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Abstract
The transformation of manufacturing industry to green manufacturing is one of the important tasks to achieve the carbon 
peaking and carbon neutrality goals, which needs to improve the use efficiency of unit carbon emission. In order to describe 
the processing state in real time and improve the accuracy of carbon emission prediction, a dynamic prediction and simulation 
model of carbon efficiency based on digital twin was proposed. First, the dynamic characteristics of carbon emission during 
hobbing process was analyzed, and three carbon efficiency targets were defined to assess carbon emissions from processing 
processes. Then, a dynamic prediction and simulation model of carbon emissions was constructed based on convolutional 
neural network and dynamic discrete event system specification. On this basis, the framework of the carbon efficiency 
digital twin (CEDT) of the hobbing process was built, and the dynamic prediction and simulation models were integrated 
into CEDT as virtual models. The application in hobbing process showed that the presented model has higher accuracy in 
carbon emission prediction. The root-mean-square error, mean absolute error, and mean absolute percentage error of the 
real-time power prediction were reduced by 43.98%, 34.55%, and 30.67% on average, compared with the traditional method. 
Meanwhile, the validity of CEDT was verified and the effect of dynamic parameters on carbon efficiency was discussed.
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1 Introduction

To combat global warming, the Chinese government has 
proposed carbon peaking and carbon neutrality goals [1]. 
Manufacturing is the main source of China’s carbon emis-
sions, consuming more than 30% of primary energy and pro-
ducing about 36% of greenhouse gases [2]. On the premise 
of ensuring the development of the industry, how to reduce 
carbon emissions is an urgent issue to be solved [3]. The 
study of carbon emission efficiency is helpful to analyze 
the trend of carbon emission and plays an important role in 
reducing carbon emission [4]. How to improve the utiliza-
tion efficiency of unit carbon emission, take into account 
economic and environmental benefits under the limitation 
of fixed carbon emission quota, and achieve high efficiency, 

energy saving and low carbon manufacturing are the issues 
that the country and enterprises need to focus on.

Gear hobbing is the most widely used gear processing 
technology. Improving the carbon efficiency of gear hobbing 
process is of great significance for improving the economic 
benefits of enterprises, reducing environmental pollution, 
and achieving the national strategic goals. Therefore, many 
scholars have done a lot of research on hobbing. Sun et al. 
[5] took the minimum geometric error of gear as the optimi-
zation objective, and used the improved particle swarm opti-
mization algorithm to optimize the hobbing process param-
eters. Xiao et al. [6] established a model based on the energy 
consumption of hobbing machine tool parts, constructed 
a comprehensive energy model based on the processing 
parameters, and optimized it with the goal of energy con-
sumption and cost. Li et al. [7] established a multi-objective 
optimization model of time and energy consumption by ana-
lyzing the characteristics of gear hobbing energy consump-
tion, and adopted the imperial competition algorithm for 
optimization. Ni et al. [8] quantitatively modeled the carbon 
footprint of the hobbing process and optimized the hobbing 
parameters based on the improved multi-objective gray wolf 
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algorithm. In addition, they added consideration to the hob 
parameters on the basis of the processing parameters, and 
adopted the multi-objective Antlion optimization algorithm 
to optimize the energy consumption and cost of hobbing 
[9]. Cao et al. [10] predicted and optimized the hobbing 
parameters based on support vector regression and improved 
Harris Hawks optimization algorithm. Yi et al. [11] estab-
lished the carbon emission prediction model of hobbing by 
using backpropagation neural network through small-sample 
experimental design, and optimized the hobbing parameters 
based on the improved multi-objective gray wolf algorithm. 
Kharka et al. [12] studied the influence of processing param-
eters and lubricating oil parameters on gear quality through 
experiments based on minimum quantity lubrication assisted 
hobbing. Liu et al. [13] used multi-objective whale optimiza-
tion algorithm to optimize the hobbing parameters with the 
goal of processing cost and error.

All the above literatures study the hobbing process in the 
static environment. By default, other factors in the hobbing 
process are constant and the influence of processing param-
eters is focused. In fact, the hobbing process is a dynamic 
process under dynamic machining conditions. Due to the 
influence of dynamic parameters such as equipment wear, 
process parameters variation, and material differences 
[14–16], the simple static model is difficult to ensure the 
accuracy of prediction and optimization, and cannot describe 
the real-time state of the hobbing process. However, to build 
a new model according to the changes will consume a lot 
of time, which runs counter to the real-time demand of 
production.

