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Modeling and Simulation (M&S) that provides a means of specifying 
dynamic systems. A variety of DEVS tools have been implemented without 
a standard developmental guideline across board consequently revealing a 
lack of central frameworks for integrating heterogeneous DEVS simulators. 
When implementing a DEVS Simulator there are salient concepts that are 
intuitively defined like how events should be processed, what simulation 
architecture to use, what existing procedures (set of rules/algorithm) can 
be used, what should be the organizational architecture and so on. From a 
review of existing implementation approaches, we propose a taxonomy of 
the identified concepts including some formal definitions as they constitute 
the essential building blocks of performing PADS by utilizing DEVS. The 
contribution of this taxonomy and its impact as a unifying framework is 
that it provides a more systematic understanding of the process of 
constructing a DEVS simulator. Also, it offers an abstract way for 
integrating different and heterogeneous DEVS implementation strategies 
and thus can serve as a contribution to the on-going DEVS standardization 
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Abstract 
DEVS (Discrete Event System Specification) is an approach in the area of Modeling and Simulation 
(M&S) that provides a means of specifying dynamic systems. A variety of DEVS tools have been 
implemented without a standard developmental guideline across board consequently revealing a lack of 
central frameworks for integrating heterogeneous DEVS simulators. When implementing a DEVS 
Simulator there are salient concepts that are intuitively defined like how events should be processed, 
what simulation architecture to use, what existing procedures (set of rules/algorithm) can be used, what 
should be the organizational architecture and so on. From a review of existing implementation 
approaches, we propose a taxonomy of the identified concepts including some formal definitions as they 
constitute the essential building blocks of performing PADS by utilizing DEVS. The contribution of this 
taxonomy and its impact as a unifying framework is that it provides a more systematic understanding of 
the process of constructing a DEVS simulator. Also, it offers an abstract way for integrating different 
and heterogeneous DEVS implementation strategies and thus can serve as a contribution to the on-going 
DEVS standardization efforts. 
 
1. INTRODUCTION 

DEVS (Discrete Events Systems Specification) offers a platform for the modeling and simulation of 
sophisticated systems in a variety of domains. It unifies various formalisms and provides a general 
description for the construction of a model from an original system and its execution. A DEVS simulator 
is capable of reproducing behaviors that are identical to that of the system under observation. In doing 
so, the modeler is provided with some level of abstraction by being able to build models without having 
knowledge of how the simulator was built. 

Due to the growing complexity of systems to be modeled, efficient simulation of such systems 
cannot be performed on a single physical processor. One way out of this is to make use of distributed 
strategies by exploiting the computing power of current technologies (grid, cloud, web services etc.). 
Some benefits of this include; reduction in execution time, improved simulation performance, real time 
execution and integration of simulators [1]. Parallel and Distributed Simulation (PADS) [1] has been a 
widely researched area with some potential benefits.  First, the use of parallel processors promises an 
increase in execution speed and a reduction in execution time. Second, the potentially larger amount of 
available memory on parallel processors will enable the execution of larger simulation models. Third, 
with the use of multiple processors comes an increased tolerance to a possible processor failure. In 
addition, it provides a solution to the scientific need to federate existing and naturally dispersed 
simulation codes. Thus, simulation architecture can be called parallel if its main design goal is to reduce 
execution time while the term distributed simulation could be referred to as interoperating 
geographically dispersed simulator [1, 2, 3]. Building a simulation model on a particular world view 
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significantly reduces implementation complexity [4]. However, DEVS is a specific simulation protocol, 
which unifies the three classic simulation strategies also known as the world views [2], makes its 
distribution a challenging issue.  

PADS is a matured field of study but its adaptability to some existing modeling and simulation 
formalisms e.g. DEVS, Petri nets is an arduous task. To our knowledge, DEVS PADS implementation 
strategies differ from one another due to the absence of a general standard. Also, this heterogeneous 
factor is a result of not having formal definitions for the intrinsic elements used in developing DEVS 
simulators. It is necessary that these elements are clarified to easily point out the differences between 
these strategies in terms of simulation tree structure, concurrency scheme and partitioning strategy. 
Hence, this work will attempt to identify and capture the elements commonly used in these strategies as 
well as propose a more generic approach and formal framework which is deemed necessary. As well, a 
proposal will be made on how to harness the power behind these taxonomies and their bridging. This 
will help ease the construction of a DEVS simulator and provide a set of minimum requirements for a 
simulator to be labeled “DEVS-Compliant” as a contribution towards the standardization of DEVS 
formalism ([30]. Also, it will aid in grasping the concept of DEVS PADS for modeling and simulation 
by practitioners from different simulation domains. 

The rest of the paper is organized as follows: Section 2 presents the foundations of DEVS 
simulation, i.e. the simulation tree, from which all the distributed strategies are built. Section 3 presents 
the key concepts in use in this paper. Identified aspects in DEVS PADS as well as classification of 
research efforts and contributions in this area are presented in Section 4. In Section 5 we present a 
generic approach and a language useful for building a DEVS PADS implementation. In Sections 6, we 
give a discussion on the framework and its methodology and then conclude in Section 7.  
 
2. DEVS SIMULATION PROTOCOL 

 The DEVS formalism [2] provides a comprehensive modeling and simulation framework for 
modeling and analysis of Discrete Event Systems. It specifies system behavior as well as system 
structure. System behavior in DEVS is described through its DEVS dynamic functions while system 
structure is built from the composition of atomic and coupled models. A coupled model is composed of 
several atomic or coupled models and atomic model is a basic component that cannot be decomposed 
any further. They are hierarchically organized as shown in Figure 1.  
 A DEVS model is built according to specification i.e. Classic DEVS or Parallel DEVS. CDEVS 
(Classic DEVS System Specification) was introduced in 1976 by Zeigler 5] to simulate and execute 
models sequentially on single processor machine. There is a limitation in the CDEVS that does not 
allow the proper execution of events that occur concurrently [2]. As a solution, the appropriate execution 
of these simultaneous events has led to the concept of process and to PDEVS (Parallel DEVS System 
Specification) [6].  
  Due to the separation of concerns in DEVS, the modeler needs to focus only on the models being 
created avoiding the details about the abstract simulator (algorithms). The operational semantics of 
DEVS models has been defined by abstract algorithms [2]. These algorithms consist of different Nodes 
(Coordinator, Simulator) organized in a hierarchy that mimics the hierarchical structure of a model. In 
these algorithms, a DEVS atomic model is executed by assigning a simulator to it and to a DEVS 
coupled model a coordinator is assigned. From its original definition, the DEVS abstract simulator 
structure is hierarchical in nature and the hierarchy of models is mapped onto it. The distinctiveness of 
the DEVS framework is in its hierarchical compositional structures which help in complexity reduction.
 During simulation, the interaction/communication between different model components is achieved 
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through event messages exchanged between the Simulators and Coordinators, each representing an 
event to be processed:  

• (i,t) messages sent from a coordinator to its child to signal initialization  
• (*,t) messages sent from a coordinator to its child to signal the occurrence of internal events 
• (x,t) messages carry information about external input events from a coordinator to its child 
• (y,t) messages transmits a model’s output events from a simulator or a coordinator to its parent 

 “t” represents the time in which a message is sent or received. 
 Listed above are the basic types of messages used in DEVS. However, other types of messages (e.g. 
(@, t), (done, t)) can be added as many implementations exist and various extensions to DEVS are 
defined. The protocol remains the same but actions to be performed by a simulating entity 
(Simulator/Coordinator) upon the reception of a given message are provided. 
  

