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Abstract
Compute-intensive Internet of Things (IoTs) applications have led to the edge computing paradigm. Edge computing

decentralizes the IT infrastructure in multiple edge data centers (EDCs) across the access networks to reduce latency and

network congestion. Edge computing can benefit significantly from different aspects of smart grids to achieve lower energy

consumption and greater resilience to electricity price fluctuations. This paper presents a modeling, simulation, and

optimization (M&S&O) framework for analyzing and dimensioning smart grid-aware edge computing federations. This

tool integrates aspects of a consumer-centric smart grid model to the resource management policies of the EDCs. To

illustrate the benefits of this tool, we show a realistic case study for optimizing the energy consumption and operational

expenses of an edge computing federation that provides service to a driver assistance IoT application. Results show that

this approach can reduce the daily energy consumption by 20.3% and the electricity budget by 30.3%.
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1 Introduction

The Internet of Things (IoTs) is leading to a disruption in

multiple business sectors. IoT technologies capture and

process the actions of users and infrastructures to improve

quality of life, safety, and resource management (e.g.,

autonomous driving or smart cities). These technologies

are growing, and 47% of organizations plan to increase

their investments in this field within the next few years [1].

IoT applications progressively increased the complexity of

their ecosystems, sharing and self-managing their resources

autonomously to achieve a common goal. However, IoT

devices typically present limited storage and processing

capabilities due to intrinsic limitations (e.g., battery life-

time and production cost). IoT services that require inten-

sive computation and mass data warehousing may need

additional infrastructure for effective real-time processing

of a large volume of information from geographically

distributed sources. Integrating cloud technologies with

IoT has succeeded in overcoming these limitations [2]. IoT

applications use these resources to improve their services

(e.g., advanced visualization tools or over-the-air firmware

updates). However, some IoT applications present strict

Quality of Service (QoS) requirements (e.g., low latency

and rapid mobility). For those applications where response

time is critical, the centralized approach of cloud data

centers presents some limitations. For example, IoT

applications using cloud services may experience signifi-

cant communication delays. Furthermore, if IoT applica-

tions send heavy data streams to clouds from multiple

devices, the core network of the Internet service provider

(ISP) would be congested, degrading the overall QoS and
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bandwidth usage of any service that requires a connection

to the Internet [3].

The edge computing paradigm arises as a solution for

these limitations by extending the concept of cloud com-

puting to the network edge. Edge computing decentralizes

the computing resources and distributes them geographi-

cally closer to IoT devices to significantly reduce latency

and network costs [4]. There is no consensus on where

edge computing is. Usually, this depends on the vendor’s

view. For instance, some IoT manufacturers claim that

edge computing starts with the device itself. We follow the

ISP perspective, which devises edge computing as a con-

tinuum of edge data centers (EDCs) (also considered micro

data centers, MDCs) distributed from the ISP access net-

works to the public cloud to provide a drastic latency and

network congestion reduction [5]. The assets of each EDC

are sized to meet the demand in a given small area. This

characteristic makes it possible to define more efficient

resource utilization techniques because the system load

corresponding to each service area is more predictable than

in a centralized solution such as cloud computing [6].

Regarding energy consumption, edge computing infras-

tructures can significantly benefit from different aspects of

smart grids. A smart grid is an electricity network that

employs information and communications technologies

(ICTs) to monitor and manage electricity usage to optimize

production, transmission, and distribution [7]. The EDCs

can work as a federation to reduce energy costs and

improve resource management strategies [8]. Furthermore,

EDCs can adopt more efficient self-consumption policies

to transition to low-carbon systems [9]. Additionally, the

edge infrastructure would benefit from other advantages of

smart grids, such as greater resilience against energy price

fluctuations [10].

Complex systems such as smart grid-aware edge com-

puting federations require multi-domain solutions. In these

scenarios, one principal source of failure is communication

between development teams. Model-based systems engi-

neering (MBSE) methodologies overcome this vulnerabil-

ity by establishing modeling as the central entity for

information exchange [11]. MBSE eases the integration of

modeling and simulation (M&S) tools into the system

development process to explore and validate the complex

system under study, providing information about potential

technical risks and functionality of the solution while

saving expenses [12].

Here we present a modeling, simulation, and optimiza-

tion (M&S&O) framework for the analysis and dimen-

sioning of edge computing infrastructures connected to

smart grids. This tool integrates smart grids into the

resource management process of the EDCs that comprise

the edge computing federation. This integration can help to

reduce the overall energy consumption and operational

expenses of edge computing infrastructures, enabling the

deployment of IoT applications with a smaller carbon

footprint and increasing the viability of investments in

future edge computing infrastructures. We have developed

the proposed framework relying on the Discrete EVent

System specification (DEVS) formalism [13] and the

principles of MBSE that ensure a logical, robust, and

reliable incremental design. In particular, the contributions

of our research are the following:

– We extend our edge computing model presented in

previous publications [14, 15] to integrate cooling

infrastructures and support dynamic and more advanced

resource management policies.

– We also expand the model to support a decentralized

load balancing protocol to map new loads to one of the

EDCs comprising the edge computing federation. This

new approach includes cloud and edge computing

infrastructures working together to improve their over-

all QoS while responding to unusually high demand.

– We introduce a consumer-centric smart grid model and

combine it with the proposed edge computing model.

EDCs incorporate current electricity pricing, on-site

renewable energy generation, and energy storage to

define more efficient federated resource management

strategies.

– We develop an M&S&O framework that follows the

presented models to assist in dimensioning edge

computing federations connected to smart grids.

– We provide a realistic case study to illustrate how this

M&S&O framework can assess the efficiency of smart

grid-aware edge computing federations for an advanced

driver assistance system (ADAS) application. We show

that it is possible to reduce the daily energy consump-

tion and cost by 20.3% and 30.3%, respectively.

The rest of the paper is organized as follows. First, we

discuss related work in Sect. 2. Section 3 describes the

extended edge computing model proposed in this research.

In Sect. 4. We also illustrate how we integrate it into the

edge computing model. Section 5 presents a use case

scenario to demonstrate how the proposed M&S&O

framework can assist in dimensioning different aspects of

smart grid-aware edge computing federations. Finally, we

conclude in Sect. 6.

2 Related work

We provide an overview of works focused on modeling

and simulating edge computing infrastructure for compu-

tation offloading tasks and smart grids. We also discuss

approaches for integrating both fields.
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2.1 Edge computing infrastructures

Edge computing for IoT applications is a research topic

with several publications focused on improving the per-

formance and energy efficiency of the infrastructure [16].

Some of these publications propose new resource man-

agement techniques to reduce energy consumption while

still meeting the required QoS using different techniques

(e.g., mathematical models [17], deep learning-based

approaches [18], or M&S methods [19]). For example,

Zhang et al. present ApproxECIoT [20], a novel edge

computing architecture to process real-time data streams of

IoT applications. The IoT nodes comprising a wireless

sensor network (WSN) send data streams to EDCs. As the

computing and memory resources of the EDCs are limited,

they sample the incoming data streams and apply approx-

imate numeric methods to compute partial results. Then,

they forward these partial results to a cloud data center for

further processing. The cloud data center aggregates all the

partial outcomes and checks if the accuracy of the final

result complies with the expected QoS. If not, the cloud

service readjusts the sampling rate of the EDCs. The pro-

posal of Dong et al. [21] is of particular interest to this

paper. The authors use Digital Twins (DTs) to optimize

user association and EDC resource allocation depending on

the QoS requirements. DTs are virtual replicas of a phys-

ical entity that capture the entities and dynamics of the

system under study [22]. DTs are extensively used together

with simulation and data analytics tools to integrate phys-

ical and virtual data. They enable the exploration of mul-

tiple plausible scenarios for optimizing the system’s

performance [23].

Other works consider cooling energy to study the energy

efficiency of edge computing infrastructures [24]. The

energy efficiency of data centers is typically measured with

the power usage effectiveness (PUE) metric [25]:

PUE ¼ Total facility power

IT power
: ð1Þ

Energy consumed by the information technology (IT)

components of the EDCs eventually becomes heat. The

cooling infrastructure dissipates this heat to avoid potential

damage to the IT elements. Depending on the cooling

system, the cooling power may suppose a significant por-

tion of the total facility power, degrading the EDC’s PUE.

Hyperscale operators can place their data centers in cool

climates to use outside air with advanced cooling tech-

nologies to obtain PUEs near 1.1 [26]. However, cooling

supposes up to 40% of the total power consumption in

average air-cooled data centers, leading to a mean PUE of

1.67 [27]. As EDCs are in access networks, they may

present additional limitations compared to cloud systems

(e.g., limited space and warmer climates). Thus, using

efficient cooling systems is a significant concern. Two-

phase immersion cooling technologies can mitigate these

limitations of edge computing scenarios [28]. Two-phase

immersion cooling systems immerse the IT equipment in a

close bath full of a coolant fluid with very high heat flux.

The heat produced by the IT infrastructure evaporates the

coolant. Then, a condenser sets the coolant’s vapor to

liquid phase again. A secondary working fluid (usually

water) captures the heat from the condenser. Usually, the

setpoint temperature of the coolant fluid is around 60 �C,
enabling a cooling power reduction of up to 95% regardless

of the climate. This allows us to increase the power density

and reduce the physical footprint up to 10 times [29].

