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Abstract:

DEVS (Discrete Event System Specification) is an approach in the area of
Modeling and Simulation (M&S) that provides a means of specifying
dynamic systems. A variety of DEVS tools have been implemented without
a standard developmental guideline across board consequently revealing a
lack of central frameworks for integrating heterogeneous DEVS simulators.
When implementing a DEVS Simulator there are salient concepts that are
intuitively defined like how events should be processed, what simulation
architecture to use, what existing procedures (set of rules/algorithm) can
be used, what should be the organizational architecture and so on. From a
review of existing implementation approaches, we propose a taxonomy of
the identified concepts including some formal definitions as they constitute
the essential building blocks of performing PADS by utilizing DEVS. The
contribution of this taxonomy and its impact as a unifying framework is
that it provides a more systematic understanding of the process of
constructing a DEVS simulator. Also, it offers an abstract way for
integrating different and heterogeneous DEVS implementation strategies
and thus can serve as a contribution to the on-going DEVS standardization
efforts.
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Abstract

DEVS (Discrete Event System Specification) is aprapch in the area of Modeling and Simulation
(M&S) that provides a means of specifying dynamystems. A variety of DEVS tools have been
implemented without a standard developmental gimdedcross board consequently revealing a lack of
central frameworks for integrating heterogeneousvBEsimulators. When implementing a DEVS
Simulator there are salient concepts that aretinély defined like how events should be processed,
what simulation architecture to use, what exispngcedures (set of rules/algorithm) can be uset wh
should be the organizational architecture and so Fsom a review of existing implementation
approaches, we propose a taxonomy of the identfdedepts including some formal definitions as they
constitute the essential building blocks of perfimgnPADS by utilizing DEVS. The contribution of ¢hi
taxonomy and its impact as a unifying frameworkhiat it provides a more systematic understanding of
the process of constructing a DEVS simulator. Als@ffers an abstract way for integrating differen
and heterogeneous DEVS implementation strategi@shars can serve as a contribution to the on-going
DEVS standardization efforts.

1. INTRODUCTION

DEVS (Discrete Events Systems Specification) ofeeatform for the modeling and simulation of
sophisticated systems in a variety of domains.nifies various formalisms and provides a general
description for the construction of a model fromaaiginal system and its execution. A DEVS simulato
is capable of reproducing behaviors that are idahto that of the system under observation. Imgloi
so, the modeler is provided with some level of wston by being able to build models without havin
knowledge of how the simulator was built.

Due to the growing complexity of systems to be nhedeefficient simulation of such systems
cannot be performed on a single physical proceg€3oe. way out of this is to make use of distributed
strategies by exploiting the computing power ofrent technologies (grid, cloud, web services etc.).
Some benefits of this include; reduction in exemutime, improved simulation performance, real time
execution and integration of simulators [1]. Pala#ind Distributed Simulation (PADS) [1] has been a
widely researched area with some potential beneftisst, the use of parallel processors promises a
increase in execution speed and a reduction inutoectime. Second, the potentially larger amount o
available memory on parallel processors will enabk execution of larger simulation models. Third,
with the use of multiple processors comes an isg@aolerance to a possible processor failure. In
addition, it provides a solution to the scientifieed to federate existing and naturally dispersed
simulation codes. Thus, simulation architecture lmarcalled parallel if its main design goal iseéduce
execution time while the term distributed simulaticould be referred to as interoperating
geographically dispersed simulator [1, 2, 3]. Buitda simulation model on a particular world view
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significantly reduces implementation complexity. [#lowever, DEVS is a specific simulation protocol,
which unifies the three classic simulation straéegalso known as the world views [2], makes its
distribution a challenging issue.

PADS is a matured field of study but its adaptépito some existing modeling and simulation
formalisms e.g. DEVS, Petri nets is an arduous. tAekour knowledge, DEVS PADS implementation
strategies differ from one another due to the aleseri a general standard. Also, this heterogeneous
factor is a result of not having formal definitiofts the intrinsic elements used in developing DEVS
simulators. It is necessary that these elementglardéied to easily point out the differences beén
these strategies in terms of simulation tree srectconcurrency scheme and partitioning strategy.
Hence, this work will attempt to identify and catihe elements commonly used in these strategies a
well as propose a more generic approach and fdnaalework which is deemed necessary. As well, a
proposal will be made on how to harness the powéina these taxonomies and their bridging. This
will help ease the construction of a DEVS simulatod provide a set of minimum requirements for a
simulator to be labeled "DEVS-Compliant” as a cimition towards the standardization of DEVS
formalism ([30]. Also, it will aid in grasping theoncept of DEVS PADS for modeling and simulation
by practitioners from different simulation domains.

The rest of the paper is organized as follows: i8eck presents the foundations of DEVS
simulation, i.e. the simulation tree, from whichtak distributed strategies are built. Sectiorr&spnts
the key concepts in use in this paper. Identifisdeats in DEVS PADS as well as classification of
research efforts and contributions in this areapesented in Section 4. In Section 5 we present a
generic approach and a language useful for buildiEVS PADS implementation. In Sections 6, we
give a discussion on the framework and its methmgiolnd then conclude in Section 7.

2. DEVS SIMULATION PROTOCOL

The DEVS formalism [2] provides a comprehensivedalimg and simulation framework for
modeling and analysis of Discrete Event Systemsspécifies system behavior as well as system
structure. System behavior in DEVS is describeduph its DEVS dynamic functions while system
structure is built from the composition of atomitdacoupled models. A coupled model is composed of
several atomic or coupled models and atomic maxlal basic component that cannot be decomposed
any further. They are hierarchically organizedtasa in Figure 1.

A DEVS model is built according to specificatioe.i Classic DEVS or Parallel DEVS. CDEVS
(Classic DEVS System Specification) was introduged 976 by Zeigler 5] to simulate and execute
models sequentially on single processor machinerellis a limitation in the CDEVS that does not
allow the proper execution of events that occurccorently [2]. As a solution, the appropriate exemnu
of these simultaneous events has led to the comtgqpbcess and to PDEVS (Parallel DEVS System
Specification) [6].

Due to the separation of concerns in DEVS, theletey needs to focus only on the models being
created avoiding the details about the abstraculator (algorithms). The operational semantics of
DEVS models has been defined by abstract algorif2ind hese algorithms consist of different Nodes
(Coordinator, Simulator) organized in a hierarchgttmimics the hierarchical structure of a model. |
these algorithms, a DEVS atomic model is executgddsigning a simulator to it and to a DEVS
coupled model a coordinator is assigned. From iigiral definition, the DEVS abstract simulator
structure is hierarchical in nature and the hidraraf models is mapped onto Tthe distinctiveness of
the DEVS framework is in its hierarchical compamsitl structures which help in complexity reduction.

