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Abstract
Sensor node localization is an important feature of many applications, including wire-
less sensor networks and location-based services. The accurate localization of sensor 
nodes improves system performance and reliability. This research emphasizes the bene-
fits of using hybrid machine learning and optimization strategies for sensor node locali-
zation. Machine Learning (ML) algorithms, such as neural networks and support vector 
machines, are used to simulate complex correlations between sensor readings and related 
locations. These models enable precise prediction of node placements based on received 
signal strength, time of arrival, or other sensory inputs. The survey conducted in this study 
aims to uncover the latest advancements in localization strategies within Wireless Sen-
sor Networks through the utilization of ML and Optimization Techniques. By thoroughly 
examining the existing literature, research gaps have been identified when localization 
techniques are solely employed. To provide a comprehensive understanding, this survey 
offers a detailed classification of localization algorithms, covering various aspects. Fur-
thermore, the paper elaborates on the implementation of Optimization and Machine Learn-
ing approaches, exploring potential combinations with localization techniques. Through 
the use of analytical tables, the survey presents a comprehensive overview of sensor node 
localization using ML and optimized approaches. Additionally, the study addresses the 
challenges encountered and identifies potential future directions for the integration of these 
techniques.
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1 Introduction

A WSN is a collection of sensor nodes, scattered in distinct environments to monitor the 
activities and data storage. The acquired data is sent to a central place for further pro-
cessing and analysis [1]. It is critical to accurately detect the placements of sensor nodes 
for WSNs to function properly by localization. Localization is essential in applications 
such as network management, object detection, and routing. Traditional techniques for 
localization in WSNs have primarily relied on either “range-based” or “range-free” 
methods. Range-based methods involve utilizing measurements of signal propagation 
characteristics such as “time of arrival” (ToA), “time difference of arrival” (TDoA), or 
“received signal strength” RSS to estimate distances between nodes. Conversely, range-
free methods leverage network connectivity information and geometric relationships 
between nodes for localization. Despite their advancements, these techniques suffer 
from challenges such as signal attenuation, multipath effects, and environmental varia-
tions, leading to potential inaccuracies [2].

To overcome these challenges and enhance localization accuracy in WSNs, researchers 
have turned their attention to the integration of machine learning and optimization tech-
niques. Machine learning algorithms offer the ability to extract patterns and relationships 
from extensive datasets, thereby improving localization accuracy. Machine learning algo-
rithms can learn to provide precise predictions of node locations based on multiple input 
features by training models on vast volumes of sensor data [3].

Complementing machine learning, optimization techniques aim to find the optimal 
set of node positions that minimize localization errors. These techniques involve formu-
lating an objective function that quantifies the discrepancy between estimated and actual 
positions and then optimizing this function using mathematical optimization algorithms. 
Through iterative adjustments to node positions, optimization techniques strive to converge 
toward an optimal solution that minimizes localization errors [4].

The fusion of machine learning and optimization techniques presents a promising 
approach for addressing localization challenges in WSNs. By integrating machine learn-
ing algorithms into the localization process, the system can learn from past observations, 
adapt to changing environmental conditions, and continually improve accuracy. Moreover, 
optimization techniques facilitate the refinement of node positions, by considering the facts 
like connectivity among nodes, energy efficiency, and reduced cost [5].

The integration of ML and OT for localization in WSNs is the focus of the study and 
analysis. We explore ML techniques K-nearest neighbor, decision tree, ensembled learn-
ing, manifold learning, etc., and assess their performance in terms of localization accuracy, 
error, communication cost, scalability, robustness, the environment, the areas of scenarios, 
and their outcomes. Additionally, we also analyzed the impact of implementing these ML 
techniques with optimization algorithms. We may overcome the limits of standard localiza-
tion approaches and unlock the full potential of WSNs across multiple application areas by 
leveraging the capabilities of these new techniques [6]. Unconstrained optimization prob-
lems can be considered localization challenges. The optimization.

1.1  Motivation and Inspirations

The RSSI is widely used as a non-hardware solution for node localization. Sometimes this 
technique is not able to perform localization as per specified standards. Applying particle 
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swarm optimization (PSO) to localization algorithms, the placement accuracy of RSSI 
increases [7].

Classical machine learning approaches paired with deep learning methods using Chan-
nel State Information (CSI) provide an aid to raise the performance. The proposed algo-
rithms based on ML techniques are evaluated according to generalized properties for 
diverse phenomena and are evident as the best-performing techniques because it has the 
ability to be generalized. Deep learning models’ generalization capacity can be improved 
so that they can learn the related aspects [8].

The most challenging aspect of indoor localization is it’s constantly changing environ-
ment. It is often necessary to develop an IoT environment to tackle this difficulty. The pre-
processing step is studied before the localization procedure to test the surroundings. The 
process of localization begins with identifying the moving dynamic nodes. The ML algo-
rithms maintain a database of fingerprint map classification easily and efficiently. Deep 
Learning was shown to be the best appropriate technique in the proposed case [9].

Authors in [10] proposed a strategy to obtain outstanding results in indoor scenarios for 
localization. The proposed work is based on a Wi-Fi fingerprint. This method combines 
SISAE and RNN. To finish the localization process, the proposed techniques have been 
merged with an ML technique named logistic regression. It computes the location coordi-
nates of the sensor nodes by improving accuracy.

Authors in [11] combined Deep learning patterns are combined with sensor observa-
tion and feeble classifiers to enhance the capabilities of localization algorithms. Due to 
Non-line of sight, the robots used to get unable in detecting their targets. It is obvious that 
the robot must be located for the robot system to be legitimate. To address the issue of 
lost localization, a deep learning technique supports the robot in generating exact patterns. 
CNN and RNN are applied to improve robot localization.

The issue of node aggregation and uneven placement of nodes may arise throughout 
the node deployment procedure. As a result, the need to create methods to reconfigure the 
described problem with the purpose of improving accuracy is being developed. These ways 
allow t to fix issues with the installation of sensor nodes in WSN [12].

1.2  Contribution to the Survey

Precision and efficient localization systems have been built by using the capabilities of 
machine learning algorithms. These technologies have had a significant impact on indus-
tries like autonomous vehicles, robots, and augmented reality. Machine learning mod-
els successfully analyze sensor data, such as GPS signals and visual inputs, allowing for 
real-time and accurate location identification of objects or devices. Furthermore, optimi-
zation approaches are important in refining localization algorithms, increasing accuracy 
while decreasing computing costs. The combination of machine learning and optimization 
enhances not just localization precision but also prepares the path for sophisticated applica-
tions such as intelligent navigation, personalized services, and seamless integration of vir-
tual and physical realms. The integration of machine learning and optimization approaches 
in localization will continue to drive technical improvements, changing the future across 
multiple through continual research and development. According to the debate, the article 
has the following key contributions:

• The survey reveals the cutting edge by conducting a thorough examination of localiza-
tion strategies in WSNs using ML and optimization approaches.
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• Research gaps have been identified when localization techniques are implemented as 
sole for localization

• This survey provides a thorough classification of localization algorithms in every pos-
sible aspect.

• Optimization and Machine Learning approaches with possible combinations have been 
elaborated to implement them with localization techniques.

• An analytical survey through tables using machine learning and optimized approaches 
for sensor node localization is provided.

• Identified the challenges and future aspects of implementing the stated techniques 
together.

1.3  Broad Roadmap and Organization of the Article

This article follows a clear roadmap to explore the application of ML and optimization 
techniques in WSN localization. The introduction section sets the stage by highlighting 
the significance of this research and its relevance to current needs. The background and 
related work section provides a comprehensive overview of WSNs, localization tech-
niques, OT, and ML in WSN. Section 2 identifies various research gaps and limitations 
of current approaches, paving the way for the proposed work. The background detail 
section i.e., Sect. 3 outlines the innovative schemes, and classifications of localization 
techniques, various ML and optimization approaches, the key components, and vari-
ous employed algorithms in this regard. The analytical discussion Sect. 4 interprets and 
compares the existing approaches with flaws and highlights the strengths and identi-
fies various challenges for implementing localization, ML, and optimization techniques 
together in Sect.  5. The conclusion Sect.  6 summarizes the findings and emphasizes 
the contributions and Sect. 6 calls for further research and implementation. Finally, the 
references section provides a comprehensive list of all cited sources, ensuring the cred-
ibility and validity of the article’s content. Figure 1 is the pictorial representation of the 
roadmap of the article.

Fig. 1  Roadmap of the Article
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2  Research Gaps

Localization entails calculating the spatial coordinates of sensor nodes within the net-
work, which is critical in environmental monitoring, object tracking, target recogni-
tion, etc. The research landscape has seen a plethora of proposed localization strate-
gies, including range-based methods based on the strength of the signal or time-of-flight 
measurement, and range-free alternatives based on connection and topology informa-
tion. Despite significant progress, persistent difficulties and research gaps persist. These 
limitations include challenges with precision, energy efficiency, scalability, robustness 
in dynamic situations, integration with developing technologies, and the capacity to 
manage a wide range of deployment scenarios. The identification of these research gaps 
is critical because it guides future research, fosters innovation, and allows for the devel-
opment of more effective and practical localization solutions capable of addressing the 
changing demands of WSN applications. A thorough assessment of existing research 
reveals where knowledge is inadequate, where inconsistencies or contradictions occur, 
and where additional research is required. In WSN localization, the following research 
gaps exist:

2.1  Finding the Precise Coordinates of the Sensor Nodes

While numerous strategies for localization have been presented, achieving high accu-
racy and precision remains a difficulty. Existing approaches may be limited by signal 
interference, non-line-of-sight circumstances, or barriers that make precise distance 
measurements impossible. Furthermore, the scalability of localization approaches 
in large-scale WSN deployments needs to be investigated further. Considerations for 
energy efficiency are also critical energy-efficient data transmission [13–15]. Further-
more, the stability of localization systems in dynamic situations where sensor nodes 
can move or undergo topological changes necessitates further investigation. Addressing 
these research gaps is critical for developing new algorithms and methods capable of 
finding sensor nodes in WSNs reliably and precisely. Such developments would consid-
erably improve the network’s data analysis, monitoring, and decision-making processes 
[16].

2.2  Recognizing the Sensor Nodes in Slumber Mode

Sleep mode is widely used to reduce energy consumption and extend the network life-
time by temporarily shutting specific nodes and lowering power consumption. However, 
establishing the presence and placement of sensor nodes in sleep mode remains difficult. 
Current approaches often rely on periodic wake-up cycles or pre-determined timetables, 
which may not adapt effectively to changing network circumstances or event patterns. It 
is critical to develop robust and efficient approaches for the real-time identification of 
sleeping nodes, especially in large-scale WSN deployments. Overcoming this research 
gap would allow for better energy management, more efficient data collecting, and over-
all network performance improvements in WSNs [17].
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2.3  Converting the Relative Coordinates of the Sensor Nodes into Absolute

While relative localization methods provide information on node positions relative to 
each other, finding their absolute coordinates in a global reference frame remains dif-
ficult. Existing techniques frequently rely on a subset of anchor nodes with known posi-
tions or require external infrastructure for positioning. It is critical to develop strong and 
precise methods for converting relative coordinates into absolute positions without the 
use of additional infrastructure. Addressing this research gap will improve the precision 
and applicability of WSNs, allowing for more accurate location-based services, track-
ing, and monitoring across a variety of applications.

2.4  Clustering of Large Observing Regions

When the network spans large areas, efficiently splitting the monitoring zones into clus-
ters becomes difficult. Due to issues such as communication overhead, energy consump-
tion, and scalability, existing clustering algorithms may struggle to handle large-scale 
networks. Addressing this research gap will enable greater data aggregation, efficient 
resource allocation, and network performance, allowing WSNs to monitor and analyze 
large areas across several applications.

2.5  Mobility in Sensor Nodes

Unlike traditional WSNs, which assume fixed node placements, integrating node mobil-
ity presents new difficulties and opportunities. In the context of mobile nodes, factors 
like energy consumption, network connectivity, localization accuracy, and data rout-
ing must be addressed. It is critical to develop efficient protocols and algorithms that 
can adjust to node mobility patterns and ensure network connectivity. Furthermore, to 
improve WSN performance in dynamic situations, it is vital to investigate the impact of 
node mobility on data gathering, event detection, and resource management. Bridging 
this research gap will help to produce strong and dependable WSN solutions capable of 
operating well in real-world environments with mobile sensor nodes.

2.6  Classifying the Network Among Anchor and Non‑anchor Nodes

It is critical in WSNs correctly identify the location of the nodes and classified as 
anchor or non-anchor. Existing classification algorithms frequently rely on established 
criteria or roles, which may not be flexible enough to deal with dynamic network condi-
tions. Hence, it is needed to design resilient and adaptive algorithms to categorize nodes 
based on their capabilities, position, or role in the network. Addressing this research gap 
would improve network management, optimize resource allocation, and boost overall 
WSN performance, allowing for more effective data gathering, routing, and coordina-
tion between an anchor and non-anchor nodes.
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2.7  Make the Maximized Utilization of Available Resources

Utilizing limited resources like energy, bandwidth, storage, and computing power effi-
ciently is critical for optimizing WSN performance and longevity. Existing resource 
allocation and management strategies may underutilize existing resources or fail to 
adapt to changing network conditions. As a result, unique algorithms and strategies for 
intelligently allocating and distributing resources based on network requirements and 
limits are required. Closing this research gap would result in better resource utilization, 
increased network efficiency, and longer WSN operation, allowing resource-constrained 
applications to run more efficiently.

