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Abstract
The Internet of things has emerged as a technology that is affecting a lot of domains such 
as manufacturing and automation, smart traffic systems, security, disaster management, 
etc. Security and user authentication are challenging due to the large number of connected 
devices and the magnitude of data shared among the devices. Typically, some digital fin-
gerprint in terms of the features of the data stream to be transmitted is embedded in the 
data streams, but they can be extracted in case the adversary analyses the data stream and 
records it for a long period with a sufficient number of samples. Moreover, large length sto-
chastic features would inevitably increase the system computation overhead and latency at 
the gateway. While lesser overhead can be settled that would result in higher bit errors and 
chances of attacks. In this paper, a deep learning-based approach is used to detect possible 
attacks based on the statistical features embedded into the bitstream transmitted. Addition-
ally, the channel state information has been utilized for enhancing the Quality of Service of 
the system. The performance metrics are the bit error rate, number of epochs for training, 
and mean square error of the deep learning model.

Keywords Bit error rate · Channel state information · Deep learning · Internet of things · 
Signal authentication

1 Introduction

Internet of things (IoT) can be thought of as the interconnectivity of several devices over 
the internet. There can be a great deal of diversity in the type of devices connected to 
the IoT network [1–3]. One of the major constraints of IoT networks is the computational 
and memory limitations of internet of things devices (IoT) since low-cost sensors may 
have less storage and computation power to implement complex encryption algorithms. 
Moreover, conventional security in terms of cryptographic algorithms is NOT completely 
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secure. Cryptography relies on the infeasibility of computers to perform a computational 
operation within a specific time due to its computational complexity. However, with the 
emergence of Quantum Computing, the future scenario can completely change with the 
“Hack now, decode later approach”. It is infeasible to search for any intrusion detection 
system to find all possible loopholes while traversing the entire periphery of the network 
[4]. Additionally, in the case of IoT, there is a large diversity of devices with varying levels 
of memory and computational power, making complex cryptographic algorithms infeasible 
to be implemented (although the advanced cryptographic algorithms are NOT completely 
secure too [5]. There always remains a tradeoff between the level of security and computa-
tional power needed thereby constraining system performance [6]. The enormous number 
of such sensing devices keeps increasing with scaling up the IoT framework to a massive 
IoT framework. Massive IoT frameworks are typically used for diverse applications such 
as defense and security, climate monitoring, disaster management, etc. [7, 8]. Due to the 
scale of the massive IoT networks, they are prone to attacks from adversaries who may 
either extract the data, extract and manipulate the data, add jamming to the transmitted data 
stream or employ denial of service depending upon the type of attack planned [9]. The IoT 
security model aims at securing the network fundamentally at three levels:

1. Physical Level Security
2. Network Level Security
3. Application-Level Security

The physical level security often termed the bit level security aims at securing the data 
to be shared on the hardware level of the IoTD. However, this approach may not be suit-
able if the IoT network is extremely large with a large diversity of devices connected con-
strained to the limited memory and compute power [10]. The network-level security is 
often employed at the IoT gateway, where the gateway on analyzing the individual IoTD 
data streams decided upon the authenticity of the data received, and evaluates the possibil-
ity of attacks. This is challenging owing to the constraints of bandwidth, time, and com-
putation capability of the gateway. The gateway also needs to estimate the possible IoTDs 
whose security may have been compromised i.e. it needs to make a selection among the 
IoTDs which can be analyzed for attacks [11]. The application-level security tries to detect 
and block malicious applications which try to access the IoT framework. However, these 
attacks are at the point of the end-user, before which the actual data may have been com-
promised [12]. Based on the review of existing literature in the field, the following major 
challenges, problems, and research gaps in the domain have been identified:

1. Most conventional intrusion detection systems (IDS) are reactive whereas, for large-scale 
networks, a proactive approach is needed to ensure security [13, 14].

2. Application layer security alone is NOT reliable and enhanced security measures at the 
network layer and physical layer need to be augmented, which has seen lesser impetus 
in existing work.

3. Proactive approaches to detect possible attacks use the channel state information (CSI) 
of the network. However, limited work has been done in estimating the time-varying 
CSI statistics. Outdated CSI can lead to false alarms regarding attacks [15].

4. Limited work is done on devising hybrid peak to average power ratio (PAPR) reduction 
techniques which can achieve very low values making traffic imperceptible to potential 
attackers [16–18].