During simulation, the interaction/communicatiortvibeen different model components is achieved
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through event messages exchanged between the &rmund Coordinators, each representing an
event to be processed:

(i,t) messages sent from a coordinator to its dailsignal initialization

* (*t) messages sent from a coordinator to its ctaldignal the occurrence of internal events

* (x,t) messages carry information about externalirgwents from a coordinator to its child

* (y,t) messages transmits a model’s output eveats & simulator or a coordinator to its parent

“t” represents the time in which a message is seng¢ceived.

Listed above are the basic types of messagesing2eVS. However, other types of messages (e.g.
(@, t), (done, t)) can be added as many implementatexist and various extensions to DEVS are
defined. The protocol remains the same but actiimsbe performed by a simulating entity
(Simulator/Coordinator) upon the reception of aegivnessage are provided.

" oms N

—> AM,

v

CM-Coupled Model

AM AM L 5 AM -Atomic Model
—P> 2 " 3

Root T
.. Coordinator -’

R S

Figure 1: (a) DEVS model (b) Hierarchical mappifidd&VS model to abstract simulator

3. KEY CONCEPTS
In this section we briefly introduce key conceptsh® framework. The first 3 concepts are formalize
in Definitions 1 and 2 given below. Other concepii be formalized in subsequent sections.

* Root Coordinator is a special simulating elemeat tlrives the global aspects of the simulation
on a tree; it initializes and ends the simulatiwhén a termination condition is detected).

* Nodes: They are simulation entities used for exeguDEVS models. These nodes are
Coordinators, Simulators and Root Coordinators. Rhet Coordinator has an event loop which
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sends event messages and controls the simulatobesayhile the Coordinator and Simulator are
capable of receiving, treating and sending everssages.

Simulation Tree: A tree is made up of nodes. ThetRipordinator is always at the top of the
Tree’s hierarchy and has a Coordinator as its delscg. Also, the Coordinator has either a
Coordinator or Simulator as its descendant buSihaulator has none.

Process: We define it as a stream of executiocoritains two types of nodes during execution
they are active and passive nodes. An active neda mode that is currently active in an
execution stream e.g. Java threads, ADA Tasks. Mhipassive node is part of an execution
stream but not actively involved until it is trigge e.g. function calling in Object Oriented
Paradigm. We consider that a process would haweoat one active node. If a process has more
than one active node, those nodes are then regasdbding autonomous sub-processes. Also,
there can be more than one passive node in a groces

Activity: Set of actions that are performed at theeipt of an event

Processor is a computing resource that allows xleewtion of a program (a process, an entire
tree, any other executable code) on itself.

Simulation Graph: A representation of the relattopsetween the identified aspects in DEVS
simulation. An example of Simulation Graph can s in Figure 2, details about its
components are discussed in the following sections.

Simulation Graph

Legend

. Root Coordinator
I:l Coordinatao

O Simulator
|1)—| Active
@ Node:
]

Passive

O Node:

Figure 2: Relationship between Trees, Procemsg$rocessors

Definition I We formally define Simulation Tree T as

With:

T=<RN,f>
* REN
* f:N - o(N) wherep(N) is Power Set oN
. f_l(R) = (Z)

« O #0, VJEN—{(R}
e Cardinal f(R) =1
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Where:

R: The Root Coordinator of the tree

N: The set of nodes of the tree

f: A function that maps a child node to its parent
A node is a "parent"” of another node (its childj is one step higher in the hierarchy.
For example: Given a Tree T

Tree T will be defined as

R=4
N ={A,B,C,D,E,F,G) B |

f(4) = {B}

f(B) ={C,D,E} O [ ] 5
f(D) ={F,G}

fO=fE)=fE)=fG) =0 () (&

Definition 2: Simulation Tred" can also be defined as
T=<R,N,F >

With:

e REN

e FcNx(N—-{R}

* (a,b)eF b €f(a)
Using Definition 2 for the example aboveandN will be defined as same whirewill be

F = {(A,B),(B,C), (B,D), (B,E), (D,F), (D,G)}

4. TAXONOMY IN DEVS PARALLEL AND DISTRIBUTED SIMULATIO N

There are different practices behind the concémgxploiting DEVS with Parallel and Distributed
Simulation (PADS). Due to this, the concept becoimaslened with variances in opinions on how to
build a DEVS simulator. We were able to identifyifanajor factors in use in these practices. Fist,
realize that some approaches prefer to alter #eedtructure; we call this “Tree Transformation; T3
8,9, 10, 11, 12, and 13]. Second, we recognizestime approaches consider splitting the mode] tree
thus based on the number of possible tree strigcthieg can be realized from this splitting we ¢haié
“Tree-Splitting” [14, 15, 16, 17]. Also, we recogeias well that some approaches differ on the numbe
of executions/processes that can be performedipetagion run; we call this “Process-Clustering9]1
Lastly, some approaches prefer to vary the numbeormputing resources to be used during simulation,
we call this “Processor-Mapping” [2, 11]. In thdléoving sections we present these aspects.

4.1. Tree Transformation

It has been observed that altering a simulatiee structure can improve simulation performance
and also enhance distribution. This transformaisonsually achieved either by reducing or incregsin
the number of nodes of a tree.

4.1.1. Reduction
As presented in [7] the hierarchical structure tbe simulator (which has a one-to-one

correspondence with the DEVS model architecture)icaerease the communication overhead between
Nodes. The process of reducing the number of thesies on a tree is also known as flattening. A
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flattened simulator [8] simplifies the hierarchicanulator while keeping a hierarchical model stuue
(see Figure 3). Though various studies [9], [10Jenahown that a flattened simulator reduces these
costs however, maintaining a hierarchical structases validation and verification during simulatio
Some other approaches prefer to alter the compnaltstructure of a DEVS model. Kim [11] proposed
transforming a hierarchical DEVS model into a nardrchical structure to ease synchronization in a
distributed simulation and Zeigler [2] also consetkbuilding Conservative DEVS simulator for non-

hierarchical models. RC: Root Coordinator
FC: FlatCoordinato
@ @ C: Coordinatol
Cc1 S: Simulato
——> FC

e obbd

Figure 3: Tree Transformation by Reduction

4.1.2. Expansion

In CD++ ([3], [12]) the expansion was achieved byraducing new simulation nodes into the
simulation tree structure as presented in Figufehik is to enable the distribution of Nodes oredtént
processors. The introduction of extra componentthertree introduces more concerns as to what type
of information each of these new components shaolstain. Also, communication between these
Nodes constitutes an increasing overhead costeastiticture of the messages being passed is attered
accommodate extra information. For example a nédwceordinator has no coupled model associated
with it and therefore contains no coupling inforraat(EIC, EOC, IC), also, it has to correctly idént
imminent models and influencees. One way to detd this is through the composition of messages i.e.
by including more information in a message’s cartras seen in [3] and [13].