2.8  Implementation of Deep Learning Techniques for Localization of Sensor Nodes

While several methods for localization have been presented, the use of deep learning 
algorithms in this context is yet relatively unexplored. Deep learning models that can 
effectively exploit sensor data to properly estimate node placements are required to 
be developed and implemented. Closing this research gap would enable advanced and 
intelligent localization approaches in WSNs, allowing for greater spatial awareness and 
precise node location in a variety of applications.

2.9  Hybrid ML Techniques for Sensor Node Localization

Hybrid techniques in machine learning combine diverse algorithms such as deep learn-
ing, support vector machines, or ensemble methods. They are used for performance 
enhancement. It is critical to develop and implement hybrid ML models that success-
fully integrate information from disparate data sources and use the benefits of various 
algorithms. Addressing this research gap will result in more advanced and precise local-
ization solutions in WSNs, increasing the precision and reliability of node positioning 
in a variety of application scenarios [18].

2.10  Implanting ML and Nature‑Inspired Evolutionary Algorithm with Localization 
Techniques

While ML and evolutionary algorithms have been studied independently for locali-
zation, their combined use is relatively unknown. Deep learning and support vector 
machines, for example, can use data patterns to provide exact node locations, whereas 
evolutionary methods inspired by nature provide optimization capabilities. It is criti-
cal to creating hybrid models that mix ML and evolutionary methods for localization. 
Addressing this research gap would result in novel localization approaches that combine 
the benefits of ML and evolutionary algorithms, allowing for advanced and adaptive 
localization solutions in a variety of WSN applications.

2.11  Combining Hyper‑Heuristics and ML Techniques with Localization Techniques

Hyper-heuristics give adaptive problem-solving methodologies, whilst machine learn-
ing techniques use data patterns to pinpoint node locations. The combination of these 
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approaches has the potential to improve localization efficiency, accuracy, and adaptabil-
ity in WSNs. An important step is to create hybrid models that integrate hyper-heuris-
tics, ML approaches, and localization algorithms.

2.12  Robustness in Challenging Environments

Traditional localization approaches frequently fail in adverse situations including obstruc-
tions, signal interference, and NLOS conditions. There exists a substantial research gap in 
developing strong localization algorithms capable of dealing with such conditions. This 
research gap needs the investigation of approaches capable of mitigating the negative 
effects of external factors on localization accuracy, such as multipath effects, signal attenu-
ation, and dynamic impediments.

2.13  Localization and Efficient Energy Transmission Trade‑offs

Localization in WSNs often requires sensor nodes to expend additional energy for range 
measurements, signal processing, and communication. Finding a happy medium between 
energy consumption and localization accuracy is a significant scientific challenge. It is 
crucial to explore energy-efficient localization techniques that can minimize energy usage 
while still ensuring acceptable localization accuracy. This finding is especially important in 
resource-constrained WSNs where energy conservation is critical.

2.14  Privacy and Security

Localization information is frequently sensitive and prone to security risks, making it criti-
cal to preserve sensor node privacy while also ensuring the integrity and authenticity of 
localization data. Protecting these elements presents significant hurdles. As a result, it is 
critical to investigate research gaps in safe and privacy-preserving localization algorithms 
capable of ensuring authentication, secrecy, and integrity. It is critical to investigate and 
improve such strategies.

2.15  Fusion of Heterogeneous Localization Sources

Using several sources of localization information, such as GPS, landmarks, and anchor 
nodes, is crucial in performance improvement during node localization. The integration of 
data from disparate sources presents difficulties. Hence, there is a research need to create 
fusion systems that can harness the benefits of various localization sources while overcom-
ing their limits.

The above identified research gaps provide directions to researchers to work in the 
extent of localizing the sensor nodes in WSN.

3  Analysis of ML and OT Based Localization of Sensor Nodes

Researchers can acquire insights into the effectiveness, performance, and trade-offs of OT 
and ML approaches for localizing a node by thoroughly analyzing and evaluating them. 
This research allows for the discovery of distinct methodologies’ strengths, limitations, and 
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prospective application domains. Researchers can contribute to the development of robust, 
precise, and efficient localization solutions in WSNs by identifying the most relevant strat-
egies for various localization circumstances. This research project is critical in developing 
the field of WSN localization and promoting the use of more optimized and reliable locali-
zation systems.

3.1  Localizing the Sensor Nodes in WSN

The task of calculating the spatial coordinates of individual sensor nodes inside a WSN is 
termed sensor node localization. Precise node localization is essential for many applica-
tions, including object tracking, environmental monitoring, and target detection. Locali-
zation strategies are range-based methods that use signal strength or time-of-flight meas-
urements and range-free methods that rely on connection and topology information. The 
idea behind localization is to precisely pinpoint the location of sensor nodes, allowing for 
more effective data collection, better routing, and node cooperation. Ongoing research is 
aimed at improving localization accuracy, scalability, energy efficiency, and adaptability to 
changing settings. These initiatives help to build more effective and practical localization 
solutions for WSNs [19]. Figure 2 shows how the localization process takes through the 
flowchart.

3.1.1  Localization Schemes

Localization schemes are techniques and algorithms used in WSNs precisely calculate or 
estimate the coordinates of the nodes. These techniques are critical for enabling a vari-
ety of WSN applications, including target tracking, environmental monitoring, and data 
fusion. They aid in accurate location by allowing for effective data collecting and coordi-
nation among sensor nodes. Figure 3 demonstrates various localization schemes and their 
techniques.

(a) Target/Source Localization
  The process of calculating the precise coordinates or location of a specific target 

or source within a WSN is referred to as target/source localization. It entails properly 
determining the position of the target/source using measurements or data gathered 
by sensor nodes. Because of its unique properties or requirements, the target node is 
important in a variety of applications. Scenarios such as following the movement of 
an object, monitoring the position of a mobile node, or detecting a specific event or 
abnormality inside the network are examples of target node localization. This method 
provides accurate spatial information on the target node, allowing for targeted actions 
or analysis based on its location.

  The process of finding the positions of source nodes inside WSN is known as source 
node localization. The method of source node localization allows for accurate mapping 
of these sensor node placements. This mapping is required for a variety of network 
management functions, such as routing, data fusion, and target tracking. The network 
can quickly route data, perform data fusion to acquire correct information, and moni-
tor specific targets inside the network by properly understanding the positions of the 
source nodes.

  These can be classified as single-Target/Source Localization and Multiple Target/
Source Localization [20].
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  The technique of precisely predicting the location or coordinates of a single source 
or target within a WSN is referred to as single source/target localization. It entails 
using sensor node readings or data to establish the precise position of the source/target. 
Object tracking, event localization, and point-of-interest monitoring are all applications 
of single source/target localization. The primary goal is to accurately localize a single 

Fig. 2  Flowchart of Localization Process
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source/target, allowing for effective monitoring, tracking, or contact with the identified 
entity. There are two types of single-source localization algorithms:

• Model-based Localization Algorithms for Energy Decay
• Model Independent Localization Algorithms for Energy Decay

  The simultaneous estimation of the locations of several sources or targets inside a 
WSN is termed multiple source/target localization. Many source/targets localization, as 
opposed to single target localization, which focuses on establishing the coordinates of a 
single entity, deals with localizing many entities at the same time. This scenario occurs 
in a variety of applications, including tracking numerous moving objects, monitoring 
multiple events, and localizing several signal or emission sources. The main problem 
is predicting the positions of many sources/targets properly utilizing measurements or 
data obtained from sensor nodes. This necessitates the creation of advanced localiza-
tion algorithms capable of dealing with the difficulties of numerous simultaneous 
localizations. To accomplish precise and real-time localization of various sources/
targets, these algorithms employ techniques such as data fusion, tracking algorithms, 
and estimate approaches. Advances in multiple source/target localization research aim 
to improve WSN capabilities in settings requiring simultaneous localization of many 
entities [21].

(b) Node Self Localization
  The process by which individual nodes in a wireless sensor network (WSN) inde-

pendently establish their positions without relying on external infrastructure or anchor 
nodes is known as node self-localization. Each sensor node estimates its position based 
on data gathered from its surroundings or interactions with neighboring nodes. Self-
localization techniques are useful in situations when establishing a pre-existing infra-

Fig. 3  Schemes for Sensor Node Localization
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structure or relying on anchor nodes is prohibitive or impossible. These strategies are 
especially useful in ad hoc or mobile sensor networks, where nodes are dynamically 
placed or moved throughout the network.

  There are numerous strategies for self-localization accessible, including range-based 
and range-free techniques. Range-based approaches evaluate a node’s position con-
cerning other nodes in the network by using distance or ranging data such as time of 
arrival (ToA) or received signal strength (RSS). Range-free approaches, on the other 
hand, use connection patterns, network structure, or geometric correlations between 
neighboring nodes to estimate a node’s position.

  Measurement inaccuracies, signal propagation variances, and environmental impedi-
ments all provide problems to self-localization. The focus of research efforts is on 
building efficient and accurate self-localization algorithms capable of addressing these 
issues and giving dependable position estimations for sensor nodes in the network. 
Broadly Node self-localization can be classified as:

• Range-based Localization Techniques
• Range-free Localization Techniques

3.1.2  Range‑Based Techniques

They involve measuring the distances between sensor nodes to estimate their placements. 
To determine node-to-node distances, these algorithms use factors such as “received signal 
strength”, “time-of-flight”, “angle-of-arrival”, or “time difference of arrival”. Range-based 
localization methods that are regularly employed include trilateration, multi-lateration, and 
lateration [22]. Range-based localization techniques provide high accuracy by fulfilling 
line-of-sight conditions or with appropriate ranging equipment. They are, however, sus-
ceptible to some issues i.e. signal fluctuations, interference, and NLOS circumstances. The 
range-based techniques are classified as below:

 (i) Received Signal Strength (RSS)
   Distance estimation is the foundation for determining the position of every node 

in a sensor network [15]. The precision of distance measurement is determined by 
the strength of the received signal. The RSSI-based distance estimate technique 
necessitates the use of a signal propagation model. The most common model is 
the log-normal shadowing model. As the signal travels from source to destination, 
it weakens. Attenuation refers to the phase of receiving the signal. The value of 
attenuation is proportional to the distance traveled; the greater the distance trave-
led, the larger the value of attenuation. The strength of the signal can be utilized to 
calculate distance. The distance can be determined using the signal’s transmitted 
power, received power, and the Path loss model. The power of the received signal 
Pab
R
(t) transmitted by node a and received by node b at time t can be described using 

the following parameters as:

η is the constant based on the attenuation of the signal, and dab is the distance a and 
b . Xab(t) is a variable whose value is affected by various environmental factors.

 (ii) Time of Arrival (ToA)

(1)Pab
R
(t) = Pa

T
− 10ηlog

(
dab

)
+ Xab(t)
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   The time of arrival (ToA) is an important parameter in WSNs for localization. It 
entails measuring or calculating the time it takes a signal from a certain transmitter 
or source to arrive at a receiving node. To identify the time difference between sig-
nal arrivals, ToA-based localization algorithms rely on exact time synchronization 
among sensor nodes. The distance between the source and receiving node can be 
estimated by knowing the speed of signal propagation. A sensor node can determine 
its own location by using distance measurements from numerous anchor nodes with 
known placements. To compute the distance, two types of measurements are used: 
One-way Arrival Time and Two-Way Arrival Time [23]. It necessitates close coor-
dination between sender and recipient. The distance between two nodes is computed 
using the formula:

dab is the distance between node a and b. The time ellipse in signal transmission 
and reception is tsd and tds , and the signal propagation speed is v.

   In two-way Time of Arrival, the receiver sends a data, which is promptly answered 
by a neighbor node, allowing the round-trip time between the two nodes to be cal-
culated. The distance is computed as follows:

where dab is the distance between transmission and reception of a signal in Two-
way Time of Arrival and tsd , tds , tsd1 and tds1 are the times of transmission and recep-
tion of the signal. This transmission is picturized in Fig. 4.

 (iii) Time-of-Flight (ToF)
   These techniques determine the distance by measuring the broadcast time of a 

signal during transmission among nodes. Typically accomplished by the use of radio 
waves or acoustic signals.

• Radio Frequency Time of Flight (RF-ToF) Estimates distance by measuring the 
broadcast time of a signal during transmission among nodes. Usually accomplished 
through the use of radio waves or acoustic signals.

• Infrared Time of Flight (IR-ToF) Estimates the distance by measuring the duration 
taking place as an infrared signal to travel between nodes. Frequently used in indoor 
positioning systems.

 (iv) Time Difference of Arrival (TDoA)
   To calculate time differences effectively, “TDoA-based” localization algorithms 

rely on exact time synchronization among sensor nodes. These time disparities can 
be turned into distance measurements by taking into account the speed of signal 

(2)dab = (tsd − tds) ∗ v

(3)dab =
(tsd1 − tds1 ) − (tsd − tds)

2
∗ v

Fig. 4  Timing diagram of ToA [23]
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propagation. It is classified as TDoA for Multi-signal and TDoA for Multi-node 
TDoA as shown in Fig. 5.

 (v) Angle of Arrival (AoA)
   Antenna arrays or directional antennas are used in AoA-based localization systems 

to measure or estimate these angles. The location of any node can be estimated by 
analyzing the angles of arrival from many anchor nodes with established placements. 
Localization based on AoA has the ability to offer precise and robust location data, 
especially in environments with clear line-of-sight conditions. To guarantee accurate 
and exact localization findings, difficulties such as signal reflections, interference, 
and calibration imperfections must be overcome. The combination of AoA read-
ings and their locations aids in predicting the position of unknown node S. Figure 6 
depicts the AoA Method’s process. Here signal received from anchor nodes are used 
to locate node (a, b) by estimating the angle form all three anchor nodes as shown 
in Fig. 6.