A Deep Learning and Channel Sounding Based Data Authentication…

1 3

5. Correlation analysis among using the CSI, associated channel scatter and the error rate 
has not been sufficiently highlighted and exemplified [19].

6. A combination of data imperceptibility leveraging CSI for scattering and error analysis 
has NOT been coupled with efforts to statistically recover corrupt data packets using 
equalization techniques [20].

The basic security model for IoT frameworks is depicted in Fig. 1a while the catego-
ries of IoTDs in the network is depicted in Fig. 1b.

Fig. 1  a The IoT security model, 
b Categories of IoTDs in a 
network
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With an increasing number of users, sensing nodes, and coverage areas, the internet 
of things can be scaled to design massive internet of things. In real-time applications, 
authenticating the data received is vital as the network can be prone to attacks from 
adversaries.

With limited memory and processing power at the disposal of IoT Devices (IoTDs), 
there exists a continued trade-off between the error rate (authentication metric), system 
overhead, computational complexity, and latency of the system. Hence an extremely 
meticulous system design with an appropriate choice of stochastic parameters and 
authentication scheme should be adopted. With the emergence of machine learning tech-
niques, large and complex datasets can be analyzed in relatively much lesser time com-
pared to conventional statistical techniques. This paper adopts a deep learning-based 
approach for signal authentication in massive IoT networks. Additionally, the quality of 
service of the network is a critical attribute of the system, which is typically evaluated 
in terms of the error rate and latency of the system. Thus, this research paper comes up 
with a proposed solution which tries to addess the problems identified in existing stand-
ard leiteratrue which can be summarized as:

The proposed work would work on combining the security attributes of both the 
physical and network layer in a proactive approach. For that purpose, the first step is to 
design a system which could extract the channel sense information at regular intervals 
of the system considering network parameters or network statistics Quasi Stationary. 
The channel state information (CSI) would be used to accomplish the following;

1. Detect possible ongoing attacks.
2. Avoiding future attacks.

This CSI base proactive approach would allow in higher attack and intrusion avoid-
ance compared to conventional network based intrusion detection systems (NIDS). 
Moreover, to recover data, equalization techniques would also be employed. To increase 
the imperceptibility of the system, the peak to average power of transmitted data is also 
to be reduced using hybrid techniques thereby further reducing the chances of unauthor-
ized intercepts. Finally, the CSI, error rate, scatter would be computed and correlated to 
reach a comprehensive conclusion. Additionally, utilizing the channel state information 
(CSI) of the system decide upon the choice of channels may help in improving the BER 
performance of the system [21]. The rest of the paper is organized as:

The difficulties in protecting IoT networks are discussed in Sect. 2, along with the sys-
tem model for IoT authentication and the frequency selectivity of wireless channels. Deep 
learning and deep neural networks are discussed in Sect. 3 along with how they can be used 
to secure IoT networks. Also discussed is the value of channel state information (CSI). The 
acquired simulation findings and their importance are discussed in Sect. 4. The conclusions 
and key lessons of the suggested approach are presented in Sect. 5

2  System Model For Iot Signal Authentication and Extracting Channel 
State Information (CSI)

This section presents the signal authentication framework along with extracting the 
channel state information (CSI) and utilizing it.
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2.1  IoT Device Authentication

There are several challenges corresponding to the authentication of IoTDs in a network, which 
primarily are:

IoT devices may have very limited processing power and memory, the enormity of the 
decisions and actions to be performed by the gateway makes it extremely constraining for the 
gateway to attain convergence of results in limited amounts of time, the IoT gateway doesn’t 
always have information about the IoTDs, whose security may or may not have been com-
promised, adding large watermarks or digital fingerprints leads to computational overhead of 
the system which again adversely affects the gateways constrained computational and decision 
making capabilities, bandwidth limitations also do not allow simultaneous authentication of 
all IoTDs, deciding which of the IoTDs can be authenticated among all the IoTDs and finally 
deciding how to authenticate the IoTDs selected with least overhead and minimum bit error 
rate (BER). The different categories of IoTDs in a network are shown in the Fig. 2 whose data 
reaches the IoT gateway [22, 23]. Typically, the enormity of the decisions to be incurred by the 
gateway results in a tradeoff between the security and the quality of service parameters such 
as the bit error rate and the latency [24]. One of the most effective yet convenient techniques 
to secure IoTDs transmission and authentication is computing statistical features or parameters 
from the data stream and embedding it into the transmitted data. The set of features is often 
termed as the digital fingerprint. The bit stream containing the digital fingerprint is analyzed 
by the gateway, which extract the bit stream and decides whether the IoTD is compromised or 
not [25]. Typically, the attack would occur between the IoTD and the gateway which would 
manipulate the stochastic properties of the data stream. This can be sensed by the authentica-
tion mechanism at the gateway and the decision regarding possible attack can be taken [26]. 
The security framework is depicted in Fig. 2a.The frequency selective nature of wireless chan-
nels is depicted in Fig. 2b.