@ m C* : New Coordinatot

C
c —>

B

Figure 4: Tree Transformation by Expansion

Formally we define Tree Transformation as:
Definition 3: Transf[Na, Nr,Fa,Fr]:t —> t

Transf[Na,Nr,Fa,Fr](< R,N,F >) =<R,N',F' >
With
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e N'=NUNr—Na
* F'=FUFr—Fa
Where
* Na is the set of nodes to be addedvto
* Nris the set of nodes to be removed frm
* Fa is the set of relationships to be added to
* Fristhe set of relationships to be removed fildom
Based on the following conditions:
e NaNN=29Q
e Nr cN-—{R}
e Fa c (NxNa)UNa? U(Na x N —{R})
e Fr CF

4.2. Tree-Splitting

Tree splitting can be referred to as the decomiposdf a simulator tree to form sub-trees based on
the analysis of the model’s structure. We iderdifi@o types namely, single tree structure and plelti
tree structure. It is necessary to state herettimsection does not deal with how the tree stingctan
be split, executed or how they can be mapped titadl@ number of processors.

4.2.1. Single Tree Structure

In describing this structure, executing a modehwai single tree structure (as shown in Figureab) c
be expressed as having an entire model tree sieaiieith the use of a central scheduler called thetR

Coordinator.
- Rool Coordinato
|:| Coordinato

O Simiilator

Figure 5: Single Tree Structure

Single tree structures are mostly implementedgusltassic DEVS (CDEVS) and Parallel DEVS
(PDEVS) algorithms. In CDEVS [2] events are proeesms a sequence. This approach is the simplest
form of simulation but it is rigid and does not peoly reflect the simultaneous occurrence of evants
the system being modeled. Also, serialization redugossible utilization of parallelism during the
occurrence of events. On the other hand, Chow aglet [6] introduced PDEVS as a possible solution
to the problem of serialization. According to Chawne desirable property provided by PDEVS is the
degree of parallelism which can be exploited inapar and distributed simulation. It beats the
restrictions in CDEVS in both execution time andhmoey usage.

4.2.2. Multiple Trees

We look at the multiple tree structure as whenea tan be split into different sub-trees with each
having its own central scheduler/Root Coordinatat different simulation clocks. This is the prefdea
solution in distributed simulation. Based on thisusture, all events with the same timestamp are
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scheduled to be processed simultaneously. It wsgshronous algorithms which rely on the distrildute
synchronization protocols for synchronization iast®f the Root Coordinator.

The two basic asynchronous algorithms in use laeeQptimistic and Conservative (Pessimistic)
DEVS algorithms. In distributed simulation, theseain inherent constraint in the time-stamp ordet (n
in their real-time arrival order) with which event&cur and are processed, this is called locality
constraint. Some algorithms were proposed to restblig constraint, the Conservative ([14], [15B][X
algorithm which always prevent this constraint tigl the use of look-ahead mechanism and Optimistic
[17] algorithm which detect and resolves it througle use of the roll-back mechanism. Optimistic
algorithms, in contrast to Conservative algoritherisable increased degrees of parallelism and do not
depend on application-specific data to decide @nesvthat are safe for processing.

Communication between these trees is usually Etwe

a. Root Coordinator and Root Coordinator (see Figajeety. DEVS Time Warp [2]
b. Coordinators and Simulators (Parents and theird@dil) e.g. DOHS scheme [6] (see

Figure 6b)
é{‘% O%Tz@% éé é :;34* -
a) Communication between Root b) Communication betw@oordinators

Figure 6: Communication between tree structures
Formally we define Tree Splitting as:

Definition 4: Split: 7 - X
With

« T=<R,N,f>

o Split(T) =< {R;},N,f' >
Based on the following conditions:

e RE U{Rl}
e N =NU{R;}
* fI/N =f

Wherer is the set of all possible trees atids the set of all possible simulation skeletorise Tormal
definition for a simulation skeleton has been giurerection 5.

4.3. Process Clustering

Events execution is driven through the use of eses. We take a look at the concept of process as
an execution stream. A process can be seen astem®m that is able to execute events. We categoriz
based on the number of processes; as “one proerssution and “many processes”. However, we will
not be dealing with how execution takes place @tgssors.

4.3.1. One Process

A one-process execution denotes having events ggedan a serially and orderly manner i.e. one
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after another. This restricts concurrent execustreams. Himmelspach [18] denotes this form of
execution as “sequentialization”. In this sense,eitample, the “main” program is a process. Thoagh
desired speed up may not be achieved when using-grocess execution stream, on the other hard it i
easier and faster to implement. During the onegs®aexecution, interaction between the Nodes is
called intra-process communication. Most implemions based on CDEVS make use of one-process
type of execution stream.

4.3.2. Multiple Processes

In the case of many processes, execution of ewamtde split into several logical processes (dasks
for concurrent processing. These logical procesadmsch are autonomous examples, include Java
threads, POSIX threads, Ada tasks and so on.

Using many processes could speed-up executioacks @uld execute events without interrupting
other processes. However this is balanced by ttease of memory consumption and the burden of
communication between processors. This type of conication is called inter-process communication.
It is possible that during a simulation run onlyegrrocess, out of many, is scheduled for execufibis
situation is called pseudo-parallelism otherwisasitpure-parallelism. During implementation it is
essential to manage how processes access resthatase common to all of them e.g. shared data. typ
Locks, Semaphores, Monitors and other synchronimm@ghanisms can be used to coordinate these
processes. The CCD++ [19] implementation utilizesynprocesses for model execution.

Formally we define Process Clustering as:

Definition 5: Cluster:N — Ps
Where

» Psis the set of Processes.
Based on the conditions that

e Cluster™(p)is Connexvp € Ps

* Vp;,pj € Ps, p; #pj, Cluster(p;) N Cluster(pj) = 0,

4.4. Processor Mapping

We considered that the number of processors phagjar role in speed, performance and efficiency
that can be achieved during simulation. We theesfoategorize this into 2 distinct classes; “one-
processor” or “many-processors”.

4.4.1. One Processor

On a uniprocessor system, the entire simulatiors @an one processor so there is no overhead cost
but it is limited to the size of the memory in udJdwus, it is not completely suitable for executing
complex models. The type of communication that $afikace in this case is called an intra-processor
communication.

4.4.2. Multiple Processors

In order to coordinate simulation on many netwdrkgocessors, some form of inter-processor
communications is required to convey data betwemtgssors and synchronize each processor’s
activities. When utilizing multiple processors &mulation, the memory architecture type could ezith
be shared memory (processors have direct accessrimon physical memory), or distributed memory.
Meanwhile, in shared memory only one processoracaess the shared memory hereby introducing the
need to control access to the memory through sgncation. Distributed memory refers to the faettth
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the memory is physically distributed as well. Megnaccess in shared memory is faster but it is &cit
to the size of the memory therefore, increasingrthber of processors without increasing memory
size can cause severe bottlenecks. Inter-processommunications is usually achieved through
interoperability mechanisms (e.g CORBA [31]).

