
For Peer Review

Efficient Parallel Simulation Method of Variable Structure

Systems under Multi-core Environments

Journal: Transactions on Modeling and Computer Simulation

Manuscript ID: TOMACS-2014-0007

Manuscript Type: Special Issue on Principles on Advanced Discrete Simulation

Date Submitted by the Author: 13-Jan-2014

Complete List of Authors: Yang, Chen; Beihang University, School of Automation Science and
Electrical Engineering
Li, Hu; Beihang University, School of Automation Science and Electrical
Engineering
Chai, Xudong; Beijing Simulation Center,
Chi, Peng; Beijing Simulation Center,

Lin, Tingyu; Beihang University, School of Automation Science and
Electrical Engineering

Keywords:
Simulation Theory: Systems Theory, Simulation Support Systems, Types of
Simulation: Discrete Event, Types of Simulation: Parallel

Transactions on Modeling and Computer Simulation

For Peer Review

ACM Transactions on xxxxxxxx, Vol. xx, No. x, Article xx, Publication date: Month YYYY

Efficient Parallel Simulation Method of Variable Structure

Systems under Multi-core Environments

CHEN YANG and BO HU LI, Beihang University

XUDONG CHAI and PENG CHI, Beijing Simulation Center

TINGYU LIN, Beihang University

Adaptable structure systems motivate the fast development of variable structure formalisms based on

DEVS, but simulating large-scale variable structure models challenges current execution methods both in

size and complexity. The emergence of multi-core chips presents an exciting opportunity, so an advanced

parallel simulator under multi-core environments, particularly with efficient load balancing strategies, is

proposed in order to improve the performance and capacity of large-scale variable structure simulation.

The simulator: (1) uses formalized models with alterable ports, unified connection management, object

management, thread simulation kernels and reader-writer locks to support dynamic model structure in a

distributed or centralized way; (2) based on model connections, can explore the inherent parallelism and

dynamic parallelism (brought by structure changes) among models, and employ the multi-thread paradigm

and shared-variable communication inside an operating system process to gain good speedup; (3) to

address evident load imbalance problems caused by structure changes, adopts an efficient dynamic load

balancing method, which can migrate models among cores with very low cost and change cores allocated to

the simulation dynamically on demand. The results of an application on simulating one airport control

system show that the structure change can be supported while up to 23% performance increase can be

gained.

Categories and Subject Descriptors: I.6.1 [Simulation and Modeling]: Systems Theory; I.6.7 [Simulation

and Modeling]: Simulation Support Systems; I.6.8 [Simulation and Modeling]: Type of Simulation-discrete

event, parallel

General Terms: Design, Algorithms, Experimentation

Additional Key Words and Phrases: Dynamic load balance, discrete event simulation, variable structure

system, multi-core, multi-threaded, conservative synchronization, complex system

ACM Reference Format:

Chen Yang, Bo Hu Li, Xudong Chai, Peng Chi and Tingyu Lin, 2010. Efficient Parallel Simulation Method

of Variable Structure Systems under Multi-core Environments. ACM Trans. Model. Comput. Simul. 9, 4,

Article 39 (March 2010), 6 pages.

DOI:http://dx.doi.org/10.1145/0000000.0000000

 INTRODUCTION 1.

Many kinds of real systems, especially flexible, adaptable systems, exhibit changes

simultaneously at structural and behavior levels [Zeigler and Praehofer 1990;

Uhrmacher 2001] when evolving over time, to name a few samples: vulnerability of

computer networks and distributed systems to local failures, automated management

of failure responses of complex systems, adaptive systems and self-reconfiguring

Author‘s addresses: C. Yang, B. H. Li, and T. Lin, School of Automation Science and Electrical

Engineering, Beihang University; X. Chai and P. Chi, Beijing Simulation Center, Haidian District, Beijing.

Permission to make digital or hardcopies of part or all of this work for personal or classroom use is granted

without fee provided that copies are not made or distributed for profit or commercial advantage and that

copies show this notice on the first page or initial screen of a display along with the full citation.

Copyrights for components of this work owned by others than ACM must be honored. Abstracting with

credits permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any

component of this work in other works requires prior specific permission and/or a fee. Permissions may be

requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,

fax +1 (212) 869-0481, or permissions@acm.org.

© 2010 ACM 1539-9087/2010/03-ART39 $15.00

DOI:http://dx.doi.org/10.1145/0000000.0000000

39

Page 1 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:2 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

computer/robotic organizations [Zeigler and Praehofer 1990; Zeigler et al. 1991]. The

growing of these systems motivates the fast development of variable structure in

modeling and simulation (M&S) [Barros 1997; Uhrmacher 2001; Hu et al. 2006].

Variable structure can provide powerful modeling capacity and the flexibility to

design and analyze these systems [Hu et al. 2006; Uhrmacher et al. 2006]. Several

extended formalisms of DEVS, such as DSDE [Barros 1997], DYNDEVS [Uhrmacher

2001],  -DEVS [Uhrmacher et al. 2006] have been proposed to support the modeling

of variable structure systems. [Hu et al. 2006] further introduced variable ports and

presented the pseudo-code of structure variation in DEVS component-based M&S.

However, most of these works focus on the theoretical aspect of variable structure

M&S, typically proposing extended DEVS formalisms with consideration of the

expressiveness and closure, while the simulation execution is not paid enough

attention, especially when the increasing demands of simulation models challenge

the capabilities of current simulators [Wang et al. 2013]. Today‘s most cutting edge

simulation applications are trying to employ high performance computing to solve

challenging problems, such as aerospace vehicle analysis and design [Biswas et al.

2007] on the Columbia supercomputer in NASA, the Earth Simulator Project

[Habata et al. 2003] in Japan, the EU-funded Human Brain Project aiming to

simulate the brain on supercomputers. So it is of great importance to improve the

capacity of large-scale variable structure simulation. DEVSJAVA 3.0 [Sun and Hu

2009] and Uhrmacher‘s work [2006] support to modify the structure of the simulation

system at run-time with the features of addition/removal of couplings, ports and

components as a whole, but it suffers the inefficiency problem caused by unnecessary

simulators and coordinators, and unnecessary system-level messages [Muzy and

Nutaro 2005]. adevs whose base formalism is DYNDEVS [Uhrmacher 2001] can gain

comparatively a good performance, but it does not support variable ports. As said in

[Hu et al. 2006], the safe and efficient dynamic change of component-based

simulation systems need more effort. The booming chip technology of high

performance computing further promotes the demand for efficient methods that can

fully exploit multi-core or many-core computers to speedup large-scale simulation of

variable structure systems. It is pervasive that a high performance computer equips

with tens or hundreds of cores, which means that a computer alone can provide

powerful computing power for some large-scale simulation applications. To the best

of my knowledge, our work - Ivy [Yang et al. 2013] is the first variable structure, and

high performance simulator on multi-core machines.

To substantially improve the capacity of simulating large-scale variable structure

systems, four aspects of contributions are made:

—Support flexible structure changes of the simulation system. The lock-based

concurrent execution method enables safe, flexible and dynamic structure changes

of the composition model, with little intervention to the simulation execution.

—Exploit the natural parallelism present in simulation models. The algorithms

can capture the dynamic parallelism among variable structure models, caused by

the interaction structure change, to facilitate the parallel execution.

—Take full advantage of multi-core or many-core machines. Multi-thread

paradigm is adopted to substantially utilize the low communication latency and

tight memory integration among the cores on a multi-core chip.

—Guarantee the load balance among tens or hundreds of cores. An efficient

dynamic load balancing method, which can migrate models among cores with very

low cost and change cores allocated to the simulation dynamically on demand, has

been proposed to address the load imbalance problems.

Page 2 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments 39:3

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

We only discuss conservative simulation in this paper, because it is hard or costly

to save the model‘s whole state for rollbacks that is common in optimistic simulation,

e.g. models built by using commercial software, legacy models or other models

containing irrevocable operations. The algorithms and methods presented in this

paper can also be applied to the normal PDES, which can be deemed as a special case

of variable structure simulation.

