-wise finding of the precise time of discrete events. In the first stage, a point tl
on the time axis is searched, such that tl is very close to the point td and no discrete
event occurs at tl. Here td is the point on time axis where the discrete event occurs.
In stage 2, the time step is reduced to the minimum and discrete state variable is
propagated through the federation only once, just as described earlier. The process
of handling the discrete event in a stage-wise manner is not part of Listing S.A-1.
It is omitted to let the listing remain easily understandable.

Each command in the Algorithms S.A-1, S.A-2 and S.A-3 is accomplished by
passing messages among processes. The messages used in hybrid simulation algo-
rithm are described in detail in Sec. S-3 of supplemental material. Only the impor-
tant messages are enumerated here.

• 〈Rewind, time〉: On receiving this command, a “slave” process sets its state
variables back to the values attained at the end of the last time step.
• 〈Abort Iteration, time〉: The command is similar to 〈Rewind〉, here a slave

rewinds inputs to the previous values along with the state variables.

1750055-8

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

• 〈Advance Time, time〉: The command asks the “slave” processes to integrate
the FMU to the time parameter sent with the command. After the integration,
a slave sends the updated state variables in the form of 〈Update〉 message(s).
• 〈Synch, time〉: On receiving this command, a “slave” process sends the updated

state variables in the form of 〈Update〉 message(s), back to the master.
• 〈Update, cls, attribute, output, time〉: The messages are used to communicate

the update of outputs. The first parameter can be either “Master” or “Slave”,
identifying the type of message. Second parameter is the name of the shared
variable to be updated. The third parameter takes the value based on the value
of the first parameter. For details, see Sec. S-3.
• 〈Share Data, time〉: The command asks all the slave processes to interchange

their dependent variables among them. Each slave updates its outputs which
it has published earlier, and then waits for the updates of all subscribed vari-
ables. 〈Share Data Non-discrete〉 and 〈Share Data Only discrete〉 do the
same thing, except that the former works only for continuous variables and the
later only for discrete ones. To communicate among themselves, slaves use the
〈Update〉 message, with parameter cls equal to “Slave”.

An important procedure used in the implementation is GetUpdates. The purpose
of this procedure is to make the master wait for all the updates destined for it. Its
description start from line 2 in Algorithm S.A-1. The procedure sets the execution
state ExecState of the master as WaitForUpdates. In this state, the master does
not do anything except wait for the updates. During this time, it keeps sending
〈TARA〉 messages to allow the RTI to process and provide any messages it has
received from other federates destined for it. The master changes its state during the
processing of 〈Time Grant〉 message. The sequence of commands executed in result
of receiving 〈Time Grant〉 message is listed at line 77 in Algorithm S.A-1. Here, it
is checked whether all the updates which were destined to arrive, have arrived or
not. Once all the updates arrive, the ExecState is changed from WaitForUpdates

to UpdatesArrived.
Both master and slave are state machines. The only difference is that the master

changes its state based on some conditions, and a slave changes its state on receiving
a certain message. During its simulation loop, the master keeps checking the values
of different variables and changes its state based on the conditions applied on the
variables. A slave on the other hand, changes its state only when it receives a
command from the master to do so. In other words, the master and slave form the
same state machine as shown in Fig. 3, the difference being the master is the leader
in changing the states and slave is its follower.

To provide a background for Sec. 4.2, the working of algorithm is explained here
in terms of message exchanges and state transformations, as shown in Fig. 3. The
master reaches state S1 after initialization. State S1 represents that the execution
has entered into the simulation loop. The first message originated by the master
is 〈Rewind〉 message. When a slave receives this message and its simulation time

1750055-9

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

Fig. 3. The slave state machine of hybrid simulation algorithm. The area having dotted back-
ground shows the portion which tackles discrete event.

is at 0.0, it does nothing, except changing its state from S1 to S2. As the master
also has changed its state to S2 immediately after sending the 〈Rewind〉 message, it
sends the 〈Advance Time〉 message, which leads it to state S3. The slaves follow the
master and move to state S3. If the condition at line 27 in Algorithm S.A-1 is true,
then this means that a discrete event has occurred. In that case, the master moves
back to state S1 after sending the 〈Abort Iteration〉 message. The slaves follow
and move to state S1 on reception of 〈Abort Iteration〉 message. If the condition
at line 27 is false, the master moves to state S4 and sends 〈Share Data〉 message.
As before, the slaves follow the master. If there is no discrete event, then the loop
continues until the values of state variables converge. The condition of convergence
is checked at line 17 in Algorithm S.A-1. This leads the master from state S4 to
S5, where it first sends the 〈Synch〉 message before moving to S5. Then the master
sends 〈End Iteration〉 message and moves back to state S1 for the evaluation of the
next time step.