As a consequence of using more than one procabsoNodes can be split into a set of partition
blocks based on certain decision criteria and mapp#o the available number of processors, this is
called partitioning. In the case of no partitiormuslation is performed on a single processor maehin
The partitioning problem is one of the most impottssues in parallel and distributed simulatioritas
directly affects the performance of the simulatiDifferent partitioning algorithms have been progebs
an example is Generic Model Partitioning (GMP) alfpon proposed by Park [20]. It uses cost analysis
methodology to construct partition blocks, althoughmakes an effort to guarantee an incremental
quality of partitioning but is restricted only tooatels from which cost analysis can be extracted and
processed.

Formally we define Processor Mapping as:

Definition 6: Map: Ps — Pr
Where
* Psis the set of Processes
» Pris the set of Processors
Based on the following condition

V pi,pj € Ps, p; #pj, Map(pi)ﬂMap(pj) =0

4.5. Simulation Graph Strategies

Due to the increasing number of complex model systgarious studies have been conducted to
improve efficiencies and performances of DEVS satuis [2, 9, 10, 12, 13, 24, 25] thus giving rige t
various graph strategies. In a general overviewstnmgplementation decisions have been observed to b
based on the presented aspects in the previousrsedin this section we use figures to illustratev
these aspects are interrelated with one anotherguai three-categorized view. Since the Tree
Transformation and Tree Splitting aspects both $omu the Tree, they will be represented as the same
category i.e. the Tree. In each of these categotie=s number of elements i.e. Trees, Processes or
Processors is put into consideration. This theeeforms the basis for development of any Simulation
Graph Strategy presented.

4.5.1. Single Processor — Single Tree — Single Process:

This is the simplest form of mapping strategy whiets one root coordinator (one tree) controlling
the simulation on one processor (see Figure 7)clia of events is purely sequential with no need
synchronize communication between the Nodes. ldase, when simultaneous events occur, one event
is selected and others are ignored thereby intiadutgidity during execution. PythonDEVS [21] uses
this mapping strategy as an implementation of tB&XS formalism and as a consequence it performs
sequential simulation.
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Figure 7: One partition, one tree and one process

4.5.2. Single Processor — Single Tree — Multiple Processes

The entire simulation depends on one Root Cootalinghile execution is through the use of many
processes as shown in Figure 8. These processesonaurrently and are mostly used to increase
execution speed but as the number of processesaserthe rate of memory consumption increases
thereby slowing down execution and time.

This strategy was proposed for use in Abstract dded Simulatof18]. However, depending on
the memory size of the processor and the mode] #ieecost of creating threads gets expensiveeas th
number of models increases. This is a criticaldiatd be considered when using many processes.

Figure 8: One processor, one tree and many pracesse

4.5.3. Single Processor — Multiple Trees — Single Process

Several trees (root coordinators) exist on onegs®ar with each performing sequential execution
one at a time. An example is shown in Figure 9.sTétenario is not realistic because execution is
asynchronous and can be done simultaneously using processes instead.
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Figure 9: One processor, many trees and one process

19 4.5.4. Single Processor — Multiple Trees — Multiple Proceses

20 Several root coordinators (trees) exist on a pamtifas seen in Figure 10). This makes it easy to
21 implement a synchronization mechanism (optimistigpessimistic) for dealing with causality errors.

Causality errors usually occur when messages ate pnocessed in a time-stamp order [1].

o4 Communication between different trees can be madethe root coordinators or coordinators and
25 simulators. This strategy brings about the idedederating existing abstract simulators. Sincettad!

26 trees are on one processor there is intra-processomunication thereby eliminating the need for an
27 interoperability technology.

20 Figure 10: One processor, many trees and many ggese

42 4.5.5. Multiple Processors — Single Tree — Single Process

43 A root coordinator controls the entire simulation multiple partitions while execution is
44 sequential. The sequential execution can only pd&ee locally i.e. when a simulating node receizes
45 message from its parent on the same processorsithalating node sends a message to a node on
46 another processor (remotely) in this case the nuroberocesses used for executing the tree would
increase. An example of this is shown in Figure 11.
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Figure 11: Many processors, one tree and one goces

4.5.6. Multiple Processors — Single Tree — Multiple Proceses

One Root Coordinator controls the entire simulatmm multiple partitions but with multiple
processes. The communication mechanism betweeiNdldes changes since some Coordinators no
longer on the same partition as some of their obidThere are two types of communication between
these nodes i.e. locally (intra-processor) and telyo (inter-processor). At the local level,
communication is between Nodes on the same pracdlsmote communication is achieved through
the use of interoperability technologies (e.g. C@RB1] etc.) to help overcome the limitation of
memory resources otherwise there will be no gaiexecution time. This is the case of PDEVS with
thread proposed by [13]. Also, as seen in [22] wheming parallel and distributed simulations, the
entire simulation tree is divided among a set afcpsses, each of which will execute on a different
CPU. In general terms, each process will host emeare simulation nodes as shown in Figure 12.

Figure 12: Many processors, one tree and many psese

In [13], the authors proposed an algorithm which aisvariant of PDEVS algorithm for
implementation on multi-processor using many preesdgor execution. It allows that sequential and/or
parallel execution can be performed among the nodesach processor. However, extra components
were created. It is therefore limited to the issidescribed previously.
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4.5.7. Multiple Processors — Multiple Trees — Single Proces

This case, which concerns multiple partitions (eemhtaining at least a tree running independently,
as shown in Figure 13), is also not feasible fa& same reasons mentioned Single Processor —
Multiple Trees — Single Process.

©CoO~NOUTA,WNPE

24 Figure 13: Many processors, many trees and oneepsoc

26 4.5.8. Multiple Processors — Multiple Trees — Multiple Pracesses

As shown in Figure 14, each partition containseast one tree and several executions at the same
time. Each tree implements a synchronization mashafor causal errors (because each tree has its
30 own clock). Communications between partitions atieee between the root coordinators (as in [2]) or
31 between the coordinators and simulators (betweesndants and descendants as in [11]) via distdbute
32 simulation middleware such as HLA [32, 33]

a7 Figure 14: Many processors, many trees and maroepses

Optimistic and Conservative strategies are syndhation techniques used for PADS in general.
The conservative approach is the first synchroiwmadlgorithm that was proposed in the late 1940s b
51 Bryant [14], Chandy and Misra [15]. It is also knoas the Chandy-Misra-Bryant (CMB) algorithm and
52 strictly avoids the possibility of processing eveout of time stamp order. In contrast the optiimist
53 approaches, introduced by Jefferson’s Time Warp )(pwWtocol [17], allow causality errors to happen
54 temporarily but provide mechanisms to recover frdbram during execution. The first attempt to
55 combine DEVS and Time Warp mechanism for optimislistributed simulation iDEVS-Ada/TW
[23]. It is an asynchronous approach that useSiime Warp mechanism for global synchronization; it
58 treats all Nodes on one processor as one proce8EVS-Ada/TW, the hierarchical DEVS model can
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be partitioned at the highest level of the hiergrbdr distributed simulation. As a consequence, the
flexibility of partitioning models is restricted.