M&S tools are necessary to define effective deploy-

ments of edge computing architectures, as they provide in-

depth virtual analysis of such complex systems without

incurring high costs. Multiple software tools focus on

modeling and simulating IoT and edge computing solu-

tions. Thus, they allow us to explore numerous scenarios to

design more efficient architectures. We describe next some

of the most popular simulators for studying edge comput-

ing infrastructures. FogNetSim?? [30] studies connectiv-

ity features of edge computing infrastructures. YAFS

focuses on the analysis of dependent applications and their

relationships [31]. Alternatively, FogTorchPi [32] is a

simulator based on the Monte Carlo method to optimize the

QoS of IoT applications. The iFogSim simulator [33]

considers sensors and actuators to model IoT devices.

EdgeCloudSim [34] integrates a simple mobility model for

end-users. Finally, IOTSim [35] optimizes IoT services

using the MapReduce algorithm. Table 1 shows a brief

comparison of the edge computing simulators previously

mentioned. Mercury [14] corresponds to the M&S&O

framework presented in this paper. As our research focuses

on edge computing infrastructures, Mercury had not pre-

viously considered cloud computing facilities. However,

we integrate a simplified cloud computing model to Mer-

cury for this work. Section 3 describes the proposed sim-

plified cloud model.

2.2 Smart grids

The smart grid paradigm embraces multiple research fields.

The literature divides smart grid conceptual models into

seven domains: customer, markets, service providers,

operations, generation, transmission, and distribution [36].

While we must evaluate each field separately, they have

shared requirements (e.g., communication protocols and

security) and often interact to enable smart grid function-

alities [37]. The customer domain embraces the end-users

of electricity. In smart grids, customers may also generate

and store energy for better energy management (e.g.,

demand peak and overall cost reduction [38]). In this
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context, state-of-the-art works propose different methods to

describe and optimize smart grid customers’ energy man-

agement (e.g., mathematical models for optimal load

shifting [39] or machine learning behavioral models [40]).

These models integrate pricing data to enhance the con-

sumers’ energy consumption. Electricity price changes

depend significantly on customer base, country, or locality

within a given country [41]. Therefore, dynamic pricing

schemes present higher elasticity and better resource uti-

lization than static approaches. However, they are exposed

to market volatility, which may affect the end-user cost

negatively.

M&S tools are extensively used for designing and val-

idating the components that comprise smart grids. Vau-

bourg et al. [42] present a co-simulation approach to model

the operations, generation, transmission, and distribution

domains of smart grids. GECO [43] is an event-driven

simulator with configurable time precision that provides

good scalability for large systems. Alternatively, Mosaik

[44] is an M&S framework that offers a flexible, com-

posable interface for adapting custom consumer/producer

models. However, the discrete-time nature of Mosaik leads

to a substantial performance penalty when time accuracy is

required. Table 2 compares these simulators with the new

version of Mercury [14] presented in this paper. Note that

the smart grid model implemented by Mercury is focused

on the customer side and does not implement aspects that

belong to other domains.

2.3 Edge computing and smart grids

Some related works study edge computing infrastructures

and smart grids together. However, these studies focus on

smart grid scenarios with edge computing as a service for

the communication, monitoring, and analysis of the

infrastructure of these smart grids [45]. To the best of our

knowledge, no previous works analyze generic edge com-

puting scenarios that integrate smart grids as a service for

optimizing the energy consumption of the edge computing

infrastructure while providing service to different IoT

applications. Huang et al. [46] propose a framework for

real-time monitoring of smart grids using edge computing

facilities, increasing the monitoring rate by 10 times and

achieving 85% less communication delay than centralized

cloud-based systems. Liu et al. [47] present an IoT-based

solution with edge computing that improves the resource

management of smart grids in smart cities with deep

reinforcement learning. Also, Gai et al. [48] propose an

edge computing system for securing smart grids using

blockchain technology.

Here we present a formal model for smart grid-aware

edge computing federations. The model integrates cooling

systems and DTs of the edge computing facilities. It also

considers aspects of the smart grid consumer domain (e.g.,

energy generation and storage). The presented model

describes edge computing resource management-related

features in detail. In contrast, other parts of the scenario

(e.g., physical interfaces, cloud facilities, or energy distri-

bution infrastructures) are defined with less detail. In this

way, the proposed model presents a balance between model

complexity and simulation performance. The hierarchical

Table 1 Edge computing

simulators comparison
Research Cloud Mobility Delay IT power Cooling

FogNetSim?? [30] 4 4 4 7 7

YAFS [31] 4 4 4 7 7

FogTorchPi [32] 4 7 4 7 7

iFogSim [33] 4 7 4 4 7

EdgeCloudSim [34] 4 4 4 7 7

IOTSim [35] 4 7 4 7 7

Mercury [14] 4 4 4 4 4

Table 2 Smart grid simulators

comparison
Research Communication Distribution Price Generation Storage

Vaubourg et al. [42] 4 4 7 4
a

7

GECO [43] 4 4 7 4
a

7

Mosaik [44] 7 4 7 4 4

Mercury [14] 4
b

7 4 4
b

4
b

aOnly for energy providers

bOnly for smart grid customers
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and modular approach of the DEVS formalism eases the

integration of models with various degrees of detail to

capture the interrelationships between different complex

systems. Mercury, our M&S&O framework [14], imple-

ments the presented model as an extension. This new

version enables the optimization of edge computing facil-

ities connected to smart grids, reducing the carbon footprint

of IoT services that benefit from this infrastructure. Mer-

cury incorporates a multi-faceted modeling approach that

allows users to select different degrees of complexity in the

computational model [49]. Multi-faceted models are par-

ticularly useful for optimizing parts of the system under

study. When optimizing a given feature, we run several

simulations using a model with a fine-grained level of

detail in the elements of the system that affect this feature

the most but a high-level model of the rest of the system.

Once optimized, the scenario is extensively validated using

the detailed model of the whole system with less effort

since the design space has already been explored and

exploited. This tool is publicly available in Mercury’s

GitHub repository [50].

3 Edge computing model

The proposed model is an extension of our previous work

[15]. Specifically, it includes cooling systems for EDCs and

DTs of EDCs’ components to implement more sophisti-

cated resource management policies. It also adds support

for decentralized dynamic resource management policies

depending on the current state of the scenario. Further-

more, it captures the behavior of cloud services to support

demand peaks in case the edge computing infrastructure

runs out of resources. This model, depicted in Fig. 1, has

been implemented in the Mercury M&S&O framework

[14].

Most of the elements of the model are located in a 5G

radio access network (RAN) of an ISP. IoT devices cor-

respond to 5G user equipment (UE, e.g., smartphones or

connected vehicles). These devices run one or more ser-

vices that monitor the users and their environment. We

refer to the set of all the UE in the scenario as UE. UE

nodes offload the computation of the data to nearby EDCs

comprising specialized hardware resources for providing

computing to the users. Alternatively, access points (APs)

establish radio communication links between UE devices

and the rest of the scenario. All the APs of the model

comprise the set AP. At time t, a given UE 2 UE is con-

nected to the AP with the best signal quality in the location

of the UE, apUEðtÞ 2 AP. This AP allows the UE to use less

energy for transmitting data to the network. Therefore,

handovers from one AP to another may occur as UE nodes

move across the scenario. APs re-direct service-related

messages from UE to the EDCs via the crosshaul network.

This network comprises optical fiber communication links

that interconnect EDCs, APs, and the core network of the

ISP for providing Internet connectivity to all the elements

connected to the RAN.

Computation offloading follows a Function-as-a-Service

(FaaS) fashion in this model. When UE nodes request to

open a new service session, EDCs inspect their available

resources and reserve those required by the service for

granting computation offloading while the session is active.

Once UE nodes close the session, held resources are freed

and available for new eventual UE service session requests.

All the EDCs in a RAN work in a federated manner and

share their current state. Usually, UE requests are pro-

cessed by the closest EDC in the scenario. However, if one

of the EDCs runs out of resources due to an abnormal

demand peak, it will forward incoming requests to the

second-best EDC of the federation. Furthermore, EDCs can

forward requests to the public cloud in the event of con-

gestion in all the EDCs. While clients whose requests are

sent to the cloud experience higher delays than usual, they

will not have to wait until one or more EDCs become

available.

3.1 Edge data centers

This section presents the proposed model for describing the

behavior of EDCs. Figure 2 represents a schematic of the

proposed model.First, the EDC interface hides the com-

plexity of the EDC and shares with the rest of the scenario

an alternative version of the EDC’s current state with less

detail. It also receives new computation offloading requests

and decides which EDC of the federation is in charge of

processing it. If all the EDCs are busy, it forwards the

request to the cloud. Alternatively, processing units (PUs)

are the IT resources of the EDC, and the cooler dissipates

the heat produced by the PUs to avoid any potential

damage. The resource manager is in charge of matching

new session requests to one of the PUs in the EDC. The

resource manager incorporates a DT of the IT and cooling

resources to make more accurate predictions of the EDC’s

next state and optimize its performance. The demand

estimator monitors incoming requests and profiles the

current service demand. It may incorporate additional

information to estimate the future need for EDC computing

resources. Finally, the policy manager considers the current

state of the EDC, the current demand, and the future

demand estimation to change dynamically the policies used

by the resource manager to dispatch new sessions to PUs.