If a discrete event occurs, then from state S3 master moves to state S8. The
change is represented in algorithm by the call to ProcessDiscreteEvent() at line 31

1750055-10

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

in Algorithm S.A-1. A similar loop is executed there. After the proper handling of
the discrete event, master comes back at state S1.

During the execution, the master keeps on sending the commands (messages) to
slaves and slaves only wait for them to reach. Once they get the command allowed
in a state, they execute the action and change the state. The master is the leader
in its state transformations, while slaves experience the same state transformations
by following the master.

In the description of algorithm most variables are named in a self-descriptive
manner, though for more clarity, description of some variables is given here. Vari-
able discEvent is a boolean variable which indicates whether a discrete event has
occurred during the iteration or not. The variable iterationOPs stores the outputs
of all FMUs at previous iteration, while currOPs stores their values at the cur-
rent iteration. The variable step stores the length of communication time step. The
constant TOL stores the value of error tolerance. The constant No stores the total
number of outputs of all the FMUs which are expected to be received by the master.
The constant FMUin stores the number of inputs an FMU has subscribed to.

4.2. Proof of the correct synchronized execution

In order to prove that a slave always follows the correct execution path induced by
the master, we denote the master state graph as M and slave state graph as S,
then

M� S. (1)

Equation (1) means that S simulates M, or in other words M and S have
simulation preorder relationship. Each move generated by the master M can be
simulated by slave S. From this fact, it can be concluded that a slave always follows
the master correctly until and unless the order of commands sent from the master
to a slave is changed during network communication.

Change in order only affects the execution when the slave is in a branching
state. Branching states are highlighted in Fig. 3. At a branching state (or branching
point), there can be cases when a slave can go into a direction not intended by the
master. Before proving that by using synchronization points such a situation can
be avoided, few structures must be defined

• Σ is the set of all commands {µ1, µ2, µ3, . . . , µn}.
• Γj is the list of all commands sent to a slave slvj. A slave slvj removes a command

from Γj when it executes it. At any time, it may contain a limited number of
commands induced by the master algorithm. As Σ is the set of all commands, so
x ∈ Γj ⇒ x ∈ Σ. At any moment of execution |Γj | ≥ 0.
• Λ is the set of all states {s1, s2, s3, . . . , sn} in the slave state graph.
• Λm is the set of all states {sm

1 , sm
2 , sm

3 , . . . , sm
n } in the master state graph.

• Λf ⊂ Λ, contains all branching states in Λ.
• Λm

f ⊂ Λm, contains all branching states in Λm.

1750055-11

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

• Π is the set containing elements {Π1, Π2, Π3, . . . , Πn}. An element Πi is the set
of all commands allowed at state si. So each Πi ⊂ Σ, with |Πi| ≥ 1.

The slave algorithm works in a way that it keeps accepting the commands and
saves them in Γj . At each state si, it follows the first command it finds in Γj ∩Πi.
In order to prove that the synchronization algorithm works perfectly, it is sufficient
to prove that at any time during the execution of the algorithm, for the state si

active at that time, and the slave slvj , the following is true

|Γj ∩Πi| ≤ 1. (2)

In order to prove the above statement, it should be noted that there are certain
commands which work like synchronization commands for the slave and the master.
The state where the slave ends up as a result of executing any of these commands is
called as a “synchronization point” or synchronization state. The master also ends
up at the similar state, in its own state graph, with a difference that it first gets
into the state and then issues the command. At these points, the master waits for
a response from all the slaves and it does not issue any more commands until it has
received a response from all of them. It is easy to observe that the condition given
in Eq. (2) can only be violated at a branching state where |Πi| > 1.

Lemma 1. Condition given in Eq. (2) remains valid, if starting from any state
in Λm

f and Λf respectively, master and slave have to go through a synchronization
point in their state graphs, in order to reach any state — same or different — in
Λm

f and Λf again.