Related works and existing problems are elaborated in section 2. The parallel

simulation platform - Ivy which our method bases on is briefly reviewed in section 3.

The detailed method and experiment result are discussed in section 4, 5 and section 6

respectively. Finally the conclusion is given in section 7.

 RELATED WORK AND EXISTING PROBLEMS 2.

 Variable Structure Simulation 2.1

Based on DYNDEVS [Uhrmacher 2001], Himmelspach and Uhrmacher [2004]

implement a simulation engine with support for structure changes, i.e. the creation

and deletion of components, and the change of interactions. However it could not

support variable ports and it suffers the low efficiency problem of hierarchical DEVS

simulators [Wainer et al. 2011; Zacharewicz et al. 2010; Muzy and Nutaro 2005;

Wainer and Giambiasi 2001]. Hu et al. [2006] further introduces port alteration

possibilities and pays special attention to the control of structure and interface

changes by introducing operation boundary constraints, however, the operation

boundary for hierarchical DEVS models only defines an order of structure operations

and leads to overly complex control of simulation system, causing the flexibility and

efficiency problems. Moreover the author discusses variable structures more from

general principles, not real implementation methods and parallelism is not discussed.

Uhrmacher and Himmelspach [2006] extend their DYNDEVS by introducing variable

ports and multi-couplings for cell biological modeling in DEVS, but its

implementation algorithms also suffer the efficiency problem with a hierarchical

structure, more practical validations are needed, and parallelism is largely

overlooked. Muzy and Hu [2008] propose a framework special for dynamic structure

cellular automata and agent. Posse and Vangheluwe [2007] introduce a process

description language - kiltera to support explicitly the notion of structural change

and describe an application of kiltera to the problem of distributing tasks among a

group of servers, still not with simulation experiment, much less parallel execution

strategies. Wang et al. [2011] has proposed one SOA-based dynamic evolution

method for SMP2 [European Space Agency 2005] simulation systems, however it is

not really ―dynamic‖ structure, because the whole system has to be paused before

structure changes, which can largely degrade the efficiency of the simulation.

Thus, an efficient method, supporting comprehensive structure change, probably

in a distributed and concurrent way should be designed.

 Simulator Architecture 2.2

ThreadedWarped [Miller 2010] adopts master-slave architecture: a manager thread,

a global queue of simulation objects and several worker threads, however a single

scheduler can easily lead to poor scalability. Chen et al. [2011] improve this by

proposing a global scheduling mechanism using several event lists and several active

worker threads, each of which repeatedly selects and processes the smallest

unprocessed event from all event lists, but portability and reuse issues arise when

some attributes of a group LPs are shared. Vitali et al. [2012] present a load sharing

approach by allocating the computing power to multi-threads dynamically, but the

Page 3 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:4 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

overhead of frequent thread switching can be obvious. In contrast, multiple

scheduling centers with balancing strategies can minimize this periodic overhead.

Tang et al. [2012] bring forward a hierarchical parallel simulator for multi-core

clusters, however the mechanism that LPs on a core share the same input queues,

makes load balancing difficult to realize and the simultaneous reporting problem

[Fujimoto and Hybinette 1997] is not obviously addressed. Targeting at the IBM Cell

processor with a heterogeneous architecture, Liu and Wainer [2012] optimize their

Cell-DEVS simulator, but that is not a general-purpose simulator. Wang et al. [2013]

also overlook load balancing in the simulator ROSS-MT.

Distributed simulations usually run faster when smaller divergences exist

between the local simulation times on different hosts [El-Khatib and Tropper 1999;

Bergero et al. 2012]. In contrast, load imbalance on multi-cores can lead to a severe

degradation of system performance [Peschlow et al. 2007], as the risk of blocking and

waiting is increased for conservative methods. So a multi-thread simulator with load

balancing strategies is preferred in order to gain good efficiency.

 Load Balancing 2.3

Research on load balance of distributed simulation can be broadly divided into two

sets: (1) metrics for detecting load imbalances and deciding about LP movements; (2)

protocols or mechanisms to support load migration. For the first set, there already

exist a great number of algorithms on static or dynamic load balance [Gan et al.

2000]. A metric called the effective utilization is introduced in [Reiher and Jefferson

1990], which denotes the amount of useful work done by a processor. The simulation

advance rate is calculated based on information about the CPU allocation and the

virtual time advance of processors [Glazer and Tropper 1993]. The authors in

[Grande and Boukerche 2011] [Angelo and Bracuto 2009] [Peschlow et al. 2007]

present dynamic balancing methods considering both communication and

computation load, which achieves significant reduction of the running time.

[Peschlow et al. 2007] takes account of the number of events processed and virtual

time advanced, however, due to the different computation requirement for processing

an event, this metric cannot reflect LP‘s real computation load exactly.

M.-R. Jiang, etc [1994] has proposed one algorithm based on [Glazer and Tropper

1993]. The algorithm can be applied to heterogeneous (processors) and non-dedicated

(varied background load) systems. However, [Glazer and Tropper 1993; Jiang et al.

1994] only take into account of Operation System Process (OSP) level load balancing

methods, which are applicable to coarse-grained models. Under multi-core

environments, LPs are executed in multiple threads and the metric for load of the

fine-grained LPs should be redesigned, while fast migration mechanisms with proper

consideration of communication should be adopted.

The case is different in multi-core environments to some extent, when all LPs are

scheduled in one OSP. Comparing with load balance among OSPs in different nodes,

load balance inside an OSP does not necessarily need copy and transfer model state,

and exit and join to the simulation. LPs can be created as shared models inside an

OSP, so that the efficiency of load migration can be greatly improved with proper

algorithms.

Most related work on multi-core environments is [Peng et al. 2012]. Peng et al.

[2012] brings out a preliminary load balance method by transferring entity state

among threads in one physical process, however, this can be time-consuming when a

Page 4 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments 39:5

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

large number of LPs need migration. The dynamic addition (or removal) of cores to

(from) the system is not included, which is important for efficient green computing.

To address the above problems, based on our initial work in [Yang et al. 2013], a

comprehensive analysis of the parallel simulator - Ivy is presented, and then a high

efficient load balancing method on multi-core machines is proposed. Adopting our

method, Ivy can support dynamic structure in a distributed or centralized way,

extraction of the inherent parallelism between models, and deadlock-free fine-

grained parallel execution of models. Moreover it can migrate unbalanced load

between cores without pausing of the system and copying of LPs‘ state, and can add

or release cores on demand. The comprehensive experiment shows that our simulator

can achieve a good performance.

 INTRODUCTION OF IVY UNDER MULTI-CORE ENVIRONMENTS 3.

 Basic Principles of Ivy 3.1

Besides the motivation to naturally and effectively simulating complex systems with

evolving structures from sociology, ecology, or technology area, variable structure

simulation also have advantages to support loose coupling of models, successive

development and modularity debugging of the simulation system, and also some

openness for executive users to adjust the scenario during execution. Variable

structure includes the changing of ports, connections and composition.

(1) Variable Ports

In order to (a) upgrade simulation capability for variable structured systems, (b)

loose coupling between Component Model Instances (CMIs) and improve reusability,

(c) enhance flexibility for successive development of Simulation Component Models

(SCMs), we abstract different data protocols that a CMI uses to communicate with

others as ports, such as Port A1, Port A2 of CMI A (Figure 1). The port lists and the

corresponding operation methods (addPorts and removePorts in model‘s unified

management interface MgrInterface [Yang et al 2013]) are formally included in the

model implementation to support variable ports. Via variable ports, significant

changes can be signalized to the external world, particularly in the molecular

biological domain [Uhrmacher 2006]. The method can also support models to change

their brothers‘ ports as stated in [Hu et al. 2006]. However, we are not intended to

artificially define the operation bound as in [Hu et al. 2006], but leave the controlling

rules to domain users.