 (vi) Round-Trip Time (RTT)
   RTT is the time, calculated by summing the time, when a signal moves from 

sender and receiver node and vice versa. This term is frequently used in acoustic-
based localization systems. These algorithms assess the distance between nodes and 
identify their relative positions inside a WSN by analyzing the round-trip time. Here 
are two RTT-based localization techniques that are regularly used:

Fig. 5  TDoA for Multi-Signal and Multi-Node

Fig. 6  Angle Measurement by 
AoA Technique
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• Round Trip Time of Flight (RT-ToF) Monitoring the time it takes for a signal to go 
from a source node to a target node and then back to the source node is required for 
RT-ToF localization.

• Round Trip Time-based Ranging (RTT Ranging) RTT ranging attempts to precisely 
estimate the round trip time of a signal in bidirectional consideration. RTT ranging 
can make use of a variety of signal types, including radio waves and acoustic sig-
nals. Accurate measurement of time delays needs synchronized clocks between the 
source and target nodes.

   Both RT-ToF and RTT ranging algorithms provide distance estimates based on 
signal round trip time. These techniques are often used in localization systems that 
require precise ranging information, such as indoor positioning, tracking, and navi-
gation applications. They have advantages in terms of simplicity, cost-effectiveness, 
and interoperability with various communication systems. When using these tech-
niques, however, restrictions such as signal propagation effects, ambient considera-
tions, synchronization requirements, and accuracy loss over greater distances should 
be considered.

 (vii) Doppler Effect
   Estimates distance by using the frequency change in a signal induced by relative 

motion between nodes. When there is relative motion between a source sending a 
signal and an observer receiving the signal, the Doppler effect occurs. The signal’s 
frequency appears to shift depending on whether the source and observer are travel-
ling towards or away from each other. The received signal has a greater frequency 
(upshift) when the source and observer move closer together. When the source 
and observer move away from one other, the received signal has a lower frequency 
(downshift).

   Localization based on the Doppler effect is used in scenarios that need precise 
velocity or distance data, such as object tracking, speed estimate, or collision avoid-
ance systems. Its efficiency is notably noticeable in outdoor areas with clear routes 
between nodes, allowing for accurate Doppler measurements. However, it is critical 
to recognize that Doppler effect-based localization has several limits. Multipath 
interference, signal attenuation, and complex propagation settings can all jeopard-
ize measurement accuracy and dependability. Furthermore, successful application 
of this technology frequently demands the use of specialized hardware and signal 
processing algorithms designed to extract meaningful information from frequency 
shifts.

The location is calculated based on Distance, angle and position of the nodes, Later-
ation and Angulation are the two basic techniques for performing range-based localiza-
tion. They can also be divided into Trilateration, Multi-lateration, Triangulation, and 
Multi-angulation.

• Trilateration This approach is widely used in RSSI. To localize a node, at least three 
nodes with known locations must be present. Each circle in the diagram indicates the 
node’s range, with the radius denoting the distance from the neighbor node. The junc-
ture points of ranges creating three circles by the three nonlinear neighbors provides the 
precise location of the node.

• Multi-lateration Multi-lateration is a prominent technique that leverages timing delays 
in the arrival of numerous signals to pinpoint the exact position of an unknown node. 
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Trilateration does not deliver accurate results in a loud environment. To add distance 
metrics, we need more than three neighbor nodes. To localize the node, the difference 
between the measured and estimated distance is minimized in this case.

• Triangulation Triangulation is used mostly when angle information is required. In the 
AoA technique, the angle information provided by two anchor nodes is used to localize 
the node. The unknown node’s position is calculated using basic trigonometry equa-
tions and angular measurements.

• Multi-angulation Multi-angulation is a localization technique used in WSNs to deter-
mine a sensor node’s position. The angles of arrival of the signal from several nodes 
that know their location with known placements are measured. Multi-angulation deter-
mines the location by using trigonometric computations and angle measurements. This 
technique is especially useful when reliable angle-of-arrival data are available and line-
of-sight conditions are favorable.

3.1.3  Range‑Free Techniques

These techniques are widely used in WSNs to estimate sensor node placements without 
relying on precise distance measurements. In contrast to range-based methods, which 
require accurate distance information, range-free techniques use network connectivity and 
topology to infer node positions.

(i) Proximity-Based Techniques
  Proximity-based approaches estimate node positions using proximity information 

like as signal strength (RSSI), angle of arrival (AoA), or proximity graphs. These 
methods use differences in signal characteristics to determine closeness or relative 
distance. RSSI-based Fingerprinting Techniques, Proximity Graph-based Localization, 
and AoA Localization are a few examples of these technique [24].

(ii) Connectivity-Based Techniques
  Connectivity-based approaches estimate node placements by analyzing the net-

work topology and the interactions between neighboring nodes. Centroid localization, 
DV-Hop, Connectivity-Based Localization (CBL), pattern matching, and Hop Count 
Localization are some examples of connectivity-based techniques.

(iii) Anchor-Based Techniques
  Anchor-based approaches entail the usage of special nodes known as beacons in the 

network. These beacons broadcast their positions on a regular basis, and other nodes 
estimate their positions based on the beacon signals they receive. Range-Free Localiza-
tion with Distance Estimation (RFD), Amorphous Localization, and MDS-MAP are a 
few examples.

(iv) Collaborative Localization
  Collaborative localization approaches rely on network nodes cooperating to estimate 

their positions collectively. To increase localization accuracy, nodes exchange data and 
employ distributed algorithms. Distributed Multi-lateration, Weighted Multidimen-
sional Scaling (WMDS), and Iterative Localization are three examples.

(v) Landmark-Based Techniques
  Reference points or landmarks with established placements in the network are used in 

landmark-based approaches. Nodes calculate their positions by measuring the distances 
or angles between landmarks. APIT (Approximate Point-in-Triangle), Scene Analysis, 
and Geometric Landmark Placement are landmark-based techniques.
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3.1.4  Sensor Nodes Based Classification for Localization Algorithms

Considering the above node localization schemes the localization criteria are further 
classified through the scenarios of sensor nodes [4].

• Algorithms that are Distribute and Centralized
  Individual sensor nodes estimate their positions autonomously by utilizing local 

measurements and interactions with neighboring nodes in distributed localization. 
This decentralized strategy eliminates the need for a central coordinator or infra-
structure, allowing nodes to contribute to deciding their placements. In contrast, 
centralized localization involves a central entity, such as a base station or localiza-
tion server, that collects readings from sensor nodes and performs the position esti-
mation procedure. This centralized method offers the benefit of global information 
and controls over the localization process. However, it demands more communica-
tion and computational resources due to data flow between nodes and the central 
organization. The decision between distributed and centralized localization is influ-
enced by several parameters, including network size, resource constraints, scalabil-
ity requirements, and desired localization accuracy.

• Algorithms Inbuilt With GPS and Without GPS
  GPS-based localization is based on Global Positioning System (GPS) technology, 

in which sensor nodes receive signals from GPS satellites to correctly determine 
their positions. However, GPS-based localization is limited by GPS signal availabil-
ity, which may be hindered or unavailable in some situations, such as indoors or 
underground locations. GPS-free localization approaches, on the other hand, do not 
rely on GPS signals and instead use alternative techniques.

• Algorithms With and Without Anchor Nodes
  A collection of anchor nodes with known positions is placed within the network 

for anchor-based localization. The other nodes’ location is estimated by measure-
ments among the anchors and themselves. Anchor-based localization algorithms 
commonly use trilateration or multi-lateration techniques.

  Anchor-free algorithms do not rely on specialized anchor nodes. Instead, they 
estimate their positions by leveraging sensor node connectivity and collaboration. 
These algorithms use network connectivity patterns, geometric features, or statisti-
cal inference methods to determine sensor node positions in the absence of external 
reference points.

• Algorithms for Stationary and Mobile Sensor Node
  Stationary sensor node algorithms are specifically intended for nodes that are 

fixed in place and do not move during network operation. Because stationary node 
positions remain constant throughout time, these algorithms are primarily concerned 
with optimizing localization accuracy and energy efficiency. They estimate node 
placements using range-based or range-free algorithms based on data collected from 
neighboring nodes or anchor nodes.

  In contrast, mobile sensor node algorithms are designed for nodes that can move 
across the network. These algorithms take node mobility into account and attempt to 
track and estimate their changing positions as they move. To constantly update the 
positions of mobile nodes, mobile node localization algorithms use techniques such 
as mobility prediction, trajectory modeling, or motion tracking. These algorithms 
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are crucial in applications that use mobile sensor nodes, such as environmental mon-
itoring, surveillance, and robotics.

• Fine and Coarse Grained
  Individual sensor nodes execute localized data processing and aggregation in fine-

grained algorithms, which work at a finer level of granularity. These algorithms allow 
for exact data control and analysis, resulting in more precision and detail. They may, 
however, necessitate greater computational resources and waste more energy. Coarse-
grained algorithms, on the other hand, work with data gathering/processing handled by 
higher-level nodes or base stations. These algorithms combine data from several sensor 
nodes, lowering the quantity of data sent and the overall energy consumption. Coarse-
grained algorithms are more scalable and energy efficient than fine-grained algorithms, 
although they may sacrifice some accuracy and control.

  The choice between fine-grained and coarse-grained algorithms is determined by the 
WSN application’s specific requirements. Fine-grained algorithms are appropriate for 
applications requiring exact and detailed information, whereas coarse-grained algo-
rithms are chosen for applications requiring scalability and energy efficiency.

• Relative and Absolute Coordinates
  Absolute node localization finds the precise spatial coordinates of nodes concerning 

a global reference frame. This is often accomplished through the use of systems such 
as GPS or anchor-based approaches that rely on external reference points. In contrast, 
relative node localization attempts to measure the positions of the nodes without using 
any external reference frame. This method infers relative positions by using metrics 
such as distance, angle, or connectivity information between neighboring nodes. Rela-
tive node localization gives useful information about the spatial relationships between 
nodes, which is especially beneficial when an absolute reference frame is unavailable or 
superfluous. Figures 7 and 8 represents these classifications in more specific manner.

3.1.5  Localization Algorithm Characteristics

Localization algorithm features in WSNs are governed by a variety of elements that shape 
their design and performance. These variables include infrastructure availability, network 
topology, node capabilities, localization needs, and deployment circumstances. The exist-
ing infrastructure influences the choice and feasibility of localization strategies [25]. Based 
on the above speech the localization algorithms have the following characteristics:

Fig. 7  Classification of Localization Algorithm
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• Robust to Environment The algorithms for localization must be able to function in 
adverse settings. Robustness is an important feature of localization algorithms since it 
relates to their ability to deal with unfavorable situations and problems faced in WSNs. 
This includes problems like measurement mistakes, signal interference, ambient fluc-
tuations, and obstructions. A robust localization method is resistant to noise, allowing it 
to offer accurate position estimations even in difficult situations. By overcoming these 
obstacles, robust algorithms ensure reliable localization results that are less sensitive to 
errors produced by outside cause [26].

• Adaptive Nature The accuracy of localization algorithms varies with anchor nodes. The 
more anchor nodes, the higher the precision. To adapt to changing network conditions 
and particular requirements, adaptive localization algorithms can dynamically adjust 
their parameters or behavior. These algorithms can efficiently adjust to node movement, 
signal fluctuations, and environmental changes, ensuring accurate and consistent posi-
tion estimates throughout time. Adaptive localization algorithms optimize their per-
formance by continuously modifying their operation to match the varying needs and 
problems faced in WSN. This adaptability increases their versatility and allows them to 
achieve consistent localization results throughout the network’s operation [27].

• Scalability The localization process should not be influenced by changing count of sen-
sor nodes. Scalability is a fundamental feature of localization algorithms that defines 
their ability to accept networks of various sizes. Scalable algorithms can quickly esti-
mate node positions in small, medium, and large WSNs without sacrificing accuracy 
or computing cost. These algorithms can effectively scale their operations to manage 
different network sizes, delivering consistent and dependable localization performance 
regardless of network size. Scalable localization techniques demonstrate adaptability 
and suitability for various WSN installations by preserving efficiency and accuracy at 
varying scales.

Fig. 8  Classification of Localization Algorithm
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• RF-based algorithm These methods use radio frequency waves to measure signal quali-
ties in a non-intrusive and wireless manner. As a result, sensor nodes can be localized 
without extra infrastructure or physical contact. In localization, RF-based algorithms 
provide diversity and adaptability. They can be used in a variety of situations, includ-
ing both indoor and outdoor settings, making them suited for a variety of deployment 
scenarios.

• Depreciation in Response time It refers to the reduction or minimization of the time 
required by a localization algorithm accurately measuring the location. Fast response 
times are critical, especially for applications that require real-time or near-real-time 
localization updates. Algorithms that deliver precise localization information quickly 
allow for prompt decision-making, efficient resource allocation, and effective coordina-
tion across sensor nodes. Furthermore, reducing response time contributes to energy 
efficiency by lowering overall communication and computing overhead in the network.