Proof. Suppose that the master has passed through a branching state sm
f . The

corresponding state of sm
f in slave is sf . By this, the master sends a command in

Πf to the slave. As synchronization point sm
s must follow it by definition, so the

master must wait for a response from all the slaves at sm
s . The corresponding state

to sm
s in slave is ss. At sm

s , the master cannot send any more commands until it
receives all the responses. On the side of slave slvj , Γj now may or may not contain
a command present in Πf . In order to send a response back to the master, the
slave has to pass through sf and reach ss, because by Eq. (1), a slave simulates
the master. To do this, it must consume the command sent from the master. So
essentially when a slave reaches at ss, it must have consumed the command in Πf

sent from the master. This means that when a slave slvj sends a response back to
the master, the set Γj does not contain any command in Πf . The property holds
for all branching states sf and their respective set of commands Πf , which proves
that lemma 1 is true.

The proof means that the condition given in Eq. (2) is entailed provided:

(1) All slaves simulate the master and the master sends commands in the correct
order.

1750055-12

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

(2) Conditions imposed by lemma 1 are valid in the state graphs of master and
slave.

The above discussion proves that if the condition given in Eq. (2) remains valid
at all times during the execution of the simulation, then there will be no problem of
synchronization. The property is enforced by lemma 1. Looking at the slave state
machine in Fig. 3, it is clear that there are no two branching states reachable from
each other without passing through a synchronization point. The only exception
are S4 and S8 states, that can be reached from state S3 without passing through
a synchronization point. An ambiguity is possible if list Γ has both 〈Share Data〉
and 〈Share Data Non-Discrete〉 in it and slave is at state S3. Looking at the master
Algorithm S.A-1, it is clear that this is not possible because the master does not gen-
erate 〈Share Data〉 and 〈Share Data Non-Discrete〉 consecutively without issuing an
〈Advance Time〉 command, which enforces synchronization. It is important to men-
tion that the proof of synchronized execution is sufficient for any number of slaves,
because for the sake of synchronization each slave is only dependent on the master.

4.3. Communication step size control

ẏ = f(y, p), (3)
˙̂y = f̂(ŷ, p̂)
˙̃y = f̃(ỹ, p̃),

(4)

ed = |yf − y0|2. (5)

Step size control offers many advantages in any numerical integration algorithm.
Implemented correctly, it can significantly enhance the performance of an algo-
rithm. Here too, the communication step size control offers many advantages. In
the presented algorithm, each communication step is also followed by a sequence
of messages among processes and the RTI. This means that more communication
steps result in more messages to be communicated, which means more network traf-
fic. Increasing network traffic not only increases the load on the network resources,
but also increases the probability of unwanted network delays. So increasing the
communication step size to the maximum, where the solution remains valid, is very
beneficial.

Looking at Fig. 1, it is easy to understand that separating the ODEs means
that some or all of the state variables in a subsystem are going to evolve without
the knowledge of state variables in other subsystems. Mathematically speaking,
suppose there is a system given in Eq. (3).

The state vector y contains n state variables y = (y1, y2, y3, . . . , yn). To perform
the numerical integration of the system, if an implicit method is used, then the
Jacobian of the system will be an n × n matrix, containing partial derivatives of
all the state variables with respect to each of them. Partitioning the system in
two (Eq. (4)), means that the Jacobian of each subsystem is also reduced to some

1750055-13

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

degree. If ŷ = (y1, y2, y3, . . . , yi) and ỹ = (yi+1, yi+2, yi+3, . . . , yn), then this means
that state variables in ŷ are being evaluated without their partial derivatives with
respect to yi+1, yi+2, yi+3, . . . , yn. Similar is the case of ỹ. This causes divergence in
the solution. If the divergence remains in a realm where the system remains defined,
then it is possible to recover the error through fixed point iteration. If not, then
this means that the gap between two communication steps is too large.