Next, we describe the behavior of each of the subcompo-

nents comprising an EDC.
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3.1.1 Processing units

PUs are the IT resources of the EDC. A PU can start a new

IoT service session, process requests of active sessions, or

close already active sessions. When an IoT service SRV

requests to open a new session, PUs reserve a fraction of

their computing resources, USRV
PU , for this session. Thus,

IoT services with active sessions are guaranteed to have the

needed resources as long as their session is still active.

When a session is closed, these resources become available

again for any eventual new session. PUs can only open new

sessions if they have enough free resources, as the

utilization factor of a PU at time t, uPUðtÞ, cannot be greater
than 1:

uPUðtÞ ¼
X

SRV2srvPUðtÞ
USRV

PU � 1; ð2Þ

where srvPUðtÞ is the set of active sessions on the PU at

time t.

The power consumption (in W) of a PU at time t, pPUðtÞ,
depends on its current utilization factor, architecture, and

hardware specifications. When a PU is not hosting any

service session [i.e., srvPUðtÞ ¼ ;], it can be turned off to

save energy. As soon as a service requests to start a new

session, the PU switches on and creates the requested

session. However, switching on and off a PU introduces

additional delays (Ton
PU and Toff

PU , respectively). These delays

may impact negatively on the latency. To avoid poor QoS,

a PU can remain on hot standby. Hot standby PUs persist

idle even when they do not host any session. While their

power consumption is higher, these PUs are ready to open

new sessions, reducing the response time significantly. The

model implemented in Mercury allows you to define cus-

tom power consumption functions for each PU. This fea-

ture enables the heterogeneous IT equipment in each EDC.

The IT power consumption of an EDC at time t, pITEDCðtÞ,
corresponds to the sum of the power consumption of all its

PUs:

pITEDCðtÞ ¼
X

PU2PUEDC

pPUðtÞ; ð3Þ

where PUEDC is the set of all the PUs within an EDC.

Fig. 1 Proposed edge/cloud

model

Fig. 2 Edge data center model
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3.1.2 Cooler

The cooler dissipates the heat produced by the PUs to avoid

any potential damage. The cooling power at time t, pcoolEDCðtÞ,
depends on pITEDCðtÞ and the cooling technology used. Even

though Mercury supports different cooling technologies,

we model pcoolEDCðtÞ as a pump-driven two-phase immersion

cooler in this research. Figure 3 shows a schematic of the

proposed cooling system.

The pump that drives the secondary working fluid is the

only element of this cooling system that requires electric

power to function. The pump power consumption depends

on the flow rate of the secondary working fluid. Equa-

tion (4) shows how to obtain the flow rate:

UEDCðtÞ ¼
1

277:78
� pITEDCðtÞ
q � Cp � DT

m3 h�1
� �

; ð4Þ

where q is the density of the secondary working liquid (in

g cm�3), Cp is its specific heat capacity (in J g�1 K�1), and

DT corresponds to the difference between the outlet and

inlet temperature of the fluid (in K). We divide by 277.78

to transform the flow rate units from cm3 s�1 to m3 h�1.

The relation between pcoolEDCðtÞ and UEDCðtÞ depends on the

characteristics of the pump used.

3.1.3 EDC Digital Twin

Every EDC has a DT of its IT and cooling infrastructure.

Resource management tasks can use this DT to explore the

search space and evaluate the effect on the EDC state for

optimizing its performance. For example, we could fore-

cast the impact of starting a new service session in a given

PU on its power consumption. First, the PU’s DT would

predict the resulting PU’s utilization factor:

u0PUðSRV; tÞ ¼ uPUðtÞ þ USRV
PU : ð5Þ

Then, the DT of the PU would also evaluate the resulting

power consumption if the PU started this new service

session:

p0PUðSRV; tÞ ¼ pPUðtÞjuPUðtÞ¼u0
PU
ðSRV;tÞ: ð6Þ

3.1.4 Resource manager

The main functionality of this module is matching new

session requests to one of the PUs in the EDC. When a new

service SRV requests to open a session in the EDC, the

resource manager forwards this request to the PU selected

by the EDC dispatching function, dispEDCðSRV; tÞ. Mer-

cury allows defining multiple dispatching functions

depending on the use case (e.g., minimizing the response

time or dividing the PUs resource utilization evenly). In

this research, we use the current state of the EDC and its

DT for mapping new sessions to the PU that would expe-

rience the minimum IT power consumption increase:

dispEDCðSRV; tÞ ¼ arg min
PU2PUEDC

p0PUðSRV; tÞ � pPUðtÞ

s.t. u0PUðSRV; tÞ� 1;

ð7Þ

where pPUðtÞ is the power of the PU, and p0PUðSRV; tÞ and
u0PUðSRV; tÞ are the power consumption and utilization

factor predicted by the DT. Additionally, the resource

manager determines which PUs shall remain on hot

standby depending on the hot standby function,

stdbyEDCðtÞ � PUEDC. Note that the policy manager can

change dispEDCðSRV; tÞ and stdbyEDCðtÞ depending on the

state of the scenario.

3.1.5 Demand estimator

The demand estimator module continuously monitors the

incoming service requests to profile the current service

demand, profEDC;SRVðtÞ. It also implements a demand

estimation model for every service, estimEDC;SRVðtÞ, to

forecast the future need for the resources of the EDC. The

demand profiling and estimation are forwarded to the EDC

policy manager for further evaluation.

3.1.6 Policy manager

The edge computing infrastructure can adapt its resource

management policies depending on the current status of the

scenario. Service demand on edge computing varies sig-

nificantly over time in response to the user activity in the

region. For instance, service demand may be lower at 3:00

AM, whereas a demand peak may be reported at 7:00 AM.

PUPUPU

pEDC(t) pEDC(t) = f(ɸEDC(t))

dry cooler

pump

condenser

coolant fluid

(liquid)

coolant fluid

(vapor)
Tout

Tin

ɸEDC(t)

IT cool

Fig. 3 Schematic of pump-driven two phase cooling system
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EDCs resource management policies must change over

time to provide an efficient solution to these variations. The

policy manager keeps track of the current state of the EDC

and the future demand estimation. From this information,

the policy manager can apply reactive, proactive, or hybrid

techniques to automatically change the dispatching and hot

standby policies and adjust them according to the scenario

state.

3.1.7 EDC interface

The EDC interface hides the complexity of the EDC and

shares with the rest of the EDCs an alternative version of

the EDC’s current state with less detail. It represents all the

active service sessions on an EDC at time t, srvEDCðtÞ, as
the union of all the active service sessions of all the EDC’s

PUs:

srvEDCðtÞ ¼
[

PU2PUEDC

srvPUðtÞ: ð8Þ

The overall resource utilization of the EDC corresponds to

the mean resource utilization of its PUs:

uEDCðtÞ ¼
P

PU2PUEDC
uPUðtÞ

jPUEDCj
� 1: ð9Þ

It also computes the hot standby utilization of the EDC,

ustdbyEDC ðtÞ. The hot standby utilization estimates how many

resources are currently available for computation offload-

ing services:

u
stdby
EDC ðtÞ ¼

P
PU2stdbyEDCðtÞ uPUðtÞ
jstdbyEDCðtÞj

� 1: ð10Þ

The EDC interface shares the IT and cooling power con-

sumption with the scenario. It also defines the EDC overall

power demand, pdemand
EDC ðtÞ, as the sum of the IT and cooling

power. Finally, the EDC interface computes the PUE of the

EDC, pueEDCðtÞ:

pueEDCðtÞ ¼
pdemand
EDC ðtÞ
pITEDCðtÞ

¼ 1þ pcoolEDCðtÞ
pITEDCðtÞ

: ð11Þ

When a UE requests to open a new session, the AP that

provides connectivity to the UE forwards the request to the

nearest EDC. The interface of this EDC is in charge of

determining which EDC should create this session. First,

the EDC interface specifies the candidate EDCs of the

RAN with enough resources to host the new session:

edccandidateðtÞ ¼ EDC 2 EDCjustdbyEDC ðtÞ\1
n o

: ð12Þ

Note that we only consider the hot standby utilization of

the EDCs. In this way, even if an EDC has numerous

computing resources, but none of them is on hot standby,

its perceived utilization would be 1. Therefore, this EDC

would not be considered a valid candidate. If there are no

candidate EDCs [i.e., edccandidateðtÞ ¼ ;], it forwards the

request to the public cloud. Otherwise, it dispatches the

new session request to one of the candidate EDCs. The

selected EDC depends on the EDC mapping policy,

edcEDCðtÞ. The proposed model allows multiple EDC

mapping policies depending on the use case. In this

research, we favor the nearest candidate EDC:

edcEDCðtÞ ¼ arg min
edc2edccandidateðtÞ

dðedc;EDCÞ: ð13Þ

This EDC mapping policy enhances computation, reduces

the overall latency, and avoids communication bottlenecks

and general system failures. If the selected EDC corre-

sponds to the one computing the mapping, the open session

request is forwarded to the EDC’s resource manager.

Otherwise, the request is sent to the selected EDC. In the

proposed model, requests forwarded from other EDCs are

directly forwarded to the resource manager. In this way, we

avoid requests starvation (i.e., requests forwarded from one

EDC to another indefinitely). Figure 4 depicts a

flowchart of the EDC mapping process enforced by the

EDC interface.

3.2 Cloud

The presented edge computing infrastructure shows mul-

tiple advantages (e.g., low latency and less overall network

congestion). However, it also introduces new challenges.