The DOHS (Distributed Optimistic Hierarchical Siratibn) scheme [7] is a method of distributed
simulation for hierarchical and modular DEVS mod#lat uses the Time Warp mechanism for global
synchronization. In DOHS scheme there is at leasttaee per processor (see Figure 15).

OO0 O

Figure 15: Example Structure of DOHS Scheme

A proposal was made by Zeigler [2] to combine TWiarp with the CDEVS hierarchical simulator
as Time Warp DEVS Simulator. In this approach, dherall model is distributed so that each sub-
model is a single coupled model. Then, hierarchésacution is done locally on each processor using
the classic abstract simulator with extensionsstate saving and restores (rollback). In additeagh
processor has a root coordinator which realizesrteehanism for Time Warp. On each processor, the
root coordinator performs optimistic Time Warp dyranization. For this, it stores the input and oatp
messages of the processor and takes care of assiages.

The "Risk-Free" Optimistic Simulator [2] is anothegrsion of optimistic DEVS simulator. The
operational semantics of the "risk-free" versioropfimistic DEVS is based on optimistic DEVS Time
Warp. The Time Warp optimistic simulator and cooedor are used without change but the
synchronization mechanism in the optimistic roobrdinator changes. Local events on each compute
node (tree) are processed sequentially but optoalkt. That is to say if a straggler event is iieed by
a node, a rollback occurs but is local to that nddhés is less costly when compared to Time Warp.

In parallel versions of CD++ (PCD++ [24], [25] & @3+ ([19], [29]), the authors proposed a
distributed simulation architecture for DEVS andI@&EVS models. This variant uses the flattening
structure of simulators with four simulation nodeseach tree: Simulators, Flat Coordinator (FC)&lo
Coordinator (NC) and Root Coordinator (RC). Roobfdinator is created on one of the processors to
start/end the simulation process and perform I/&atons. FC and NC are created on each processor.
FC is in charge of intra-processor communicatiotwben its children Simulators. NC is the local
central controller on each processor (Figure 1Bhuttor executes the DEVS functions defined in its
atomic model.
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Figure 16 - Structure of Distributed DEVS simulatioa CCD++ and PCD++

To briefly explain some of the strategies in therature in a more formal way we suggest the Tree-
Process-Processor notation. It consists of defitieghumber of elements for each aspect of PADS. We
use N for “many elements”. For example, a 1-1-leseh is a DEVS Simulation Graph strategy with 1
Tree, 1 Process and 1 Processor while N-N-1 is ¥Ptol with many Trees, many Processes and 1
Processor. PythonDEVS [21] is a 1-1-1 strategysés the CDEVS formalism in specifying models and
as a consequence it performs sequential simulafiba.Abstract Threaded Simulator of the James Il
[18]) package uses a 1-N-1 strategy with its preegsreated using Java threads. In [22], the Bhrall
CD++ Simulator and the Parallel Sequential Simuléatp Himmelspach, Ewald, Leye and Uhrmacher
[13], which implements the PDEVS formalism, use 1RhN-N strategy. The Conservative CD++ [29] is
an N-N-N strategy. Some other approaches thathesdtN-N strategy include DEVS-Ada/TW [23],
DOHS scheme by Kim, Seong, Kim and Park [7] andr@iptic Parallel CD++ [24]. A DEVS tool that
uses the N-N-N strategy fully supports distributgchulation. Also, we observed that having an
implementation which involves the use of N-1-1 t&tgy or N-1-N strategy is not realistic. A reason f
this is that the execution of each tree is asynatuwe and can be done simultaneously using many
processes instead. This information is represdantédble 1.

Table 1: State of the art and their Simulation Gr8frategy

Approaches Algorithm Strategy
PythonDEVS CDEVS 1-1-1
(Bolduc and Vangheluw2002)
Abstract Threaded PDEVS 1-N-1
Simulator(Himmelspach, J.
et al. 2006)
Parallel Sequential PDEVS 1-N-N
Simulator(Himmelspach, J.
et al. 2006)
Parallel CD++ PDEVS 1-N-N
(Troccoli and Wainer 2003
Optimistic Parallel CD++ Optimistic DEVS N-N-N
(Qi and Wainer 2007)
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CCD++ Conservative DEVS N-N-N
(Jafer and Wainer 2030
Risk-Free Optimistic DEVS Optimistic DEVS N-N-N
Simulator

(Zeigler et al. 2000)
Time Warp DEVS Simulatgr Optimistic DEVS N-N-N

(Zeigler et al. 2000)
DEVS-Ada/TW Optimistic DEVS N-N-N

(Christensen 1990)
DOHS Optimistic DEVS N-N-N

(Kim et al. 1996)

We identify that a Simulation Graph strategy forimplementation differs from another however
we state here that our definitions of the compohersied in Simulation Graph construction are at an
abstract level. The Links and Nodes in a Simulataph strategy are seen as abstract hence they can
be implemented in different ways either by using limguage in which it was implemented or by using
interoperability technologies (e.g. CORBA [31])tlre some cases where simulators are implemented in
different languages. The only constraint we defioe this is that the simulators implement DEVS
simulation algorithm. Thus the issue of DEVS impégration differences can be overcome.

5. UNIFYING DEVS PADS SIMULATION FRAMEWORK

A unifying framework is needed to harness thetified components and their operations (found in
the Simulation Graph) in a bid to automate the @sscof building a DEVS simulator and performing
simulation by using DEVS with PADS. We interpree thuilding of a DEVS Parallel and Distributed
Simulation (PADS) Simulator as a move from the ioaf) Simulation Tree (ST) to a Simulation Graph
(SG). Having taken a look at the possible Simuiatiéeraph strategies, in this section we propose a
methodology for building a Simulation Graph. A S& abtained through the depictions of the
relationship and the components of DEVS PADS i.eee$, Processes and Processors. This
methodology thus describes a structural and behaw@w in exploiting DEVS PADS.

5.1. From Simulation Tree to Simulation Graph

We propose using a layered approach to preserditiidation structures involved in DEVS PADS
to avoid the pitfalls inherent to the building ofDEVS simulation system suitable for Parallel and
Distributed execution. Also, by using a state chag present the trajectories which describe thefse
all possible paths that can be taken during thstcoection of the Simulation Graph (SG).