Following the idea of divergence, apart from error tolerance, there is an addi-
tional parameter introduced, which is called “divergence tolerance” told. This is
tolerance for the error caused by the divergence. If the state variable vector, as a
result of initial guess at the start of WR iteration, is y0, and at the end of fixed
point iteration, after the convergence, it is yf , then an estimate of the error ed

caused by the divergence is given in Eq. (5).
At the end of each fixed point iteration, the communication step size is either

increased or decreased by some percent based on the fact that ed+τ0‖yf−yi‖max <

told or ed +τ0‖yf −yi‖max > told. Here τ0 is a small positive value used for normal-
ization. During processing of a discrete event, the communication step size is inter-
mediately reduced to minimum. After the discrete event, the communication step
size takes some time to recover its value. At that moment, the mechanics of com-
munication step size control becomes evident. Figure 5(a) shows the phenomenon
by zooming into that situation for one of the test cases described in Sec. 5.

5. Test Cases

Two examples are chosen to demonstrate the correctness of the algorithm. First
example in Sec. 5.1 examines a problem in which determining the time of discrete
event is difficult. In this test case, the decision whether a discrete event has occurred
or not depends on the values of input variables of a component. Changing these
values by a very small fraction can invert the decision about the discrete event. So
finding the precise time of a discrete event becomes very challenging.

The second case study examines a relatively bigger problem, with more than 50
state variables. The system is quite sensitive and comes from a real life problem in
the domain of smart grids.

Results of both test cases are compared with the results of a monolithic simula-
tor, to verify the correctness. Albeit, it should be kept in mind that the applicable
domain of distributed simulation and monolithic simulation is almost disjoint. To
simulate a system in a monolithic simulator, a modeler must have the complete
mathematical description of the system. With the distributed simulation, on the
other hand, a modeler may co-simulate partially known models in conjunction.

One purpose of developing complex simulations is to understand any phe-
nomenon which is difficult to experiment in real life. In this way the modeler tries to
verify the theory by “simulating” the real life phenomenon rather than going in the
labor to perform a physical experiment. In some situations, there is no “complete”
mathematical description of the phenomenon in the first place. The only thing a

1750055-14

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

Algorithm 1 Discrete Part CS-1
begin

if (y < hstair) then
δcontact ← 1

else if (y > hstair) then
δcontact ← 0

end
if (x−N + 1 + hstair > 0) then

hstair ← hstair − 1
end

end

modeler knows is the mathematical models of “parts” of the system. To be able to
see how these parts interact and evolve with each other, a modeler takes the help
of a distributed simulation.

Further, there are situations where a modular approach is always more cost
effective because independent models of individual components are easily usable
in different scenarios. Case study 2 is one such example. In this case study, it is
beneficial to create models of different components separately and let them co-
simulate. Later, when it would be felt that more components should be added into
the scenario, or behavior of a component has to be changed, a complete redesign of
the scenario would not be necessary.

5.1. Case Study — 1

The first case study is a very popular hybrid system i.e., a ball being dropped from
a height on stairs, namely, a “bouncing ball on stairs”. The model is given by the
system of System of equations 6. The discrete part is given by Algorithm 1. Figure 4
shows how different FMU-Federates are associated with each other via their state
variables.

Here g is the gravitational constant, while c0, c1, c2 and c3 are constants that
facilitate the phenomena offriction, air resistance, damping and mass of the ball.
The variables hstair and δcontact represent discrete variables. The variable δcontact

shows whether the ball is in contact with the floor or not. When δcontact = 1, the
system shifts its behavior immediately at that point. The variable hstair shows the
step of the stair that the ball is currently bouncing on. Initially, its value is N in
Algorithm 1.

ẋ = vx,

ẏ = vy,

v̇x = −c0vx,

v̇y = −g − c1vy − δcontact((y − hstair)c2 + c3vy).

(6)

1750055-15

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

Fig. 4. Different treatment of discrete events by both solvers.

(a) Variation of communication step size
during processing of a discrete event.

(b) OpenModelica’s treatment of
discrete event.

Fig. 5. Division and interdependence of different subsystems in the bouncing ball problem. The
arrows show information flow. The square element shows discrete component, while the circular
elements show continuous components.

For the presented run, the value of “divergence tolerance” was told = 1× 10−3.
The value is relatively large. Using a smaller value makes results more accurate,
but that results in more communication steps and performance deterioration.

Figure 6 shows the results produced by OpenModelica18 and the hybrid simu-
lation algorithm (more results can be seen in Sec. S-4 of supplemental material).
It is clear that there are little differences in the results. The difference between
results is obvious due to the completely different treatment of events in OpenMod-
elica DASSL algorithm. Figure 5(b) shows how OpenModelica cuts the contact
dynamics out, and converts the system into a piece-wise continuous system.