In order to comprehensively consider the impact of 
dynamic parameters and accurately describe the real-time 
state of machining, it is necessary to establish a dynamic 
model, which combines data-driven and simulation to 
express the dynamic process and results of machining. Zhu 
et al. [17] established a multi-level carbon emission simula-
tion model using discrete event system specification in view 
of the multi-granularity characteristics of carbon emission 
in machining process, and conducted simulation analysis on 
an example. Tuo et al. [18] proposed a dynamic acquisition 
method of carbon emissions in mechanical manufactur-
ing processes, which can overcome the problem that tradi-
tional static statistical methods cannot accurately reflect the 
dynamics and uncertainty of carbon emissions. Alzalab et al. 
[19] proposed a stepwise fault locking method based on trust 
model and colored Petri net, which can manage, detect, and 
deal with faults in automatic manufacturing system. Kim 
et al. [20] proposed to use machine learning model and 
simulation model for collaborative modeling in view of the 
problem that a single method could not fully reflect a com-
plex model. Tsinarakis et al. [21] proposed a general process 
modeling and simulation framework for discrete industrial 
systems based on Petri net in the context of digital twin. Li 

et al. [22] established a metamodel of manufacturing energy 
consumption behavior using hybrid Petri net, simulated the 
processing process, and finally constructed a digital twin 
model of energy saving manufacturing.

The dynamic model can comprehensively consider the 
dynamic parameters and conditions in actual machining, 
describe the real-time state, and reflect the process and result 
of machining more accurately. However, it is interesting to 
note that there are few studies on the dynamic model of 
hobbing process under the influence of dynamic parameters.

Different from turning or milling processing, gear hob-
bing is usually produced in small batches of multiple varie-
ties in actual industrial production, and the production time 
of a single gear is longer. In addition, only the first few gears 
will be tested for precision in a production batch, so it is 
difficult to collect a large number of complete data includ-
ing manufacturing results and precision results to guide the 
processing practice. Data generated based on simulation is 
another effective way to obtain data [23]. Simulation can 
be used to characterize the carbon emission dynamics of 
manufacturing systems and help enterprises reduce carbon 
emissions from production [24]. What is more, due to the 
long processing time of hobbing, the operator often needs 
to operate the processing of multiple equipment at the same 
time. How to allocate the working time reasonably, disas-
semble the workpiece and replace the tool in time, and adjust 
the hobbing parameters is a problem worth thinking about. 
Based on the data-driven simulation model, enterprises can 
effectively use the historical manufacturing data to guide 
the production process arrangement and time management 
of operators, save more time and money, reduce the carbon 
emissions generated by production, and achieve a win-win 
situation of economic and environmental benefits.

Digital twin establishes a multi-dimensional, multi-tem-
poral scale, multi-disciplinary, and multi-physical quantity 
dynamic virtual model of physical entities in a digital way to 
simulate and describe the properties, behaviors, and rules of 
physical entities in the real environment [25]. Driven by data 
and models, digital twin can be used for monitoring, simu-
lation, prediction, and optimization [26]. After continuous 
development in recent years, digital twin has been widely 
used in the field of machinery. Liu et al. [27] proposed a 
four-fold architecture of design-planning-development-opti-
mization based on digital twin in order to avoid the high cost 
caused by reconfiguring the intelligent manufacturing sys-
tem. Wei et al. [28] proposed a consistency keeping method 
for digital twin of CNC machine tools to ensure the accuracy 
and fidelity of the model. Luo et al. [29] proposed to real-
ize fault prediction and maintenance of CNC machine tools 
using hybrid drive of model and data based on digital twin. 
Tao et al. [30] proposed the construction criteria of digital 
twin, and carried out a series of research and practice on 
the construction of digital twin workshop model. Xia et al. 
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[31] proposed an intelligent fault diagnosis framework for 
machinery based on digital twin and deep transfer learning 
to solve the problem of large fault diagnosis errors caused by 
insufficient measured fault state data. Wang et al. [32] pro-
posed an assembly accuracy analysis method based on uni-
versal parts digital twin model, which can effectively iden-
tify the effects of manufacturing errors and assembly process 
errors on assembly accuracy. Dai et al. [33] proposed an 
information modeling method for the digital twin model of 
prefabricated parts to ensure the reusability of manufactur-
ing data. Li et al. [34] proposed a digital twin-driven online 
tool wear monitoring method, which solved the problems of 
large prediction error of milling cutter wear and difficulty of 
online acquisition of dynamic data.