Component Model

Instance A

Component Model

Instance B

outPort A1

inPort A2

inPort B1

outPort B2

MgrInterface MgrInterface

Connection(Rect, A1, B1)

Connection(Ellip, B2, A2)

Fig. 1. Ports and connections between CMIs

Example 3.1. In the field control of airplanes, each airplane that plans to take off

need firstly send the request to get the permission. Multiple teams of controllers are

in charge. Similar to the case given in [Hu et al. 2006], when the frequency of

departure airplanes is considerable, new teams of controllers should be added to

navigate the airplanes. The transducer should have corresponding ports for each new

Page 5 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:6 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

team of controllers (Figure 2), to monitor and coordinate the whole operation of

airplane taking off. The variation of ports can be easily simulated in our designed

supporting system-IVY.

Fig. 2. Add new port for the transducer

(2) Variable Connections

The interaction between CMIs can be described by oriented connections between

ports of CMIs, for example Connection (Rect, A1, B1) (Figure 1). Directed connections

are independent from model implementations, but we should guarantee the type of

source ports match that of destination ports. Variation of connections between

models can simulate the change of the system network, which can help to study

complex systems with variable interaction structure.

Example 3.2. Airplanes will typically fly across different air traffic control areas

and need to interact with different control centers to guarantee a safe flight. This can

be naturally modeled by connection changes between airplane models and control

center models (Figure 3).

Fig. 3. Variable interaction structure

(3) Variable Composition

When connections related to the model are all removed, then the model can be

removed to change composition of simulation systems. Similarly, models can be

added to the system by addition of connections and addition of their references to

Simulation Engine Instances (SEIs, see section 3.2). However, when necessary, some

inactive models can be kept in the heap and initiated as new models to improve the

performance of dynamic structure simulation.

Page 6 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments 39:7

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Example 3.3. Airplanes will fly over the air traffic control areas when it becomes

far enough. If the concentration is paid to the operation of only an air traffic control

center, then the airplane models need added to or removed from the simulation

system.

(4) Different Meaning of Variable Ports and Connections

We will explain the subtle differences between the removal of input ports, output

ports and connections. As shown in Figure 1, we assume that B: the model of an

electromagnetic broadcaster, Port B2: the port to launch waves in a certain frequency,

A: the model of a receiver, Port A2: the port to receive programs in the above

frequency, Connection (Ellip, B2, A2): A receives waves from B. The removal of Port
B2 or Port A2 models the shutdown or the channel switching of B or A. There may be

several connections from Port B2, but the deletion of Connection (Ellip, B2, A2) only

means the radio transmission to Port A2 is broken by a jammer and there may exist

other uninterrupted connections. The removal of Port B2 means that all receivers

will not receive the wave from A anymore, even though the connections exist.

(5) Openness – One Merit of Variable Structure Simulation

Traditional simulation is mostly steered by the scenario, which pre-determines

the structure of the simulation system. Generally, the structure cannot be flexibly

changed during the runtime, while the parameters are tuned. Some skilled

practitioners encoded the conditional structure changes into models, which make for

a less elegant and coherent model design, and tend to reduce space efficiency

[Uhrmacher 2001]. So structural simulation (as opposed to conventional ―trajectory‖

simulation) is needed to avoid having to force structural changes down to the same

level as behavioral ones [Oren 1975]. Moreover, the direct encoding method makes

the man-machine interaction at runtime difficult to realize. There are common cases

that people will involve and make decisions on the system structure changes

according to the simulation situation. However, the stop and restart of the simulation

will certainly lead to a waste of the consumed computing power. The supporting of

dynamic structure in our work will make this become true and convenient to realize.

We can imagine the situation that users interact with the simulation system when

necessary, to make the simulation more powerful. Really dynamic structure in our

method can help to deal with multi-resolution simulation and on-line simulation,

such as symbiotic simulation [Fujimoto et al 2002], dynamic data-driven simulation

[National Science Foundation 2005], cyber-physical simulation, to change the

structure of simulation models dynamically.

 Execution Architecture and Lifecycle 3.2

The execution architecture of IVY can be shown in Figure 4. IVY and models – CMIs

compose the simulation system. IVY executes as an OSP, which consists of many

thread-level SEIs. SEIs are created to schedule CMIs. To efficiently support

simulation of variable structure systems, IVY provides five kinds of core services by

making good use of multi-threaded execution and shared variable based

communication: object management, connection management, simulation engine

instance management, time management and load balance management. The main

thread controller existing as the main thread of OSP is designed to respond to user

requests, and to configure and control the simulation experiment using the above five

kinds of core services of IVY. The life-cycle of IVY, mainly the main thread controller

and the SEI, is discussed as follows:

(1) Main Thread Controller

Page 7 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:8 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

The whole lifecycle of IVY with core services launched by the main thread

controller includes:

(a) Object management loads SCMs and instantiates them as CMIs according to

application demand. Object management can create or delete CMIs dynamically,

when the composition of the simulation system needs changed.

(b) Connection management initiates the network of the simulation system by

loading the interaction model and maintains directed connections between ports of

CMIs.

(c) Simulation engine instance management creates, initializes, starts, pauses and

terminates simulation engine instances. SEIs schedule the execution of CMIs in

parallel and are responsible for event passing according to directed connections. Time

management is used to synchronize CMIs in the simulation system.

(d) Load balance management migrates CMIs between SEIs, or even employs SEI

management to remove or add cores on demand, in order to improve execution

efficiency of collaborative tasks on multiple cores.

Fig. 4. Execution architecture of Ivy

(2) Simulation Engine Instance

A SEI runs to traverse its CMI reference list repeatedly.

(a) To schedule the next CMI to calculate its LBTS and read safe events from its

inputList to waitingList under the control of LBTS,

(b) To sort events in waitingList of the CMI in time order,

(c) To schedule the processing of the earliest event in waitingList,
(d) To advance CMI‘s time to the timestamp of the processed event,

(e) To send generated events to destination CMIs‘ inputList, according to

connection management.

(f) Repeat step (c) - (e) until no events exist in waitingList, otherwise go to step (a).

 EFFICIENT STRUCTURE VARIATION AND TIME MANAGEMENT ALGORITHM 4.

 Dynamic and Distributed Structure Variation 4.1

(1) Deadlock-free SEI threads

Deadlock is acknowledged as a common problem in multiprocessing systems, parallel

computing and distributed systems [Padua and David 2011]. Thus avoiding deadlock

plays an important role in the normal execution of our designed system. Ivy uses

locks to guarantee the safe access to shared resources among threads [Yang et al.

Page 8 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments 39:9

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

2013]. Then we made some optimizations by redesigning some data structures and

removing some locks. A detailed analysis is shown as following.

Fig. 5. Locks in IVY

The locks that are used to avoid resource contention include:
Table I. Locks for variable structure in Ivy

Lock Name Locked Object Affiliated To Contention By

CRL_RW_lock CMI reference list SEI MTCb, SEIs, LBc

IPL_RW_lock input port list CMI MTC, SEIs

OPL_RW_lock output port list CMI MTC, SEIs

IEL_RW_lock input (event) list CMI MTC, SEIs

TV_RW_lock time variable CMI MTC, SEIs

CC_RW_lock CMI connections CMa MTC, SEIs

a CM denotes Connection Management. b MTC indicates Main Thread

Controller. c LB represents Load Balance management.

All these locks are read-write locks. The read-write lock allows multiple reading,

single writing and mutually exclusiveness of reading and writing of one shared

resource.

Then we will see whether it leads to deadlock, i.e. find out whether there exist

cycle dependences. SEI should be analyzed. Figure 6 shows all locks that a SEI

thread may try to get in each simulation cycle. Similar to a deadlock of operating

system, it is essentially the preemption of lock resources. As shown in Figure 6, ①-⑪

is the complete routine a SEI thread has to experience in its life-cycle. ③-⑨ is

repeated by the SEI thread to schedule its CMIs in each simulation loop. The SEI

thread is created by SEI management to begin the simulation main loop (step ①).