Lundvall et al.19 describe how OpenModelica changes a hybrid system into a
hybrid system of DAEs, separating it into a continuous part and a discrete part.

1750055-16

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

Fig. 6. Comparison between proposed algorithm (left) and OpenModelica (right).

This and many other simplification methods are examples of those advantages which
monolithic SPs have. A distributed algorithm with current state of technologies
cannot simplify the system as such. Most importantly, this type of simplification
is something which a modeler may not wish to apply in complex simulations, as
discussed at the start of this section.

5.2. Significance of the approach

Focusing on the specific type of simulation methodology, the presented hybrid sim-
ulation algorithm does not simplify the phenomenon of bouncing ball on stairs. It
models parts of the system, discrete and continuous separately, and lets them evolve
with each other governed by the algorithm. The results presented here show the
success of the algorithm, as they are so close to the results obtained by a monolithic
simulator (OpenModelica). From this, it can be easily deduced that the algorithm
is able to simulate a partially modeled physical phenomenon successfully. Here a
partial model means that the “complete” model of physical (or cyber physical) phe-
nomenon is not known, and the modeler, by providing mathematical description of
the parts of the system, is relying on the algorithm to accurately simulate the parts
of the system as a whole.

5.3. Case Study — 2

The second case study is taken from the power system domain. In this case
study, the performance of the secondary voltage control in a power system is inves-
tigated. The goal of the secondary voltage control is to keep the voltage of a pilot
bus (a bus of interest in a large grid) at a predefined reference value.

The power system model chosen for this study is the IEEE 14 bus system
model.20 This system is used in many studies of power system transients due to
its manageable size and complexity, while still being able to demonstrate the most
typical transient phenomena.21 The system is composed of 14 nodes (some of which

1750055-17

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

have demand connected to them) and five generators. Each of the generators is com-
posed of a synchronous machine governed by an Automatic Voltage Control (AVR)
system. The AVR controls the voltage level at the terminal bus. The terminal bus
of a generator is the node at which that generator is connected to the grid. The
secondary voltage control modifies the set-points of AVRs. The secondary voltage
control receives these set-points and the set-point of the pilot bus from the grid
operator.

q = q1 + Kp(Vpref − Vp)

q̇1 = K0(Vpref − Vp)

V̇sgi =
1

Tgi

(Xtgi + Xeqgi)(q.Qgr −Qgi + Qrefgi
), where i = 1, 2, 3, 6, 8

Vgrefi
= Vsgi + Vgref0i

, where i = 1, 2, 3, 6, 8. (7)

The simulation use case is composed of three FMUs. The first FMU is a contin-
uous module which contains the model of IEEE 14 bus system. The second module
is the secondary voltage controller module. The third module is a grid operator
module that is implemented as a discrete event component.

The model for the IEEE 14 bus system together with AVRs is derived from
the IPSL library.22 The library is developed for Modelica use under the ITesla
project. The mathematical model of the secondary voltage control is taken from,23

the FMU is implemented in Modelica by the authors. System of Eq. (7) represents
the secondary voltage controller in mathematical terms.

Among the parameters of the System of equations (7), K0 and Kp represent
the gains of the controller. In the presented simulation run, their values are 0.1
and 1.0, respectively. The inputs coming from the IEEE 14 bus system module are
represented by Vp and Qgi for i = 1, 2, 3, 6, 8. The first five inputs are the reactive
power components of the generation buses. The input Vp is the voltage magnitude
of the pilot bus. The input from the discrete event module is Vpref , which is the set
point for the pilot bus. All other variables are different parameters of the controller
that can be changed according to the controller deployed at the site. The outputs
from the controller are Vgrefi

where i = 1, 2, 3, 6, 8. These are the calculated set-
points for the AVRs of the generation buses. Naturally, they are the inputs to IEEE
14 bus module.