The SG construction is driven based on the analysibe initial Simulation Tree, the available
number of Processes and Processors. An overviglwsofmethodological approach is given by the state
chart given in Figure 17. It is worth noting thhetmethodology iterates on each state until sorae us
defined satisfaction criteria are reached (optisalitting, optimal clustering, optimal mapping and
optimal transformation).
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[Map is Optimal]

Simulation Graph

[Not Map is Optimal]

Simulation Bundle

Transform
Figure 17: Simulation Graph Methodology

Splitis a function that is used for creating a pamitad nodes from &imulation TreeThe Cluster
function takes the available number of nodes armbaates them withProcesses While the Map
function takes the set of availaliheocessesnd plots them onto the set of availaBl®cessorsAlso,
the Transform function alters theSimulation Treestructure either by expansion or reduction. This
altering is done on the number of available nodes ihcluding the Root Coordinators) on the Tred an
their relationships. The processTafansformation Splitting, ClusteringandMapping continues until it
is sure that a good performance or speed will beegaduring simulation from the ne@imulation
Graph TheSimulation Skeletois the structure of the simulation protocol tha ¢it the PADS scheme.
The Simulation Budle is a collection of cluster of nodes. Examples shown in Figures 18 and 19
respectively.

Figure 18: Simulation Skeleton Figure 19: Simulation Bundle

We formally define each of the Simulation Structutbat are found in this methodology (the
definitions for the Simulation Tree structure aocairid in Definitions 1 and 2). To have a complete
definition we make reference to Clustering and Magunctions which have been formally defined in
Definitions 5 and 6 respectively while definitiof the Transform and Split functions are given in
Definitions 3 and 4.
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Definition 7: A Simulation Skeleton is defined by
S=<{R},N,f >
With

R; EN Vi
f: N = p(N) whereg(N) is Power Set oN
YR = O Vi

1) # 0, V] € N —U{R;}

Definition 8: A Simulation Bundle is formally defined as
B =< {R;}, N, f, Ps, Cluster >
With
* <{R;},N,f > as a skeleton
* Psis the set of Processes
e (Cluster: N - Ps

Definition 9: A Simulation Graph is defined by
G =<{R;},N, f,Ps, Pr,Cluster, Map >
With
e <{R;},N,f,Ps,Cluster > is a Simulation Bundle
e Pris a set of Processors
« Map:Ps - Pr

5.2. Common Language for the Simulation Structures
We are developing a supporting tool called Sim®t§#6] in which the framework has to be

applied. To achieve this goal we define an XML (@édible Markup Language) representation of the
Simulation Structures formally presented in presi@ections. We have chosen XML because it is a
widely used standard that allows the descriptiorarmy kind of data and thus can be used for data
storage. This language (XML and its platform indegent solutions) will be used to specify, construct
describe and preserve information about each Stronl&tructure. Figure 20 shows the building blocks
of this XML-based language. Each of this descripttonforms to our proposed methodology and they
also take into account multiplicities of the elertsetmat form each Structure. These multiplicitiecp a
constraint on the allowed number of elements ife&&tcucture. The Tree consists of a descriptioruabo
Nodes (Root, Coordinator, and Simulator) and thssociated DEVS model. In the specification for
Skeleton, it describes the new Root Node(s) thatagided to the structure. Bundle consists of Nodes
which are clustered into Processes while the VMt(Mdil Machine) description contains information
about the Processors to be used for simulatiorpl@alescription uses elements from Bundle and VM
i.e. it consists of Processes which are mapped dfechines.

Such a representation opens the door to the diratien of the abstract process described by
Figure 17. As an illustration, Figure 25 shows hkey concepts of the framework are assembled and
concretely represented from the original tree olgt@diwith Figure 21 to the final Simulation Graph.
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1
2
3
4
5
6
7 Tree
8 (name) Skeleton
9 (name, treeName)
10 (1..1) (1.7 (1.4 (0.7
11 Root Coordinator Simulator Root
ig (1D, child) (ID, modelName (ID, modelName) (1D, child)
14 (1%
15 Child (b)
16 (ID)
17
18 @
Graph

19 Bundle VM (mname_ hiindleName. vmNar
20 (name, skeletonName)

(name N
21 .9 1.9
22 I;rocess 1.% Machine
23 Processor (processorll)
24 (processi) (processorlD, name, addr) (1.9
25 2. )

@ Child
26 Node (processll)
27 (ID)
28 () (e)
29
30
31
gé Figure 20: Description for (a) Tree (b) SkeletopBandle (d) VM (e) Graph
34
35 We take a scenario of a university system whidersfMasters and PhD degree programs as a
36 DEVS model. Each program’s model consists of 2 moldels. Each student enrolled in the Masters’
37 program is expected to complete and submit a proefore moving on to the PhD program. While in
38 the PhD program, the student is first enrolled asradidate and then he is to write a candidacy exam
zg towards the end of his first year. If he succeedsstatus is then upgraded to being a PhD student.
a Figure 21 is a screenshot of the Eclipse-DDML Mougltool [28] (part of the SimStudio M&S
42 Framework) which shows the model of the universitstem. We do not present the entire process from
43 the scenario to the final code. However we show liosvSimulation Graph and its language can be
44 constructed from this scenario. Figure 22 drawsnfrthis model to illustrate Simulation Graph
45 construction. Nodes C’A, C'B, C'C represents theivdrsity, Masters and PhD models of Figure 21
46 respectively while S'D, S’E, S'F, S'G represents #tudents, project, candidate and student sub{siode
47 :
48 respectively.
49 Starting with this model (Figure 21),Simulation Treewvhich mimics the hierarchical structure of
50 this model can be obtained. This is done by assggan Atomic Model to a Simulator and to a Coupled
51 Model a Coordinator is assigned. The Coordinatar Simulator aré&Nodesof aSimulation TreeAlso a
52 Root Coordinator which controls the entire simwatiprocess is added to the top of fhees
53 hierarchy. The generatesimulationTree structure (Figure 22(a)) is contained in an XMle.fiThe
2‘5‘ outcome of operations performed is a different 3athon Structure except at the Transform operation
56 stage which produces a modified representatiohe$imulation Treestructure.
57
58
59
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Figure 21: DEVS Model of the University System

Split operation creates a partition d®fodes and causes an increase in the number of Root
Coordinators on the obtaindaee from the previous operation. This functionalitygisen by the Split
plug-in. The existing relationships between thEeslesare not modified but new ones are created to
accommodate the new Root Coordinators. In this @kan@ Trees were created from the initial
Simulation Tree also the initial Root Coordinator still exists part of theTrees As seen in Figure
22(b), what is usually obtained afteBplit operation is &imulation Skeletoand stored as an XML file
for use by the Cluster plug-in.