The limitations of the computational resources at the gateway invariable compel 
the gateway to forecast the data streams with higher chances of being compromised and 
then authenticating them at first. On the contrary, the adversaries would focus on target-
ing the data streams from IoTDs which are least possible to be picked up by the gateway 
for authentication. This leads to the formulation of a non-cooperative game at the gate-
way between the gateway terminal and adversaries recording the data streams. Thus, at 
the gateway terminal, the IoTDs whose data streams can be analyzed by the gateway under 
resource constraints are [27]:

Here, sG is the strategy at the IoT Gateway. T is the number of IoTDs to be analyzed at 
the gateway. N is the total number of IoTDs transmitting at a time to the gateway. fs is the 
sampling frequency at which the data stream is sampled under resource constraints of ‘R’.

R is the set of available resources.
The limitation on the gateway for the authentication of the IoTDs can be expressed in 

terms of the computational complexity notation ‘O’ as:

Here, fi is the sampling frequency of the  ith IoTD. ni is the number of IoTDs authenti-
cated?O(C) is the total authentication complexity.

(1)sG = T ∈ N ∶
∑

i∈T

fs ≤ R

(2)O

(
fi

ni

)
≤ O(C)
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A successful resource constrained sampling and authentication is possible only if the 
inequality in (2) is maintained [28].

2.2  Frequency Selective Nature of Wireless Channels

Practical wireless channels exhibit frequency selective nature in terms of the channel fre-
quency response. The signals undergoing different fading effects create different BER and 
Outage patterns at the output. The fading pattern depends on the attenuation constant. The 
attenuation constant again depends on the material constants of the channel which are the 
permittivity, permeability, conductivity. It also depends on the frequency of transmission. 
Therefore the fading pattern would obviously vary with the frequency of transmission and 

Fig. 2  a Framework for securing 
an IoT network at gateway, b 
Channel response of a frequency 
selective channel
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also on the nature of the channel as it keeps changing with changes in the channel charac-
teristics. Mathematically, the attenuation constant is given by [28]:

Here, � represents the attenuation constant. � represents the angular frequency. � repre-
sents the permeability of the medium. � represents the permittivity of the medium. � repre-
sents the conductivity of the medium.

Since the attenuation constant depends on the angular frequency � , which in turns 
depends on the frequency as per:

Here, f  represents the frequency.
Hence, for multiple frequencies, the nature of the channel and hence the channel 

response would vary. This is typically important to gauge so as to find out suitable frequen-
cies for transmission. This necessitates the evaluation of the channel state information and 
further selection of the frequencies for transmission which exhibit a satisfactory channel 
gain. The channel gain is computed as:

Here, gf  represents the channel gain for a particular frequency f. Pi represents the input 
power to the channel for the frequency. Pi represents the output power of the channel for 
the frequency.

3  Proposed Method

The main challenge faced by the IoT gateway is the decision regarding the authentication of 
IoTDs and the elated computational complexity [29]. One of the most effective approaches 
is adding digital fingerprints to the data stream to be transmitted so as to secure the trans-
mission and subsequently use some framework to authenticate the data for:

• Non-compromised security
• Compromised security.

3.1  Watermarking Strategy

EquationsThe watermarking strategy adopted in this case is based on the statistical feature 
extraction of the parameters from the transmitted IoTDs.

Considering ‘N’ IoTDs transmitting to the gateway ‘G’, IOTDi transmits a data stream yi 
at time ‘t’ sampled at a sampling frequency of fi.

This gateway and the adversary play a non-cooperative game where the gateway tries to 
identify the IoTDs to be authenticated wherein the adversary tries to mark IoDs which are 
less likely to be analyzed by the gateway and manipulated the data stream yi to y′

i
.