For instance, computing resources are not unlimited, as

EDCs are dimensioned to satisfy the demand of a limited

area. Thus, an abnormal demand peak may lead to resource

shortages in the edge infrastructure. Furthermore, due to

unexpected features, the proposed solution must be

Fig. 4 Workflow diagram of the EDC mapping process
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resilient to potential EDC shutdowns. A collaboration

between the edge computing infrastructure and cloud

facilities can alleviate the negative effect of these

problems.

Our research focuses on resource management tech-

niques for edge computing facilities, and we had not con-

sidered the cloud infrastructure in previous works. Here we

introduce a simple cloud model that serves as a backup for

situations where the available edge computing resources

are scarce. This cloud model represents a simple collabo-

ration between EDCs and clouds. In future work, we will

explore alternative collaboration patterns to define more

complex applications that use both edge and cloud

resources.

We divide the proposed cloud model into the Internet

connection and the cloud facility. The Internet connection

is modeled as a delay buffer that retains messages before

forwarding them to their corresponding receiver. The

Internet delay for a message MSG is computed as follows:

delayðMSGÞ ¼ tprop þ
sizeðMSGÞ

vtrans
sð Þ; ð14Þ

where tprop is the propagation time from the RAN to the

public cloud (in s), sizeðMSGÞ is the size of the message

(in b), and vtrans is the mean transmission speed between the

cloud and the RAN (in b s�1).

Alternatively, the cloud facility has virtually unlimited

computing resources. In contrast with the EDCs, the cloud

can simultaneously process any number of service sessions.

Once a service session is opened, the cloud will take

Tproc
cloud;SRV seconds before sending a response to the client.

Table 3 resumes the most relevant edge computing

model-related parameters previously discussed.

4 Consumer-centric smart grid model

Figure 5 shows the proposed consumer-centric smart grid

model.This model comprises one energy provider PROVR

and a set of smart grid consumers CONSR. Each consumer

CONSR 2 CONSR may use energy from the energy pro-

vider to satisfy its energy needs. In this paper, there is one

smart grid consumer for every EDC of the edge computing

federation.

4.1 Energy provider

The energy provider supplies electricity to smart grid

consumers. Consumers pay the energy provider according

to the electricity they consume from the grid. At time t, the

energy provider offers electricity at priceðtÞ $/Wh. The

provider revises this price with an update cycle of TPROVR
seconds.

4.2 Smart grid consumers

Consumers include four submodules: power demand,

energy source(s), storage unit, and storage controller. The

power demand, pdemand
CONSR ðtÞ, represents the energy rate (in

W) required by a consumer at time t. We describe the rest

of the submodules below.

4.2.1 Energy sources

Energy sources provide electricity without buying it from

the energy provider [e.g., photovoltaic (PV) systems or

generator sets]. At time t, the energy sources of a consumer

provide pgenCONSRðtÞ W. The power generated by the con-

sumer reduces its overall electricity costs. The consumer

power surplus, psurplusCONSRðtÞ, is the difference between the

consumer’s power generation and the power demand:

psurplusCONSRðtÞ ¼ pgenCONSRðtÞ � pdemand
CONSRðtÞ Wð Þ: ð15Þ

Ideally, it would be 0 W always (i.e., consumers generate

the same power they demand). In this scenario, the elec-

tricity consumption from the energy provider would be

0 W. A negative power surplus would imply that the

consumer requires more power than it can generate. In this

case, the consumer would need to buy the remaining

energy from the provider. On the other hand, a positive

surplus indicates that power generation is greater than the

demand, and the energy surplus is returned to the grid. This

scenario is also undesirable since consumers usually sell

the energy surplus at a lower price than the energy provi-

ders, even to the point of not receiving any economic

benefit [51].

4.2.2 Storage unit

Consumers use energy storage units (e.g., batteries) to store

their energy surplus and use it later when consumers gen-

erate less power than their demand. Each consumer can

store up to CAPmax
CONSR Wh in its energy storage unit. The

capacity of the consumer’s storage unit at time t,

capCONSRðtÞ, must be between 0 and CAPmax
CONSR Wh:

0� capCONSRðtÞ�CAPmax
CONSR: ð16Þ

The consumer charging power, pchargeCONSRðtÞ, corresponds to

the electric power (in W) used to charge/discharge the

consumer’s energy storage unit. If p
charge
CONSRðtÞ is greater than

0, the energy storage unit is charging. On the other hand,

when the charging power is less than 0, the consumer
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subtracts energy from the storage unit. The capacity of the

storage unit at time t is obtained according to Eq. (17):

capCONSRðtÞ ¼ CAPinitCONSR þ 1

3600

Z t

0

p
charge
CONSRðsÞds Whð Þ;

ð17Þ

where CAPinitCONSR is the initial capacity (in Wh) of the

storage unit. Note that, when integrating the charging

power, the energy is expressed in J. We must divide the

integration by 3600 to obtain the energy expressed in Wh.

The charging power is limited to the maximum charge/

discharge power the storage unit allows, PMAX
charge
CONSR:

�PMAX
charge
CONSR � pchargeCONSRðtÞ� PMAX

charge
CONSR: ð18Þ

4.2.3 Storage controller

This module is responsible for setting p
charge
CONSRðtÞ depending

on the current power surplus of the consumer and the

electricity price. By default, it sets pchargeCONSRðtÞ to 0 W (i.e.,

electricity is not stored nor subtracted from the storage

unit). When the electricity price is low enough, providing

that the storage unit is not entirely charged, the energy

controller will charge its storage unit at a rate of

PMAX
charge
CONSR W. PRICE

charge
CONSR refers to the maximum price

(in $/Wh) a consumer is willing to pay for charging its

energy storage unit using energy from the grid.

If the electricity price is higher than PRICE
charge
CONSR, the

storage controller explores different configurations

depending on the consumer’s power surplus. When

psurplusCONSRðtÞ[ 0 (i.e., the consumer is generating more

electric power than demanded), the storage controller sets

Table 3 Summary of the edge computing model

Parameter Description

apUEðtÞ AP to which the UE is connected at time t

edcEDCðtÞ EDC mapping policy applied by the EDC to determine which EDC should host computation offloading sessions of UE at time

t

Ton
PU Time required to switch on a PU before it can perform any other operation

Toff
PU

Time required to switch off a PU before it can perform any other operation

USRV
PU

Resource utilization required by service SRV to open a session on a PU while meeting a given QoS

Tproc
PU;SRV Time required to process new requests of an active service session SRV on a PU before it can perform any other operation

srvEDCðtÞ Set of active service sessions on an EDC at time t

profEDC;SRVðtÞ Current demand profile of an EDC for service SRV at time t

estimEDC;SRVðtÞ Demand estimation of an EDC for service SRV at time t

uEDCðtÞ Mean resource utilization factor of an EDC at time t

u
stdby
EDC ðtÞ Mean resource utilization factor of an EDC at time t considering only PUs on hot standby

pITEDCðtÞ IT power consumption of an EDC at time t

pcoolEDCðtÞ Cooling power consumption of an EDC at time t

pdemand
EDC ðtÞ Overall power demand of an EDC at time t

pueEDCðtÞ PUE of an EDC at time t

dispEDCðSRV; tÞ Session dispatching policy of an EDC at time t

stdbyEDCðtÞ Hot standby PUs policy of an EDC at time t

tprop Propagation time (in s) between the cloud and the RAN

vtrans Mean transmission speed (in b s�1) between the cloud and the RAN

Tproc
cloud;SRV

Time required to process new requests of an active service session SRV on the cloud facilities

Energy

Sources

Storage

Controller

Power

Demand

Energy

Provider 

Smart Grid Consumer (CONSR)

price(t)

pCONSR
(t)

pCONSR(t)pCONSR(t)

cons

demand

Storage

Unit

pCONSR(t)
charge

–

gen

pCONSR(t)
surplus

capCONSR(t)

Fig. 5 Consumer-centric smart grid model
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p
charge
CONSRðtÞ to the minimum between the surplus and the

storage unit’s maximum charging power until the capacity

reaches its maximum value. On the other hand, when

psurplusCONSRðtÞ\0, the storage controller will only subtract

energy from the storage unit if the electricity price is higher

than PRICE
discharge
CONSR $/Wh. The reason for this condition is

that storing energy is a costly process. Thus, the storage

controller must ensure that consuming the stored energy

will provide a high enough decrease in the energy cost.

Figure 6 shows a workflow diagram of the storage con-

troller decision-making algorithm.

The power consumption of a consumer, pconsCONSRðtÞ,
represents the electric power (in W) that the smart grid

consumer gets from the grid. It is obtained from the

charging power, demand, and power generation:

pconsCONSRðtÞ ¼ pchargeCONSRðtÞ þ pdemand
CONSRðtÞ � pgenCONSRðtÞ

¼ pchargeCONSRðtÞ � psurplusCONSRðtÞ:
ð19Þ

For each consumer, the electricity cost at time t,

costCONSRðtÞ, is computed by summing the electricity price

multiplied by the energy consumption during every pricing

cycle, as shown in Eq. (20). Note that, in this model, smart

grid consumers do not benefit from returning energy to the

grid. Thus, we do not consider those periods in which

power consumption is less than 0 W.

costCONSRðtÞ ¼
X

t
TPROVR

j k

k¼0

 
priceðkTPROVRÞ �

1

3600

�
Z minðt;ðkþ1Þ�TPROVRÞ

kTPROVR

max 0; pconsCONSRðsÞ
� �

ds

!
$ð Þ:

ð20Þ

Table 4 describes of the most relevant parameters of the

smart grid model.