During theClusteroperation, eacNodeof theSimulation Skeletors grouped into available number
of Processeshereby creating & mulation BundléFigure 22(c)). This is done in such a way thathea
Processcontains at least lIdodeand noProcessshares &odewith anotheProcess Also eachProcess
has a one-to-one relationship with anotRescess The Cluster plug-in provides this functionalityda
produces th&imulation Bundleas an XML file.

The information about each of the Processors msagoed in a XML file and used by Map plug-in.
The Map operation takes each of theBeocessedrom the Simulation Bundleand plots them to an
available number oProcessordhereby producing imulation Graph(Figure 22(d)). The information
about each of thederocessorgs stored in the VM.xml file. Just as in the ca$e Cluster Operation
eachProcesscannot exist on more than ofeocessorand eachProcessormust contain at least a
Process The outcome of this is an XML file representatafrSimulation Graplstructure which can be
used for automatic code synthesis (Java, C++, @hop) and formal analysis.

The complete XML representation for each of thesfilused in Figure 22 together with their
document description is given in the appendix.
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Tree.xm

<Tree Name = "testCase_Tree" >
<Root ID="R1" child = "A" />

</Coordinator>

</Tree>

<Coordinator ID="C’A" modelName="A">

;:Simulofor ID="S'"D" modelName="D" />

Tree.xml
+

treeName= "testCase_Tree">

<)§i<elefon>

<skeleton name = "testCase_Skel"

<Root ID="R2" child="C'C" />

Bundle.xml
+

<graph name = "testCase_grapi
bundleName="testCase_bund"
vmName="testCase_VM" >
<machine processorlD="Pr1" >
<child processiD = "P1"/>

</machine>
<machine processiD="Pr2" >
<child processiD = "P2"/>

</machine>
</graph>>

m

Simulation: Transactions of the Society for Modeling and Simulation International

Skeleton.xml
+

<bundle name = ”TesTCase_buncN
skeletonName="testCase_Skel" >
<process processiD="P1" >
<node ID="R1"/>

</process>
<process processiD="P2" >

</process>
<process processiD="P3" >

</process>
</bundle>

LEGEND

R = RootCoordinator
C’ = Coordinator

S’ = Simulator

P = Process

Pr = Processor

Figure 22: lllustration of Simulation Graph constiion using the XML-based Language
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6. DISCUSSION

Our work presents an abstract approach to unifisoily parallel and distributed simulation main
concepts. The difference between the parallel astdlzlited concept is how abstract links between th
processors of the Simulation Graph are implementegbarallel simulation they are realized by the
architecture of the parallel computer while in dited simulation they are realized through
networking protocols (e.g. HTTP, FTP, etc.) or tembgies (CORBA and so on).

The purpose of this paper is to propose a genendard for DEVS PADS implementation strategies
and contribute to a better understanding of theuition Structures for any implementation strategy.
This methodology takes into account the utilizatmDEVS PADS for simulation, the Simulation
Structures and the operations that can be perforonethem. At this point, we discuss some of the
potential benefits that can be found in this methogly.

A simple and efficient guideline: Another essentéhcs paper is to provide a guideline, help or
open library for performing simulation with DEVS BA&. This has been achieved through the
proposed methodology which also uses a layeredoapbrin its representation. This approach
provides a common frame of reference for perfornsigulation with DEVS PADS. Also it
promotes modularity and Simulation Structure reuse.

A basis for introducing the evaluation of DEVS PABtBategies: As it has been observed that
there are different practices behind the concepixpfoiting DEVS PADS which usually results
in obtaining a Simulation Graph. The classificataf these practices is based on varying the
number of elements (i.e. Trees, Processes, an@$yms). For example, in Parallel CD++ [22],
the Simulation Graph Strategy used consists ofeee,Tmany Processes and many Processors
while the Abstract Threaded Simulator of the Jath§s8] package a Tree, many Processes and
a Processor and Conservative CD++ ([19], [29]) usesy Trees, many Processes and many
Processors. With the various practices that hawen lmbserved, they introduce the need for
evaluation or complexity analysis. This would beedigo determine which of the obtained
Simulation Graph is more efficient or which woultveyan improved performance and so on.
This methodology therefore gives a foundation fdvi@ving this through its generic nature.

There has been an on-going research effort in gimmyistandard representation of DEVS to
support common understanding, sharing and inteatydéy. Decisions which are to be taken
while implementing a DEVS PADS simulator includewhevents should be processed, what
simulation architecture to use, what should beaditganizational architecture and so on. These
decisions could be challenging therefore we progp@ssolution by going through a review of
existing approaches, categorized them (i.e. SinamaBGraph strategies) and came up with an
integrative view producing a formally specified figd taxonomic framework. As a result, all
practitioners dealing with building DEVS PADS siratdrs can now choose to use this new
layered taxonomy as a reference framework for $yiagi their approaches unambiguously,
fostering knowledge reuse across the community. sThour work contributes towards
implementing DEVS PADS simulators and can be ta®m helpful tool in the context of the
DEVS standardization efforts.

Moreover, the underlying methodology uses a layexeproach in its representation as shown in
Figure 23. This approach permits the easy integradf the identified Simulation Structures into the
taxonomic framework. As we move up the layers, éichulation Structure inherits the DEVS PADS
element of the Simulation Structure beneath it. Bimaulation Tree consists of just the Tree and the
Simulation Graph combines all the elements usddBENS PADS i.e. Tree, Process and Processor. The
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benefit of this approach is that it gives a straighd clear guideline for realizing DEVS PADS by
avoiding the possible pitfalls:

A common pitfall is in trying to distribute the meldnstead of the simulation (this confusion is
due to the fact that most simulations don’t seacégarly the concerns). The taxonomy makes it
clear what should be distributed i.e. the simutapootocol and not the simulation model.

When defining the Simulation Graph, a common ditéato understand the partitioning as a one-
to-one mapping between simulation nodes and presesEhe taxonomy makes clear the
difference between the nodes that represent thelaiion components and the way they can be
aggregated at the implementation level as part single process (e.g. the same thread can
implement a coordinator and its children simulgtofs an illustration, trying to model the SG
of the university system given in Figure 21 by daap single tree - single process - single
processor strategy will lead to implementing theol@hSimulation Tree as the process (which
implies that all nodes of the Simulation Tree an@lemented as passive nodes except the Root
Coordinator which will be the main program).

From an existing distributed code, it is diffictdt build a new distributed solution which must
implement a different Simulation Graph strategy. @&ample is the building of a new N-N-N
strategy for an existing N-N-N strategy by incregsior decreasing the number of
trees/processes/processors or by reallocating reliffiy processes (respectively nodes) to
processors (respectively processes). Taxonomy geewa framework for specifying, comparing
and contrasting various implementations and offestandardized platform for all DEVS PADS
methodologies. To modify the Simulation Graph fdajgtation to a new computing architecture,
starting from the SG layer there would be a neethdéoe to the layer below it or back to the
Simulation Tree before making the necessary matibo in the Simulation Structure (see
Figure 23). Using this layered approach proposethisy methodology, this way, errors can be
easily detected and corrected.