 
 
 
 
 
 
 
 
      
 
 
 
 
 
  
 
 
 
 
 
 
 
 

Figure 1: (a) DEVS model (b) Hierarchical mapping of DEVS model to abstract simulator 
 
3. KEY CONCEPTS 
In this section we briefly introduce key concepts of the framework. The first 3 concepts are formalized 
in Definitions 1 and 2 given below. Other concepts will be formalized in subsequent sections. 

• Root Coordinator is a special simulating element that drives the global aspects of the simulation 
on a tree; it initializes and ends the simulation (when a termination condition is detected). 

• Nodes: They are simulation entities used for executing DEVS models. These nodes are 
Coordinators, Simulators and Root Coordinators. The Root Coordinator has an event loop which 
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sends event messages and controls the simulation cycles while the Coordinator and Simulator are 
capable of receiving, treating and sending event messages.  

• Simulation Tree: A tree is made up of nodes. The Root Coordinator is always at the top of the 
Tree’s hierarchy and has a Coordinator as its descendant. Also, the Coordinator has either a 
Coordinator or Simulator as its descendant but the Simulator has none. 

• Process: We define it as a stream of execution. It contains two types of nodes during execution 
they are active and passive nodes. An active node is a node that is currently active in an 
execution stream e.g. Java threads, ADA Tasks. While a passive node is part of an execution 
stream but not actively involved until it is triggered e.g. function calling in Object Oriented 
Paradigm. We consider that a process would have at most one active node. If a process has more 
than one active node, those nodes are then regarded as being autonomous sub-processes. Also, 
there can be more than one passive node in a process. 

• Activity: Set of actions that are performed at the receipt of an event 
• Processor is a computing resource that allows the execution of a program (a process, an entire 

tree, any other executable code) on itself. 
• Simulation Graph: A representation of the relationship between the identified aspects in DEVS 

simulation. An example of Simulation Graph can be seen in Figure 2, details about its 
components are discussed in the following sections. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

   Figure 2: Relationship between Trees, Processes and Processors 
 
Definition 1: We formally define Simulation Tree T as 

  � �	� �,�, � 	 
With: 

• � ∈ � 
• �:	� → ℘��� where ℘��� is Power Set of � 
• ������ � ∅ 
• ������ � ∅,	 ∀	� ∈ � � ��� 
• ��������	���� � 1 

Simulation Graph 

Processor 

Process 

Tree 

Root Coordinator 

Simulator  

Coordinator 

Active 
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Nodes 
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Where: 
�: The Root Coordinator of the tree 
�: The set of nodes of the tree 
�: A function that maps a child node to its parent 

A node is a "parent" of another node (its child) if it is one step higher in the hierarchy. 
For example: Given a Tree T 
 
Tree T will be defined as  

� � �  

� � ��,  , �, !, ", #, $�  
���� � � �  
�� � � ��, !, "�  
��!� � �#, $�  
���� � ��"� � ��#� � ��$� � ∅  

 
Definition 2:  Simulation Tree � can also be defined as 

� �	� �,�, # 	 
With: 

• � ∈ � 
• # ⊂ � & �� � ����  
• ��, '� ∈ #	 ⟺ '	 ∈ ���� 

Using Definition 2 for the example above, � and � will be defined as same while # will be 
# � ��A, B�, �B, C�, �B, D�, �B, E�, �D, F�, �D, G�� 

 
 
4. TAXONOMY IN DEVS PARALLEL AND DISTRIBUTED SIMULATIO N 

 There are different practices behind the concept of exploiting DEVS with Parallel and Distributed 
Simulation (PADS). Due to this, the concept becomes burdened with variances in opinions on how to 
build a DEVS simulator. We were able to identify four major factors in use in these practices. First, we 
realize that some approaches prefer to alter the tree structure; we call this “Tree Transformation” [3, 7, 
8, 9, 10, 11, 12, and 13]. Second, we recognize that some approaches consider splitting the model tree, 
thus based on the number of possible tree structures that can be realized from this splitting we call this 
“Tree-Splitting” [14, 15, 16, 17]. Also, we recognize as well that some approaches differ on the number 
of executions/processes that can be performed per simulation run; we call this “Process-Clustering” [19]. 
Lastly, some approaches prefer to vary the number of computing resources to be used during simulation, 
we call this “Processor-Mapping” [2, 11]. In the following sections we present these aspects. 
 

4.1. Tree Transformation 

 It has been observed that altering a simulation tree structure can improve simulation performance 
and also enhance distribution. This transformation is usually achieved either by reducing or increasing 
the number of nodes of a tree.   

4.1.1. Reduction 

 As presented in [7] the hierarchical structure of the simulator (which has a one-to-one 
correspondence with the DEVS model architecture) can increase the communication overhead between 
Nodes. The process of reducing the number of these nodes on a tree is also known as flattening. A 

A 

B 

C D E 

F G 
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flattened simulator [8] simplifies the hierarchical simulator while keeping a hierarchical model structure 
(see Figure 3). Though various studies [9], [10] have shown that a flattened simulator reduces these 
costs however, maintaining a hierarchical structure eases validation and verification during simulation. 
Some other approaches prefer to alter the compositional structure of a DEVS model. Kim [11] proposed 
transforming a hierarchical DEVS model into a non-hierarchical structure to ease synchronization in a 
distributed simulation and Zeigler [2] also considered building Conservative DEVS simulator for non-
hierarchical models. 
 
 
 
 
 
 
 
 
 
 

Figure 3: Tree Transformation by Reduction 
 

4.1.2. Expansion 

In CD++ ([3], [12]) the expansion was achieved by introducing new simulation nodes into the 
simulation tree structure as presented in Figure 4. This is to enable the distribution of Nodes on different 
processors. The introduction of extra components on the tree introduces more concerns as to what type 
of information each of these new components should contain. Also, communication between these 
Nodes constitutes an increasing overhead cost as the structure of the messages being passed is altered to 
accommodate extra information.  For example a new sub-coordinator has no coupled model associated 
with it and therefore contains no coupling information (EIC, EOC, IC), also, it has to correctly identify 
imminent models and influencees. One way to deal with this is through the composition of messages i.e. 
by including more information in a message’s construct, as seen in [3] and [13].  
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: Tree Transformation by Expansion 
 
Formally we define Tree Transformation as: 
Definition 3:  ����0�1��, ��, #�, #�2:	3 → 3 

����0�1��,��, #�, #�2�� �, �, # 	� �� �,��, #� 	 
With 

RC 

C1 

C2 S4 

S3 S2 

S1 
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FC 
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RC:  Root Coordinator 
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C :   Coordinator  

S :  Simulator 

RC 

C

S3 S1 S2 S4 

RC 

C
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• �� � �	⋃	�� � �� 
• #� � #	⋃#� � #� 

Where 
• �� is the set of nodes to be added to � 
• �� is the set of nodes to be removed from � 
• #� is the set of relationships to be added to # 
• #� is the set of relationships to be removed from # 

Based on the following conditions: 
• ��	⋂ 	� � 	∅ 
• ��	 ⊂ � � ��� 
• #�	 ⊂ �� & ���⋃���⋃��� & � � ���� 
• #�	 ⊆ # 

 
4.2. Tree-Splitting 

Tree splitting can be referred to as the decomposition of a simulator tree to form sub-trees based on 
the analysis of the model’s structure. We identified two types namely, single tree structure and multiple 
tree structure. It is necessary to state here that this section does not deal with how the tree structure can 
be split, executed or how they can be mapped to available number of processors. 