The authentication mechanism at the gateway then needs to compare yi and y′

i
 thereby 

deciding upon the status of attack or non-attack. The constraints which the gateway 

(3)� =
��

2

√
1

� + ��

2

− 1

(4)� = 2�f

(5)gf =
Po

Pi
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faces are the large magnitude of simultaneous transmissions by IoTDs, noise and distur-
bance in the channel changing the nature of the bit streams transmitted, limitations of 
bandwidth and power. The computation of the following stochastic parameters is done 
in this case [30]:

Additional parameters are correlation, skewness and kurtosis. The data stream com-
prising of the watermark is given by:

where,

Here, sw(t) is the embedded data stream . si(t) is the IoTD bit stream. ri is the random 
sequence generated for IOTDi.b is the hidden bit stream of + 1 or –1 for bipolar signaling.ni 
denotes the number of samples.

In order to detect the attacks, the gateway computes:

Here, ⟨ri, si⟩ denotes the correlation or inner product. b̂i which is the extracted watermarked 
bit-stream at the gateway can be expressed as the summation of the actual embedded bit 
stream b̂i and the received data stream at the gateway ŝi , thus giving:

The decision regarding the bit extracted (for bipolar signaling is based on the follow-
ing conditions),

{
If ( �bi > 0)bit = 1
Else,bit =−1
}
If the gateway computes the received bit stream to be ŷi in place of yi , an attack is 

detected. As the data to be analysed is extremely large and complex in a massive IoT 
system, machine learning can be used for the authentication purpose.

(6)mean
{
yi(t)

}
= �i

(7)variance
{
yi(t)

}
= �2

i

(8)standarddeviation
{
yi(t)

}
= �i

(9)Energy
{
yi(t)

}
= Ei

(10)Entropy
{
yi(t)

}
= Eni

(11)sw(t) = si(t) + �ibri(t)∀t = 1… .ni

(12)�i =
Power(ri)

Power(si)

(13)b̂i =
⟨ri, si⟩ni
�ini

(14)b̂i = ŝi + bi
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The Machine Learning (ML) enabled security framework is depicted in Fig. 3a while 
the mathematical model for a neural network is depicted in Fig. 3b.

The ML model is to be trained with the digital footprints (extracted features) of the data 
streams of IoTDs and the Random PN sequence data. Based on the extracted digital fin-
gerprint values, the ML model decides whether the data stream arriving at the gateway is 
compromised or not. The probability of incorrect estimation is given by [31]:

For the Gateway,

Fig. 3  a The proposed deep 
learning based authentication 
framework, b Model of a neural 
network
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Here, Pr denotes probability. b̂i is the estimated bit. bi is the actual bit transmitted.P is a 
desired low probability.

Thus for the gateway, represents the probability of error of detecting a bit as bit ‘0’, for a 
transmission of bit ‘1’.

A similar formulation can be developed for transmission of bit ‘0’ and reception of bit ‘1’.
Considering a joint probability for simultaneous probability of error for gateway and 

attacker, we can write the probability of error for the attacker as:

Thus, to jointly obtain low BER (probability of error) for gateway and high BER (probabil-
ity of error) for attacker, the value of P should be as low as possible with P being bounded by:

The probability of error as a function of the error function or Q function is given by:

Here, erfc denotes the error function.
For large values of �i , the probability of errors would reduce as larger values of arguments 

for the erfc function result in lower values and vice versa. However, large values of �i would 
also mean larger power consumption as the power of the random sequence generated would 
be more. This however, has a much more serious repercussion in terms of the security. Let is 
consider large values of �i such that,

This would mean more perceptibility of the inserted random bit stream, making the 
chances of successful attack higher. Thus, while larger values of �i would ensure lesser errors 
and more reliable data transfer, it would escalate the chances of successful data intercepts by 
adversaries. Lower values of �i would mean inherently higher value of errors making the data 
transfer more prone to errors [32]. Thus a trade off between the security and the reliability 
of data transfer exists in the system. One of the possible solutions to the problem is the use 
of large values of ni , while this may allow the adversary to record more samples of the data 
received at the gateway thereby making more accurate estimated about the IoTD data stream. 
Moreover, the computation at the gateway would increase manifold owing to larger values of 
ni . The proof for the aforesaid proposition can be ststes in brevity as [33]:

For a Gaussian random a variable Z with a distribution function N
(

�I

�2
I
�2

I

)
 , received signal 

at the IoT gateway can be given by:

Assuming a fair or unbiased event ′A′ , with the random variable z exhibiting equi-proba-
bile states of0or1 , the Central Limit Theorem yields:

(15)Pe = Pr{b̂i = 0, for bi = 1} ≤ P

(16)Pe = Pr

{
b̂i = 0, forbi = 1

}
≥ 1 − P

(17)0 ≤ P ≤ 1

(18)Pe =
1

2
erfc

�
�i
√
ni

�i

√
2

�

(19)P(ri) ≫ P(si)

(20)zi =
1

�ini

n∑

i=1,i�Z+

zi(t) −

n∑

i=1,i�Z−

zi(t) =
ni+

�inini+

n∑

i=1,i�Z+

zi(t) −
ni−

�inini−

n∑

i=1,i�Z−

zi(t)
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The combination of the Gaussian Random variables z−
i
andz+

i
) would result in:

In order to limit the computational complexity and latencies at the gateway, machine 
learning algorithms rendering low to moderate number of training epochs should be 
chosen. Off late, artificial intelligence and machine learning have evolved as computa-
tional tools which can be used for analysis of large and complex data sets for time criti-
cal applications. Artificial neural networks (ANNs) are mathematical models which can 
be to implement artificial intelligence and machine learning practically [34]. The math-
ematical model for the neural network is depicted in Fig. 3b. The output of the ANN is 
given by:

Here, y is the output. x is the input vector.w is the weight vector. � is the bias. f  is the acti-
vation function.n is the number of inputs.

The data in this case is time series in nature and thus neural networks which are recur-
rent in nature can be effective for the analysis.The back-propagation training algorithm can 
be used to train such a neural network given by [35]:

Here, wk+1 is weight of next iteration, wk is weight of present iteration. Jk is the Jacobian 
Matrix. JT

k
 is Transpose of Jacobian Matrix. ek is error of Present Iteration . � is step size 

and I is an identity matrix.
As the data is large and complex time series in nature, hence a deep neural network with 

multiple hidden layers is expected to render lesser value of errors and high accuracy [36, 
37]. In this case, the number of hidden layers taken is 50. The performance metric for the 
deep neural network are considered to be the number of iterations and mean square error 
(cost function) defined as:

Here, X denotes the actual output. X’ denotes the predicted output.n denotes the number of 
samples predicted.

3.2  Utilizing the Channel State Information (CSI)

Figure 4 shows how channel sounding, which normally produces a temporally fluctuating 
pattern, can be used to extract the channel state information (CSI). A sampled represen-
tation of the channel frequency response which  is obtained by  the typical CSI is given 
by [38]:

(21)P−
i
{z(i = 0)} = P+

i
{z(i = 1)}

(22)zi ∼ N

�
{ni+ − ni−}�i

�ini

�
∼

1

2
erfc

�
�i
√
ni

�i

√
2

�

(23)y =

n∑

i=1

f (wixi + �)

(24)wk+1 = wk −
[
JkJ

T
k
+ �I

]−1
JT
k
ek

(25)mse =
1

n

N∑

I=1

(X − X
�

)
2
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Here, T  is the time period for channel sounding. i ∈ 1, 2… .. CSIt is the time varying CSI. 
H is the channel frequency response.

(26)CSIt =

n∑

i=1

H(f , t − Ti)

Fig. 4  a Bipolar data stream, b 
Extracted features
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Samples of the channel response can be obtained as a vector as:

Here, H(f , t) is the time dependent channel sounding information. f  is the frequency met-
ric. t is the time metric. H is the response at a particular time t.

Here, it can be shown that the channel response depends on both time and frequency. 
On channel sounding, a temporally variable pattern is often obtained [39]. Considering 
the bit error rate as one of the major Quality of Service (QoS) metrics for the system, the 
important decision to be made on channel sounding is the choice of carriers [40]. The car-
riers to be chosen at time ‘t’ should exhibit a channel gain above a particular threshold 
based on the system requirements and the receiver noise sensitivity. Thus if a threshold 
value of ‘T’ is chosen, the all frequencies exhibiting a channel gain greater than ‘T’ at a 
particular time ‘t’ would qualify to be used as frequencies for transmission given by the 
following condition.