Then it acquires a reader lock of CRL_RW_lock to traverse its CMIs (step ②), a

reader lock of CC_RW_lock to get CMIs that connect to the chosen CMI (step ③),

Page 9 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:10 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

TV_RW_lock‘s reader locks of the source CMIs to get their local time to compute

LBTS of the chosen CMI (step ④), a reader lock of IEL_RW_lock to get the safe

events from the input (event) list (step ⑤), a reader lock of CC_RW_lock to get CMIs

that will receive the new events (step ⑥), a writer lock of IEL_RW_lock to write new

events to receiver CMIs‘ input (event) list (step ⑦), the writer lock of TV_RW_lock to

update the time of the chosen CMI (step ⑧). Step ⑥-⑧ will be repeated after each

safe event is processed, until no safe events exist. Then the SEI thread will return

and schedule the next CMI in its reference list (repeat Step ③-⑧). CRL_RW_lock can

guarantee the safe reading and writing of the CMI reference list in a SEI. After a

next CMI is chosen, the SEI thread will firstly release CRL_RW_lock and then

schedule the chosen CMI to process its events. So other SEI threads can access and

revise the list after getting the writer lock of CRL_RW_lock in the interval.

Any of the above locks will be released after certain task is finished. The entries

such as A, B, C, D (Figure 6) may have multi-threads to access, but the threads will

release the corresponding lock after certain time during which threads occupying

locks are not attempting to get other locks. This contradicts with one necessary

condition of a deadlock - the hold and wait condition [Coffman et al. 1971]. So threads

in IVY are not deadlocked, which is further verified by our repeated experiments.

(2) Efficiency of Variable Structure

Through our analysis, we can see that the interaction and composition changes of

the simulation system requested by CMIs in different SEIs can be achieved in a

distributed and unconstrained way. Port changes can be processed by the CMI itself

to exhibit the internal state changes by different ports (i.e. reflection [Uhrmacher

2001 and 2006]), or even by other CMIs to enforce external actions. Most importantly,

Ivy can achieve really dynamic structure change with little intervention to the

normal execution, i.e. any unrelated CMIs can be executed normally, except slight

waiting for some CMIs enforced by the spread of LBTS constraints. Comparing with

the operation bound method defined in [Hu et al. 2006], Ivy can provide more

flexibility of structure changes and leave enough space for users to simulate the

complex system using different algorithms. For example, it is not easy to change

randomly chosen connections between models by users at runtime using Hu‘s method.

Barros [1997] defined the dynamic structure system network (DSSN) using the

DEVS formalism, but the work based on the vision of an executive that resides as a

kind of all-mighty atomic model in the coupled model [Uhrmacher et al. 2007], and it

might be tedious [Uhrmacher 2001] and show limited capability to deal with complex

systems that consist of autonomy entities. Our method based on Ivy can support both

the distributed way and the centralized way (autonomy and control [Uhrmacher

1993]) to change model structures, and the way employed to do variable structure

simulation is leaved to modelers. As stated in [Sun and Hu 2009], variable structure

model can make the simulation more efficient, due to the focus only on ―active models‖

without the burden of all models always active in the system. Still data structures

and synchronization method can be designed to gain more efficiency, however this is

a starting point, more research effort should be paid.

Page 10 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments
39:11

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Res Num:

…

∞

Connections
read_lock

Res Num:

…

∞

Res Num: 1

CMI reference list
write_lock

Connections
write_lock

Res Num: 1

Res Num:

…

∞
CMI T read_lock

CMI recvList
mutex_lock

Res Num: 1

CMI recvList
mutex_lock
Res Num: 1

CMI T write_lock

Res Num: 1

Res Num:

…

∞
CMI T read_lock

Mutex

Mutex

Mutex

Connection Management

Component Model Instance

Return & release

the resource

Instance.

Mutex

Two locks

compose into one

readers-writer

lock.

Request one

resource instance

or Return without

release of the

Instance.

SEI thread

Multi-thread

Multi-thread

Multi-thread

Legend①

②

⑨

⑤

⑥

③

⑩

⑧

⑦

④

⑪

A

B

C

D

Multi-thread

CMI reference list
read_lock

Fig. 6. The executing routine of each SEI thread

 Time Management Algorithm 4.2

CMI i has LBTS(i) , it can be computed as

  () { () ()}LBTS i min T j LA j (1)

in which CMI i receives messages from CMI j, LA(j) are the lookahead of CMI j, and

T(j) subjects to the constraint:

, if processingsafeevents

,if nosafeevents

cT (j)
T (j)

LBTS(j)


 


 (2)

Page 11 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:12 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

The transient messages do not exist in our designed supporting system, because

the direct insertion of events to destination CMIs with blocking mechanism is

employed.

(1) correct synchronization of CMIs

To facilitate the proof, we define the following variables:

aT : the timestamp of event a sent to CMI i

bT (i, j) : the timestamp of event b sent from CMI i to CMI j

cT (i) ,
cT (j) : the current time of CMI i, CMI j

LA(i) , LA(j) : the lookahead of CMI i, CMI j

Event b is scheduled by CMI i, after the process of any event a. Assume b should

be sent to CMI j, in other words CMI j receives messages from CMI i. so

   c aT i T (3)

     b cT i , j T i LA(i) (4)

   

   

 

c

c

T j LBTS j

min{T m LA m }

T i LA(i)



 

 

 (5)

CMI i advance its current time to  cT i after event a is processed, i.e. (3). CMI i

can only schedule events with time stamp not less than
cT (i)+LA(i) , i.e. (4).

Because there are no transient messages that arrives with the past time stamp,

and the scheduling of events is constrained by equation (1) and (2), so (5) is correct.

So
b cT (i, j) T (j) , i.e. CMI j will not receive straggler messages. Then by processing

received events in time order, CMI j conforms to the local causality constraint

[Fujimoto 1990]. Event a is scheduled to CMI i, so it can be proofed that CMI i

conforms to the local causality constraint similarly. Thus all CMIs are synchronized.

(2) Deadlock avoidance of the time management algorithm

Conservative time management algorithms may lead to a deadlock, manifesting

that some CMIs cannot advance their local time anymore.

THEOREM 3.1. If the system encounters a deadlock, there must exist cycles.

PROOF. We assume that there is no cycle in the deadlocked simulation system.

Then the system can be abstracted as a Directed Acyclic Graph (DAG), in which

nodes represent CMIs and directed connections indicate interaction relationship. The

DAG of the simulation system can be topologically sorted as a linear array, so that if

the array is aligned in a row, all connections (edges) are directed from the left nodes

(vertices) to the right ones. The nodes in the n-th position are denoted as CMI n.

Intuitively if the upstream nodes, actually CMIs are not pending, the downstream

nodes will not encounter a deadlock in a DAG using our proposed algorithm, because

the upstream senders that eventually advance their local time make the LBTS of the

downstream nodes become larger and larger, so that the downstream nodes can also

advance to anywhere in future in a finite amount of time. We will proof it strictly as

the following.

LEMMA 3.2. Any CMI n can advance to anywhere in future in a finite amount of

time, if the simulation is not over.

The lemma can be translated into mathematic description as:

LEMMA 3.2‘. Given any M 0 , a
MT 0 can be found, so that after the wall clock

time
MT , the virtual time of CMI n, T(n)>M .

PROOF. Strong induction is used to proof this lemma.

Page 12 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments
39:13

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Basis: n 1 , CMI 1 has no senders, so LBTS(1)   . If there are unprocessed

events, it is safe to process them without a deadlock and eventually advance its local

time to anywhere in future if the simulation is not over. If no events exist,

T(1)=LBTS(1)   . Thus Lemma 3.2‘ holds for n 1 .