4.2.1. Single Tree Structure 

 In describing this structure, executing a model with a single tree structure (as shown in Figure 5) can 
be expressed as having an entire model tree simulated with the use of a central scheduler called the Root 
Coordinator.  
 
 
 
 
 
 
 
 
 

Figure 5: Single Tree Structure 

 Single tree structures are mostly implemented using Classic DEVS (CDEVS) and Parallel DEVS 
(PDEVS) algorithms. In CDEVS [2] events are processed in a sequence. This approach is the simplest 
form of simulation but it is rigid and does not properly reflect the simultaneous occurrence of events in 
the system being modeled. Also, serialization reduces possible utilization of parallelism during the 
occurrence of events. On the other hand, Chow and Zeigler [6] introduced PDEVS as a possible solution 
to the problem of serialization. According to Chow, one desirable property provided by PDEVS is the 
degree of parallelism which can be exploited in parallel and distributed simulation. It beats the 
restrictions in CDEVS in both execution time and memory usage.  

4.2.2. Multiple Trees 

 We look at the multiple tree structure as when a tree can be split into different sub-trees with each 
having its own central scheduler/Root Coordinator and different simulation clocks. This is the preferable 
solution in distributed simulation. Based on this structure, all events with the same timestamp are 

Root Coordinator 

Coordinator 

Simulator  
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scheduled to be processed simultaneously. It uses asynchronous algorithms which rely on the distributed 
synchronization protocols for synchronization instead of the Root Coordinator.  
 The two basic asynchronous algorithms in use are the Optimistic and Conservative (Pessimistic) 
DEVS algorithms. In distributed simulation, there is an inherent constraint in the time-stamp order (not 
in their real-time arrival order) with which events occur and are processed, this is called locality 
constraint. Some algorithms were proposed to resolve this constraint, the Conservative ([14], [15], [16] ) 
algorithm which always prevent this constraint through the use of look-ahead mechanism and Optimistic 
[17] algorithm which detect and resolves it through the use of the roll-back mechanism. Optimistic 
algorithms, in contrast to Conservative algorithms, enable increased degrees of parallelism and do not 
depend on application-specific data to decide on events that are safe for processing. 
 Communication between these trees is usually between  

a. Root Coordinator and Root Coordinator (see Figure 6a) e.g. DEVS Time Warp [2] 
b. Coordinators and Simulators (Parents and their Children) e.g. DOHS scheme [6] (see 

Figure 6b) 
 
 
 
 
 
 
 
 

a) Communication between Root  b)  Communication between Coordinators 
Figure 6: Communication between tree structures 

 
Formally we define Tree Splitting as: 
 
Definition 4: Split:	3 → Σ 
With 

• � �	� �,�, � 	  
• 89��:��� �	� ����, �′, �′ 	  

Based on the following conditions: 
• � ∈ ⋃���� 
• �� � �⋃���� 
•  �′/� � � 

Where 3 is the set of all possible trees and Σ is the set of all possible simulation skeletons. The formal 
definition for a simulation skeleton has been given in section 5. 
 
 

4.3. Process Clustering 

Events execution is driven through the use of processes. We take a look at the concept of process as 
an execution stream. A process can be seen as a mechanism that is able to execute events. We categorize 
based on the number of processes; as “one process” execution and “many processes”. However, we will 
not be dealing with how execution takes place on processors.  

4.3.1. One Process 

A one-process execution denotes having events processed in a serially and orderly manner i.e. one 

Communication 
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after another. This restricts concurrent execution streams. Himmelspach [18] denotes this form of 
execution as “sequentialization”. In this sense, for example, the “main” program is a process. Though a 
desired speed up may not be achieved when using a one-process execution stream, on the other hand it is 
easier and faster to implement. During the one-process execution, interaction between the Nodes is 
called intra-process communication. Most implementations based on CDEVS make use of one-process 
type of execution stream. 

4.3.2. Multiple Processes 

 In the case of many processes, execution of events can be split into several logical processes (tasks) 
for concurrent processing. These logical processes, which are autonomous examples, include Java 
threads, POSIX threads, Ada tasks and so on. 
 Using many processes could speed-up execution as each could execute events without interrupting 
other processes. However this is balanced by the increase of memory consumption and the burden of 
communication between processors. This type of communication is called inter-process communication. 
It is possible that during a simulation run only one process, out of many, is scheduled for execution. This 
situation is called pseudo-parallelism otherwise it is pure-parallelism. During implementation it is 
essential to manage how processes access resources that are common to all of them e.g. shared data type. 
Locks, Semaphores, Monitors and other synchronizing mechanisms can be used to coordinate these 
processes. The CCD++ [19] implementation utilizes many processes for model execution. 

 Formally we define Process Clustering as: 
 
Definition 5: Cluster: � → <0 
Where  

• <0 is the set of Processes. 
Based on the conditions that 

• ��=0:>����9�	is Connex ∀9 ∈ 	<0  
• ∀	9� , 9� ∈ 	<0, 	9� � 9� , ��=0:>��9��⋂��=0:>�?9�@ � 	∅, 

 

4.4. Processor Mapping 

We considered that the number of processors play a major role in speed, performance and efficiency 
that can be achieved during simulation. We therefore categorize this into 2 distinct classes; “one-
processor” or “many-processors”.  

4.4.1. One Processor 

 On a uniprocessor system, the entire simulation runs on one processor so there is no overhead cost 
but it is limited to the size of the memory in use. Thus, it is not completely suitable for executing 
complex models. The type of communication that takes place in this case is called an intra-processor 
communication. 

4.4.2. Multiple Processors 

 In order to coordinate simulation on many networked processors, some form of inter-processor 
communications is required to convey data between processors and synchronize each processor’s 
activities. When utilizing multiple processors for simulation, the memory architecture type could either 
be shared memory (processors have direct access to common physical memory), or distributed memory. 
Meanwhile, in shared memory only one processor can access the shared memory hereby introducing the 
need to control access to the memory through synchronization. Distributed memory refers to the fact that 
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the memory is physically distributed as well. Memory access in shared memory is faster but it is limited 
to the size of the memory therefore, increasing the number of processors without increasing memory 
size can cause severe bottlenecks. Inter-processor communications is usually achieved through 
interoperability mechanisms (e.g CORBA [31]). 
 As a consequence of using more than one processor, the Nodes can be split into a set of partition 
blocks based on certain decision criteria and mapped unto the available number of processors, this is 
called partitioning. In the case of no partition, simulation is performed on a single processor machine. 
The partitioning problem is one of the most important issues in parallel and distributed simulation as it 
directly affects the performance of the simulation. Different partitioning algorithms have been proposed 
an example is Generic Model Partitioning (GMP) algorithm proposed by Park [20]. It uses cost analysis 
methodology to construct partition blocks, although it makes an effort to guarantee an incremental 
quality of partitioning but is restricted only to models from which cost analysis can be extracted and 
processed. 