4.3 Smart grid-aware edge computing model

The edge computing model presented in Sect. 3 can be

combined with the smart grid model proposed in this sec-

tion to reduce the operational expenses of edge computing

facilities. Figure 7 shows a schematic of the proposed

hybrid model.

EDCs of the edge computing federation are also smart

grid consumers. The power demand of an EDC corre-

sponds to the power demand of its matching smart grid

consumer. Additionally, the EDC interface adds smart

grid-related fields to the EDC’s current status. Finally,

EDCs’ interface and policy manager are also aware of the

current electricity price offered by the energy provider. By

doing so, they can incorporate these new fields into the

search space and optimize the EDC configuration consid-

ering both edge computing and smart grid-related

parameters.

5 Use case

We first propose an edge computing scenario to show how

edge computing can improve the QoS while reducing the

network traffic to the Internet. After selecting a convenient

configuration, we include smart grid elements and compare

their simulation outcome to illustrate the benefits of con-

necting edge computing infrastructures to the smart grid.

We executed the simulations sequentially on a MacBook

Pro Retina, 15-in., Mid 2015 with a 2.5 GHz Intel Core i7

processor, 16 GB 1600 MHz DDR3 memory, and macOS

12.5.

price(t) < PRICECONSR? capCONSR(t) < CAPCONSR ?

pCONSR(t) > 0 ?
price(t) > PRICECONSR

and capCONSR(t) > 0 ?
capCONSR(t) < CAPCONSR ?

Yes

Yes

No

No

pCONSR(t) = max(–PMAXCONSR  , pCONSR(t)) pCONSR(t) = min(PMAXCONSR, pCONSR(t))

pCONSR(t) = PMAXCONSR

Yes

charge

surplus

pCONSR(t) = 0
charge

Yes

charge

surpluscharge surpluschargecharge charge

Yes

charge max

discharge

Fig. 6 Workflow diagram for computing the charging power of the storage unit
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5.1 Scenario description

The scenario is an ADAS application. Vehicles periodi-

cally capture images of their driver’s face to detect

potentially dangerous situations (e.g., distractions or eye

fatigue) using an onboard predictive model. Cars use the

edge computing federation to train their predictive models

remotely. Each vehicle requests to open a new session

every 20 min. As soon as this session starts, the automobile

sends a batch containing new driver images with additional

information gathered by the vehicle (e.g., GPS position,

brake press, or steering angle). The session remains open

for 15 min. During this time, the element hosting the ses-

sion (i.e., an EDC or the cloud) trains the model with new

data gathered by the vehicle and other nearby vehicles.

When the automobile closes the session, the computing

element sends the re-trained model to the corresponding

vehicle if this new model differs significantly from the one

in the car. Computation offloading service demand corre-

sponds to real mobility traces of taxis in San Francisco,

USA [52]. The data set contains GPS coordinates of 535

taxis collected over May and June 2008 in the San Fran-

cisco Bay Area. Figure 8 shows the number of taxis in the

scenario from May 17th to June 6th, both included. All the

simulations in this research use the mobility traces of June

6th, 2008. Figure 8 depicts this day in orange.

The PUs comprising the EDCs’ computation resources

are AMD Sapphire Pulse Radeon RX 580 graphics pro-

cessing units (GPUs). Table 5 contains all the configura-

tion parameters of the PU model used in the simulations.

This configuration is based on the work of Pérez et al. [53].

We set the propagation time between the cloud and the

RAN, tprop, to 80 ms. Alternatively, the mean transmission

speed between the cloud and the RAN is 600 Mb s�1. We

assume that cloud data centers use the same hardware to

process service requests. Therefore, Tproc
cloud;SRV is 0.1 s. As

Table 4 Summary of the smart grid model

Parameter Description

priceðtÞ Price (in $/Wh) offered by energy provider at time t

PRICE
charge
CONSR

Maximum price (in $/Wh) that consumer CONSR is willing to pay for charging its energy storage unit

PRICE
discharge
CONSR

Minimum price (in $/Wh) for consumer CONSR to consider discharging its energy storage unit

p
gen
CONSRðtÞ Electric power (in W) generated by the energy sources of the smart grid consumer CONSR at time t

pchargeCONSRðtÞ Electric power (in W) used for charging the storage unit of smart grid consumer CONSR at time t. Negative values imply that the

unit is being discharged

PMAX
charge
CONSR

Maximum charge/discharge power (in W) of the energy storage unit of smart grid consumer CONSR

pconsCONSRðtÞ Electric power (in W) consumed from the grid by smart grid consumer CONSR at time t. Negative values indicate that CONSR
returns energy to the grid

costCONSRðtÞ Cost (in $) of the energy consumed from the grid by smart grid consumer CONSR

capCONSRðtÞ Energy capacity (in Wh) of the energy storage unit of smart grid consumer CONSR at time t

CAPmax
CONSR Maximum energy capacity (in Wh) of the energy storage unit of smart grid consumer CONSR

CAPinitCONSR
Initial energy capacity (in Wh) of the energy storage unit of smart grid consumer CONSR

Fig. 7 Smart grid-aware edge computing model

Fig. 8 Traffic flow in the scenario from May 17th to June 6th
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shown in Fig. 8, the demand peak in the scenario is slightly

greater than 200 vehicles. Every PU can host up to 100
USRV

PU

¼ 5

simultaneous sessions. Thus, the edge federation must

contain at least 200
5
¼ 40 PUs. We decided to add redundant

PUs to avoid system congestion in case an unusual demand

peak occurs. The edge federation comprises three EDCs,

each containing 20 PUs. In this way, the sessions are

divided into three different geographic areas. Each EDC

can host up to 100 sessions.

The pump-driven two-phase immersion cooling system

of the EDCs uses the 3M Novec 7100 fluid as refrigerant

and water as condenser secondary working fluid

(q � 1 gml�1, Cp ¼ 4:1813 J g�1 K�1). The difference

between the outlet and inlet temperature of the water is

20 K. Each PU can consume up to 100 W, approximately.

Therefore, the maximum IT power of each EDC is

100 � 20 ¼ 2 kW. Thus, according to Eq. (4), the pump

used for driving the condenser fluid must be able to provide

0:086m3 h�1 (i.e., 1.434 l min�1). We selected a 0142YA-

12-15 micro diaphragm pump, which provides a flow of

1.5 l min�1 consuming pcoolEDCðtÞ ¼ 15W. On the other

hand, we assume that the mean PUE of the cloud is 1.5.

We used the allocation manager tool included with the

Mercury M&S&O framework to determine the location of

APs and EDCs [14]. This tool divides the scene into a grid

of 40 m by 40 m cells. Next, it analyzes the user mobility

traces to determine the maximum number of users inside

every spatial cell during a time window of 1 min. Figure 9

shows the spatial density of users in the scenario computed

by the allocation manager.After calculating the scenario

density, the allocation manager applies the Same-Size

K-Means algorithm to place APs and EDCs in suitable lo-

cations for distributing the service demand evenly. Fig-

ure 10 shows the scenario setup used in the experiments.

Small dots correspond to user location traces used by the

allocation manager. The 19 stars scattered in the scenario

represent the location of APs. Additionally, three EDCs

(represented as big squares) provide computation offload-

ing to all the users. The color of every element corresponds

to the preferred EDC.

5.2 Scenarios without smart grid integration

First, we simulate several edge computing scenarios that do

not integrate any aspect of the presented smart grid model.

In particular, we simulated edge scenarios with different

hot standby policies.

5.2.1 Static hot standby policies

The first two policies are static (i.e., they do not vary

throughout the simulation):

– None PUs do not work in hot standby mode and switch

on only if they host one or more sessions.

– All all the PUs are on hot standby and are switched on

even if they are idling.

Table 5 Configuration parameters of processing units

Parameter Value

USRV
PU

20% of PU’s computing resources

Ton
PU 60 s

Toff
PU

10 s

T
proc
PU;SRV 0.1 s

pPUðtÞ Custom power consumption model

Fig. 9 Spatial density of users in the scenario

Fig. 10 Scenario setup
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These static policies serve as yardsticks for assessing the

efficacy of the remaining hot standby approaches. For

instance, in the None policy, the hot standby utilization of

the EDCs is always 1. Therefore, the edge computing

federation forwards all the requests to the cloud. On the

other hand, with the All policy, the EDCs accept all

incoming requests. Consequently, this policy presents the

lowest delay perceived by the users.

The edge computing federation does not process

requests with the None policy. Accordingly, the overall

energy consumption of the EDCs is 0 Wh. Thus, the cloud

is responsible for processing all the requests. On average,

clients experienced delays of 160.000 ms for opening

sessions, 273.334 ms for sending information before

starting the online training, and 160.267 ms when closing

the session and receiving the newly trained model. Fig-

ure 11 shows the demand for cloud resources in this

scenario.

The cloud would need at least 41 PUs to support a peak

demand of 203 clients. Figure 12 shows a power con-

sumption estimation of the cloud facilities to support the

scenario demand. The mean power consumption of the IT

infrastructure is 4.20 kW, with peaks reaching 4.52 kW.