• Accuracy All localization methods must be as exact as possible in calculating node 
position. The accuracy of a localization algorithm is defined as the distance between 
the estimated and true positions of nodes. Accuracy is critical in many applications, 
particularly those that rely on accurate location information. Accurate localization 
simplifies tasks like target tracking, navigation, and location-based services. Accurate 
localization algorithms improve the dependability and efficacy of applications that rely 
on exact location information by reducing the difference between estimated and actual 
placements.

• Consideration of Ad hoc Nature These algorithms are specifically designed to operate 
in dynamic, self-organizing networks that do not rely on pre-existing infrastructure or 
centralized control. Because these algorithms are ad hoc, they may adapt and respond 
to changes in network conditions such as node failures, movement, and changes in net-
work architecture. It enables the algorithms to offer WSN scalability by accommodat-
ing multiple deployment circumstances.

• Universal Implementation Localization techniques WSNs are distinguished by their 
universal implementation. It refers to an algorithm’s ability to be built and utilized 
across many WSN deployments and scenarios without requiring significant alterations. 
A universally implemented localization technique can be used across multiple hard-
ware platforms and network settings, providing versatility and adaptability. Because the 
same technique may be used in a variety of WSN applications and contexts, this feature 
simplifies the deployment and integration of localization solutions.

• Energy Efficient and Energy Aware Sensor nodes often operate on limited energy 
resources; energy efficiency is critical in WSNs. Hence, it is needed to prioritize energy 
efficiency to extend network operation and lifetime. Energy-efficient localization tech-
niques are meant to reduce the energy consumption associated with position estima-
tion, ensuring that available energy resources are used to their full potential. These 
algorithms contribute to network longevity, efficient resource allocation, and better net-
work sustainability by minimizing energy use.

• Deployment Flexibility Certain localization methods are designed for certain deploy-
ment circumstances, while others are adaptable to parameters such as node distribu-
tion, node density, network structure, and ambient conditions. Flexible algorithms are 
adaptable and can be used in a variety of deployment scenarios, regardless of network 
parameters. These algorithms adapt to varied network setups and ambient variables, 
giving localization solutions that are usable in a variety of scenarios. Because they are 
flexible, such algorithms can successfully satisfy the localization needs of various wire-
less sensor network deployments.
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• Complexity The computational and memory needs associated with a localization algo-
rithm’s execution determine its complexity. Lower complexity is more efficient and 
memory utilization, making them ideal for deployment in resource-constrained WSNs. 
These algorithms optimize resource utilization, allowing for efficient execution even 
with limited computing and memory resources. These methods provide effective locali-
zation while preserving optimal use of available resources in resource-constrained 
WSNs by minimizing complexity.

• Communication Overhead The volume of information exchange and message transmis-
sions between nodes during the localization process is referred to as communication 
overhead. Localization algorithms with low communication overhead strive to reduce 
the number of messages transferred, lowering network congestion and energy usage. 
These algorithms optimize communication patterns and information transmission 
between nodes, ensuring efficient localization while minimizing the burden on network 
resources. These algorithms improve network performance, reduce energy consump-
tion, and increase scalability in WSN by lowering communication overhead.

3.1.6  Localization Challenges

Localization offers many issues that must be solved to ensure precise and effective node 
positioning in WSNs. The specific characteristics of WSNs, such as limited computing and 
energy resources, communication limits, dynamic network circumstances, and environ-
mental considerations, contribute to these issues [28]. Several issues are discussed below:

• Efficient Energy Consumption in WSN Localization One of the most critical concerns 
in network architecture is energy-efficient network infrastructure. The majority of the 
study is focused on energy-efficient localization. Nonetheless, dealing with it is a big 
task [29].

• Anchor Nodes’ Mobility When anchor nodes move, their positions change over time, 
which can lead to mistakes in node localization. This complicates tracking the move-
ments of anchor nodes and maintaining correct localization estimates. Overcoming this 
difficulty necessitates the development of localization algorithms that can successfully 
handle anchor node mobility, ensuring continuous and precise localization despite the 
dynamic nature of the anchor nodes [30].

• Latency Latency is the time taken during the localization of nodes while the sending 
and processing of data take place. Latency can affect the accuracy and timeliness of 
localization results in time-sensitive applications such as real-time tracking or monitor-
ing. High latency can result in out-of-date or delayed location data, reducing the effec-
tiveness of localization algorithms. Minimizing latency is critical for determining node 
placements quickly and accurately [31].

• Adverse  Environmental Effect Adverse environmental circumstances present a sub-
stantial problem in localizing WSNs. Unfavorable phenomena such as signal interfer-
ence, signal attenuation, and multipath effects can reduce the accuracy and reliability of 
localization algorithms. These ambient factors contribute to noise and distortions to the 
received signals, resulting in erroneous location predictions [32].

• Reducing the Cost with Minimum Anchor node Placement The cost of delivering and 
maintaining anchor nodes, which includes equipment, power usage, and installation 
labor, can be substantial. So, required to be reduced [33].
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• Inaccurate Coordinate Estimation or Measurement Error Localization algorithms 
rely primarily on distance or proximity measurements, which are prone to errors 
generated by signal noise, interference, and measuring technique flaws. Address-
ing and minimizing these faults is critical for improving node localization accuracy. 
Error-mitigation strategies, such as robust filtering techniques, error modeling, and 
calibration procedures, are actively seeking to increase the reliability of distance 
measurements and reduce the negative impacts of measurement mistakes. Locali-
zation algorithms can provide more accurate and trustworthy estimations of node 
placements in the network by successfully correcting measurement inaccuracies 
[34].

• Privacy and Security Many algorithms gain better accuracy, but after implementation, 
they are vulnerable to numerous types of assaults. These assaults have an impact on 
the algorithm’s performance. Localization algorithms face significant issues due to the 
confidentiality and privacy of localization information [35]. Because localization data 
might be sensitive, maintaining its security, integrity, and validity becomes critical. 
Safeguarding the privacy of sensor node locations and safeguarding against security 
threats are essential considerations. As a result, it is critical to implement significant 
security measures. The authors of [33] address several attacks for the same.

• Localization in Mobile WSN The dynamic nature of node movements complicates and 
uncertainly affects the localization process’s accuracy and reliability. The shifting net-
work topology, variable signal intensities, and unknown node positions make exact and 
real-time localization problematic in mobile WSNs.

• 3-Dimensional Setup Unlike typical two-dimensional (2D) localization, finding the 
position of sensor nodes in a three- 3D space requires additional considerations and 
specialized methodologies. Complications like height, vertical distance, and multi-
level situations must be handled. Localization algorithms must account for the vertical 
dimension and deal with issues such as signal attenuation, non-line-of-sight (NLOS) 
propagation, and 3D obstacles [36].

• Error propagation This is a big issue that must be addressed. Iterative localization 
algorithms are also implemented. As a result, there is a risk of the error spreading from 
one iteration to the next, ending in a significant problem.

• Signal Propagation Variation Addressing the impact of signal propagation variations 
is crucial to enhance performance. Localization algorithms are required to account 
for these variations and employ techniques to mitigate their adverse effects. This can 
involve the use of advanced signal processing algorithms, such as multipath mitigation 
techniques, channel modeling, or statistical approaches, to better estimate the true dis-
tance or proximity between nodes

• Limited Resources Research and development efforts are ongoing to develop resource-
aware localization algorithms that can meet the unique requirements and limits of sen-
sor nodes. Within WSN, these algorithms strive to optimize computational, memory, 
and energy utilization while assuring accurate position estimation.

The above-mentioned challenges are visualized in Fig.  9. Resolving these difficulties 
need ongoing research and development efforts. Machine learning and optimization tech-
niques advancements can all contribute to the development of durable, secure, and efficient 
localization systems. To overcome these challenges, machine learning techniques may 
be efficiently employed for localization in WSN, enabling precise and trustworthy node 
positioning across a wide range of applications which will be discussed in the preceding 
sections.
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3.2  Machine Learning for Sensor Node Localization

The use of machine learning methods for sensor node WSNs is a potential approach for 
addressing localization difficulties and improving accuracy. By leveraging machine learn-
ing capabilities, it is feasible to identify significant patterns and relationships from acquired 
data, enabling more robust and adaptive localization solutions. Machine learning algo-
rithms may infer exact position information by analyzing numerous aspects such as signal 
characteristics, environmental circumstances, and sensor node behaviors. These algorithms 
can learn and improve over time with enhanced localization accuracy and reliability. The 
use of machine learning approaches in localization algorithms opens up possibilities for 
optimizing energy efficiency, dealing with changing network conditions and improving 
overall localization performance in WSNs. Figure 10 shows the possible application areas 
of WSN and the ML algorithms that can be applied on one of them i.e., localization.

3.2.1  Role of ML Techniques for Localization

The use of ML approaches in WSNs aids in the discovery of optimal solutions such as 
effective sensor node distribution, reduced complexity, and transmission bandwidth [21]. 
The use of ML approaches in localization has the following benefits:

 (i) Classifying Sensor nodes from Anchor Nodes
   After the ML model has demonstrated its efficiency, it can be used to categorize 

additional, unseen data instances. This integration into the WSN infrastructure pro-
vides automated node classification based on attributes or metrics.

 (ii) Reduces the Need for Hardware
   Machine learning approaches can use computer resources more efficiently and 

lower the computational complexity involved with localization. Machine learning 

Fig. 9  Challenges of Localization in WSN
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models can produce exact localization results while minimizing computational needs 
by utilizing efficient algorithms and data processing techniques. This optimization 
of computing resources decreases the need for high-end hardware components and 
allows localization algorithms to be implemented on devices with limited resources. 
As a result, even in resource-constrained contexts, machine learning techniques pro-
vide a cost-effective and practical alternative to localization.

 (iii) Improves the Localization Accuracy
   Machine learning algorithms excel at learning patterns and relationships from 

large amounts of training data, resulting in improved node localization accuracy. 
Localization algorithms can efficiently handle limits and uncertainties associated 
with measurement data by utilizing machine learning, resulting in more precise and 
trustworthy position predictions.

 (iv) For Dividing the Region into Custers
   By taking into account the similarities and dissimilarities contained in the col-

lected data, ML algorithms, notably clustering techniques, can be used to partition 
huge monitoring sites into clusters. This division allows for efficient monitoring 
of site organization, analysis, and management, allowing for targeted actions and 
informed decision-making processes.

 (v) Robustness

Fig. 10  Machine Learning Algorithms for Localization
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   The ability to handle noisy or faulty data is a significant advantage of applying 
machine learning techniques to localization systems. Machine learning approaches 
contribute to the generation of more trustworthy and robust position estimates by 
successfully coping with measurement errors, signal interference, and environmental 
fluctuations. This increased robustness is achieved by using machine learning mod-
els’ capacity to capture complicated relationships and patterns in data. As a result, 
these models can efficiently correct for uncertainties, resulting in better localization 
system performance and accuracy.

 (vi) Flexibility
   Machine learning algorithms give flexibility by permitting the integration of mul-

tiple sources of information for localization. These strategies can combine data from 
numerous sensors, such as “signal strength”, “time-of-flight”, or “angle of arrival”, 
to improve the accuracy of position estimation. Furthermore, ML models can adapt 
to diverse deployment circumstances, network topologies, and ambient variables, 
making them versatile for a wide range of localization applications.

 (vii) Generalization to Unknown contexts
   Machine learning algorithms can generalize learned patterns and models to unex-

pected contexts. These models can perform effectively in new, unknown contexts 
after being trained on a varied dataset. This generalization ability is useful in cases 
where the deployment environment may vary or change over time.

 (viii) Improved Accuracy in Adverse Environments
   Machine learning approaches flourish in complicated and challenging contexts 

where classic localization methods may struggle. For example, in situations with 
high noise levels, interference, or multipath propagation, machine learning algo-
rithms can learn to filter out the noise and extract relevant data for more accurate 
localization.

 (ix) For Real Time Localization
   Machine learning algorithms can process data in real-time, allowing sensor nodes 

to be located immediately. This is especially useful in situations where instant or 
near-instant positional information is required, such as tracking moving objects or 
monitoring real-time events.

 (x) Usage of Deep Learning (DL) Techniques to Conquer the Problems
   DL techniques are able to cop up with the large amount of data generated during 

the localization process.
 (xi) Reduced Energy Consumption
   Machine learning techniques can optimize the localization process by minimiz-

ing the energy spent by sensor nodes. Machine learning models can lower energy 
requirements through effective data processing and transmission, extending the net-
work’s lifespan and conserving energy resources.

 (xii) (xii) Multi-modal Localization
   Machine learning approaches enable the merging of data from several sources, 

such as sensor readings, environmental information, or contextual data, to increase 
localization accuracy. Machine learning algorithms can capture supplementary data 
and give more reliable and exact position predictions by leveraging many sources of 
information.

 (xiii) Adaptability
   Machine learning algorithms are distinguished by their adaptability. This adapt-

ability is especially useful in dynamic contexts where factors, such as node mobility 
or varied signal propagation characteristics, might change over time. Machine learn-
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ing algorithms improve the accuracy and adaptability of the localization process by 
continuously updating and altering their models depending on fresh observations.

 (xiv) Scalability
   When used for large-scale WSNs, ML techniques provide a significant benefit in 

terms of scalability. These algorithms demonstrate effective processing and analysis 
skills for large volumes of data acquired from sensor nodes. As a result, machine 
learning allows for localization in networks with dense nodes or large coverage areas. 
Machine learning approaches, such as distributed learning or parallel computing, 
can be used to solve the computational demands of large-scale localization tasks. 
These strategies improve the scalability of the localization process while assuring 
effective computing resource utilization.