Formally we define Processor Mapping as: 
 
Definition 6: Map: <0 → <� 
Where  

• <0	is the set of Processes  
• <� is the set of Processors 

Based on the following condition 
 ∀	9� , 9� ∈ 	<0, 	9� � 9� , A�9�9��⋂A�9?9�@ � ∅	  
 

4.5. Simulation Graph Strategies 
 

Due to the increasing number of complex model systems various studies have been conducted to 
improve efficiencies and performances of DEVS simulators [2, 9, 10, 12, 13, 24, 25] thus giving rise to 
various graph strategies. In a general overview, most implementation decisions have been observed to be 
based on the presented aspects in the previous sections. In this section we use figures to illustrate how 
these aspects are interrelated with one another using a three-categorized view. Since the Tree 
Transformation and Tree Splitting aspects both focus on the Tree, they will be represented as the same 
category i.e. the Tree. In each of these categories, the number of elements i.e. Trees, Processes or 
Processors is put into consideration. This therefore forms the basis for development of any Simulation 
Graph Strategy presented. 

4.5.1. Single Processor – Single Tree – Single Process: 

This is the simplest form of mapping strategy which has one root coordinator (one tree) controlling 
the simulation on one processor (see Figure 7). Execution of events is purely sequential with no need to 
synchronize communication between the Nodes. In this case, when simultaneous events occur, one event 
is selected and others are ignored thereby introducing rigidity during execution. PythonDEVS [21] uses 
this mapping strategy as an implementation of the CDEVS formalism and as a consequence it performs 
sequential simulation.  
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Figure 7: One partition, one tree and one process 
 

4.5.2. Single Processor – Single Tree – Multiple Processes 

 The entire simulation depends on one Root Coordinator while execution is through the use of many 
processes as shown in Figure 8. These processes run concurrently and are mostly used to increase 
execution speed but as the number of processes increase the rate of memory consumption increases 
thereby slowing down execution and time.  

This strategy was proposed for use in Abstract Threaded Simulator [18]. However, depending on 
the memory size of the processor and the model size, the cost of creating threads gets expensive as the 
number of models increases. This is a critical factor to be considered when using many processes.  

 

 

 
 
 

 
 
 
 
 

Figure 8: One processor, one tree and many processes  
 

4.5.3. Single Processor – Multiple Trees – Single Process 

Several trees (root coordinators) exist on one processor with each performing sequential execution 
one at a time. An example is shown in Figure 9. This scenario is not realistic because execution is 
asynchronous and can be done simultaneously using many processes instead.  
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Figure 9: One processor, many trees and one process 
 

4.5.4. Single Processor – Multiple Trees – Multiple Processes 

Several root coordinators (trees) exist on a partition (as seen in Figure 10). This makes it easy to 
implement a synchronization mechanism (optimistic or pessimistic) for dealing with causality errors. 
Causality errors usually occur when messages are not processed in a time-stamp order [1]. 
Communication between different trees can be made via the root coordinators or coordinators and 
simulators. This strategy brings about the idea of federating existing abstract simulators. Since all the 
trees are on one processor there is intra-processor communication thereby eliminating the need for an 
interoperability technology. 

 
 
 
 
 
 
 
 
 
 

Figure 10: One processor, many trees and many processes 
 

4.5.5. Multiple Processors – Single Tree – Single Process 
A root coordinator controls the entire simulation on multiple partitions while execution is 

sequential. The sequential execution can only take place locally i.e. when a simulating node receives a 
message from its parent on the same processor. If a simulating node sends a message to a node on 
another processor (remotely) in this case the number of processes used for executing the tree would 
increase. An example of this is shown in Figure 11. 

 
 
 
 
 
 
 
 

Page 13 of 29 Simulation: Transactions of the Society for Modeling and Simulation International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
 
 
 
 
 
 
 
 
 
 
 

Figure 11: Many processors, one tree and one process 
 

4.5.6. Multiple Processors – Single Tree – Multiple Processes 

One Root Coordinator controls the entire simulation on multiple partitions but with multiple 
processes. The communication mechanism between the Nodes changes since some Coordinators no 
longer on the same partition as some of their children. There are two types of communication between 
these nodes i.e. locally (intra-processor) and remotely (inter-processor). At the local level, 
communication is between Nodes on the same processor. Remote communication is achieved through 
the use of interoperability technologies (e.g. CORBA [31] etc.) to help overcome the limitation of 
memory resources otherwise there will be no gain in execution time. This is the case of PDEVS with 
thread proposed by [13]. Also, as seen in [22] when running parallel and distributed simulations, the 
entire simulation tree is divided among a set of processes, each of which will execute on a different 
CPU. In general terms, each process will host one or more simulation nodes as shown in Figure 12. 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 12: Many processors, one tree and many processes 

In [13], the authors proposed an algorithm which is a variant of PDEVS algorithm for 
implementation on multi-processor using many processes for execution. It allows that sequential and/or 
parallel execution can be performed among the nodes on each processor. However, extra components 
were created. It is therefore limited to the issues described previously.  
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4.5.7. Multiple Processors – Multiple Trees – Single Process  

This case, which concerns multiple partitions (each containing at least a tree running independently, 
as shown in Figure 13), is also not feasible for the same reasons mentioned at “Single Processor – 
Multiple Trees – Single Process ".  

 
 
 
 
 
 
 
 
 
 
 
 

Figure 13: Many processors, many trees and one process 
 

4.5.8. Multiple Processors – Multiple Trees – Multiple Processes 

As shown in Figure 14, each partition contains at least one tree and several executions at the same 
time. Each tree implements a synchronization mechanism for causal errors (because each tree has its 
own clock). Communications between partitions are either between the root coordinators (as in [2]) or 
between the coordinators and simulators (between ascendants and descendants as in [11]) via distributed 
simulation middleware such as HLA [32, 33] 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 14: Many processors, many trees and many processes 

Optimistic and Conservative strategies are synchronization techniques used for PADS in general. 
The conservative approach is the first synchronization algorithm that was proposed in the late 1970s by 
Bryant [14], Chandy and Misra [15]. It is also known as the Chandy-Misra-Bryant (CMB) algorithm and 
strictly avoids the possibility of processing events out of time stamp order. In contrast the optimistic 
approaches, introduced by Jefferson’s Time Warp (TW) protocol [17], allow causality errors to happen 
temporarily but provide mechanisms to recover from them during execution. The first attempt to 
combine DEVS and Time Warp mechanism for optimistic distributed simulation is DEVS-Ada/TW 
[23]. It is an asynchronous approach that uses the Time Warp mechanism for global synchronization; it 
treats all Nodes on one processor as one process. In DEVS-Ada/TW, the hierarchical DEVS model can 
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be partitioned at the highest level of the hierarchy for distributed simulation. As a consequence, the 
flexibility of partitioning models is restricted.  