A perusal of current literature concludes that the static 
model is generally adopted in the existing research on manu-
facturing process optimization. Although significant efforts 
have been made for low-carbon and energy-saving manu-
facturing, most of them only pay attention to the influence 
of process parameters and can only output static results. In 
addition, some scholars have applied the dynamic model to 
the simulation of manufacturing process to reflect the real-
time state of machining, but there is no research on compre-
hensively considering the dynamic characteristics of the gear 
hobbing process and establishing a dynamic model. Digital 
twin can make full use of the data of dynamic parameters in 
physical space, and realize the accurate prediction and real-
time dynamic simulation of the carbon efficiency of hobbing 
process by relying on virtual model. Unfortunately, there 
are few papers combining dynamic models and digital twin.

Inspired by the comments above, this paper applies the 
digital twin to the hobbing process. According to the carbon 
emission characteristics of different periods of the hobbing 
process, the dynamic prediction and simulation model is 
integrated into the carbon efficiency digital twin (CEDT) 
model of the hobbing process as virtual models. In addi-
tion to improving the prediction accuracy, CEDT can also 
express the real-time states and carbon efficiency results of 
gear hobbing. Operators can check the prediction and simu-
lation results of the model before processing, and plan the 
production process arrangement and time management in 
advance according to the production plan and processing 
conditions, so as to improve the carbon emission efficiency 
of hobbing and ensure the economic and environmental ben-
efits of the enterprise.

Due to the lack of comprehensive consideration of the 
dynamics of gear hobbing process and dynamically reflects 
the machining results in real time to guide production man-
agement, this paper fills the gap and makes the following 
contributions: (1) The carbon emission characteristics of 
hobbing process are analyzed from the angle of dynamic 
characteristics based on each period of the process, and 
three carbon efficiency targets are defined. (2) Dynamic 

discrete event system specification (DDEVS) is proposed, 
and a dynamic prediction and simulation model of carbon 
efficiency considering dynamic characteristics of gear hob-
bing process is constructed based on one-dimensional con-
volutional neural network and DDEVS. (3) The framework 
of CEDT is built, and the dynamic prediction and simula-
tion model is integrated into the CEDT model of gear hob-
bing process. This model can make full use of the dynamic 
parameter data of physical space, and simulate the real-time 
state and carbon efficiency results of the gear hobbing pro-
cess. So as to guide operators to plan production process 
arrangement and time management.

The remainder of this paper is organized as follows. 
Section 2 analyzes the carbon emission characteristics of 
hobbing process and defines the carbon efficiency target. 
Section 3 introduces the dynamic prediction and simula-
tion model of carbon efficiency in gear hobbing process. 
Section 4 integrates the dynamic prediction and simulation 
model into CEDT of gear hobbing process. Section 5 imple-
ments the case study. Section 6 concludes the paper and 
gives an outlook on future research.

2  Carbon emission dynamic characteristics 
and carbon efficiency of hobbing process

2.1  Analysis of carbon emission dynamic 
characteristics in gear hobbing process

Gear hobbing is a complex gear machining process with 
numerous sources of carbon emissions. Generally speaking, 
the running process of hobbing machine tool can be divided 
into states including startup-standby-unload-cutting-retract, 
and the carbon emissions can be calculated separately. After 
the machine tool is started, the operator will clamp the gear 
blank, install the hob and perform tool setting, and then 
select or input the corresponding program code in the CNC 
system. After starting the machine tool, the gear blank will 
go through each processing period and consume a certain 
amount of time and materials, resulting in corresponding 
carbon emissions, finally be sent to inspection after forming.

Figure 1 shows the real-time power-time graph for two 
gear hobbing processes in the industrial scenario. The same 
type of gear is processed by the same machine tool twice, 
and the process parameters (spindle speed and feed) are the 
same. However, due to the influence of the environment, 
hob, and other dynamic parameters, the power of the hob-
bing process is different, which also indicates that the carbon 
emissions generated by the hobbing process are dynamic.

Figure 2 shows the tool path and its corresponding power 
in the gear hobbing process. After the machine is started, it 
is the standby period. When the operator completes a series 
of preparations such as clamping and starts processing, the 
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gear hobbing process enters the unload period. At this time, 
the spindle starts to rotate, the cutting fluid of the machine 
tool is turned on, and the hob moves slowly from position 
A to position B, and cuts downward according to the fixed 
feed speed set in advance. When the hob is in contact with 
the workpiece (position C), it enters the cutting period, and 
the cutting period ends until the hob is separated from the 
workpiece (position F). Then, enter the retracting period, 
the hob passes through position G, position H, and quickly 
returns to the origin position of the machine tool (position 
A). At this point, a hob process is over.