Induction step: assume Lemma 3.2‘ holds for n m .

When n m+1 , given any M(m+1)>0 ,

1LBTS(m) min{T(h) LA(h)}  

for any upstream CMI h that connects to CMI m+1.

According to the induction step, for any >0 , M(m+1)+ >0 , a
MT (k)>0 for each

CMI k (0<k m) can be found, so that after
MT (k) , T(k)>M(m+1)+ .

We set
M MT' =Max{T (k)| 0<k m} , so after MT' , T(l)>M(m+1)+ , for any CMI l

that 0<l m . And we assume that CMI p has the smallest T(p)+LA(p) among CMI l

that 0<l m .

Then

1 min

1

LBTS(m) {T (l) LA(l)}

T (p) LA(p)

M (m) 

  

 

  

 (6)

so CMI m+1 can process any events with timestamp less than () , when no

events exist, according to (2) and (6),

1 1

1

1

T (m) LBTS(m)

M (m)

M (m)



  

  

 

Thus for n m+1 , Lemma 3.2‘ holds. 

Thus using strong induction, we can infer that the lemma holds. So for any CMI,

if any event exists, it will be processed after a finite amount of time. This contradicts

to the deadlock assumption. So alternatively there must be cycles in the deadlocked

system. 

LEMMA 3.3. Upstream nodes not in the cycles can advance to anywhere in future

in a finite amount of time.

PROOF. These nodes and their upstream nodes consist of a DAG, so the lemma

can be deduced from lemma 3.2. 

THEOREM 3.4. With our time algorithm there is no deadlock in cycles

PROOF. Assuming that there are unprocessed events, and one of the earliest

events is contained in CMI i. Due to the constraint of LBTS, no event can be safely

processed. So T(k) LBTS(k)=min{T(l)+LA(l)} , for any CMI k on the cycles.

When deadlocking,

j i

l k

latest

LBTS(i) min{T (j) LA(j)}

T (k) LA(k)

min{T (l) LA(l)} LA(k)

LBTS(i) LA(m) LA(k)





 

 

  



   

 (7)

Because all the upstream nodes can have enough big after some time, so

when deadlocking, all CMI j in (7) belongs to the cycles. Due to finite nodes on the

cycles, the constraint node can be ultimately traced to CMI i itself. If any CMI on the

cycle has LA(j) 0 , LBTS(i) can increase gradually and its unprocessed events will

Page 13 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:14 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

certainly be processed after some time. Thus the earliest time of events in cycles

increases. This contradicts with deadlock of the system. So no deadlock exists on the

cycles. However, this algorithm with more efficiency has the same restriction as the

null message algorithm: there should be any zero lookahead cycles [Fujimoto 2000].


THEOREM 3.5. Downstream nodes will not encounter a deadlock.

PROOF. Due to the incremental time of nodes on upstream and cycles, it can be

easily inferred that with enough time advance of nodes on upstream and cycles, the

downstream nodes can process any future event. So theorem 3 holds.

If all the nodes do not have events to be processed, then the simulation ends.

Otherwise all the nodes can process any future event after a finite amount of time, i.e.

the simulation system adopting our time management algorithm can avoid deadlock.


3) Efficiency Analysis – Dynamic Parallelism

Due to the reasons stated at the beginning, we only consider conservative

algorithms in the following analysis. A more related research is [Peng et al. 2012],

who adopts a similar multi-thread execution architecture in each federate. However,

LBTS of each model in the federate is computed as min{T(i)+LA(i)} for all CMIs of

the federate. [Tang et al. 2012] proposed a similar optimized algorithm, by which the

approximate LBTS can be computed asynchronously by any thread when needed, and

is shared in the federate. These two methods will constrain the extraction of the

inherent parallelism between models, especially when the lookahead of models differ

greatly.

Our algorithm only takes into account of related models to compute LBTS of the

model. When there are changes of the interaction structure, new parallelism (we call

it dynamic parallelism) may emerge. Traditional time management algorithms

cannot capture this kind of parallelism. For example, when an airplane flies over an

air control area, the constrained parallelism between the airplane model and the

control center model will not exist anymore, namely the two models can be scheduled

totally in parallel. Our algorithm can naturally get this kind of change through

connection change to compute LBTS adaptively. Moreover, our algorithm is triggered

asynchronously only when no safe events exist in the CMI. As said in the software

engineering, there is no silver bullet. Our algorithm which can be more efficient for

sparsely and dynamically connected composition models is not so suitable for tightly

coupled models. This leaves as future works to evaluate this.

 LOAD BALANCING OF VARIABLE STRUCTURE SIMULATION SYSTEMS 5.

 High Efficient Migration of CIMs among Cores 5.1

Our basic idea is to separate execution related elements of the model from the

scheduling threads-SEIs, so that load migration can be easily realized when the

model as a whole is migrated. It is appreciated if the executing elements are shared

or encapsulated inside the model. When a model is scheduled to process events, four

kinds of elements are tightly related, (1) input event queue, (2) current time of the

model, (3) model LBTS, and (4) output destinations of events. Next we will elaborate

on how the condition is satisfied.

IVY and CMIs compose the simulation system. IVY executes as an OSP, among

which CMIs are created and shared. A typical simulation model-a CMI is indicated in

Figure 7. According to the formalism defined in [Yang et al 2013] and the

implementation of IVY, we can see that the input event queue ―inputList‖, current

time and LBTS of the model are maintained inside the model, so almost three kinds

Page 14 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments
39:15

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

of related elements are encapsulated inside the model. The computation of LBTS for

a model is decided by its message senders, i.e. CMIs that connect to this model.

Related connections can be acquired with the help of connection management, which

maintains shared connections in the OSP. Similarly, the events are output with the

help of connection management by directly inserting events into the input event

queue of the destination CMIs. Thus we can see that four kinds of elements related to

the model execution are either shared or encapsulated inside the model.

Fig. 7. A model in the simulation system

The behavior of migrated models and affected models should be further checked in

order to guarantee correctness of the model execution. There exists one list of CMI

references in each SEI (Figure 5, Figure 8). CMI references are used to access model

data. Referenced CMIs can be traversed by SEI to schedule LBTS computing,

processing of safe events and event output in each simulation cycle. The event

processing routine of a CMI is that (1) events are inserted into the input queue of the

CMI, (2) model LBTS is computed using the local time and lookahead of models that

connect to the CMI, (3) the earliest safe event is processed, (4) the CMI advances to

the timestamp of the processed event, (5) newly scheduled events are outputted to

destinations by querying connections kept in connection management. Step (3) ~ (5)

are repeated until there is no safe event. When there is no safe event, a new

simulation cycle is launched from step (2). We can see that dynamic behavior of

migrated models is not affected, except for short pause of their execution. So the

migration of load - actually models is simplified as the removal of CMI references

from source SEIs and the addition of CMI references to destination SEIs.

Page 15 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:16 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 8. High efficient migration of load among cores

 Operations on the list of model references are controlled by the readers-writer

lock CRL_RW_lock. The addition and removal function of CMI references are

provided by the SEI itself. So while models are being migrated, load balance

management will seek to get the writer lock and modify the list in source SEI, and

then do so in destination SEI. The execution of unrelated models is almost unaffected,

because unrelated models may advance faster and they may be constraint by

transiently paused sender CMIs that are being migrated (due to the local causality

constraint). During the migrating process, there is a short interval when models are

removed from source SEI and not added to destination SEI. However, due to the

unchanged connections among models, messages are normally received without the

loss of message and the computation of LBTS for receivers is not affected.

So this can be a high efficient way for migration of models without pausing of the

system, and without copying and transferring of the model state.

 Dynamic Allocation of Core Resource 5.2

Dynamic structure (including the change of composition, interaction structure and

model port) can cause inefficiency in a large chance, if the computing resource

initially allocated is not adjusted. Reallocation of the occupied computing resource to

models can be attained using the above load balancing method (see section 5.1).