The DOHS (Distributed Optimistic Hierarchical Simulation) scheme [7] is a method of distributed 
simulation for hierarchical and modular DEVS models that uses the Time Warp mechanism for global 
synchronization. In DOHS scheme there is at least one tree per processor (see Figure 15). 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 15: Example Structure of DOHS Scheme 

A proposal was made by Zeigler [2] to combine Time Warp with the CDEVS hierarchical simulator 
as Time Warp DEVS Simulator. In this approach, the overall model is distributed so that each sub-
model is a single coupled model. Then, hierarchical execution is done locally on each processor using 
the classic abstract simulator with extensions for state saving and restores (rollback). In addition, each 
processor has a root coordinator which realizes the mechanism for Time Warp. On each processor, the 
root coordinator performs optimistic Time Warp synchronization. For this, it stores the input and output 
messages of the processor and takes care of anti-messages.  

The "Risk-Free" Optimistic Simulator [2] is another version of optimistic DEVS simulator. The 
operational semantics of the "risk-free" version of optimistic DEVS is based on optimistic DEVS Time 
Warp. The Time Warp optimistic simulator and coordinator are used without change but the 
synchronization mechanism in the optimistic root coordinator changes. Local events on each compute 
node (tree) are processed sequentially but optimistically. That is to say if a straggler event is received by 
a node, a rollback occurs but is local to that node. This is less costly when compared to Time Warp.   

In parallel versions of CD++ (PCD++ [24], [25] & CCD++ ([19], [29]), the authors proposed a 
distributed simulation architecture for DEVS and Cell-DEVS models.  This variant uses the flattening 
structure of simulators with four simulation nodes on each tree: Simulators, Flat Coordinator (FC), Node 
Coordinator (NC) and Root Coordinator (RC). Root Coordinator is created on one of the processors to 
start/end the simulation process and perform I/O operations. FC and NC are created on each processor. 
FC is in charge of intra-processor communication between its children Simulators. NC is the local 
central controller on each processor (Figure 16). Simulator executes the DEVS functions defined in its 
atomic model. 
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Figure 16 - Structure of Distributed DEVS simulation in CCD++ and PCD++ 

 
To briefly explain some of the strategies in the literature in a more formal way we suggest the Tree-

Process-Processor notation. It consists of defining the number of elements for each aspect of PADS. We 
use N for “many elements”. For example, a 1-1-1 scheme is a DEVS Simulation Graph strategy with 1 
Tree, 1 Process and 1 Processor while N-N-1 is a DEVS tool with many Trees, many Processes and 1 
Processor. PythonDEVS [21] is a 1-1-1 strategy. It uses the CDEVS formalism in specifying models and 
as a consequence it performs sequential simulation. The Abstract Threaded Simulator of the James II 
[18]) package uses a 1-N-1 strategy with its processes created using Java threads. In [22], the Parallel 
CD++ Simulator and the Parallel Sequential Simulator by Himmelspach, Ewald, Leye and Uhrmacher 
[13], which implements the PDEVS formalism, use the 1-N-N strategy. The Conservative CD++ [29] is 
an N-N-N strategy. Some other approaches that use the N-N-N strategy include DEVS-Ada/TW [23], 
DOHS scheme by Kim, Seong, Kim and Park [7] and Optimistic Parallel CD++ [24]. A DEVS tool that 
uses the N-N-N strategy fully supports distributed simulation. Also, we observed that having an 
implementation which involves the use of N-1-1 strategy or N-1-N strategy is not realistic. A reason for 
this is that the execution of each tree is asynchronous and can be done simultaneously using many 
processes instead. This information is represented in Table 1. 
 
 

Table 1: State of the art and their Simulation Graph Strategy 
 

Approaches Algorithm Strategy 
PythonDEVS 

(Bolduc and Vangheluwe 2002) 
CDEVS 

 
1-1-1 

Abstract Threaded  
Simulator (Himmelspach, J. 

et al. 2006) 

PDEVS 
 

1-N-1 

Parallel Sequential 
Simulator (Himmelspach, J. 

et al. 2006) 

PDEVS 
 

1-N-N 

Parallel CD++  
(Troccoli and Wainer 2003) 

PDEVS 
 

1-N-N 

Optimistic Parallel CD++  
(Qi and Wainer 2007) 

Optimistic DEVS 
 

N-N-N 

FC 

NC 

RC 

FC FC 

NC NC 

Communication 
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CCD++ 
(Jafer and Wainer 2010a) 

Conservative DEVS 
 

N-N-N 

Risk-Free Optimistic DEVS 
Simulator 

(Zeigler et al. 2000) 

Optimistic DEVS 
 

N-N-N 

Time Warp  DEVS Simulator 
(Zeigler et al. 2000) 

Optimistic DEVS  
 

N-N-N 

DEVS-Ada/TW 
(Christensen 1990) 

Optimistic DEVS 
 

N-N-N 

DOHS 
(Kim et al. 1996) 

Optimistic DEVS 
 

N-N-N 

 
 We identify that a Simulation Graph strategy for an implementation differs from another however 
we state here that our definitions of the components used in Simulation Graph construction are at an 
abstract level. The Links and Nodes in a Simulation Graph strategy are seen as abstract hence they can 
be implemented in different ways either by using the language in which it was implemented or by using 
interoperability technologies (e.g. CORBA [31]) in the some cases where simulators are implemented in 
different languages. The only constraint we define for this is that the simulators implement DEVS 
simulation algorithm. Thus the issue of DEVS implementation differences can be overcome.   

 
5. UNIFYING DEVS PADS SIMULATION FRAMEWORK 

 A unifying framework is needed to harness the identified components and their operations (found in 
the Simulation Graph) in a bid to automate the process of building a DEVS simulator and performing 
simulation by using DEVS with PADS. We interpret the building of a DEVS Parallel and Distributed 
Simulation (PADS) Simulator as a move from the original Simulation Tree (ST) to a Simulation Graph 
(SG). Having taken a look at the possible Simulation Graph strategies, in this section we propose a 
methodology for building a Simulation Graph. A SG is obtained through the depictions of the 
relationship and the components of DEVS PADS i.e. Trees, Processes and Processors. This 
methodology thus describes a structural and behavioral view in exploiting DEVS PADS. 

5.1. From Simulation Tree to Simulation Graph 

 We propose using a layered approach to present the simulation structures involved in DEVS PADS 
to avoid the pitfalls inherent to the building of a DEVS simulation system suitable for Parallel and 
Distributed execution. Also, by using a state chart, we present the trajectories which describe the set of 
all possible paths that can be taken during the construction of the Simulation Graph (SG).  