The startup period of the machine tool is only a very short 
time. Its carbon emission is very small and has little rela-
tionship with processing, so its carbon emission is ignored.

Carbon emission sources of hobbing include energy 
(electricity), materials, and equipment [35]. During the 
standby period, the carbon emission of the machine tool is 
generated by the power consumption, which is determined 
by dynamic factors such as the performance of the machine 
tool and the environment conditions. The time includes gear 
blank clamping, tool setting, and the time required for input-
ting the numerical control program, etc., which is affected 

Fig. 1   Real-time hobbing power-time graph in industrial scenario
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Fig. 2  Gear hobbing process
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by the operator’s proficiency. Carbon emission in standby 
period is shown in Eq. (1):

where, EFelec is the carbon emission factor of electric energy.
Compared with the overall time, the unload period and 

the retract period in the hobbing process only account for 
a very small part of time, so they can be ignored. The car-
bon emissions generated during cutting period is mainly 
considered.

The carbon emission model is established according to 
the degree of hob cutting, which can effectively improve 
the accuracy of prediction and describe the real-time state 
of the hobbing process. The cutting period includes three 
continuous processes of cut-in (lCD), complete cut-in 
(lDE), and cut-out (lEF), and the real-time power varies 
linearly, as shown in Fig. 2. The hob contacts with the 
gear blank at position C, and moves downward along the 
radial direction of the gear blank. With the increasing 
of the cutting depth of the hob, the cutting power also 
increases, which is the cut-in process. Up to position D, 
the cutting depth reaches the maximum, that is, full cut. 
The machine maintains this cutting power so that the hob 
continues to feed down until it reaches position E and 
starts to cut out. During the cut-out period, as the depth 
of cut decreases, the cutting power gradually decreases 
until the hob is separated from the workpiece at position 
F, and the cutting period ends.

In the cutting period, the hobbing machine tool removes 
excess material to shape the gear. The carbon footprint dur-
ing this period comes from electricity consumption, cutting 
fluid preparation and treatment, hob preparation, and waste 
disposal. The carbon emissions of the three cutting processes 
can be calculated by integrating the power with time and 
using the carbon emission factor. As shown in Eq. (2):

where x = cut − in, full − cut, cut − out, which respectively 
represent the three processes in the cutting period; Tc is the 
effective cycle of cutting fluid; Lc is the circulating usage 
of cutting fluid on the hobbing machine; EFc is the carbon 
emission factor of mineral oil; Lw is the amount of waste 
cutting fluid; EFw is the carbon emission factor of waste 
cutting fluid treatment; Th is the total life of the hob; EFh is 
the carbon emission factor of the hob; Wh is the weight of 
the hob; EFm is material carbon emission factor; and ∆m is 
the weight of the waste.

Parameters related to carbon emissions are shown in 
Table 1.

(1)Cstandby = EFelec × ∫
tstandby

0

Pstandbydt

(2)
Cx = EFelec × ∫ tx

0
Pxdt +

tx

Tc

(

LcEFC + LwEFw

)

+
tx

Th
EFhWh + EFm × �m

2.2  Carbon efficiency of gear hobbing process

In the context of low carbon, improving carbon emission 
efficiency is an effective solution to overcome environmental 
constraints and ensure economic development [36]. In actual 
industrial processing, hobbing products are required to be 
processed before the delivery time under the premise of meet-
ing the quality standards, and economic and environmental 
benefits should be taken into account. That is, gear hobbing 
needs to ensure lower carbon emissions under the premise of 
short time, excellent quality, and low cost. Based on this, this 
paper proposes three carbon efficiency targets, including qual-
ity carbon efficiency, production carbon efficiency, and profit 
carbon efficiency, to evaluate the carbon emission benefit of 
the gear hobbing process.