This would allow is selecting carriers which would satisfy the minimum channel gain 
requirements of the system. As the channel changes its nature continuously, hence continu-
ously sampling the CSI is necessary which may be computationally expensive [40].There 
would clearly exist a trade off between the number of samples to be considered to estimate 
the CSI and the computational complexity of the system. More samples (higher sampling 
rate) would render a more accurate picture of the channel while consuming more computa-
tional resources.

4  Results and Discussion

The system has been simulated on MATLAB 2020a. The obtained results have been dis-
cussed subsequently. The results include the binary data stream for transmission and com-
puted statistical features from the bit steam which are embedded into the bit stream in 
Fig. 4a, b respectively.

The number of bits used for the simulation are 106 per IoTD. Bipolar transmission 
scheme is considered in this case. Figure 4b depicts the bar graph of the computed fea-
ture values (digital fingerprints of the bit stream) to be embedded. The computed features 
are: Energy, Entropy, Correlation, Variance, Standard Deviation, Kurtosis, Skewness and 
Mean. Figure 5a depicts the Welch Power Specturm of the sequence, while Fig. 5b depicts 
the data stream under attack.The data stream exhibits a clear increase in power at the 
beginning of the attack. It can be observed that a sharp increase in the power of the sam-
ples takes place in case of inception of the attack. The attack renders an elevated yet vari-
able power level corresponding to the jamming or adversarial power injection to sub-bands 
of the transmitted data stream.

The stochastic characteristics of the data vary in case of attacks which are the analyzed 
at the gateway using the relationb̂i =

⟨ri,si⟩ni
�ini

 . There exists a possibility of noise rendering a 
similar change in the power levels but in most cases would be distinguishable for AWGN 
conditions.Figure 6a depicts the training cost function or loss function up-to convergence. 
It can be observed that the number of iterations to convergence are 60 with a loss function 

(27)H(f , t) = H1,H2,H3……Hn

(28)if gf (t) > T; use carrier for transmission else, discard carrier.
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value stabilizing around 10−1 . The choice of training rule and deep neural architecture is 
critical to reduce the time complexity of the system.

Figure 6b depicts the variation of the bit error rate (BER) of the system with respect 
to the SNR as the number of pilot bits are varied. The system is simulated for a channel 
gain threshold of 0.6 i.e. Tgain = 0.6 . The value for the threshold could have been chosen 
higher but that would have left out more frequencies thereby limiting the usable spectrum.
Thus the frequencies with a minimum channel gain of 0.6 are considered for data trans-
mission and the rest are rejected for the particular channel sounding sample. Further, the 
BER performance of the system is evaluated with 16 and 32 pilot bits added to aid the 
deep learning mechanism. It can be seen from Fig. 6b that the addition of pilots results 

Fig. 5  a Welch power spectrum 
of data stream, b Data stream 
under adversarial attack
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Fig. 6  a Bipolar data stream, b 
Extracted features, c Channel 
scatter plot for varying channel 
gain
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in a steeper reduction of the BER. However, it increases the system overhead. Figure 6c 
depicts the scatter plot for the system for four different channel conditions which are high 
channel gain, moderate channel gain, low cahnnel gain and very low channel gain. It can be 
observed that a summary of the results obtained is tabulated in Table 1.

The proposed system employing the deep neural network reaches convergence of train-
ing in only 60 iterations with a loss function value of 0.1 for the system designed. The 
SNR requirement of 16 dB to reach a BER of  10–4 indicates relatively low power require-
ment. 16 and 32 pilot bits used in conjugation with the Deep Neural Network indicate low 
overhead.

5  Conclusion

Presently massive IoT systems are being used in several applications but one major prob-
lem which is being encountered is the security and authentication of such systems. This is 
due to the fact that the amount of data generated and shared in the IoT network makes is 
extremely challenging for the IoT gateway to authenticate the IoTDs, under constraints of 
resources. In this paper, a deep neural network based techniques has been proposed for the 
authentication of IoTDs to be employed at the IoT gateway. The system uses a deep neural 
network for authentication. Moreover, to enhance the reliability and quality of service of 
the system, a channel sounding and CSI based frequency selection mechanism is proposed. 
It has been shown that the proposed system attains a very low mean square error of train-
ing with low training epochs. The BER of the system reaches  10–4 with 16 pilot bits at an 
SNR value of 16 dB. Further directions of research could be computing and minimizing 
the latency of large netwoks which would further improve the quality of service (QoS) of 
the system.
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