The SG construction is driven based on the analysis of the initial Simulation Tree, the available 
number of Processes and Processors. An overview of this methodological approach is given by the state 
chart given in Figure 17. It is worth noting that the methodology iterates on each state until some user-
defined satisfaction criteria are reached (optimal splitting, optimal clustering, optimal mapping and 
optimal transformation).  
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Figure 17: Simulation Graph Methodology 

 Split is a function that is used for creating a partition of nodes from a Simulation Tree. The Cluster 
function takes the available number of nodes and associates them with Processes. While the Map 
function takes the set of available Processes and plots them onto the set of available Processors. Also, 
the Transform function alters the Simulation Tree structure either by expansion or reduction. This 
altering is done on the number of available nodes (not including the Root Coordinators) on the Tree and 
their relationships. The process of Transformation, Splitting, Clustering and Mapping continues until it 
is sure that a good performance or speed will be gained during simulation from the new Simulation 
Graph. The Simulation Skeleton is the structure of the simulation protocol that can fit the PADS scheme. 
The Simulation Bundle is a collection of cluster of nodes. Examples are shown in Figures 18 and 19 
respectively. 
 
 
 
 
 
 
 
 
 
 

 
 
 

 We formally define each of the Simulation Structures that are found in this methodology (the 
definitions for the Simulation Tree structure are found in Definitions 1 and 2). To have a complete 
definition we make reference to Clustering and Mapping functions which have been formally defined in 
Definitions 5 and 6 respectively while definitions for the Transform and Split functions are given in 
Definitions 3 and 4.  

Figure 18: Simulation Skeleton Figure 19: Simulation Bundle 
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Definition 7: A Simulation Skeleton is defined by 

8 �	� ����, �, � 	 
With 

• �� 	 ∈ �		∀	i 
• �:	� → ℘��� where ℘��� is Power Set of � 
• ������� � ∅	∀� 
• ������ � ∅,	 ∀	� ∈ � �⋃���� 

 
Definition 8: A Simulation Bundle is formally defined as 

 �� ����, �, �, <0, ��=0:>� 	 
With 

• � ����, �, � 	 as a skeleton 
• <0	is the set of Processes  
• ��=0:>�:	� → <0 

 
Definition 9: A Simulation Graph is defined by 

$ �� ����,�, �, <0, <�, ��=0:>�,A�9 	 
With 

• � ����, �, �, <0, ��=0:>� 	 is a Simulation Bundle 
• <� is a set of Processors 
• Map: <0 → <� 

 
 

5.2. Common Language for the Simulation Structures 
 We are developing a supporting tool called SimStudio [26] in which the framework has to be 
applied. To achieve this goal we define an XML (eXtensible Markup Language) representation of the 
Simulation Structures formally presented in previous sections. We have chosen XML because it is a 
widely used standard that allows the description of any kind of data and thus can be used for data 
storage. This language (XML and its platform independent solutions) will be used to specify, construct, 
describe and preserve information about each Simulation Structure. Figure 20 shows the building blocks 
of this XML-based language. Each of this description conforms to our proposed methodology and they 
also take into account multiplicities of the elements that form each Structure. These multiplicities place a 
constraint on the allowed number of elements in each Structure. The Tree consists of a description about 
Nodes (Root, Coordinator, and Simulator) and their associated DEVS model. In the specification for 
Skeleton, it describes the new Root Node(s) that are added to the structure. Bundle consists of Nodes 
which are clustered into Processes while the VM (Virtual Machine) description contains information 
about the Processors to be used for simulation. Graph’s description uses elements from Bundle and VM 
i.e. it consists of Processes which are mapped on to Machines. 
 Such a representation opens the door to the concretization of the abstract process described by 
Figure 17. As an illustration, Figure 25 shows how key concepts of the framework are assembled and 
concretely represented from the original tree obtained with Figure 21 to the final Simulation Graph.  
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Figure 20: Description for (a) Tree (b) Skeleton (c) Bundle (d) VM (e) Graph 
 
 We take a scenario of a university system which offers Masters and PhD degree programs as a 
DEVS model. Each program’s model consists of 2 sub-models. Each student enrolled in the Masters’ 
program is expected to complete and submit a project before moving on to the PhD program. While in 
the PhD program, the student is first enrolled as a candidate and then he is to write a candidacy exam 
towards the end of his first year. If he succeeds his status is then upgraded to being a PhD student. 
Figure 21 is a screenshot of the Eclipse-DDML Modeling tool [28] (part of the SimStudio M&S 
Framework) which shows the model of the university system. We do not present the entire process from 
the scenario to the final code. However we show how the Simulation Graph and its language can be 
constructed from this scenario. Figure 22 draws from this model to illustrate Simulation Graph 
construction. Nodes C’A, C’B, C’C represents the University, Masters and PhD models of Figure 21 
respectively while S’D, S’E, S’F, S’G represents the students, project, candidate and student sub-models 
respectively. 
 Starting with this model (Figure 21), a Simulation Tree which mimics the hierarchical structure of 
this model can be obtained. This is done by assigning an Atomic Model to a Simulator and to a Coupled 
Model a Coordinator is assigned. The Coordinator and Simulator are Nodes of a Simulation Tree. Also a 
Root Coordinator which controls the entire simulation process is added to the top of the Tree’s 
hierarchy. The generated Simulation Tree structure (Figure 22(a)) is contained in an XML file. The 
outcome of operations performed is a different Simulation Structure except at the Transform operation 
stage which produces a modified representation of the Simulation Tree structure.  

 

Tree 
(name) 

Coordinator 
(ID, modelName) 

Simulator 
(ID, modelName) 

Root 
(ID, child) 

(1..1) (1..*) (1..*) 

Child 
(ID) 

(1..*) 

(a) 

Skeleton 
(name, treeName) 

Root 
(ID, child) 

(0..*) 

(b) 

Bundle 
(name, skeletonName) 

Process 
(processID) 

(1..*) 

Node 
(ID) 

(1..*) 

(c) 

VM 
(name) 

Processor 
(processorID, name, address) 

(1..*) 

(d) 

Graph 
(name, bundleName, vmName) 

Machine 
(processorID) 

(1..*) 

Child 
(processID) 

(1..*) 

(e) 
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Figure 21: DEVS Model of the University System 
 
 Split operation creates a partition of Nodes and causes an increase in the number of Root 
Coordinators on the obtained Tree from the previous operation. This functionality is given by the Split 
plug-in. The existing relationships between these Nodes are not modified but new ones are created to 
accommodate the new Root Coordinators. In this example 2 Trees were created from the initial 
Simulation Tree also the initial Root Coordinator still exists as part of the Trees. As seen in Figure 
22(b), what is usually obtained after a Split operation is a Simulation Skeleton and stored as an XML file 
for use by the Cluster plug-in.   
 During the Cluster operation, each Node of the Simulation Skeleton is grouped into available number 
of Processes thereby creating a Simulation Bundle (Figure 22(c)). This is done in such a way that each 
Process contains at least a Node and no Process shares a Node with another Process. Also each Process 
has a one-to-one relationship with another Process. The Cluster plug-in provides this functionality and 
produces the Simulation Bundle as an XML file. 
 The information about each of the Processors is contained in a XML file and used by Map plug-in. 
The Map operation takes each of these Processes from the Simulation Bundle and plots them to an 
available number of Processors thereby producing a Simulation Graph (Figure 22(d)). The information 
about each of these Processors is stored in the VM.xml file. Just as in the case of a Cluster Operation, 
each Process cannot exist on more than one Processor and each Processor must contain at least a 
Process. The outcome of this is an XML file representation of Simulation Graph structure which can be 
used for automatic code synthesis (Java, C++, C#, python) and formal analysis. 
 The complete XML representation for each of the files used in Figure 22 together with their 
document description is given in the appendix. 
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Figure 22:  Illustration of Simulation Graph construction using the XML-based Language 