The above activities have been fetched based on the studies form [37–41]. Various 
machine learning algorithms have also been fused in next section that can be implemented 
with localization algorithms.

3.2.2  Various ML Techniques for Sensor Node Localization

To estimate the positions of sensor nodes in WSNs, machine learning techniques for 
node localization employ a variety of algorithms and methodologies. These strategies use 
labeled or unlabeled training data to learn patterns, relationships, or probabilistic models 
that aid in exact localization. Below mentioned are various machine learning techniques for 
sensor node localization and are pictorially represented in Fig. 11.

 (i) K-Means or Fuzzy-C-Means
   These are popular unsupervised machine-learning methods that allow sensor nodes 

to be grouped based on similarities in their measurements or attributes. These algo-
rithms are critical in WSNs because they divide sensor nodes into discrete clusters, 
providing vital insights for localization and enabling further analysis or decision-
making processes [42].

 (ii) Support Vector Machine (SVM) It builds a classification model from labelled training 
data to distinguish between distinct classes or node positions. SVMs can accurately 
categorize nodes into their corresponding places or regions by training on labelled 
data [43].

 (iii) Neural Networks (NN) and Deep Learning (DL) Based on the learned representa-
tions, these models learn spatial and temporal patterns from sensor data and create 
predictions. To accurately localize sensor nodes, neural networks must be trained 
on labeled data [44].

 (iv) Bayesian Learning (BL)
   There are various advantages of using Bayesian learning for node localization. It 

offers a versatile framework for incorporating past knowledge, which is especially 
valuable when training data is few. It also incorporates uncertainty into the localiza-
tion process by providing a probabilistic representation of node placements. Bayesian 
learning is capable of handling complicated interactions and dependencies between 
sensor nodes and observed data, resulting in more accurate and robust localization 
outcomes [45].

 (v) Random Forest (RF) Random Forests makes forecasts by mingling many decision 
trees. Random Forests can identify sensor nodes based on their features and attrib-
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utes in the context of localization. Random Forests’ ensemble nature allows them to 
capture complex linkages and improve node localization accuracy [46].

 (vi) K-Nearest Neighbor (KNN) KNN is a basic but effective node localization algorithm. 
It classifies nodes based on the majority vote of their nearest neighbors. Because it 
is based on the proximity of data points, KNN does not require training. However, 
significant consideration must be given to the right value of K, the number of neigh-
bors considered [47].

Fig. 11  Role of ML techniques in Localization
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 (vii)  Markov Model (HMM) HMMs are sequential models used to locate nodes in 
dynamic situations. HMMs record temporal connections in sensor data and can 
estimate sensor node positions based on observed sequences [48].

 (viii) Gaussian Processes (GP) Gaussian Processes are probabilistic models used for node 
localization. They simulate the spatial interactions between nodes and estimate the 
probability distribution over node positions. To make predictions about the place-
ments of sensor nodes, GP-based localization uses Bayesian inference [49].

 (ix) Long Short-Term Memory (LSTM) LSTM can effectively handle long-range depend-
encies in sequential data. LSTM models have been applied to node localization tasks 
where temporal information plays a crucial role, such as tracking or localization in 
mobile sensor networks. LSTM networks can capture complex temporal patterns and 
make accurate predictions based on historical data [50].

 (x) Graph Neural Networks (GNN) GNNs are deep learning models that are specifically 
built to cope with graph-structured data, is a typical format for sensor networks. 
GNNs can learn about the spatial relationships between sensor nodes and use this 
information to help with localization. GNNs may incorporate neighborhood informa-
tion and generate accurate predictions about sensor node placements by propagating 
information across the graph structure [51].

 (xi) Transfer Learning (TL) In this technique, a pre-trained model, often learned on a 
large dataset, is fine-tuned or adapted to a specific localization job with little labeled 
data. Transfer learning enables more efficient and successful training of localization 
models by using knowledge obtained during the pre-training phase, particularly in 
cases when labeled training data is minimal [52].

 (xii) Reinforcement Learning (RL) RL emphasizes on discovering optimum decision-
making strategies through interactions with the environment. In dynamic and uncer-
tain situations, RL approaches can be used for node localization. Based on input and 
rewards from the environment, RL algorithms can learn policies that decide the most 
suitable step to enhance localization accuracy [53].

 (xiii) Ensemble Learning (EL) Ensemble learning predicts outcomes by merging many 
machine learning models. Ensemble learning can be used to increase the accuracy 
and durability of node localization models. Bagging, boosting, and stacking tech-
niques can be used to integrate the predictions of many models, reducing the risk of 
overfitting and improving generalization performance [54].

 (xiv) Manifold Learning (ML) Manifold learning can be used to identify the low-dimen-
sional representation of sensor nodes based on their spatial relationships or close-
ness in node localization tasks. This technique makes use of the data’s underlying 
structure to find clusters or groupings of nodes, which might be useful for localiza-
tion. Manifold learning procedures give a condensed representation of the data by 
lowering its dimensionality, which may then be utilized as input for other machine 
learning algorithms or localization techniques to properly estimate the positions of 
the nodes [55].

   Many real-world datasets include nonlinear relationships and rich geometric 
aspects that linear approaches like principal component analysis (PCA) cannot ade-
quately represent. Many learning techniques are specifically designed to address this 
issue [56]. These techniques excel in handling nonlinear relationships within data, 
allowing them to produce a more precise and authentic depiction of the underlying 
structure. Researchers can obtain deeper insights into the complex patterns and 
relationships contained in data by using the power of manifold learning, which is 
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especially useful for tasks such as data visualization, grouping, and understanding 
the intrinsic aspects of the dataset.

The ML techniques discussed above can be used in a variety of ways. These hybrid ML 
algorithms can possibly applied to increase accuracy while decreasing error in localizing 
the nodes. Many aspects of localization may be improved using hybrid machine learning, 
including communication cost, computation cost, accuracy, throughput, RTT, energy con-
sumption, localization error, packet delivery rationing, and so on. These hybrid ML tech-
niques combined with optimization techniques have the potential to significantly improve 
the aforementioned parameters. The next sub section explores the discussion made above.

3.3  Machine Learning Based Node Localization Using Optimization Techniques

The tremendous amount of data available now has become the most difficult problem. 
Finding the best answer for a data-driven problem is an exciting task. In such cases, opti-
mization approaches come in handy [57]. Sensor node deployment in any environment 
has a substantial impact on the performance of any network. The location of sensor nodes 
impacts considerably on performance evaluation [58]. The criteria are also beneficial to the 
mobile sensor nodes. Optimization methods such as grey wolf are utilized for during path 
planning of these anchor nodes without any hindrance [59]. For optimal node localization, 
optimization techniques play a vital role to identify the anchor nodes that keep on partici-
pating in estimating the node location [60].

Researchers have made significant progress in improving the precision of node localiza-
tion through amalgamating OT and ML strategies, which has opened up a plethora of pos-
sibilities for applications such as asset tracking, environmental monitoring, and location-
based services for mobile devices. The continual advancement of optimization algorithms 
and ML models has the aspects for accurate and reliable node localization procedures, 
hence opening up new avenues for innovation across multiple fields.

Numerous publications demonstrate localization strategies applied with OT, localiza-
tion algorithms with ML approaches, and ML with OT. However, there exists very little 
literature that incorporates all three strategies as shown in Table 1. Implementing the three 
strategies, namely localization, machine learning, and optimization have a few benefits:

 (i) Particle Swarm Optimization (PSO)
   When PSO is integrated with machine learning approaches for node localization, 

it can improve the accuracy, efficiency, and resilience of the process. Here are some 
ways in which PSO can help when used with other machine-learning techniques 
[61–64]:

• PSO with Neural Networks PSO can optimize the weights and biases of node locali-
zation neural network models. PSO helps neural networks converge to better solu-
tions by searching the weight space, resulting in enhanced localization accuracy.

• PSO with DL PSO optimizes the parameters of deep learning models used for node 
localization, such as deep neural networks, CNNs, or RNNs. PSO assists in deter-
mining the ideal network weights and biases, leading to more accurate localization 
outcomes.

• PSO with SVM PSO can identify the optimal settings for node localization by 
exploring the SVM parameter space, which includes kernel parameters and regulari-
sation parameters.
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• PSO with Gaussian Processes (GP) The hyperparameters of Gaussian Processes 
used for node localization can be optimized using PSO. The accuracy and versatil-
ity of GP-based localization can be increased by utilizing PSO to identify the ideal 
values of parameters such as length scales, noise levels, or covariance functions.

• PSO with Random Forests PSO can optimize random forest model hyperparameters 
for node localization, such as the number of trees, tree depth, and feature subset 
size. The performance of random forests in node localization can be improved by 
tweaking these hyperparameters using PSO.

• PSO with Ensemble Learning PSO can optimize the ensemble model combination 
weights used for node localization. PSO can improve the overall performance of the 
system by altering the weights allocated to each model within the ensemble.

 (ii) Bat Algorithm (BA)
   The Bat Optimisation Algorithm (BA) for node localization has rapid enhancement 

in the performance when applied with machine-learning approaches. This algorithm 
exceeds the performance of localization algorithms with improved performance. 
Here are some machine learning algorithms that can be implemented in conjunction 
with BA [65–69]:

• BA with Hidden Markov Models (HMM) HMMs are sequential models that can be 
used to locate nodes in dynamic situations. They estimate node positions by cap-
turing temporal connections in sensor data. Localization accuracy can be improved 
by employing BA to optimize HMM parameters such as transition probabilities and 
emission probabilities.

• BA with Decision Trees Decision trees are commonly used for classification and 
regression applications, as well as node localization. Localization accuracy can be 
improved by utilizing BA to optimize the parameters of decision tree models such as 
tree depth and splitting criteria.

• BA with K-Nearest Neighbours (KNN) KNN is an effective node localization tech-
nique that classifies nodes based on the majority vote of their nearest neighbors. 
To increase localization accuracy, BA can optimize the value of K and other KNN 
hyperparameters.

• BA with Adaptive Boosting (AdaBoost) AdaBoost combines feeble classifiers for the 
formation of a more powerful classifier. When paired with BA, it can increase node 
localization performance by optimizing the weights provided to each weak classi-
fier.

• BA with Self-Organizing Maps (SOM) BA can optimize SOM parameters such as 
node count and learning rate to improve sensor node organization and representa-
tion, leading to improved localization.

• BA with Extreme Learning Machines (ELM) The ELM is a fast-learning neural net-
work algorithm containing a single hidden layer that performs well in generalisa-
tion. ELM’s weights and biases can be optimised when paired with BA to improve 
node localization accuracy. This is especially useful for large-scale sensor networks.

• BA with GMM GMM is a probabilistic model that portrays data distribution as a 
mixture of Gaussian components. It can be used to group sensor nodes and estimate 
their positions. The Bat Optimization Algorithm (BA) can increase node localiza-
tion accuracy by optimizing GMM parameters such as the number of components 
and the mean and covariance of each component.
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 (iii) 2-Hop Mass Spring Algorithm (2-Hop MSA)
   In conjunction with the 2-hop mass-spring approach a number of ML can be 

employed for node localization. Among these algorithms are [70, 71]:

• Artificial Neural Networks (ANN) To establish the association between node attrib-
utes and their respective placements inside the 2-hop mass spring technique, “Artifi-
cial Neural Network (ANN)” models such as “Multilayer Perceptron (MLP)” can be 
used. By training the ANN model with labeled data, it gains the ability to forecast 
the placements of unlabelled nodes using the 2-hop connection information.

• Bayesian Networks Through probabilistic graphical models, Bayesian networks 
can express the interdependencies between node properties and their correspond-
ing placements. Bayesian networks assist the estimate of node placements by utiliz-
ing their 2-hop connection and other observed properties by collecting the network 
structure and conditional probability distributions from training data.

 (iv) Butterfly Optimization Algorithm (BOA)
   Several ML approaches are used in combination with the Butterfly Optimization 

Algorithm for node localization. Some of these techniques include [72–76]:

• Genetic Algorithm (GA) To find optimal solutions, genetic algorithms can conduct 
population-based searches. When paired with the Butterfly Optimisation Algorithm, 
GA can optimize the parameters of machine learning models used for node localiza-
tion, such as neural network weights and architectures or probabilistic model param-
eters.

• Reinforcement Learning Through interactions with the environment, RL algorithms, 
such as Q-learning or Policy Gradient techniques, can learn optimal policies for 
node localization. To increase localization performance, the Butterfly Optimisation 
Algorithm can be used to optimize RL parameters such as the exploration–exploita-
tion trade-off or learning rates.

• Gradient Boosting Gradient boosting algorithms, such as XGBoost or LightGBM, 
can be used to build ensemble models for node localization that integrate many 
weak learners. To increase localization performance, the Butterfly Optimisation 
Algorithm can be used to optimize boosting parameters. These parameters may be 
the total count of estimators, learning rate, and so on.

 (v) Cuckoo Search Algorithm (CSA)
   This optimization tool is inspired by a bird named Cuckoo’s breeding behavior. 

It is a metaheuristic method that may be coupled with machine learning techniques 
to identify optimal solutions for the parameters and structures of node localization 
machine learning models. The Cuckoo Search algorithm improves localization per-
formance by effectively searching the search space, resulting in increased accuracy 
and effectiveness [72, 77–80].

• Cuckoo Search with SVR When Cuckoo Search is applied with SVR, it rapid and 
less error-prone prediction for location estimation.