Considering a PUE of 1.5, the total power consumption

associated with the service is, on average, 6.30 kW, with

peaks approximating 6.79 kW. In this scenario, the total

energy consumption of the cloud is 150.93 kWh.

In contrast, the cloud is unnecessary with the All policy,

as the EDCs can process all the requests. Figure 13 shows

the demand for edge computing resources under this pol-

icy.The EDC edc_2 is the most crowded one, as it is closer

to the rest of the City of San Francisco. On the other hand,

while the preferred region of the EDC edc_1 is the largest,

it is located in a less crowded zone, and its average demand

is the lowest. The delay experienced by clients for opening

and closing sessions is negligible. On the other hand, the

delay in sending information before starting the online

training is very close to the processing time of the PUs (i.e.,

100 ms).

Figure 14 shows the power consumption of the edge

computing federation.With the All policy, the PUs of the

EDCs are always on. The mean power consumption is

5.78 kW (i.e., 1.58 kW more than the power consumed by

the cloud when using the None policy). However, the

characteristics of the edge infrastructure lead to signifi-

cantly lower PUEs. Figure 15 shows the PUE of the EDCs

in the scenario. Note that the PUE is inversely proportional

to the power consumption, as the cooling power remains

constant regardless of the demand.

Overall, the total energy consumption of the edge fed-

eration is 139.00 kWh, which is 11.93 kWh less than the

cloud with the None policy (i.e., 7.9% less). Thus, edge

computing with no cloud cooperation allows us to provide

a better QoS while reducing energy consumption of the

infrastructure.

5.2.2 Proactive hot standby policies

Next, we explore how proactive hot standby policies can

improve the overall performance of the edge computing

infrastructure while working with cloud. These proactive

strategies rely on service demand predictions to modify the

hot standby resources on each EDC. In this work, the

service demand estimation corresponds to the daily average

traffic flow in the scenario according to the 20 previous

days before June 6th. However, modelers can implement

their demand estimation model with the Mercury M&S&O

framework. Figure 16 depicts the daily average traffic flow

in the San Francisco Bay Area according to the mobility

traces from May 17th to June 5th.The hot standby policy

will dynamically change to ensure that each EDC main-

tains as many PUs as necessary in hot standby to accept the

Fig. 11 Demand for cloud

resources with None policy
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expected service requests without switching on any addi-

tional PU. At time t, the number of PUs on hot standby of a

given EDC is computed as follows:

nstdbyEDC;SRVðtÞ ¼ estimEDC;SRVðtÞ � ð1þ aÞ � USRV
PU

� �
; ð21Þ

where a is a correction factor that assumes that the demand

will be a fixed percentage higher than the prediction. While

this estimation increment leads to higher power

consumption, it is more robust against anomalous demand

peaks, achieving a better QoS. We explored six proactive

policies with different values for the correction factor.

Namely, a is set to 0.0, 0.1, 0.2, 0.3, 0.4, and 0.5. Table 6

summarizes the results of the static and proactive hot

standby policies.

The mean service delay perceived by clients decreases

as we increase the value of a. Compared to the All policy,

the proactive policy with a ¼ 0:0 exhibits a degradation of

Fig. 12 Cloud power

consumption estimation with

None policy

Fig. 13 Demand for edge

computing resources with All
policy

Fig. 14 Power consumption of edge computing resources with All
policy

Fig. 15 PUE of EDCs with All policy
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9 ms. This degradation diminishes as a increases. For

a ¼ 0:5, the performance degradation is near to 200 ms. In

contrast, the total energy consumption of the scenarios does

not follow a trend proportional to a. Figure 17 divides the

infrastructure energy consumption into the EDCs and the

cloud.

The energy consumption of all the EDCs increases with

a. For instance, edc_0 needs 19.81 kWh for a ¼ 0:0, while

it consumes 27.68 kWh for a ¼ 0:5 (i.e., 39.73% more).

However, as the edge infrastructure has more available

resources, we can reduce the number of backup cloud

resources. For example, for a ¼ 0:0, the peak demand in

the cloud is 73 clients. Thus, the cloud needs 15 PUs to

fulfill the demand instead of the 41 PUs required with the

None policy. In contrast, the peak cloud demand when a ¼
0:5 is 9 clients, and we only need 2 PUs. Thus, even if the

edge federation consumes more energy, it is more efficient

than the cloud, and the overall energy decreases.

Choosing a convenient hot standby policy depends on

the requirements of the service. If the application needs

low response times, we should select a policy that puts the

service delay before power consumption (e.g., All). We can

use the Mercury M&S&O tool to explore different sce-

narios and find the configuration that better suits our

requirements. For this use case, we selected the proactive

hot standby policy with a ¼ 0:3 (the one outlined in bold in

Table 6) as the reference proactive hot standby policy

because this scenario shows the lowest energy consumption

and its average QoS degradation is below 1 ms. Table 7

shows more simulation results of this scenario.

The EDC edc_2 is the most loaded EDC, with a mean

utilization of 58.08%. On the other hand, the average uti-

lization of EDCs edc_0 and edc_1 is 43.36% and 31.24%,

respectively. Figure 18 shows the resource utilization of

EDCs throughout the simulation.As depicted in Fig. 16, the

hourly demand estimation from the previous 20 days

Fig. 16 Hourly average traffic

flow obtained from the previous

20 days

Table 6 Simulation results for

static proactive hot standby

policies

Scenario Energy (kWh) Mean service delay (ms) Mean session start delay (ms)

None 150.930 273.334 160.000

All 138.998 100.000 0.000

Proactive (a ¼ 0:0) 106.187 109.044 8.349

Proactive (a ¼ 0:1) 98.172 103.433 3.169

Proactive (a ¼ 0:2) 85.280 101.806 1.667

Proactive (a ¼ 0:3) 83.816 100.768 0.709

Proactive (a ¼ 0:4) 84.816 100.403 0.376

Proactive (a ¼ 0:5) 86.000 100.210 0.197

Fig. 17 Energy consumption of proactive hot standby policies
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presents similar results. While the resource utilization of

the EDCs resembles the scenario demand, the EDCs aim to

maximize their hot standby utilization to reduce their

energy consumption. Figure 19 shows the hot standby

utilization of the EDCs. For every EDC, the mean hot

standby utilization is between 80.46 and 90.12%.

Figure 20 shows the power demand of the EDCs of the

edge federation and the backup resources in the cloud.The

shape of the power demand curves of the EDCs is similar

to their utilization. However, the priors are more staggered.

This is because the static power of PUs (i.e., the power

consumption of PUs when there is no activity) is signifi-

cantly higher than their dynamic power (i.e., the power

consumption increment when a PU is busy compared to its

static power). As the number of PUs switched on changes

depending on the service demand estimation, the power

demand changes significantly every hour. In contrast, the

power consumption of the cloud backup resources is

stable at around 550 W, as all the PUs remain on hot

standby throughout the simulation. The EDC edc_2 pre-

sents the best mean PUE (1.01), while the EDC edc_1

obtains the worst average PUE (1.03).

5.2.3 Hybrid hot standby policies

Next, we explore the effect of using a hybrid hot standby

policy to improve the QoS of the infrastructure. These

hybrid strategies combine service demand predictions with

the current service demand of the scenario. At time t, the

number of PUs on hot standby of a given EDC is computed

as follows:

nstdbyEDC;SRVðtÞ ¼ maxðdemandEDC;SRVðtÞ; estimEDC;SRVðtÞÞ
�

�ð1þ aÞ � USRV
PU

�
:

ð22Þ

The hybrid policy reacts faster to demand peaks, achieving

a better QoS. However, the power consumption of the

EDCs tends to be greater than with the proactive policy.

We explored six hybrid policies with different values for

the correction factor. Namely, a is set to 0.0, 0.1, 0.2, 0.3,

0.4, and 0.5. Table 8 summarizes the results of the hybrid

hot standby policies.

The mean service delay perceived by clients is consid-

erably lower than the achieved by the proactive policy. The

hybrid policy with a ¼ 0:0 shows a degradation of 8 ms

and diminishes as a increases. Figure 21 divides the

infrastructure energy consumption into the EDCs and the

cloud.

Table 7 Simulation results for

proactive hot standby policy

(a ¼ 0:3)

edc_0 edc_1 edc_2 Cloud

Mean utilization (%) 43.36 31.24 58.08 9.41

Mean hot standby utilization (%) 80.46 90.12 81.89 9.41

Mean power consumption (W) 869.49 813.41 1528.39 550.344

Mean PUE 1.02 1.03 1.01 1.50

Energy consumption (kWh) 24.618 16.264 29.726 13.208

Fig. 18 EDC utilization with proactive hot standby policy (a ¼ 0:3)

Fig. 19 EDC hot standby utilization with proactive hot standby policy

(a ¼ 0:3)

Fig. 20 Power consumption with proactive hot standby policy

(a ¼ 0:3)
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Compared to proactive policies, the scenarios with

hybrid policies use fewer cloud resources. For example, for

a ¼ 0:0, the peak demand in the cloud is 26 clients, which

only demands 6 PUs (instead of the 15 PUs required with

the proactive policy with a ¼ 0:0). When a ¼ 0:5, the

cloud is no longer needed, as the edge computing federa-

tion can process all the demand. Thus, the QoS matches the

All policy using 29.63% less energy. Choosing between

proactive and hybrid hot standby policies depends on the

requirements of the service. In this paper, we selected the

hybrid hot standby policy with a ¼ 0:2 (the one outlined in

bold in Table 8) because this scenario shows the lowest

energy consumption. Furthermore, the average QoS

degradation is below 50 ms. Table 9 shows more simula-

tion results of this scenario.