 

C’A 

C’B C’C 

S’D S’E S’F S’G 

R1 

Split 

<Tree Name = "testCase_Tree" > 
   <Root ID=”R1" child = "A" /> 
   <Coordinator ID="C’A" modelName="A"> 
    …   
   </Coordinator> 
   …  
   <Simulator ID="S’D" modelName="D" /> 
    … 

</Tree> 

Tree.xml 

C’A 

  S’F S’G 

R1 

R2 

Cluster 

<skeleton name = "testCase_Skel" 
treeName= "testCase_Tree"> 
   <Root ID="R2" child="C’C" /> 
   …  
</skeleton> 

Tree.xml 
+ 

S’D S’E 

<graph name = "testCase_graph" 
bundleName="testCase_bund" 
vmName="testCase_VM" > 
   <machine processorID="Pr1" > 
     <child processID = "P1"/> 
   … 
   </machine> 
   <machine processID="Pr2" > 
     <child processID = "P2"/> 
     … 
   </machine>  
</graph>> 

Bundle.xml 
+ 

Pr2 

Pr1 

R2 

S’F S’G 

R1 

S’D S’E 

Map 

<bundle name = "testCase_bund" 
skeletonName="testCase_Skel" > 
   <process processID="P1" > 
     <node ID="R1"/>  
     … 
   </process> 
   <process processID="P2" > 
   …  
   </process> 
   <process processID="P3" > 
   … 
   </process> 

</bundle> 

Skeleton.xml 
+ 

P1 
P2 

P3 

  

R1 

R2 

S’D S’E S’F S’G 

LEGEND 
R = RootCoordinator 

C’ = Coordinator 

S’ = Simulator 

P = Process 

Pr = Processor 

C’C C’B 

C’B 

C’A 

C’C 

C’B 

C’A 

C’C 

(a) 

(b) 

(c) 

(d) 
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6. DISCUSSION 
 Our work presents an abstract approach to unifying both parallel and distributed simulation main 
concepts. The difference between the parallel and distributed concept is how abstract links between the 
processors of the Simulation Graph are implemented; in parallel simulation they are realized by the 
architecture of the parallel computer while in distributed simulation they are realized through 
networking protocols (e.g. HTTP, FTP, etc.) or technologies (CORBA and so on). 

The purpose of this paper is to propose a generic standard for DEVS PADS implementation strategies 
and contribute to a better understanding of the Simulation Structures for any implementation strategy. 
This methodology takes into account the utilization of DEVS PADS for simulation, the Simulation 
Structures and the operations that can be performed on them. At this point, we discuss some of the 
potential benefits that can be found in this methodology. 

• A simple and efficient guideline: Another essence of this paper is to provide a guideline, help or 
open library for performing simulation with DEVS PADS. This has been achieved through the 
proposed methodology which also uses a layered approach in its representation. This approach 
provides a common frame of reference for performing simulation with DEVS PADS. Also it 
promotes modularity and Simulation Structure reuse.   

• A basis for introducing the evaluation of DEVS PADS strategies: As it has been observed that 
there are different practices behind the concept of exploiting DEVS PADS which usually results 
in obtaining a Simulation Graph.  The classification of these practices is   based on varying the 
number of elements (i.e. Trees, Processes, and Processors). For example, in Parallel CD++ [22], 
the Simulation Graph Strategy used consists of a Tree, many Processes and many Processors 
while the Abstract Threaded Simulator of the James II [18] package a Tree, many Processes and 
a Processor and Conservative CD++ ([19], [29]) uses many Trees, many Processes and many 
Processors. With the various practices that have been observed, they introduce the need for 
evaluation or complexity analysis. This would be used to determine which of the obtained 
Simulation Graph is more efficient or which would give an improved performance and so on. 
This methodology therefore gives a foundation for achieving this through its generic nature. 

• There has been an on-going research effort in providing standard representation of DEVS to 
support common understanding, sharing and interoperability. Decisions which are to be taken 
while implementing a DEVS PADS simulator include how events should be processed, what 
simulation architecture to use, what should be the organizational architecture and so on. These 
decisions could be challenging therefore we proposed a solution by going through a review of 
existing approaches, categorized them (i.e. Simulation Graph strategies) and came up with an 
integrative view producing a formally specified unified taxonomic framework. As a result, all 
practitioners dealing with building DEVS PADS simulators can now choose to use this new 
layered taxonomy as a reference framework for specifying their approaches unambiguously, 
fostering knowledge reuse across the community. Thus, our work contributes towards 
implementing DEVS PADS simulators and can be taken as a helpful tool in the context of the 
DEVS standardization efforts. 

 Moreover, the underlying methodology uses a layered approach in its representation as shown in 
Figure 23. This approach permits the easy integration of the identified Simulation Structures into the 
taxonomic framework. As we move up the layers, each Simulation Structure inherits the DEVS PADS 
element of the Simulation Structure beneath it. The Simulation Tree consists of just the Tree and the 
Simulation Graph combines all the elements used in DEVS PADS i.e. Tree, Process and Processor. The 
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benefit of this approach is that it gives a straight and clear guideline for realizing DEVS PADS by 
avoiding the possible pitfalls: 

• A common pitfall is in trying to distribute the model instead of the simulation (this confusion is 
due to the fact that most simulations don’t separate clearly the concerns). The taxonomy makes it 
clear what should be distributed i.e. the simulation protocol and not the simulation model. 

• When defining the Simulation Graph, a common pitfall is to understand the partitioning as a one-
to-one mapping between simulation nodes and processes. The taxonomy makes clear the 
difference between the nodes that represent the simulation components and the way they can be 
aggregated at the implementation level as part of a single process (e.g. the same thread can 
implement a coordinator and its children simulators). As an illustration, trying to model the SG 
of the university system given in Figure 21 by adopting single tree - single process - single 
processor strategy will lead to implementing the whole Simulation Tree as the process (which 
implies that all nodes of the Simulation Tree are implemented as passive nodes except the Root 
Coordinator which will be the main program). 

• From an existing distributed code, it is difficult to build a new distributed solution which must 
implement a different Simulation Graph strategy. An example is the building of a new N-N-N 
strategy for an existing N-N-N strategy by increasing or decreasing the number of 
trees/processes/processors or by reallocating differently processes (respectively nodes) to 
processors (respectively processes). Taxonomy provides a framework for specifying, comparing 
and contrasting various implementations and offers a standardized platform for all DEVS PADS 
methodologies. To modify the Simulation Graph for adaptation to a new computing architecture, 
starting from the SG layer there would be a need to move to the layer below it or back to the 
Simulation Tree before making the necessary modification in the Simulation Structure (see 
Figure 23). Using this layered approach proposed in this methodology, this way, errors can be 
easily detected and corrected. 