• Cuckoo Search with Neural Network The scenario achieves very high accuracy 
when the cuckoo search is implemented with the neural network. It also provides a 
reliable platform for efficient data transmission.

 (vi) Optimization-based Self-Localization (OSEL)
   OSEL (Optimization-based Self-Localization) is an optimization technique 

that depends on RSS data for node localization. Although OSEL does not include 
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machine-learning techniques, it can be integrated with specific machine-learning 
approaches to improve localization. Several machine learning algorithms for sensor 
node localization can be combined with OSEL:

• Regression Models To establish the association between RSS data and actual node 
placements, use regression models such as “linear regression”, “support vector 
regression”, or “neural networks”. They can determine the placements of sensor 
nodes based on received signal intensity by training these algorithms with labeled 
data.

• KNN It is an effective localization ML technique. KNN can find the K data points to 
predict node placements based on their positions given a set of RSS measurements. 
By integrating the optimization process into the KNN-based estimation, the accu-
racy of localization can be improved by combining KNN with OSEL.

• Gaussian Process Regression (GPR) This ML technique may capture complex 
input–output correlations. A probabilistic model can be generated by training a GPR 
model with RSS measurements and related node positions. This model provides 
position estimations as well as confidence intervals. OSEL can be used to optimize 
the GPR model’s hyper parameters or to refine the position estimates produced from 
GPR.

• Ensemble Learning By merging different machine learning models, ensemble learn-
ing approaches such as random forests or gradient boosting can increase localization 
accuracy. The diversity of the models and their collective predictions can be utilized 
to refine the localization results acquired through OSEL by training an ensemble of 
models utilizing RSS readings and associated positions.

• Deep Learning Deep learning methods can learn detailed patterns for node local-
ization from RSS measurements. These models may be trained on large datasets 
to incorporate spatial dependencies and estimate node placements accurately. By 
incorporating OSEL into the training process or by utilizing OSEL to adjust the 
localization results produced from deep learning models one can get localization 
algorithms’ results at very accurate level.

   The optimization capabilities of OSEL can be integrated with the learning capa-
bilities of machine learning by integrating OSEL with appropriate machine learning 
algorithms, improving the accuracy and resilience of sensor node localization.

 (vii) Artificial Bee Colony (ABC)
   When machine learning approaches are combined with ABC for node localiza-

tion, the optimization process and accuracy are improved. The efficiency, accuracy, 
and robustness can be improved by integrating machine learning techniques into the 
ABC algorithm [81–83].

• Reinforcement Learning RL techniques, like Q-learning or deep reinforcement 
learning, can be applied to sensor node localization. Reinforcement learning agents 
learn to make sequential decisions to optimize node positions based on environ-
mental feedback. ABC can optimize the exploration–exploitation trade-off or refine 
localization results obtained from reinforcement learning agents.

• Decision Tree When employing decision tree techniques for sensor node localiza-
tion, decision trees can be trained using sensor node attributes and positions. This 
allows mapping between features and node positions to be established. To improve 
the localization process, the ABC technique can be used to optimize the decision 
tree parameters or refine the decision tree’s localization findings. The combination 
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of ABC and decision trees have the potential to improve accuracy and performance 
in sensor node localization.

 (viii) Teaching Learning Based Optimization Algorithm (TLBO)
   “Teaching-Learning-Based Optimization” (TLBO) is a population-based optimiza-

tion algorithm that can be utilized alongside ML algorithms to aid in the localization 
of sensor nodes. While TLBO is not inherently tied to machine learning algorithms, 
it can be integrated with them to enhance the localization process.

 (ix) Firefly Algorithm (FA)
   For optimization, FA simulates the flashing behavior of fireflies. Fireflies are 

drawn to brighter fireflies and gravitate towards them, guiding the optimization 
process. To optimize node placements inside the search space, FA has been used in 
node localization.

 (x) Ant Colony Optimization (ACO)
   ACO is essentially a search algorithm inspired by ant foraging behavior. ACO, on 

the other hand, can be combined with a variety of machine-learning techniques to 
improve sensor node localization. Here are a few ML methods that are widely used 
in conjunction with ACO to locate sensor nodes:

• Adaptive Boosting (AdaBoost) AdaBoost is a boosting technique that combines 
weak classifiers iteratively to build a strong classifier. ACO can be used in conjunc-
tion with AdaBoost to optimize the parameters and weights of weak classifiers, 
hence boosting sensor node localization accuracy.

• Self-Organizing Maps (SOM) SOM is a clustering and visualization algorithm that 
uses unsupervised learning. ACO can be used to optimize SOM parameters such as 
grid size and learning rate to improve the quality of the SOM representation for sen-
sor node localization.

• Principal Component Analysis (PCA) PCA is a feature extraction technique for 
dimensionality reduction. ACO can be coupled with PCA to improve sensor node 
localization performance by optimizing the primary components and reducing data 
dimensionality.

 (xi) Grey Wolf Optimization (GWO)
   GWO is used as an optimization approach to fine-tune the machine learning model’s 

parameters. This entails encoding the model parameters as the positions of the grey 
wolves and iteratively optimizing the model’s performance using GWO’s update rules.

4  Literature Analysis

In this section, an exhaustive analysis of various works of literature on WSN locali-
zation, ML in localization, and ML with optimization techniques for localization has 
been well-thought-out.
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4.1  Analysis for Basic Localization Techniques in WSN

Table 2 analyses various localization strategies taking into account a variety of criteria 
such as localization technique, region, accuracy, computation time, and communication 
cost, according to the nature of anchor nodes and their patterns and density, and frame-
work. This identifies the flaws when localization techniques are used in isolation. This 
analysis also entails the error estimation criteria in the discussed fragments of literature.

Authors in [84, 85] proposed range-based localization techniques on standard param-
eters. Authors in [86] proposed an approach for deploying sensor nodes efficiently. The 
devised approach extends the network lifetime while reducing energy usage and locali-
zation inaccuracy. The DV-Hop algorithm has a problem with extra node deployment in 
the same location, which can be solved by this work. The approach improves localiza-
tion error, energy consumption, and accuracy.

Nemer et al. [33] investigated a variety of range-free localization approaches. They 
used MATLAB to simulate five range-free algorithms and compared their outcomes on 
various settings and topologies. Localization accuracy and energy usage are the charac-
teristics against which algorithms are compared. The inaccuracy (accuracy) in position 
estimation can be calculated as:

here error is calculated by calculating the distance between nodes.
Sun et al. [87] presented a path planning approach (PP-MMAN) for moving anchor 

nodes with exceeded counts. The proposed strategy minimizes anchor node energy 
usage. It also shortens the route. The proposed solution saves energy in this during 
the broadcast of packets. The compensation algorithm for positioning is developed to 
address the issue of border nodes that are unable to determine their location owing to a 
lack of positional information. The ALE can be calculated as the difference between the 
actual and calculated location:

Kouroshnezhad et al. [88] suggested an optimal priority-based trajectory with energy 
constraint (OPTEC) movable anchor trajectory planning technique. The rate of ineffec-
tive beacon points (IBR) is calculated by dividing the number of effective beacon points 
by the total number of beacon points.

Alavijeh et al. [89] propose a relationship of distance and RSSI value. For the same 
EKF has been chosen to be outperforming. Conversion in EKF into a covariance matrix 
aids in accuracy. The simulation results reveal that the proposed VCEKF delivers 22% 
more accuracy than the CCEKF for static hidden nodes. RMSE can be calculated by the 
estimated and accurate location for N sensor nodes and k anchor nodes.

(4)Error =

∑n
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Authors in [90] applied the NLA_MB algorithm to implement the localization pro-
cess. To reduce mistakes, anchor node constraints such as movement path constraint and 
movement distance constraint are used to construct an optimization model. The great-
est likelihood estimation approach seemed fine to get the coordinates with the help of 
anchor nodes. The heuristic approach is used for node distribution anchor nodes. The 
beacon node energy is limited, so the maximum mobility distance is limited. Then there 
is a movement distance constraint:

This distance is between movement from pgtopg+1 The ALE of sensor nodes is:

For target tracking, Zheng et  al. [91] presented a localization scheme that is also 
energy efficient with the flaw of high cost. It achieves incredibly accurate target tracking 
by utilizing portable hardware. The mobile sensor nodes can quickly amalgamate to the 
concerned channel through position information, save energy by avoiding superfluous 
transmission. The distance is given by between point ||d1||and||d2||:

The DV-maxHop approach described by Shahzad et  al. [92]. This algorithm is far 
improved than DV hop. It is fast, simple, and can be practically implemented readily. 
The approach is tested by simulating numerous anisotropic variables on various topolo-
gies. Existing impediments, distributed and sensor nodes’ deployment without any 
strategy, and radio transmission patterns are considered as parameters to evaluate the 
performance. The simulation results show that the technique beats existing range-free 
localization techniques for a wide range of parameters and that it may be used on aniso-
tropic networks. Location estimation The error is defined as the difference between the 
actual and estimated node positions:

xactual and yactual is the actual and xest and yest is the estimated distance.
The algorithm proposed in [93] suggests a localization scheme in three-dimensional 

scenario. RSSI and AoA has been used as localization techniques. These algorithms 
are treated from two perspectives: cooperative and non-cooperative WSN. The scheme 
works on a non-convex objective function forms by localization measurement tech-
niques “RSSI” and “AoA”. The SDP relaxation technique and the generated non-convex 
objective function together built a convex framework. RMSE for node coordinates xi 
and 

⏞⏞⏞
xi .

(7)RMSloc =

√√√√ 1

N

N∑

k=1

m2
act[k] − m2

est[k]

(8)
∑

g=1,2…….NP−1
d(pg, pg+1) ≤ dth,pg ∈ P

(9)
error(P) =

∑N

m∈VR

�
�
�
xR
m
− xm

�2
+
�
yR
m
− ym

�2

N

(10)dst =

√
d2
1
+ d2

2
− 2||d1||||d2||.cos < sot

(11)err =

√(
xactual − xest

)2
+
(
yactual − yest

)2
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For efficient cooperative positioning in WSNs, Lv et al. [94] developed a space–time 
hierarchical graph. A bootstrap percolation technique based on soft constraints was 
employed to manage the activities of sensor nodes. Authors in [95] describe an innova-
tive algorithm for obtaining a global map for the intended objective. The simulation 
results suggest that the proposed technique improves scalability and accuracy, and it is 
also effective at measuring noise. The noise in distance measurement is estimated as:

The RMSE can be derived from

d̂ij is the distance with noise factor and dij is actual distance between nodes.
Authors in [96] suggested a tactic based on path observation for the dynamic anchor 

node. The obstructions in the sensing field impede the localization process. This sce-
nario can be handled using the proposed obstacle-resistance trajectory. According to 
simulation data, this increases the number of correctly localized nodes while decreasing 
the localization error. The localization error can be expressed as follows:

Zhao et al. [97] suggested a localization technique based on hop distance. This hop 
count information gets exchanged from anchor to sensor nodes and vice versa. In the lit-
erature, these algorithms are referred to as connectivity-based algorithms. For localiza-
tion, the authors presented a combined and differentiated localization (CDL) technique. 
The proposed approach is implemented with range-based techniques as measured by 
RSSI. The proposed method enhances accuracy and produces consistent results.

A Differential Relative Location (DRL) technique was proposed by Chang et al. [98]. 
The schemes work through the identification of neighboring nodes of anchor nodes. The 
relative location is estimated by suggested path planning approaches by reducing energy 
consumption. The authors demonstrate the algorithm’s performance through experimen-
tal findings. The total energy consumption is the sum of the energy consumed while 
turning, moving, tone signal and beacon nodes as follows:

The comparison in Table  2 shows that localization algorithms are not able to deal 
with the mentioned challenges to overcome the problem all alone. So, it is a need of the 
day to implement them with some advanced algorithms like machine learning or nature-
inspired evolutionary algorithms. The next sub section is related to the above stated 
issues.

(12)
RMSE =

√√√√√√√
Mc∑

i=1

|
|||||
xi −

⏞⏞⏞
xi

|||||
|
2

Mc

(13)d̂ij = dij(1 + � .N(0, 1))

(14)rmse =

�∑n

i=1

�
Xi
rel

− Xi
est

�2

n

(15)e =

∑n−1

i=1

�
(xi − x̂i)

2
+ (yi + ŷi)

2

[(N −M) × r]

(16)E(P, �) = Emove + Eturn + Ebeacon+Etone
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4.2  Analysis for Localization Techniques with ML Algorithms

This analytical survey is based on various machine-learning techniques for node local-
ization in WSN. Various ML and localization algorithms applied in various kinds of 
literature have been discussed along with the evaluation parameters broadly based on 
localization error.

The author [99] proposed a feature extraction method based on the reading and posi-
tion of each sensor in a zone where a radiation source is detected. Asif et al. [100] cre-
ate and present a distance vector hop-based technique for safe and robust localization 
in the presence of hostile sensor nodes, which produce inaccurate position estimates 
and imperil WSN operation. Abdullah et  al. [101] provide a DFL framework for fea-
ture recognition and extraction that includes deep autoencoders based on the “restricted 
Boltzmann machine (RBM)” with many CNN layers with. Kagi et  al. [102] created a 
hybrid model calledt the “Lion Assisted Firefly Algorithm” (LAFA). A parametric anal-
ysis of the proposed algorithm is performed at this conference by altering the evaluation 
parameter in “LAFA”. Gang et  al. [103] offer a prediction in “MI-UWSNs” based on 
ML to improve the accuracy of randomly deployed sensor “Rx nodes” via anchor “Tx 
nodes”.