The lack of a unified approach for DEVS PADS depetent can deter the easy integration of
DEVS PADS simulators. For example, combining twestxg trees (or combining two existing
Simulation Graph or an existing Simulation Treehwéin existing Simulation Graph) to get a
final Simulation Graph is not obvious. Also, withet various practices involved in building
DEVS PADS simulators, it is difficult to evaluataagh design and implementation on the same
basis. The proposed approach offers a common frailneeference for all DEVS PADS
simulators. Failure or inability to facilitate casiency while specifying a Simulation Structure
indicates a lack of focus on the essential elemefhtthe taxonomic framework and an
understanding of the value that each structureribortés within the framework.
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Figure 23: Layered Approach

7. CONCLUSION

This paper has presented a taxonomy and its ingset methodological framework for providing
DEVS PADS solutions. It has provided a more systemanderstanding of the process of constructing a
DEVS simulator. Also, it proffered an abstract way integrating different and heterogeneous DEVS
implementation strategies. As a consequence wethsgethis taxonomy would enable practitioners
dealing with building DEVS PADS solutions to spgciheir Simulation Graph strategy explicitly as
well as foster knowledge reuse across the commuhifiyile some research efforts have been on
interoperating DEVS simulators [33] we have focused how to build a DEVS simulator as an
important contribution to DEVS Standardization [34)e are developing a software tool called
SimStudio [26] to support the methodological frarmeky
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DTD

XML

<?xml version="1.0" encoding="UTF-8"?>
<IELEMENT Tree (Root, Coordinator+,
Simulator+)>
<IATTLIST Tree

name CDATA #REQUIRED

xmins CDATA #IMPLIED>
<IELEMENT Root EMPTY>
<IATTLIST Root

ID CDATA #REQUIRED

child CDATA #REQUIRED>
<IELEMENT Coordinator (child+)>
<IATTLIST Coordinator

ID CDATA #REQUIRED

modelName CDATA #REQUIRED>
<IELEMENT child EMPTY>
<IATTLIST child

ID CDATA #REQUIRED>
<IELEMENT Simulator EMPTY>
<IATTLIST Simulator

ID CDATA #REQUIRED

modelName CDATA #REQUIRED>

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE Tree SYSTEM "tree.dtd">
<Tree name="testCase_Tree" xmIns="http://ddml/2.0"
<Root ID="R1" child="C'A" />
<Coordinator ID="C'A" modelName="A">
<child ID="C'B" />
<child ID="C'C" />
</Coordinator>
<Coordinator ID="C’'B" modelName="B">
<child ID="S’D" />
<child ID="S'E" />
</Coordinator>
<Coordinator ID="C’C" modelName="C">
<child ID="S’F" />
<child ID="S'G" />
</Coordinator>
<Simulator ID="S’D" modelName="D" />
<Simulator ID="S’E" modelName="E" />
<Simulator ID="S’F" modelName="F" />
<Simulator ID="S'G" modelName="G" />
</Tree>

* Skeleton

DTD

XML

<?xml version="1.0" encoding="UTF-8"?>
<IELEMENT skeleton (Root+)>
<IATTLIST skeleton
name CDATA #REQUIRED
treeName CDATA #REQUIRED
xmins CDATA #IMPLIED>
<IELEMENT Root EMPTY>
<IATTLIST Root
ID CDATA #REQUIRED
child CDATA #REQUIRED>

<?xml version="1.0" encoding="UTF-8" ?>

<IDOCTYPE skeleton SYSTEM "skeleton.dtd">

<skeleton name = "testCase_Skel" treeName=

"testCase_Tree" xmins = "/XML_DEVS/transform">
<Root ID="R2" child="C'C" />

</skeleton>

« Bundle

DTD

XML

<?xml version="1.0" encoding="UTF-8"?>
<IELEMENT bundle (process+)>
<IATTLIST bundle
name CDATA #REQUIRED
skeletonName CDATA #REQUIRED
xmins CDATA #IMPLIED>
<IELEMENT process (node+)>
<IATTLIST process
processID CDATA #REQUIRED>

<?xml version="1.0" encoding="UTF-8" ?>
<IDOCTYPE bundle SYSTEM "bundle.dtd">
<bundle name = "testCase_bund"
skeletonName="testCase_Skel" xmins =
"/XML_DEVS/skeleton">
<process process|D="P1" >

<node ID="R1"/>

<node ID="C'A" />

<node ID="C'B" />
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<I[ELEMENT node EMPTY>
<IATTLIST node
ID CDATA #REQUIRED>

<node ID="S'D" />
<node ID="S'E" />
</process>
<process process|D="P2" >
<node ID="R2" />
</process>
<process process|D="P3" >
<node ID="C'C" />
<node ID="S'F" />
<node ID="S'G" />
</process>
</bundle>

VM

DTD

XML

<?xml version="1.0" encoding="UTF-8"?>
<IELEMENT VM (Processor+)>
<IATTLIST VM

name CDATA #REQUIRED>
<IELEMENT Processor>
<IATTLIST Processor

processorlD CDATA #REQUIRED

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE VM SYSTEM "vm.dtd">
<VM name="testCase_VM">

<Processor processorID="P_1" name = "Virtual 1"
address="192.168.110.1"/>
<Processor processorID="P_2" name = "Virtual 2"

address="192.168.110.2"/>

name CDATA #REQUIRED </NM>
address CDATA #REQUIRED>
e Graph
DTD XML

<?xml version="1.0" encoding="UTF-8"?>
<IELEMENT graph (vm:machine+)>
<IATTLIST graph

name CDATA #REQUIRED

bundleName CDATA #REQUIRED

vmName CDATA #REQUIRED

xmlins:bundle CDATA #IMPLIED

xmins:vm CDATA #IMPLIED>
<IELEMENT vm:machine (bundle:child+)>
<IATTLIST vm:machine

processorlD CDATA #REQUIRED>
<IELEMENT bundle:child EMPTY>
<IATTLIST bundle:child

processiD CDATA #REQUIRED>

<?xml version="1.0" encoding="UTF-8"?>
<IDOCTYPE graph SYSTEM "graph.dtd">
<graph name = "testCase_graph"
bundleName="testCase_bund" vmName="testCase_VM"
xmins:bundle = "/XML_DEVS/bundle" xmIns:vm =
"/XML_DEVS/vm">
<vm:machine processor|D="Pr1" >
<bundle:child processID = "P1"/>
</vm:machine>
<vm:machine processorID="Pr2" >
<bundle:child processID = "P2"/>
<bundle:child processID = "P3"/>
</vm:machine>
</graph>
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