• The lack of a unified approach for DEVS PADS development can deter the easy integration of 
DEVS PADS simulators. For example, combining two existing trees (or combining two existing 
Simulation Graph or an existing Simulation Tree with an existing Simulation Graph) to get a 
final Simulation Graph is not obvious. Also, with the various practices involved in building 
DEVS PADS simulators, it is difficult to evaluate each design and implementation on the same 
basis. The proposed approach offers a common frame of reference for all DEVS PADS 
simulators. Failure or inability to facilitate consistency while specifying a Simulation Structure 
indicates a lack of focus on the essential elements of the taxonomic framework and an 
understanding of the value that each structure contributes within the framework. 

 
 
  
 

Page 25 of 29 Simulation: Transactions of the Society for Modeling and Simulation International

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 
 

Figure 23: Layered Approach 
  
7. CONCLUSION 
 This paper has presented a taxonomy and its impact as a methodological framework for providing 
DEVS PADS solutions. It has provided a more systematic understanding of the process of constructing a 
DEVS simulator. Also, it proffered an abstract way for integrating different and heterogeneous DEVS 
implementation strategies. As a consequence we see that this taxonomy would enable practitioners 
dealing with building DEVS PADS solutions to specify their Simulation Graph strategy explicitly as 
well as foster knowledge reuse across the community. While some research efforts have been on 
interoperating DEVS simulators [33] we have focused on how to build a DEVS simulator as an 
important contribution to DEVS Standardization [34]. We are developing a software tool called 
SimStudio [26] to support the methodological framework.  
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APPENDIX 

• Tree 
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DTD XML 
<?xml version="1.0" encoding="UTF-8"?> 
<!ELEMENT Tree (Root, Coordinator+, 
Simulator+)> 
<!ATTLIST Tree 
          name CDATA #REQUIRED 
          xmlns CDATA #IMPLIED> 
<!ELEMENT Root EMPTY> 
<!ATTLIST Root 
          ID CDATA #REQUIRED 
          child CDATA #REQUIRED> 
<!ELEMENT Coordinator (child+)> 
<!ATTLIST Coordinator 
          ID CDATA #REQUIRED 
          modelName CDATA #REQUIRED> 
<!ELEMENT child EMPTY> 
<!ATTLIST child 
          ID CDATA #REQUIRED> 
<!ELEMENT Simulator EMPTY> 
<!ATTLIST Simulator 
          ID CDATA #REQUIRED 
          modelName CDATA #REQUIRED> 

<?xml version="1.0" encoding="UTF-8" ?> 
<!DOCTYPE Tree SYSTEM "tree.dtd"> 
<Tree name="testCase_Tree" xmlns="http://ddml/1.0" > 
 <Root ID="R1" child="C’A" /> 
 <Coordinator ID="C’A" modelName="A"> 
  <child ID="C’B" /> 
  <child ID="C’C" /> 
 </Coordinator> 
 <Coordinator ID="C’B" modelName="B"> 
  <child ID="S’D" /> 
  <child ID="S’E" /> 
 </Coordinator> 
 <Coordinator ID="C’C" modelName="C"> 
  <child ID="S’F" /> 
  <child ID="S’G" /> 
 </Coordinator> 
 <Simulator ID="S’D" modelName="D" /> 
 <Simulator ID="S’E" modelName="E" /> 
 <Simulator ID="S’F" modelName="F" /> 
 <Simulator ID="S’G" modelName="G" /> 
</Tree> 

• Skeleton 

DTD XML  

<?xml version="1.0" encoding="UTF-8"?> 
<!ELEMENT skeleton (Root+)> 
<!ATTLIST skeleton 
          name CDATA #REQUIRED 
          treeName CDATA #REQUIRED 
          xmlns CDATA #IMPLIED> 
<!ELEMENT Root EMPTY> 
<!ATTLIST Root 
          ID CDATA #REQUIRED 
          child CDATA #REQUIRED> 

<?xml version="1.0" encoding="UTF-8" ?> 
<!DOCTYPE skeleton SYSTEM "skeleton.dtd"> 
<skeleton name = "testCase_Skel" treeName= 
"testCase_Tree" xmlns = "/XML_DEVS/transform"> 
 <Root ID="R2" child="C’C" />  
</skeleton> 

• Bundle 

DTD XML  

<?xml version="1.0" encoding="UTF-8"?> 
<!ELEMENT bundle (process+)> 
<!ATTLIST bundle 
          name CDATA #REQUIRED 
          skeletonName CDATA #REQUIRED 
          xmlns CDATA #IMPLIED> 
<!ELEMENT process (node+)> 
<!ATTLIST process 
          processID CDATA #REQUIRED> 

<?xml version="1.0" encoding="UTF-8" ?> 
<!DOCTYPE bundle SYSTEM "bundle.dtd"> 
<bundle name = "testCase_bund" 
skeletonName="testCase_Skel" xmlns = 
"/XML_DEVS/skeleton"> 
 <process processID="P1" > 
  <node ID="R1"/> 
  <node ID="C’A" /> 
  <node ID="C’B"  /> 
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<!ELEMENT node EMPTY> 
<!ATTLIST node 
          ID CDATA #REQUIRED> 

                             <node ID="S’D"  /> 
                             <node ID="S’E"  />           
 </process> 
 <process processID="P2" > 
  <node ID="R2" /> 
 </process> 
 <process processID="P3" > 
  <node ID="C’C" /> 
  <node ID="S’F" /> 
  <node ID="S’G" /> 
 </process> 
</bundle> 

• VM 

DTD XML  

<?xml version="1.0" encoding="UTF-8"?> 
<!ELEMENT VM (Processor+)> 
<!ATTLIST VM 
          name CDATA #REQUIRED> 
<!ELEMENT Processor> 
<!ATTLIST Processor 
          processorID CDATA #REQUIRED 
          name CDATA #REQUIRED 
          address CDATA #REQUIRED> 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE VM SYSTEM "vm.dtd"> 
<VM name="testCase_VM"> 
   <Processor processorID="P_1" name = "Virtual_1" 
address="192.168.110.1"/> 
   <Processor processorID="P_2" name = "Virtual_2" 
address="192.168.110.2"/> 
</VM> 

• Graph 

DTD XML  

<?xml version="1.0" encoding="UTF-8"?> 
<!ELEMENT graph (vm:machine+)> 
<!ATTLIST graph 
          name CDATA #REQUIRED 
          bundleName CDATA #REQUIRED 
          vmName CDATA #REQUIRED 
          xmlns:bundle CDATA #IMPLIED 
          xmlns:vm CDATA #IMPLIED> 
<!ELEMENT vm:machine (bundle:child+)> 
<!ATTLIST vm:machine 
          processorID CDATA #REQUIRED> 
<!ELEMENT bundle:child EMPTY> 
<!ATTLIST bundle:child 
          processID CDATA #REQUIRED> 

<?xml version="1.0" encoding="UTF-8"?> 
<!DOCTYPE graph SYSTEM "graph.dtd"> 
<graph name = "testCase_graph" 
bundleName="testCase_bund" vmName="testCase_VM" 
xmlns:bundle = "/XML_DEVS/bundle" xmlns:vm = 
"/XML_DEVS/vm"> 
 <vm:machine processorID="Pr1" > 
  <bundle:child processID = "P1"/> 
 </vm:machine> 
 <vm:machine processorID="Pr2" > 
  <bundle:child processID = "P2"/> 
  <bundle:child processID = "P3"/> 
 </vm:machine> 
</graph> 
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