To overcome the challenge of localization, Robinson et al. [41] propose a 3-dimen-
sional “Manifold” and “Machine Learning” based approach for localization. Machine 
Learning is utilized in WSNs to discover problematic network nodes and compute the 
finest solution to deal with the challenges with real-time localization. Using a “Single 
Hidden Layer Extreme Learning Machine” and a “Two Hidden Layer Extreme Learning 
Machine”, Liouane et al. [104] proposed ways for node localization in WSN. The solu-
tions offered are employed in a variety of “Multi-hop” WSN deployment scenarios. To 
improve the accuracy in localization schemes, a “neural network” based classification 
is constructed. The performance is compared with other techniques. The authors also 
developed a data storage structure in a distributed manner and a platform with Redis 
that considers storage load. Hu et al. [105] employ cloud computing to create a revolu-
tionary multi-interior indoor localization system. According to a previous study, there is 
always concern about avoiding a blockage and interference in signal. Wang et al. [40] 
proposed the “Kernel Extreme Learning Machines” based on the “Hop-count Quantiza-
tion” node localization approach. Rashdan et  al. [106] investigated and analyzed thir-
teen ML strategies. These methods are applied to mobile terminals with fingerprinting 
localization.

Several DM-MIMO topologies are used to examine the characteristics influencing 
mobile terminal localization. The results reveal that KNN outperforms all thirteen algo-
rithms studied.

You et  al. [107] explored a method for reducing the complexity of the “multiple 
source localization” problem by using an RSS value. Maghdid et  al. [108] developed 
a technique for smart city indoor localization. The proposed “RNN-based long Short-
Term Memory” strategy is a type of “RNN” technique. Bhatti et al. [109] used a com-
bination of “supervised”, “unsupervised”, and “ensemble” ML approaches to create an 
outlier identification system. This "if Ensemble" is developed for indoor localization 
schemes.

Kim et al. [110] proposed a method for pre-processing a signal in preparation for NN 
fingerprinting. The proposed approach provides a solution for the actual inside environ-
ment, such as a building with corridors and rooms that generate hindrances in signal 
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transmission. It recovers the signal’s Multiview CSI using NMF and completes the 
sparse matrix. The corridors that cause problems in Multiview CSI are resolved using 
CSI modifications related with a variance in inference-based machine learning. The pro-
posed method yields an 89 cm improvement in localization accuracy. LF-DLSTM was 
proposed by Chen et  al. [111]. This approach was developed for indoor environments 
using fingerprinting method through wifi. The proposed strategy is compared with tradi-
tional indoor localization techniques. The data show that its performance has improved. 
The tests are examined both indoors and outdoors. When the proposed method is com-
pared to standard indoor localization techniques. The consequences of its improved per-
formance are visible. To discover the defective linkages, Srinivasan et al. [113] offered 
an unassertive approach and developed the ML-LFIL technique. ML-LFIL is a three-
stage technique that investigates the typical transmission flow, average flow transmis-
sion rate, latency, and packet loss to identify and localise broken links. By comparing 
the routing traffic scenarios, the investigation is examined. SVM, MLP, and RF are the 
ML techniques employed in the 3-stage model. Distance measurement was viewed as 
a closed-loop problem by Yan et al. [114]. The authors created an algorithm based on 
consensus and UKF to estimate the sensor node’s location. By combining direct and 
indirect measurement, the impact of harmful data can be reduced.

Panayiotou et  al. [115] suggested a solution to the problem of imprecise and fail-
ing localization. The model is trained using the network’s current and historical occur-
rences. To retrieve the prior data, a Gaussian process classifier is developed to predict 
and model the occurrence of failures. Berz et al. [116] suggested an Indoor Positioning 
System with many sensors based on EVR and ANN. The method can estimate the posi-
tion in a 3-D network. Prasad et al. [117] suggested an RSSI-based SVMMIMO system 
based on Gaussian Process Regression. The suggested method secures the position by 
training a machine-learning model on noise-free RSSI data. The traditional GP method 
and its variant, numerical approximation GP, are used. NaGP is proven to be more suit-
able for predicting two error bars to localize the objects.

Almeida et al. [118] proposed a less expensive and more successful method for local-
izing a non-static robot. The method employs machine learning and signal processing 
techniques. The robots are located using a sonar, which can detect objects in all direc-
tions. The performance of several classifiers such as “kNN”, “SVM”, “OPF”, “MLP”, 
and “Bayes classifiers” has been investigated. The results reveal that OPF beats all oth-
ers. Amri et al. [119] suggested a geographic routing mechanism based on a weighted 
centroid localization technique, in which the coordinates of unknown nodes are deter-
mined using a fuzzy logic method.

Tariq et al. [121] provided a method for exploring how machine learning algorithms 
used for categorization might increase localization accuracy and noise by selecting a 
specific node deployment strategy. The trials are carried out in a 3mx3m indoor space. 
The classification approaches RF, SVM, k-NN, and Bayes Net were tested. A deep 
learning method for “Device-Free Localization” and “Activity Recognition” is proposed 
in [122]. A “generalized regression neural network” is used in the first portion. In the 
second layer, instead of RBF, a specific linear layer was used as the activation function 
to generate four reference nodes. Wymeersch et al. [127] proposed a method for reduc-
ing range error residing in the physical layer. The ranging error is calculated using two 
non-parametric regressors. The proposed work is authenticated using FCC-compliant 
UWB radios. Experiment findings show that the proposed approach works effectively in 
a variety of practical circumstances.
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Table 3 focuses on an analytical discussion of various machine learning-based locali-
zation algorithms over environmental scenarios, application areas, accuracy, error, and 
their outcome. From the above analysis, it has been observed the accuracy achieved from 
these algorithms is average. To gain high accuracy we need to implement them with some 
advanced techniques.

4.3  Analysis for Localization Techniques Based on Optimization and ML Techniques

An analytical discussion is shown in Table 4 which is based on various machine-learning 
techniques for node localization in WSN with optimization techniques. Various ML, opti-
mization and localization algorithms applied in several works of literature have been dis-
cussed along with the evaluation parameters broadly based on localization error and opti-
mization function.

Chadha et  al. [128] use data from 192,555 satellites to train “deep learning” models 
such as tailored “CNN” in this study. To reduce the effect of noise in signals the dataset 
was pre-processed and then it was displayed to analyze data pixel intensities using explora-
tory data analysis. The RMSE was determined using real and expected measurements.

The authors [129] offer a machine-learning technique for handling the RobotAtFac-
tory 4.0 localization challenge. The goal is to collect an onboard camera’s relative posture 
concerning fiducial markers, i.e., “ArUcos” and apply machine learning to determine the 
robot’s attitude. Among few tested algorithms Random Forest Regressor delivered the best 
results, with a millimeter-scale error. Author in [34] designed an “Optimised Localization 
Learning Algorithm”. The performance is evaluated using indoor and outdoor settings on 
different anchor nodes.

where xi are relative coordinates and xi are absolute coordinate.
The authors suggested an optimized localization algorithm implemented with Q learn-

ing technique in [37].The proposed work locates nodes by constructing all possible paths 
via k-fold algorithm and selecting the best path to transmit the packets. The proposed tech-
nique’s effectiveness was thoroughly investigated. The following approach can be used to 
calculate the RLE as a percentage:

The authors of [130] proposed an innovative scenario to evaluate the performance 
under an indoor localization environment and to estimate the occupancy-count using 5G 
“Ultra-Dense Networks”. In [131], an upgraded DV-Hop localization technique is con-
structed based on a suggested selective opposition class topping optimization (SOCTO). 
The SOCTO method was used to improve the placements of nodes. The following equation 
represents the objective function of the proposed DV Hop based is SOCTO scheme:

(17)RMSE =

√
(Actual − Predicted)2

Total number of observation

(18)
min

�, �, b

a�

i=1

‖�Δxi − Δxi‖
2
+ ‖�Δxi − Δxi‖

2

(19)RLE% =

(
1

N

N∑

a=1

RLEa

)
× 100
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A hybrid scheme that combining “K-fold” and “supervised learning” is proposed to 
improve the energy efficiency and reduce the error in [132]. Here the Localization process 
has been performed by calculation round trip time. RTT is round trip time that would be 
calculated when the source sends the acknowledgment at time t1 , and destination gives the 
feedback at time t2:

The error can be calculated by differentiation the both types of error the actual and the 
estimated one.

This paper presents an energy-efficient localization technique based on clustering 
named as [133]. The proposed “ECGAL” approach consumes less energy and extends the 
life of wireless networks. The results of the experiments show that the proposed technique 
approximates the node position with low localization error. The difference between the 
estimated and real location point should always be taken into account to calculate the local-
ization error, as shown in the equation below:

Shen et  al. [134] developed a localization method based on RSSI value calculation. 
“DNN” is used for basic maintaining the relationship between the RSSI value of nodes and 
their placement in the network to improve the performance. The strategy necessitates the 
dataset for training (X), given in the equation below in the range 1 to T.

Guo et al. [135] suggested a movable target localization approach for underwater sensor 
networks. For range estimation, this strategy employs the TDoA method. The interactive 
multiple model approach reduces the effects of mobile sensor node effects such as place-
ment mistakes. Node time synchronzsation and localization are combined during iteration 
to increase accuracy. The overall “state estimation” ( ̂xk) and the total “error covariance 
matrix"  Ck of each model can be written as:

Singh et al. [136] optimized the machine learning Support Vector Regression model 
to achieve a low Average Localization Error for evaluating ideal network parameters. 
The authors presented three approaches based on feature standardization to improve the 

(20)f (a, b) = min(
∑

i=1,2,…,M

||||

√
(a − ai)

2 + (b − bi
2) − pMod

ik

||||
)

(21)RTT = t2 − t1

(22)e =

√
(xi − x̂i)

2
+ (y − ŷi)

2

(23)LEx =
1

R

√
(p0

ux
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2
+ (q0
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2

(24)X = {(ai, x
t

sj

|||∀ai ∈ A, sj = p
(
ai, t

)
, 1 ≤ t ≤ T )}
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prediction accuracy of ALE: S-SVR, Z-SVR, and R-SVR. The Optimization Function is 
given by:

here xi, yi are the coordinates of the sensor nodes. Dij is the actual distance between nodes 
and Dij′ is the estimated distance. M is the number of anchor nodes.

Qianqian et  al. [137] offer an approach by merging the “RSSI” quantization and 
evolutionary algorithm of localization. The proposed method is divided into three 
stages: Dividing the sensing region into numerous rings, determining ring overlap, and 
researching density-based grouping techniques. Genetic algorithms based on an elitist 
preservation strategy decide the breadth of the rings. The distance loss model can be 
expressed through the below equation:

Cai et al. [138] present a model bordered by “hops and weights” based on mathemat-
ical analysis. The suggested approach employs a “genetic algorithm” to solve the “MW-
GADV-hop” problem. The average localization error (ALE) is calculated as follows:

Authors in [83] developed a UAV that employed “ANN” method for any “Unmanned 
Ariel Vehicles” in WSN. In the learning phase, the technique takes only one iteration. 
Simulation is used to demonstrate the results. The I/O vectors of the given “ELM” 
approach are theoretically connected as:

Anusha et al. [139] suggested a “link distance-WVM” model that perform localisa-
tion a 3D indoor environment. The selection of SVM was motivated by its adaptability. 
In the expression below, the target’s position is given as the link distance ratio R:

Rauchenstein et  al. [140] proposed a TDoA-based localization technique. A classi-
fication and regression technique of machine learning is combined with TDoA to cor-
rect the localization inaccuracy target tracking. The below confusion matrix can capture 
both measurements:

(27)F
(
xi, yi

)
=

1

M
×

M∑

j=1

(Dij − D�
ij
)
2

(28)RSSI(d) = RSSI
(
d0
)
− 10nlog10

d

d0

(29)ALE =
100
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i
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2 + (y∗
i
− yi)

2

(30)
HE∑
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�hg
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h
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T
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Wen et al. [141] used an isotropous WSN to implement a localization technique. To 
construct LAEP, they inherited predicted hop advancement. As demonstrated by, the 
distance error between the anchor nodes is commonly utilized as a fitness function:

 

x, y are the node coordinates, i is the ith node in the network. d̂i−j is the estimated distance. 
The distance error can be represented by the “mean distance error” (MDE) and “distance 
estimation error” (DER):

 

The localization percentage can be calculated by ration of  NL and  Nu, i.e. ratio of 
localized and unknown nodes.