In the case study, the response of the grid voltage to the change in the voltage
set-points is investigated. Bus 5 is chosen as the pilot bus and voltage set-point of
this bus is stepped-up on every 60 sec to mimic the action of the system operator
who is observing dangerously low level of voltage at this bus and is working on
restoring it to nominal levels. The reference for the voltage on the pilot bus changes
from 1 to 1.02, and then to 1.04, and finally to 1.06 per unit in a 3 min time span.
Then the voltage is set back to 1.04. After 500 sec, the operator decides to set the
voltage reference point even lower, i.e., 1.02, and after 60 more sec, it is set to 1.00.
The pilot bus voltage behavior is observed in Fig. 7 (more results can be seen in

1750055-18

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

Fig. 7. Comparison between proposed algorithm (left) and OpenModelica (right).

Section S-4 of supplemental material). We see that the voltage level of the pilot
bus increases with the increase in the reference voltage. This speaks in favor of a
quality design of the secondary voltage loop.

In Fig. 7, comparison of responses is presented between hybrid simulation algo-
rithm and OpenModelica. The right-hand side of Fig. 7 represents the simulation of
the same system as a monolithic Modelica model. Only a small difference between
the two is observed, at the order of 10−8. Based on this observation, it can be
concluded that the simulation of the power system using the hybrid simulation
algorithm is as good as the monolithic one for this particular application (testing
of secondary voltage control). Since power systems are complex in nature, further
investigation is needed in order to assess the adequacy and accuracy of the hybrid
simulation algorithm for other power system applications.

5.4. Advantages of the modular approach

There are considerable advantages of this approach. First, it allows the modular
development of the simulation. Already tested modules can be coupled with each
other for testing and verification. Different controllers with different power grid
systems can be coupled and the results can be examined. Introducing many types
of faults during the execution is possible. Introduction of noise in the sensory data
of controller is possible. Most importantly, the discrete event module may be a lot
more complicated than it is in this prototype. A well-formed artificial intelligence
module can replace it, which collects the sensor values of the power grid and takes
actions based on its expert knowledge. Implementing such an intelligent agent is
much more a difficult task to do in Modelica, than doing this in a language specially
designed for intelligent agents, like Prologue. Any other intelligence mechanism
becomes far more usable, for example, artificial neural networks or support vector
machines.

1750055-19

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

M. U. Awais, M. Cvetkovic & P. Palensky

6. Conclusion

The article presents a distributed simulation algorithm for hybrid systems. The
algorithm does not put any condition on the number or type of simulation com-
ponents. Any numbers of continuous and discrete components are permissible. For
modern simulation applications, many different SPs have to be used simultaneously.
The algorithm presented here enables the modeler to develop different parts of the
complete system in different SPs and then simulate them together. However, the
components must adhere to the FMI specifications. The algorithm also uses an RTI
specified by the HLA standard. The conformance to the HLA is not needed though.
The article describes how an FMU can be changed into a component adhering to
HLA specifications. Such a component is named FMU-Federate.

For verification, two hybrid systems are simulated, and their results are com-
pared to the results produced by a monolithic solver, OpenModelica. The results
show that there are some discrepancies in the details, still the overall behaviors
of both the systems are identical to the behaviors presented by OpenModelica.
It is argued that performance comparison between a distributed technique and a
monolithic one is not justified, as both address their own spectrum of problems. A
monolithic solver simply cannot be used in situations where there are more than one
simulation components and each component is executed by a completely indepen-
dent simulation package. Only a distributed algorithm can be used in such situa-
tions. One such algorithm is presented here. Using the algorithm, purely continuous
components can be coupled with discrete event-based components.

References

1. Lelarasmee E., Ruehli A. E., Sangiovanni-Vincentelli A. L., The waveform relax-
ation method for time-domain analysis of large scale integrated circuits, IEEE Trans.
Comput.-Aided Des. Integr. Circuits Syst. 1(3):131–145, 1982.

2. Mets K., Verschueren T., Develder C., Vandoorn T. L., Vandevelde L., Integrated
simulation of power and communication networks for smart grid applications, in 2011
IEEE 16th Int. Workshop on Computer Aided Modeling and Design of Communication
Links and Networks (CAMAD), pp. 61–65, Kyoto Research Park, Kyoto, Japan, 2011,
IEEE.

3. Tseng F.-C., Hulbert G., A gluing algorithm for network-distributed multibody
dynamics simulation, Multibody Syst. Dyn. 6(4):377–396, 2001.