The utilization of the EDCs is similar to the utilization

of the hybrid policy with a ¼ 0:3. However, the hot

standby utilization of the hybrid policy is slightly smaller

than in the proactive, as the EDCs tend to keep more PUs

in hot standby through the simulation. Figure 22 shows the

hot standby utilization of EDCs throughout the simulation.

Figure 23 shows the power consumption of the edge

federation and the cloud.Compared to the proactive policy,

the effect of the demand prediction is less obvious. For

instance, the power demand curves of the EDCs are not

staggered and resemble more to their utilization. Addi-

tionally, the power consumption of the backup cloud

resources is 49.09% less than with the proactive policy

with a ¼ 0:3. The cloud resources remain idle most of the

time and only receive requests at dawn. As the power

consumption of this scenario is slightly greater than with

the proactive policy, the PUE of this scenario is better.

Figure 24 shows the PUE of each EDC.

As the cooling system only requires 15 W per EDC,

their PUE is close to 1 most of the time. Note that the PUE

is inversely proportional to the service demand. Thus,

EDCs edc_0 and edc_2 present the best mean PUE (1.01),

while the EDC edc_1 obtains the worst average PUE

(1.02). At dawn, the resource utilization of all the EDCs is

lower than in the rest of the day, and their PUE is con-

siderably greater comparing the rest of the day.

Table 8 Simulation results for

hybrid hot standby policies
Scenario Energy (kWh) Mean service delay (ms) Mean session start delay (ls)

Hybrid (a ¼ 0:0) 91.629 100.058 97.58

Hybrid (a ¼ 0:1) 91.426 100.015 56.02

Hybrid (a ¼ 0:2) 90.407 100.008 21.62

Hybrid (a ¼ 0:3) 92.550 100.002 1.75

Hybrid (a ¼ 0:4) 97.296 100.000 0.29

Hybrid (a ¼ 0:5) 97.812 100.000 0.00

Fig. 21 Energy consumption of hybrid hot standby policies

Table 9 Simulation results for

hybrid hot standby policy

(a ¼ 0:2)

edc_0 edc_1 edc_2 Cloud

Mean utilization (%) 42.51 31.85 57.52 12.29

Mean hot standby utilization (%) 75.42 81.30 71.00 12.29

Mean power consumption (W) 1140.66 865.35 1480.78 280.154

Mean PUE 1.01 1.02 1.01 1.50

Energy consumption (kWh) 27.376 20.768 35.539 6.724

Fig. 22 EDC hot standby utilization with hybrid hot standby policy

(a ¼ 0:2)
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5.3 Integrating smart grid to the scenario

The next set of experiments integrates the smart grid model

described in Sect. 4 to reduce the impact of the energy

price fluctuations on the overall service cost. The elec-

tricity price in the simulations corresponds to the average

hourly day-ahead wholesale energy price in California in

2017 (see Fig. 25).It is important to note that the wholesale

price typically corresponds to 35% of the final retail price.

However, it is possible to compare the results of different

simulations.

With this pricing scheme and the hybrid policy with

a ¼ 0:2, the edge federation infrastructure would spend

2.44 $ to satisfy its energy demand for this day. Figure 26

represents the accumulated energy cost per EDC when

using the hybrid hot standby policy with a ¼ 0:2.The cost

curves present significant increments from 06:00 to 09:00

and from 18:00 to 23:00, coinciding with the energy price

peaks of Fig. 25. Smart grid consumers can alleviate the

overall cost by integrating energy generation sources and

storage systems.

Next, we present four scenarios that integrate the smart

grid model to reduce the energy consumption and cost of

the edge computing federation. The EDCs use the hybrid

(a ¼ 0:2) hot standby policy in all the scenarios. Addi-

tionally, EDCs incorporate two BISTAR

TP6L72M(H) 9BB crystalline silicon (c-Si) PV panels to

reduce their power consumption. Each PV system provides

a peak power of 910 W and presents 14% of system losses.

We obtained the data traces of the PV panels’ power

generation from the PVGIS-NSRDB database according to

the approximate location of the EDCs in Fig. 10. The time

precision provided by this database is 1 h. Due to the

discrete-event nature of the simulator, the simulated power

generation looks staggered, as shown in Fig. 27.

The EDCs have a low-voltage energy storage system.

Depending on the scenario, the storage unit of the EDCs

may correspond to a PylonTech US2000C battery

(CAPmax
CONSR ¼ 2:28 kWh, PMAX

charge
CONSR ¼ 1:20 kW) or a

US3000C battery (CAPmax
CONSR ¼ 3:37 kWh,

PMAX
charge
CONSR ¼ 1:78 kW). The maximum charge/discharge

power corresponds to the values recommended by the

Fig. 23 Power consumption with hybrid hot standby policy (a ¼ 0:2)

Fig. 24 PUE of EDCs with hybrid hot standby policy (a ¼ 0:2)

Fig. 25 Average hourly day-ahead energy price in scenario

Fig. 26 Accumulated energy cost per EDC with hybrid policy

(a ¼ 0:2Þ

Fig. 27 Power generation of PV panels of the EDCs in June 6th
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manufacturer. Even though the battery can charge/dis-

charge faster, the storage controller will limit it to extend

the battery life. The batteries of all the EDCs are fully

discharged at the beginning of the simulation. We also

explored two storage controller policies for the EDCs. The

first one, called Loose, sets PRICEcharge
CONSR to 20 $/MWh and

PRICE
discharge
CONSR to 35 $/MWh. The second policy, called

Strict, sets more demanding requirements for charging or

discharging the battery. Namely, it configures PRICE
charge
CONSR

to 19 $/MWh and PRICE
discharge
CONSR to 37 $/MWh. While we

limit the set of experiments to one hot standby policy, two

battery models, and two storage controller strategies,

Mercury allows us to explore other scenario parameters to

optimize the edge computing infrastructure’s overall per-

formance (e.g., EDC mapping strategy or power generation

modules). Table 10 shows the simulation results obtained

by the scenarios that integrate the smart grid model. The

first row corresponds to the base case scenario with no

smart grid integration. Note that the shown results do not

include the energy consumption of the backup cloud

resources, as these are not affected by the integration of

smart grid technologies on the edge infrastructure.

The EDCs’ energy demand and the mean service delay

of all the smart grid scenarios are the same as the base case.

However, the smart grid scenarios can reduce the overall

energy consumption by 20.3% due to the PV system

installed in the EDCs. As the PV system and resource

management policies are the same in all the smart grid

experiments, there is no significant difference in the overall

energy consumption. However, the energy cost is different

for each configuration.

Simulations with US2000C batteries show a 24.6/25.4%

reduction in service cost. On the other hand, simulations

with US3000C batteries achieved a 29.1/30.3% reduction.

This is because the maximum capacity of these batteries is

47.8% greater than the US2000C model, allowing the

EDCs to store more energy to reduce their energy con-

sumption for a longer time when the electricity price is

high. Alternatively, the Strict storage controller policy

reduces the overall service cost compared to the Loose

policy. We achieve this reduction by limiting battery usage

to higher electricity prices. Figures 28 and 29 show the

energy stored in the EDCs’ batteries for the scenarios with

the US3000C battery and the Loose and Strict power

storage policies, respectively. Green areas correspond to

periods when the electricity price is equal to or less than

PRICE
charge
CONSR. On the other hand, red areas represent peri-

ods when the electricity price is equal to or greater than

PRICE
discharge
CONSR .

The Loose policy starts to charge the battery at 2:00 AM

when the electricity price reaches 20 $/MWh. EDCs can

charge their batteries until 5:00 AM when the electricity

price is 23 $/MWh. However, their batteries are fully

charged one hour before, approximately. On the other

hand, the Strict policy allows EDCs to charge their bat-

teries at 3:00 AM when the electricity price is 19 $/MWh.

Even though the Strict policy starts charging the batteries

later, the charging time window is enough to charge the

batteries while saving energy costs.

From 7:00 AM to 8:00 AM (i.e., the first red area), the

electricity price is above PRICE
discharge
CONSR in both scenarios.

Thus, the storage controllers subtract energy from their

batteries to reduce the EDCs’ power consumption. With the

Loose policy, EDCs get electricity from the batteries until

9:00 AM. The capacity of the batteries decreases at dif-

ferent rates, depending on their corresponding power

demand. None of the batteries fully discharges. However,

their capacity is significantly less with the Loose policy, as

EDCs use them for a prolonged period. From 10:00 AM to

4:00 PM, the storage controllers can consume power to

charge the batteries. However, batteries reach their maxi-

mum capacity in less than an hour. Note that the scenario

with the Loose policy requires more energy to charge the

batteries, as they are initially less charged.

With the Loose policy, EDCs start discharging their

batteries at 6:00 PM to reduce their power consumption.

Batteries are fully discharged around 8:00 PM, coinciding

when the electricity price reaches its maximum value (59

$/MWh). In contrast, with the Strict policy, batteries pro-

vide energy from 7:00 PM to 9:00 PM, reducing the EDCs’

power consumption when electricity is more expensive.