Sun et  al. [142] suggested a device-free localization strategy based on “ANN”. 
According to the experimental results, the suggested approach achieves average accu-
racy for device-free localization. The trained ANN model may estimate the target by 
using the x and y coordinate values and their RSS value:

Fang et  al. [143] proposed OWKNN, which performs well in noisy environments. 
This algorithm is a hybrid of the AKF and MA algorithms. The first method reduces 
noise in RSSI signals and another one to sensor nodes. The OWKNN delivers the high-
est level of positioning precision. The WKNN estimated node location is as follows:

The optimization model is:
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1 classified as 0 1 classified as 1

]
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√
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|||
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(39)
(
x̂, ŷ
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K
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This model is based on estimation of fingerprinting data and their optimal weights.
The original centroid approach was improved by Phoemphon et al. [144]. ELM and fuzzy 

logic Machine learning techniques are used to combine the methodology. Fuzzy logic focuses 
on low node density and small area coverage, whereas ELM is used in the vigorous localiza-
tion phenomenon. To minimise unequal node dispersal, the resulting force vectors are cooper-
ated over PSO. The mean of the reference nodes’ two-dimensional locations:

xest, yest are the estimated coordinates after localization.
Mihoubi et al. [69] developed an approach by combining “bat algorithm” with the node 

localization algorithm The goal function is calculated based on the mean square error between 
actual and estimated distances of the coordinates. It is computed as follows:

Equation (44) shows the average execution time for the proposed algorithm

Arora et  al. [75] suggested a butterfly optimization-based localization approach. The 
approach was tested on 25 to 150 sensor nodes by the author. When compared to PSO and 
firefly algorithms, the former has proven to be more consistent and accurate. The fittest but-
terfly/solution g is represented as:

xt+1
t

 represents the local search:

The LSVM-PCS approach described by Wang et al. [145] or node localization. This strat-
egy is developed by amalgamating SVM and PCS. Using an SVM approach, each sensor node 
may be classified or localized into a single grid. When a node is assigned to a specific grid, 
PCS is used to estimate its location. The “two-hop mass-spring” is applied in this work for 
enhancing the results fetched from the proposed idea. The decision function f(x) is:

The optimized energy consumption is achieved, which is defined as:

(41)minimise ∶ y = g(x)
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�
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(47)f (x) =
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)
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(48)E =
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E(Si)
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Sharma et  al. [146] presented an approach named “MDV-TLBO” for node locali-
zation. This approach incorporates DV-Hop and the “teaching learning-based optimi-
zation” technique. The optimization technique used enhances localization accuracy. 
The simulation results demonstrated better accuracy and location coverage, as well as 
reduced energy use. average hop distance or hop size denoted as:

The distance error is:

Banihasemian et  al. [147] suggested a neural network-based localization approach 
with range-free localization algorithms needed several neuron techniques. PSO is used 
to locate neurons in the model’s hidden layer. The goal function is developed with accu-
racy and data storage in mind. It decreases localization errors and storage needs. We can 
estimate the Pm i141 maxP errori given in Eq. (51). Equation (52) calculates the storage 
cost concerning the number of anchor nodes.

Kang et al. [148] proposed an approach using one-dimensional “CNN” and “SVM” 
ML approaches to detect leakage in water treatment plants. The graph depicts the infra-
structure network of real water pipelines, with virtual spots representing leakage places. 
The leakage points can be found by comparing the graphs that have values above than 
mentioned. The approach decreases inaccuracy during the localization of the leaking 
spot. The ensemble 1D-CNN-SVM probability is defined as:

Sun et al. [149] suggested an iterative approach for counting and localising numer-
ous targets. The method relies on the concept of dynamically mitigating dictionary mis-
matches. The suggested method operates in two parts, first remembering the off-grid 
targets, counting them, and estimating the parameters by recovering joint sparce signals, 
and then solving the joint optimisation issue using a variant of the VBEM and VBM 
algorithms. According to the simulation findings, this algorithm performs well in count-
ing and error reduction. The estimated count of target is given by Kˆ.

The ALE is defined as:

(49)HopSizei =

∑
i≠j

�
(xi − xj)

2 + (yi − yj)
2

∑
i≠jhopij

(50)derror
ij

=
|||D

actual
ij

− Destimated
ij

|||

(51)
m∑

i=1

maxPerrori
= m ∗ maxP_error

(52)cost_weights = min

[
(m ∗ HN1 + HN1 ∗ HN2 + HN2 ∗ 2)

m ∗ 100 + 10200
∗ 4, 1

]

(53)P(Yc
||Cnn, Svm) = � × wcnn × P(yc

||Cnn) + (1 − �) × wsvm × P(y�
c
||Svm)

(54)K̂ = ‖ŵ‖0
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Wang et  al. [150] offered a solution that included two localization strategies to 
address the problem. In the suggested method, sensors simply provide the link to the 
base station rather than RSS data. The first localization method uses a Grid-based maxi-
mum likelihood technique to reduce processing costs. Another one uses a “particle 
filter” to perform target tracking and localize the nodes. Experiments for binary work 
mode are carried out, demonstrating the enhanced performance of the suggested task. 
The covariance for the estimated target is given by:

Outliers make it difficult for localization algorithms to reach the required accuracy. 
To address it, authors in [151] presented a strategy using a powerful PCA machine 
learning technique. The authors created a non-convex objective function to solve it. 
Correa et al. [152] produced a pedestrian activity tracking approach in an indoor envi-
ronment. Janapati et  al. [153] proposed a method for the localization of sensor nodes 
in a cooperative network by employing the “PSO” and “AKF” algorithms. Because of 
its linear filtering property, the Kalman filter is used to estimate the position of sensor 
nodes. The divergence or adaptation for adaptive filtering is given in Eq. (57).

Assaf et al. [154] suggested an efficient technique for sensor node localization. The 
approach is well-suited for complicated WSNs in which signals are broadcast. The ANN 
machine learning technology is used to generate distance estimation. The NRMSE is 
calculated through Eq. (58).

FCMTSR was proposed by Zhu et al. [155] to minimise data obtained from diverse 
sources. To decrease the sample data, SVM is used. Fuzzy C-means addresses the prob-
lem of calculation complexity by performing clustering on sample data. The suggested 
FCMTSR improves precision by 2% while reducing training time by 55%. Gharghan 
et al. [156] proposed an LNSM channel model and PSO-ANN method-based approach. 
This approach is based on the distance calculation among mobile and static nodes. 
Equation (60) calculates the distance between these mobile and static nodes:

So-in et al. [157] compared various machine learning strategies for improving locali-
zation accuracy and computational complexity. FL, GA, NN, and SVM are the ML 
algorithms chosen for the analytical approach. This approach is able to train the data-set 
comparatively fast manner. Following that, MG-ELM is used to lessen the localization 
error. If and only if the MSO’s energy (E) is low, the new estimated location will be 
updated:

(55)Avg.Error =

∑K

k=1
‖�k − �̂k‖2
K

(56)cov(Xt) ≈

NPF∑

i=1

wi
t
(Xi

t
− X̂t)(X

i
t
− X̂t)

T

(57)FIT = ROD =
tr(Ĉvk)

tr(Cvk)

(58)NRMSE =

(
N−Na∑

i=1

√
(xi − x̂i)

2
+ (yi − ŷi)

2
)∕((N − Na)R

)

(59)RSSI(dBm) = Pt(dBm) − PL(d)dBm
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Bernas et  al. [158] proposed an algorithm based on “k-means” and “fuzzy c-means” 
ML technique. This algorithm based on the feature of separating the network field to 
improves the localization accuracy. The coordinates are calculated as follow when k-NN is 
implemented:

The coordinates are calculated as follow when fuzzy c-means is implemented”

Payal et al. [159] used the simple path loss model shown below is employed by incorpo-
rating “FFANN” model:

The above literature survey analyses the various articles in which localization algo-
rithms have been implemented using machine learning, hybrid machine learning and opti-
mization techniques. There exist few articles in which both the techniques or hybrid ML 
techniques are implemented. According to the above literature review, when localization 
techniques are used with hybrid ML or ML with optimization approaches, they outperform 
on  numerous parameters. While when solely used or used only with ML  or only with 
optimization technique they can conquer only one or two parameters like error or energy 
efficiency. Figure 12 shows that the hybrid ML and Optimization Techniques with ML are 
least explored on various parameters.

(60)E
(
Sj
)
=

∑

neighbourS[k]

(dist_est(S
[
j
]
, S[k] − r)

(61)x =

∑k

s=1
(xjs∕‖r − pjs‖)

∑k

s=1
1∕‖r − pjs‖

(62)x =

k∑

s=1

xjsujs (r)

(63)PL(d)(db) = PL
(
d0
)
+ 10�log

(
d

d0

)
+ X�

Fig. 12  Percentage of Articles for Various Evaluation Parameters
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5  Challenges to Implement Hybrid ML and Optimization Strategies 
for Localization

Based on the Above literature survey various challengers have been identified:

• Limited Training Data Obtaining labeled training data for machine learning algorithms 
in WSNs can be challenging due to resource constraints and the need for accurate 
ground truth data. Limited training data can hinder the performance and generalizabil-
ity of machine learning models.

• Scalability WSNs often consist of a large number of sensors, leading to scalability chal-
lenges in machine learning and optimization-based localization. Designing algorithms 
that can handle the increasing number of sensors while maintaining accuracy and effi-
ciency is a significant challenge.

• Energy Efficiency Energy is a critical resource in WSNs, and energy-efficient localiza-
tion is essential to prolong the network’s lifetime. Machine learning and optimization 
algorithms should be designed to minimize energy consumption during the localization 
process, considering the limited battery capacity of sensor nodes.

• Localization Accuracy Achieving high localization accuracy in WSNs is challenging 
due to factors such as signal attenuation, multipath interference, and environmental 
conditions. Overcoming these challenges and improving localization accuracy remains 
a research focus.

• Dynamic Environments WSNs operate in dynamic environments where sensor nodes 
may move or be deployed in changing conditions. Machine learning and optimiza-
tion algorithms should be able to adapt to dynamic environments and provide accurate 
localization despite changes in the network topology or physical surroundings.

• Robustness to Sensor Failures and Malicious Attacks WSNs are susceptible to sensor 
failures and malicious attacks that can compromise localization accuracy and integrity. 
Developing robust algorithms that can handle sensor failures, localization outliers, and 
secure localization against attacks is a significant research challenge.

• Real-Time Localization Real-time localization is crucial for many WSN applications. 
Machine learning and optimization-based approaches should be designed to provide 
timely localization results while considering the computational and communication 
constraints of the network.

• Localization in Sparse Networks In some scenarios, WSNs may have sparse node 
deployments, leading to challenges in accurate localization. Designing algorithms that 
can handle sparse networks and leverage limited connectivity information to achieve 
accurate localization poses a research challenge.

• Trade-off between Localization Accuracy and Complexity There is often a trade-off 
between localization accuracy and the complexity of machine learning and optimiza-
tion algorithms. Balancing the accuracy and complexity to achieve an optimal solution 
is a challenge in WSN localization.

• Real-World Validation and Deployment Validating and deploying ML and OT in real-
world WSN deployments can be challenging due to the variability of environments, 
system constraints, and the need for extensive testing and evaluation.

Addressing these research challenges will contribute to develop comparatively more 
robust, accurate, and efficient machine learning and optimization-based localization 
approaches for WSNs, enabling their widespread adoption in various applications.
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6  Conclusion

In this research, our objective is to provide insights into the utilization of ML and optimi-
zation techniques to address localization challenges. To achieve this, we have organized 
the study into four main sections. The first section introduces the motivation behind our 
research and outlines the flow of the article. In the next section, we identified and elab-
orated existing research gaps and obstacles in localization preceded by Sect.  3 which is 
divided into three subsections. First subsection provides a comprehensive overview of 
localization by highlights the difficulties encountered during the localization phase. Sec-
ond subsection focuses on ML strategies applied to the localization problem, while third 
subsection elaborates optimization strategies for localization. Lastly, in fourth section, we 
present comparative tables based on a literature review, allowing for a comprehensive com-
parison of localization, ML and OT.

To enhance the depth of our survey, we have reviewed and incorporated findings from 
three analytical surveys that introduce novel approaches in the field. Our analysis con-
cludes that there is still limited utilization of Hybrid Techniques, which combine optimized 
localization with machine learning. Additionally, we provide a summary of the comparison 
tables, laying the groundwork for future research in WSN localization. Further investiga-
tions can focus on exploring additional optimization-based ML methods, particularly for 
live applications involving IoT devices in various domains such as agriculture, defense, and 
medicine.

7  Future Scope

The future directions to develop localization techniques in WSNs using machine learning 
and optimization involves several potential avenues for research and development. Here are 
some future directions to consider:

• Transfer Learning Investigate TL techniques to address the challenge during localiza-
tion of nodes in different environments or scenarios. By training models on labelled 
data from one WSN deployment and transferring the learned knowledge to a new 
deployment, it may be possible to reduce the need for extensive calibration or training 
data collection.

• Cooperative Localization Explore cooperative localization techniques where neigh-
bouring sensor nodes collaborate to improve localization accuracy. Machine learning 
and optimization algorithms can be employed to design efficient collaboration strat-
egies, data fusion techniques, or distributed optimization algorithms for cooperative 
localization.

• Sensor Selection and Placement Investigate machine learning and optimization 
approaches for optimal sensor selection and placement in WSNs. By strategically 
selecting and placing sensors in the network, it is possible to improve localization accu-
racy and reduce resource consumption. Techniques such as reinforcement learning or 
genetic algorithms can be explored to optimize sensor selection and placement strate-
gies.

• Real-Time and Dynamic Localization Develop real-time and dynamic localization tech-
niques that can adapt to changing environmental conditions, mobility of nodes, or net-
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work dynamics. Machine learning algorithms can be trained to adaptively learn and 
update localization models based on the evolving sensor data, enabling accurate and 
robust localization in dynamic WSN scenarios.

• Experimental Validation and Benchmarking Conduct extensive experimental valida-
tions and benchmarking of the proposed localization techniques using real-world WSN 
deployments. Compare the performance of different machine learning and optimiza-
tion-based approaches under varying conditions, network sizes, environmental factors, 
and mobility patterns to provide practical insights and guidelines for their adoption.

These future directions can contribute to the advancement of localization techniques in 
WSNs by harnessing the power of machine learning and optimization, improving accuracy, 
efficiency, scalability, and adaptability to diverse deployment scenarios and application 
requirements.
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