4. Kübler R., Schiehlen W., Two methods of simulator coupling, Math. Comput. Model.
Dyn. Syst. 6(2):93–113, 2000.

5. Schweizer B., Li P., Lu D., Implicit co-simulation methods: Stability and convergence
analysis for solver coupling approaches with algebraic constraints, ZAMM-Journal of
Applied Mathematics and Mechanics 96(8):986–1012, 2016.

6. Busch M., Schweizer B., Explicit and implicit solver coupling: Stability analysis based
on an eight-parameter test model, Proc. Appl. Math. Mech. 10(1):61–62, 2010.

7. Schweizer B., Lu D., Semi-implicit co-simulation approach for solver coupling, Arch.
Appl. Mech. 84(12):1739–1769, 2014.

8. D’Abreu M. C., Wainer G. A., Models for continuous and hybrid system simulation,
in Proc. 2003 Winter Simul. Conf. 2003, Vol. 1, pp. 641–649, New Orleans, LA, USA,
December 2003.

1750055-20

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

December 21, 2017 10:38 WSPC/262-IJMSSC/S1793-9623 1750055

Hybrid simulation using implicit solver coupling with HLA and FMI

9. Zeigler B. P., Ball G., Cho H., Lee J. S., Sarjoughian H., Implementation of the DEVS
formalism over the HLA/RTI: Problems and solutions, in Simulation Interoperation
Workshop (SIW), pp. 65–73, Orlando, FL, USA, 1999.

10. Awais M. U., Palensky P., Mueller W., Widl E., Elsheikh A., Distributed hybrid
simulation using the hla and the functional mock-up interface, in IECON 2013 —
39th Annual Conf. IEEE Industrial Electronics Society, pp. 7564–7569, 2013.

11. Cellier F. E., Kofman E., Continuous System Simulation, Springer, US, 2006.
12. Eker J., Janneck J. W., Lee E. A., Liu J., Liu X., Ludvig J., Neuendorffer S., Sachs S.,

Xiong Y., Taming heterogeneity-the Ptolemy approach, Proc. IEEE. 91 (1):127–144,
2003.

13. Müller W., Widl E., Linking FMI-based components with discrete event systems,
in 2013 Proc. IEEE Int. Syst. Conf. IEEE Conference Publications, pp. 5, IEEE
Conference Publications, 2013.

14. Mets K., Ojea J., Develder C., Combining power and communication network simula-
tion for cost-effective smart grid analysis, IEEE Commun. Surveys Tut. 16(3):1771–
1796, 2014.

15. Palensky P., Kupzog F., Smart grids, Annu. Rev. Environ. Res. 38(1):201–226, 2013.
16. Attiya H., Welch J., Distributed Computing : Fundamentals, Simulations, and

Advanced Topics, Vol. 19, Wiley series on parallel and distributed computing, John
Wiley & Sons, 2nd edn., 2004.

17. Kuhl F., Weatherly R., Dahmann J., Creating Computer Simulation Systems: An
Introduction to the High Level Architecture, Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edn., 1999.

18. Fritzson P., Introduction to Modeling and Simulation of Technical and Physical Sys-
tems with Modelica, Wiley-IEEE Press, 1st edn., 2011.

19. Lundvall H., Fritzson P., Bachmann B., Event handling in the openmodelica com-
piler and runtime system, Technical reports in Computer and Information Science.
Linköping University Electronic Press, 1st edn., 2008.

20. Information Trust Institute, The IEEE 14-bus system, 1962.
21. Hashim N., Hamzah N., Abdul Latip M. F., Sallehhudin A. A., Transient stability

analysis of the IEEE 14-bus test system using dynamic computation for power systems
(dcps), in 2012 Third Int. Conf. Intell. Syst. Model. Simul., pp. 481–486, IEEE, 2012.

22. Vanfretti L., Rabuzin T., Baudette M., Murad M., iTesla power systems library
(iPSL): A modelica library for phasor time-domain simulations, Software X 5:84–88,
2016.

23. Milano F., An open source power system analysis toolbox, IEEE Trans. Power Syst.
20(3):1199–1206, 2005.

1750055-21

In
t.

J.
 M

od
el

. S
im

ul
. S

ci
. C

om
pu

t.
20

17
.0

8.
 D

ow
nl

oa
de

d
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 1

47
.8

3.
20

1.
98

 o
n

06
/2

5/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.