However this is not enough to achieve high utility of the computing resource, because

it is highly possible that less cores decrease synchronization cost for fewer models or

more cores increase the running speed by providing more computation power. So the

dynamic allocation of core resource is necessary for the simulation systems with large

structure change.

Our method to allocate core resource dynamically is to create or delete SEI

threads on cores. For the decrease process of occupied cores, the first step is

migration of models from SEIs to be deleted, with the aim to decrease communication

Page 16 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments
39:17

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

cost and balance computation load. And then the redundant SEIs can be safely

removed. For the process of adding new cores, SEI management would create SEI

threads first and then load balance management would migrate models to the new

SEI threads. The whole process can be executed dynamically in the simulation

runtime, which can raise the running efficiency with little intervention of the

simulation execution. Vitali et al. [2012] firstly proposed a parallel simulation

method that can change the number of worker threads within a process in response

to the workload variation. Our method can also change the number of allocated cores

dynamically on demand to optimize the performance; moreover, the computationally

intensive effort of thread context switching is saved. This enables good scalability

and can cope effectively with the changing requirement for computing resource.

 Load Balancing Algorithm 5.3

Due to extraordinary fast inter-thread communication (delay in nanosecond range),

the computation speed of CMIs becomes a primary affecting factor and the

communication requirement is taken into consideration as a secondary optional

factor.

Inspired by works in [Peschlow et al. 2007; Jiang et al. 1994], a metric for fine-

grained component models is proposed by considering event processing time of them.

During a monitoring interval, MtrT , the event set evtSet(m) follows:

i i Mtr ievtSet(m) {evt |timestamp(evt) T ,evt safeEventList(m)}  

Events in evtSet(m) are processed and is the simulation advance of CMI m.

The load of CMI m is a measure of the amount of CPU time it needs to advance its

local simulation clock one unit. We consider only homogeneous cores in multi-core

machines, because the metric for heterogeneous cores can be easily deduced like

[Jiang et al. 1994].

 i
m ievt evtSet(m)m

m
m m

CPU (evt)CPU
Load

Advance Advance


 


 (8)

The LP load metric (actually the CMI load metric) in [Peschlow et al. 2007] can be

acquired by setting m iCPU (evt) as one unified value. However, the corresponding

metric in [Peschlow et al. 2007] cannot reflect the LP load if events need varied CPU

time to be processed. Assumed that there exist LPs whose total number is M in the

monitoring phase, and M‘ in the next phase, the mean load of the system and future

total load in the next phase are defined as:

 1

M

mm
Load

MEAN
M



 (9)

1

M'

mm
LPsLoad Load


 (10)

The loads of new CMIs are evaluated as the same as CMIs that have the same

template SCM. If there are no existing CMIs instantiated with the same SCM, the

load of each new CMI are evaluated as MEAN . So the future load is the sum of all

CMIs in the system as equation (10). In order to reduce the cost by dynamic

instantiation of the SCM, certain number of CMIs can be kept and reused after re-

initialized. This leaves as the future work.

The algorithm can be configured, according to the following two cases.

1) Dynamic balancing with limited available cores

Page 17 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:18 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

When the computational infrastructure is not dedicated, it is highly possible that

available cores are limited, due to background load of other applications. As the

fluctuation of the background load, the available cores change over time, indicated in

equation (11). Moreover, the required computation resource changes because of the

variation of the system composition, reflected in equation (10). So the load balance

service should further proactively eliminate possible imbalance problems caused by

the change of the system composition.

Ratios of the CPU allocation by processor n to the whole CPU allocation can be set

to

1

n n
n N

jj

EffCPU EffCPU
FRAC

EffCPU EffCPU


 


 (11)

So the load undertaken by processor n is defined as:

 n nCoreAlloc FRAC LPsLoad  (12)

This is a classical ―bin-packing‖ problem that any matured bin packing algorithm

can be employed, such as [Jiang et al. 1994; Coffman et al. 1997; Lewis 2009]. We

have implemented one bin-packing algorithm described in [Jiang et al. 1994].

2) Dynamic balancing with unlimited available cores

When there exist enough available cores in multi-core machines, cores can be

allocated dedicatedly to the SEI threads. However, too many cores may lead to costly

communication (synchronization) between LPs on different cores. Thus in this case

communication should not be neglected any more.

A SEI will schedule event passing to destination CMIs with the help of connection

management. During this process, the number of events communicated between LPs

can be naturally acquired to compute equation (15) and (16). These data are

employed to reduce communication cost on the basis of computation load balance.

The size of events is generally overlooked, because the communication delays are

more or less the same using shared variable communication.

 1

M

mm
EffCPU CPUCommCPU

RatioSyncCost
EffCPU EffCPU




 


 (13)

Where indicates ratio of the communication cost to the whole cost of

CPU.

 comm comp

Comm' Load' CPU
minCost w CommCPU w

Comm Load CPU'
      (14)

 m n
m n

m

LpEvents
Comm

Advance


  (15)

 m,n m n n mComm Comm Comm   (16)

 i j

m i n j

(SEI ,SEI)
m,n

CMI SEI ,CMI SEI

Comm Comm
 

 (17)

{Comm, Load, CPU} and {Comm', Load', CPU'} are states of the simulation

system before and after dynamic balancing. Comm and Comm' denote the total

inter-thread communication by considering interactions between LPs in different SEI

threads. Because of only one single thread for each SEI, little communication cost

between LPs in one SEI can be achieved.

RatioSyncCost can be set before the simulation to indicate the acceptable

threshold of communication cost. When the threshold is exceeded, the load balancing

service considering both computation and communication is started up. A large

Page 18 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments
39:19

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

number of modern computational intelligence methods can be employed to achieve

minimal cost in equation (14). The values of weights commw and compw depend on

application type (computation intensive or communication intensive) of simulation

and can be assigned using experiment methods or machine learning methods.

 EXPERIMENT AND ANALYSIS 6.

According to the standard interface defined in [Yang et al. 2013], the port alteration

method is encapsulated inside the model as the unique entry to modify ports, so

naturally variable ports can be supported. Our initial application [Yang et al. 2013],

in which a tanker aircraft and several normal planes fly in formation to one remote

place has validated the removal and addition of connection and system composition.

The situation is that: when a normal plane does not receive oil refueling in time, it

would land emergently on a nearby airport (exit from the formation fly) and should

be removed from the simulation system; before it lands, it will request for reinforce –

a new normal plane will join. So we will not explain the detailed support of structure

changes in this section.

This section demonstrates the simulation models and experiment results, based

on Ivy. Ivy including the load balancing strategies has been tested to acquire its

performance on a common simulation system and a variable structure simulation

system using a typical scenario of application.

 Simulation Models 6.1

The scenario is that multiple teams of controllers in a major airport direct hundreds

of airplanes to land or take off. Each team is in charge of airplanes in certain sector

airspace that can be scanned with radars. The airplanes enter or depart from the

controlled airspace when their distances with the control tower are less or more than

80km. The simulation for this scenario includes the change of airplane models in the

simulation system. The simulation system consists of one scheduling center, several

teams of controllers and hundreds of airplanes. The landing or taking off plan of

airplanes are established finally by the scheduling center. Multiple teams of

controllers are responsible for coordination between airplanes and the scheduling

center. The airplanes are randomly generated and they join the simulation to

simulate the entrance of airplanes into controlled airspace. After landing, the

airplane will stay in the airport for different time interval, take off and ultimately

depart from the controlled airspace, which is simulated by the removal of airplane

models. The time interval is drawn from the same normal distribution with a

standard deviation of 10%. The composition and interaction of the whole simulation

system can be abstracted as Figure 9.