Table 10 Simulation results for smart grid scenarios

Configuration Energy demand (kWh) Energy consumption (kWh) Energy return (Wh) Cost ($)

Base 83.684 83.684 0.000 2.44

US2000C (Loose) 83.684 66.672 16.11 1.84

US2000C (Strict) 83.684 66.672 16.11 1.82

US3000C (Loose) 83.684 66.672 16.11 1.73

US3000C (Strict) 83.684 66.672 16.11 1.70
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Again, choosing the best configuration depends on the

specific use case. For instance, even though the US3000C

batteries show better performance, we need to consider the

trade-off between a higher capital expense for buying

batteries with better performance and overall operational

costs. We may also consider heterogeneous scenarios in

which EDCs edc_0 and edc_1 have a US2000C battery

while EDC edc_2 contains a US3000C battery, as its

overall utilization is higher. Here we select the scenario

with US3000C batteries and the Strict storage controller

policy. Table 10 highlights this scenario in bold. Table 11

contains additional simulation results of the selected

scenario.

While the average utilization, PUE, and power demand

are similar to the base case scenario (see Table 9), power

consumption differs significantly. Figure 30 depicts the

power consumption curves of all the EDCs of the edge

computing federation. The behavior of the Strict storage

controller policy is also displayed in this figure. Addi-

tionally, blue areas highlight periods when EDCs return

energy to the grid.

The power consumption curves show several abrupt

changes throughout the simulation. These changes are

mainly caused by the Strict storage controller policy of the

scenario and coincide with changes in the EDCs’ battery

capacity. For example, from 3:00 AM to 5:00 AM, EDCs

consume 1.78 kW more to charge their batteries. Then, at

7:00 AM, EDCs are allowed to discharge their battery.

Thus, their power consumption drops to 0 W. Note that, at

7:30 AM, the power demand of EDC edc_2 is slightly

higher than 1.78 kW (i.e., the maximum discharge power

of the battery). Thus, its power consumption presents a

small peak of 200 kW. From 8:00 AM to 5:00 PM, the PV

systems of the EDCs generate a considerable amount of

power (see Fig. 27), resulting in a reduction in power

consumption. At 10:00 AM, the EDCs charge their bat-

teries again, leading to a power consumption peak. From

11:00 AM to 4:00 PM, all the batteries are fully charged.

However, the power demand of EDC edc_1 is sometimes

lower than the power generated by its PV system, leading

to short periods of energy returned to the grid. At the end of

the simulation, EDC edc_1 returned 16.11 Wh to the grid.

Overall, EDCs edc_0, edc_1, and edc_2 reduced their

energy consumption by 20.7%, 27.3%, and 16.0% com-

pared to the base case scenario, respectively.

Figure 31 compares the accumulated energy cost of the

EDCs in the selected scenario. The figure depicts the

behavior of the Strict storage controller policy as in the

previous figures.When entering the green areas, the slope

of the accumulated increments because the storage con-

trollers consume additional energy to charge their

Fig. 28 Energy stored by EDCs with US3000C battery and Loose
power storage policy

Fig. 29 Energy stored by EDCs with US3000C battery and Strict
power storage policy

Table 11 Simulation results in smart grid scenario

edc_0 edc_1 edc_2

Mean utilization (%) 42.51 31.85 57.52

Mean hot standby utilization (%) 75.42 81.30 71.00

Mean PUE 1.01 1.02 1.01

Mean power demand (W) 1140.69 865.42 1480.75

Mean power consumption (W) 888.86 587.82 1224.61

Energy return (Wh) 0.00 16.11 0.00

Energy consumption (kWh) 21.709 15.099 29.864

Cost ($) 0.51 0.41 0.78

Fig. 30 Power consumption per EDC in smart grid scenario
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corresponding storage unit. Once the storage units are

completely charged, the slope of the curves decreases

again. In contrast, when the curves enter a red area (i.e.,

storage controllers allow the use of energy stored in the

storage units), the accumulated cost curves stagnate while

batteries discharge. Once the storage units are discharged,

the slope of the curves increments again. From 8:00 AM to

7:00 PM, the cost curves standstill due to the electricity

generated by the PV systems. Overall, EDCs edc_0, edc_1,

and edc_2 reduced their energy costs by 32.3%, 36.4%, and

25.2%, respectively. These results show that, with the

proposed smart grid-aware architecture, EDCs can achieve

greater cost savings than the power consumption decrease.

5.4 Discussion

While edge computing aims to significantly improve the

QoS of applications that require computation offloading

services while reducing the carbon footprint of state-of-the-

art cloud facilities, there is still room for improvement. The

architecture proposed in this research integrates aspects of

smart grids to provide edge computing infrastructure with

new mechanisms to reduce both its energy consumption

and associated costs. EDCs include energy sources and

storage units to reduce their electricity consumption. Fur-

thermore, they behave as smart grid consumers and change

their power consumption patterns depending on the current

electricity price. We extended the Mercury M&S&O

framework to include this new proposed architecture. Now,

Mercury allows us to explore the effect of different

resource management techniques on the power consump-

tion of the solution. Additionally, we can use Mercury to

determine which electricity source and storage infrastruc-

tures our scenario may need. We presented several sce-

narios to illustrate our proposal and simulated them using

Mercury. The simulation results show that cooperation

between edge computing resources and smart grids can

significantly reduce the energy consumption of the next-

generation computing infrastructures.

Note that the integration of smart grid infrastructures

presented in this work is compatible with other studies with

different approaches regarding the architecture and usage

of edge computing infrastructures. These works can extend

the behavior of edge nodes to include smart grid-related

features and reduce their associated energy consumption

and costs. With this regard, the hierarchical and modular

approach of the DEVS formalism eased the integration of

the presented model in Mercury. In the context of the M&S

of complex systems, it is vital to follow a robust and

modular approach that helps us when extending its func-

tionality or reiterating its specification.

6 Conclusion

We proposed an M&S&O approach for studying federated

edge computing infrastructures connected to smart grids.

The model presented in this paper allows us to define

federated edge computing infrastructures that dynamically

adapt to the current system load to optimize their energy

consumption while meeting the required QoS. The EDCs

of the federation integrate DTs of their resources to enforce

high-level resource management policies. Furthermore, the

EDCs can dynamically change these policies depending on

their current state and the predicted service demand. If the

edge computing infrastructure runs gets congested, it can

redirect new requests to a cloud facility with backup

computation resources. Additionally, we integrate smart

grid-related parameters in the resource management poli-

cies of the EDCs to reduce the electricity consumption and

overall cost of the federation. By doing so, we enable more

sustainable edge computing infrastructures that rely on

smart grid advantages (e.g., electricity demand curve flat-

tening or self-generation) to reduce their carbon footprint

and increase their economic feasibility.

We implemented this model in Mercury, an M&S&O

framework based on the DEVS mathematical formalism.

With Mercury, it is possible to run multiple simulations of

scenarios with different configurations (e.g., IT resources,

energy storage units, or energy consumption policies) and

compare their performance to find an optimal system

design. To illustrate how Mercury works, we presented a

realistic use case scenario of an edge computing federation

that provides computation offloading services to taxis in

the San Francisco Bay Area. We showed how the proposed

approach helps edge computing federation operators to

increase their resilience to electricity price fluctuations,

reducing electricity consumption by 20.3% and operational

expenses by 30.3%.

In future work, we plan to include regional clouds in the

edge computing model with more complex interrelation-

ships. We also want to add temperature models for PUs to

Fig. 31 Accumulated energy cost per EDC in smart grid scenario
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integrate the temperature into the resource management

policies. Doing so can avoid hot spots within an EDC that

may damage the IT equipment. Regarding the smart grid

model, we want to expand the capabilities of the electricity

providers to enable more sophisticated pricing schemes.

We are currently working on adding a decision support

system to Mercury. This system will automatically opti-

mize multiple parameters of the scenario using different

metaheuristic search methods (e.g., simulated annealing or

Tabu search).
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José M. Moya is an Associate

Professor in the Technical

University of Madrid (UPM).

He received his Ph.D. Degree in

Telecommunication Engineer-

ing from UPM in 2003. His

research interests include

proactive and reactive thermal-

aware optimization of data

centers.

Cluster Computing

123

https://github.com/greenlsi/mercury_mso_framework
https://doi.org/10.1109/PVSC.2018.8547583
https://doi.org/10.1109/PVSC.2018.8547583
https://doi.org/10.1109/COMSNETS.2009.4808865
https://doi.org/10.1109/ISC246665.2019.9071685
https://doi.org/10.1109/ISC246665.2019.9071685

	Modeling and simulation of smart grid-aware edge computing federations
	Abstract
	Introduction
	Related work
	Edge computing infrastructures
	Smart grids
	Edge computing and smart grids

	Edge computing model
	Edge data centers
	Processing units
	Cooler
	EDC Digital Twin
	Resource manager
	Demand estimator
	Policy manager
	EDC interface

	Cloud

	Consumer-centric smart grid model
	Energy provider
	Smart grid consumers
	Energy sources
	Storage unit
	Storage controller

	Smart grid-aware edge computing model

	Use case
	Scenario description
	Scenarios without smart grid integration
	Static hot standby policies
	Proactive hot standby policies
	Hybrid hot standby policies

	Integrating smart grid to the scenario
	Discussion

	Conclusion
	Author Contributions
	Open Access
	References