Page 19 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:20 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

Fig. 9. Model of air traffic control in an airport

 Testing Environment and Results 6.2

Because our work focus on the balancing among cores inside one multi-core machine,

all tests would run on a high performance multi-core machine with four way 3.07GHz

Intel Xeon CPU X5657, 24G RAM. Each CPU contains 6 cores, so 24 independent

threads at most can be created to execute exclusively on cores. We have created 500

entities including 1 scheduling center model, 4 team models and 495 airplanes. The

event processing time for models was randomly generated among [1ms, 100ms] and

saved to simulate different computation requirement of event processing. Ivy and 500

models executed as an OSP host to 4, 8, 12, 16 and 20 threads respectively on the

dedicated multi-core machine. The system ran for wall-clock time 10 hours each. Two

kinds of conditions are set, 1) the composition of the system is not changed during the

system execution; 2) the composition of the system is changed dynamically. Because

there are enough available cores, the second method is adopted and the values of

weights and is firstly set as 1 and 10 respectively according to our

empirical analysis. The cores allocated to the simulation are not changed in this test.

The comprehensive experiment covering more applications with dynamic allocation

function of cores is the next focus of our work.

1) load balancing of the normal simulation system

Initially, models are scattered evenly among threads on cores. We set the radius of

the controlled airspace as an extraordinarily big value. The airplanes are generated

at the beginning and randomly distributed in the controlled airspace, so that during

the experiment, the composition and interaction structure of the simulation system

was not changed. The results of experiments with/without load balancing are shown

in Figure 10.

The average performance has been improved by 16.05% (Figure 10), by adopting

our load balancing method. With the increase of thread number, our algorithm can

achieve better performance, because load balance is increasingly important when

there exist many collaborative working threads and system efficiency can be

extremely low when load discrepancy is large. Thus we conclude that adopting our

balancing method can upgrade performance of the common simulation system.

Page 20 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments
39:21

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

Fig. 10. Experiment results of common simulation

Table I. The Performance Improvement

System

Configuration

Thd

4

Thd

8

Thd

12

Thd

16

Thd

20
Aver

Performance

improvement
0.0868 0.1610 0.1769 0.1861 0.1918 0.1605

2) load balancing of the simulation system with dynamic structure

In this experiment, the radius of the controlled airspace is set as a normal value -

80km. The airplanes were created to join the simulation and deleted from the

simulation dynamically. The airplane would fly in the controlled space and stay in

the airport after landing. The comparing experiment results are shown in Figure 11.

Fig. 11. Experiment results of the variable structure simulation system

Table II. The Performance Improvement

System

Configuration

Thd

4

Thd

8

Thd

12

Thd

16

Thd

20
Aver

Performance

improvement
0.1352 0.1974 0.2695 0.2848 0.2795 0.2333

300

500

700

900

1100

1300

1500

1700

thread 4 thread 8 thread 12 thread 16 thread 20

a
v
e
r
a

g
e
 v

ir
tu

a
l

ti
m

e
 a

d
v
a

n
c
e
d

without LB with LB2

6600

11600

16600

21600

26600

31600

thread 4 thread 8 thread 12 thread 16 thread 24

a
v
e
r
a

g
e
 v

ir
tu

a
l

ti
m

e
 a

d
v
a

n
c
e
d

without LB with LB2

Page 21 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:22 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

From the table of performance improvement, we can infer that our method works

well as the number of cores increases. The average performance improvement can be

23.33%, which is better than the common experiment results. With the increase of

thread number, our algorithm can achieve better performance. Thus we conclude

that adopting our balancing method can upgrade the performance of the variable

structure simulation system.

 CONCLUSIONS AND REMARKS 7.

In this paper, an advanced parallel simulator with load balancing strategies is

proposed to support large-scale variable structure simulation. Conventional

simulation can also be supported as a special case, when no structure changes are

needed. Our initial work [Yang et al. 2013] has presented the normalized interface of

a model to provide necessary functions to cooperate with Ivy. The input event list is

included inside the model, so that the migration or removal of models can be easily

realized without tight couplings with specific SEIs. Connections are shared among

threads in the OSP and events are unified passed by connection management, so that

even when being migrated (only model references are removed from or added to SEIs),

models can still receive messages. The basic principles to support changes of model

ports, connections and composition are then introduced. The simulator, which

provides five kinds of key services, adopts a peer multi-thread architecture to

facilitate fine-grained parallelization. The main thread acting as an executive, is

responsible for configure and control the simulation, meanwhile it can also accept

request from users to perform structure changes. In other words, some openness of

the simulation system is brought. Then the whole lifecycle of Ivy is briefly presented.

Based on the architecture of Ivy, a flexible structure change method is introduced.

Reader-writer locks are employed to guarantee the safe concurrency among all

operations, namely distributed structure changes and ―trajectory‖ simulations.

Deadlock is a common problem for multi-thread applications. However, it can be

proved that our method will not encounter any deadlock, using the deadlocking

metrics proposed by Coffman [1971]. An improved conservative time management

algorithm based on model connections is proposed. The algorithm which can

naturally capture the dynamic parallelism between models also enables deadlock-free

scheduling of models. We proofed that strictly using the strong induction.

Then an efficient load balancing method, which can seamlessly integrate with

other services in Ivy, was proposed. This method minimizes the virtual time

discrepancy between LPs among cores at lower cost by using shared models and

connections, while keeping each thread always actively schedule models to avoid too

much waiting. Metrics in this method further consider the CPU time consumed on

event processing and the number of passed events to reflect computation and

communication load of simulation for variable structure systems exactly.

Finally, based on our developed simulator Ivy, an application example is given.

The simulation results show that our methods (flexible structure change mechanism,

dynamic parallelism extraction, fine-grained parallelization on multi-cores and

efficient load balancing strategies) can greatly improve system performance. More

application examples need implemented to help eliminate the bottlenecks, in order to

gain more performance increase.

ELECTRONIC APPENDIX

The electronic appendix for this article can be accessed in the ACM Digital Library.

ACKNOWLEDGMENTS

Page 22 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

Efficient Parallel Simulation of Variable Structure Systems under Multi-core Environments
39:23

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. xx, Article xx, Publication date: Month YYYY

The research is supported by the NSFC (National Science Foundation of China) Projects (No. 61103096) in

China, the National High-Tech Research and Development Plan of China under Grant No. 2011AA040501,

and the Fundamental Research Funds for the Central Universities in China.

REFERENCES

Bernard P. Zeigler, Herbert Praehofer. Systems Theory Challenges in the Simulation of Variable Structure

and Intelligent Systems. Computer Aided Systems Theory—EUROCAST '89 Lecture Notes in

Computer Science Volume 410, 1990, pp 41-51.

Adelinde Uhrmacher. Dynamic structures in modeling and simulation: a reflective approach. ACM Trans.
Model. Comput. Simul., 11(2):206–232, 2001.

Zeigler, B. P., Kim, T. G., Lee, C. 1991. Variable structure modelling methodology: an adaptive computer

architecture example. Transactions of The Society for Computer Simulation. 7(4):291-319.

A. M. Uhrmacher, J. Himmelspach, etc. INTRODUCING VARIABLE PORTS AND MULTI-COUPLINGS

FOR CELL BIOLOGICAL MODELING IN DEVS. In Proceedings of the 2006 Winter Simulation
Conference.

 Hu, X. L., Zeigler, B. P., Mittal, S., Variable Structure in DEVS Component-Based Modeling and

Simulation, simulation, 2005, DOI: 10.1177/0037549705052227

F. J. Barros. Modeling Formalisms for Dynamic Structure Systems. ACM Transactions on Modeling and
Computer Simulation (TOMACS), 7:501 – 515, 1997.

Wang, J. J., Jagtap, D., Abu-Ghazaleh, N., Ponomarev, D. 2013. Parallel discrete event simulation for

multi-core systems: analysis and optimization. IEEE Transaction on Parallel and Distributed Systems.

Biswas, Rupak, et al. "Petascale computing: Impact on future NASA missions." Petascale Computing:

Architectures and Algorithms (2007): 29-46.

Habata, Shinichi, Mitsuo Yokokawa, and Shigemune Kitawaki. "The earth simulator system." NEC

Research and Development 44.1 (2003): 21-26.

Himmelspach, J., Uhrmacher, A. M. 2004. In Proceedings of the IEEE Computer Society‘s 12th Annual
International Symposium on Modeling, Analysis, and Simulation of Computer and
Telecommunications Systems. 329-336.

Wainer G, Glinsky E, Gutierrez-Alcaraz M. Studying performance of DEVS modeling and simulation

environments using the DEVStone benchmark. Simulation, 2011, 87(7): 555-580.

Zacharewicz G, Hamri M E A, Frydman C, et al. A generalized discrete event system (G-DEVS) flattened

simulation structure: application to high-level architecture (HLA) compliant simulation of workflow.

Simulation, 2010, 86(3): 181-197.

Muzy A, Nutaro J J. Algorithms for efficient implementations of the DEVS & DSDEVS abstract

simulators[C]//1st Open International Conference on Modeling & Simulation (OICMS). 2005: 273-279.

Wainer, G., and N. Giambiasi, Application of the Cell-DEVS paradigm for cell spaces modeling and

simulation. Simulation, v. 76, 2001, p. 22-39.

Muzy, A., Hu, X. L., 2008. Specification of Dynamic Structure Cellular Automata & Agents. In Proceedings
of The 14th IEEE Mediterranean Electrotechnical Conference. 240-246.

Posse, E., Vangheluwe, H. 2007. Kiltera: a simulation language for timed, dynamic structure systems. In

Proceedings of 40th Annual Simulation Symposium. 293-300.

WANG Chao, YANG Feng, LI Qun, et al. Dynamic evolution method for SMP2 simulation system under

service oriented architecture. Computer Engineering and Applications, 2011, 47(28):28-32.

European Space Agency. SMP 2.0 Handbook Issue 1 Revision 2[Z]. EGOS-SIM-GEN-TN-0099, 2005.10.

Ryan James Miller, ―Optimistic Parallel Discrete Event Simulation on a Beowulf Cluster of Multi-core

Machines,‖ Master Dissertation, Cicinati University, July, 2010.

L. Chen, Y. Lu, Y. Yao, S. Peng, and L. Wu, ―A well-balanced Time Warp system on multi-core

environments,‖ In Proceedings of the 25th Workshop on Principles of Advanced and Distributed
Simulation. IEEE Computer Society, 2011, pp. 1–9.

Vitali, R., Pellegrini, A., Quaglia, F. 2012. Load sharing for optimistic parallel simulations on multi-core

machines. ACM SIGMETRICS Performance Evaluation Review. 40(3): 2-11.

Wenjie Tang, Yiping Yao, Feng Zhu. A hierarchical parallel discrete event simulation kernel for multicore

platform, Cluster Computing, 2012.

Liu, Q., Wainer, G. Multicore acceleration of Discrete Event System Specification systems. Simulation.

88(7): 801-831.

K. El-Khatib and C. Tropper. On metrics for the dynamic load balancing of optimistic simulations. In

Proceedings of the 32nd Hawaii International Conference on System Sciences. IEEE Computer Society,

1999.

Bergero F, Kofman E, Cellier F. A novel parallelization technique for DEVS simulation of continuous and

hybrid systems. Simulation, 2012.

Peschlow, P., Honecker, T. and Martini, P. (2007) ‗A flexible dynamic partitioning algorithm for optimistic

distributed simulation‘, In Proceedings of 21th ACM/IEEE/SCS International Workshop on Principles

Page 23 of 24 Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For Peer Review

39:24 C. Yang et al.

ACM Transactions on Modeling and Computer Simulation, Vol. xx, No. x, Article x, Publication date: Month YYYY

of Advanced and Distributed Simulation, IEEE Press, San Diego, California, pp.219–228.

Gan, B.P., Low, Y.H., Jain, S., Turner, S.J., Cai, W., Hsu, W.J. and Huang, S.Y. (2000) , Load balancing for

conservative simulation on shared memory multiprocessor systems, In Proceedings of Fourteenth
Workshop on Parallel and Distributed Simulation, Bologna, Italy, pp.139–146.

P. L. Reiher and D. Jefferson. Virtual time based dynamic load management in the time warp operating

system. In Proceedings of the 1990 SCS Multiconference on Distributed Simulation, pages 103–111.

SCS, 1990.

D.W. Glazer and C. Tropper. On process migration and load balancing in time warp. IEEE Transactions on
Parallel and Distributed Systems, 4(3):318–327, 1993.

Robson E. De Grande, Azzedine Boukerche, Dynamic balancing of communication and computation load

for HLA-based simulations on large-scale distributed systems, J. Parallel Distrib. Comput. 71 (2011)

40–52.

G. D'Angelo, M. Bracuto, Distributed simulation of large-scale and detailed models, Int. J. of Simulation
and Process Modelling, 2009 Vol.5, No.2, pp.120 - 131.

M.-R. Jiang, S.-P. Shieh, and C.-L. Liu. Dynamic load balancing in parallel simulation using time warp

mechanism. In Proceedings of the 1994 International Conference on Parallel and Distributed Systems,

pages 222–229. IEEE Computer Society, 1994.

Peng Yong, Cai Ying, Zhong Rong-hua, etc. Parallel Framework for HLA Federate Oriented to Simulation

Component on Multicore. Journal of Software, 2012,23(8):2188−2206.

Chen Yang, Bo Hu Li, Peng Chi, Ivy: A parallel simulation engine for variable structure systems under

multi-core environments. Int. J. Service and Computing Oriented Manufacturing, 2013.

Chen Yang, Bo Hu Li, Xudong Chai, Peng Chi, An Efficient Dynamic Load Balancing Method for

Simulation of Variable Structure Systems. In Proceedings of 8th EUROSIM Congress on Modelling
and Simulation 2013, Cardiff, Wales, United Kingdom.

Oren, T., Simulation of time-varying systems, In J. Rose, editor, Advances in cybernetics and systems,

Gordon and breach science publishers Ltd., England, 1975.

Padua, David (2011). Encyclopedia of Parallel Computing. Springer. p. 524. Retrieved 28 January 2012

E.G. Coffman, M.J. Elphick, A. Shoshani. System deadlocks. Computing surveys. Vol.3, No.2, June 1971.

Uhrmacher A M, Ewald R, John M, et al. Combining micro and macro-modeling in DEVS for

computational biology. In Proceedings of the 39th conference on Winter simulation: 40 years! The best
is yet to come. IEEE Press, 2007: 871-880.

Uhrmacher, Adelinde M. "Variable structure models: autonomy and control answers from two different

modeling approaches." AI, Simulation, and Planning in High Autonomy Systems, 1993. Integrating
Virtual Reality and Model-Based Environments. Proceedings. Fourth Annual Conference. IEEE, 1993.

Yi Sun, Xiaolin Hu, Performance measurement of dynamic structure DEVS for large-scale cellular space

models, Simulation, 2009, 85(5): 335-351.

R.M. Fujimoto, Parallel discrete event simulation, Communications of the ACM 33 (10) (1990) 30–53.

Christofides, Nicos (1975), Graph theory: an algorithmic approach, Academic Press, pp. 170–174.

Richard M. Fujimoto, Parallel and distributed simulation systems. 2000. JOHN WILEY & SONS, INC. PP.

39-40.

E. G. Coffman, M. R. Garey, D. S. Johnson, Approximation algorithms for bin packing: a survey,

Approximation algorithms for NP-hard problems, Pages 46 – 93, PWS Publishing Co. Boston, MA,

USA, 1997.

Lewis, R. (2009), "A General-Purpose Hill-Climbing Method for Order Independent Minimum Grouping

Problems: A Case Study in Graph Colouring and Bin Packing", Computers and Operations Research

36 (7): 2295–2310.

Received January 2014; revised March 2014; accepted June 2014

Page 24 of 24Transactions on Modeling and Computer Simulation

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