2.3  Quality carbon efficiency

For the quality of gear hobbing, the quality carbon efficiency 
is proposed, which is defined as the ratio of the difference 
between the design accuracy and the actual machining accu-
racy and the carbon emissions produced by the production of 
the gear. It is used to describe the relationship between the 
hobbing quality and carbon emissions. The quality carbon 
efficiency ηq (μm/kgCO2) is shown in Eq. (3):

where F is the design accuracy, ∼F is the manufacturing accu-
racy, both of which are characterized by radial runout Fr, Csingle 
is the carbon emission generated by this gear hobbing process, 
and the calculation formula is shown in Eq. (4):

2.4  Production carbon efficiency

For the hobbing processing time, the production carbon effi-
ciency is proposed, which is defined as the ratio of the number 
of qualified products in this batch to the product of the total 
processing time and the total carbon emissions of the hobbing 

(3)�q =
F −

∼

F

Csingle

(4)
Csingle = Cstandby + Ccut−in+

Cfull−cut + Ccut−out

Table 1  Parameters related to carbon emissions

Parameter Value Source

EFelec 0.8042  kgCO2/kw·h [40]
EFc 2.85  kgCO2/L [41]
EFh 29.6kg  CO2/kg [41]
EFw 0.2  kgCO2/L [42]
EFm 2.69  kgCO2/kg [42]
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process. It is used to describe the relationship between hobbing 
efficiency and carbon emissions of the equipment. The produc-
tion carbon efficiency ηq (piece/kgCO2 ∙ h) is shown in Eq. (5):

where Q is the number of qualified gears and tntotal is the total 
time consumed by the produced gears. Ctotal is the carbon 
emissions generated by this gear hobbing process, and its 
calculation method is shown in Eq. (6):

where m is the weight of the unqualified gear.

2.5  Profit carbon efficiency

For the economic benefit of enterprises, the profit carbon 
efficiency is proposed, which is defined as the ratio of the 
profit generated by hobbing to the carbon emissions. It is 
used to describe the relationship between the added value 
of gear hobbing and carbon emissions. The profit carbon 
efficiency ηc(yuan ∙ piece/kgCO2) is shown in Eq. (7):

where, P represents the value generated by the hobbing step 
and Cntotal is the total carbon emissions generated by the 
processed gears. M is the production cost, and its calculation 
formula is shown in Eq. (8):

where pelec is the unit price of electric energy, pc is the unit 
price of cutting fluid, ph is the unit price of the hob, and pm is 
the unit price of the gear blank. tcutting is the total duration of 
cutting period, and its calculation method is shown in Eq. (9):

3  Virtual model of carbon efficiency digital 
twin in gear hobbing process

3.1  Real‑time power fitting of gear hobbing process

In order to realize the real-time power prediction in gear hob-
bing process, it is necessary to comprehensively consider the 

(5)�p =
Q

tntotal × Ctotal

(6)Ctotal =
{

Csingle

Csingle + EFm × m

(qualified)

(unqualified)

(7)�c =
(P −M) × Q −M × U

Cntotal

(8)

M = Pelec ×
(∫ tstandby

0
Pstandbydt + ∫ tcut−in

0
Pcut−indt+

∫ tfull−cut

0
Pfull−cutdt + ∫ tcut−out

0
Pcut−outdt

)

+
tcutting

Tc
Lcpc +

tcutting

Th
ph + pm

(9)tcutting = tcut−in + tfull−cut + tcut−out

dynamic parameters of the process, and collect data of multi-
ple dynamic parameters including actual working conditions, 
operating parameters and process parameters in real time.

Traditional statistical modeling methods manually extract data 
features in a targeted manner, which is limited by professional 
fields and experience, and it is difficult to ensure the accuracy 
of prediction models. Convolutional neural network (CNN) is a 
widely used deep learning algorithm. When the data of multi-
dimensional parameter features are input, the features can be 
extracted in a more targeted way and used to fit the complex 
mapping relationship. Its generalization ability, reliability, and 
robustness are superior to traditional artificial neural network [37].

3.2  Data preprocessing

Before using one-dimensional convolutional neural network to 
predict the real-time power of gear hobbing process, the raw 
collected data needs to be preprocessed. The raw data includes 
qualitative data such as machine tool model, workpiece mate-
rial, and quantitative data such as gear parameters and process 
parameters. Qualitative data cannot be input into the prediction 
model directly, so one-hot encoding is used to convert them into 
quantitative data. When a feature has N possible qualitative val-
ues, the feature is extended to N quantitative features represented 
by 0 and 1. For example, for the model of machine tool, “10” 
can be used to represent machine tool YS3132CNC6, and “01” 
can represent machine tool YS3140CNC6.

For quantitative data, it is necessary to normalize the data 
and map the dimensional eigenvalues of the data to [0,1] to 
prevent the reduction of prediction accuracy caused by differ-
ent dimensions and large order of magnitude gaps. The for-
mula for data normalization is shown in Eq. (10):

where x′ is the normalized value, x is the original value of the 
feature, and xmax and xmin are the maximum and minimum 
values of the feature.

3.3  Construction of one‑dimensional convolutional 
neural network model

The 1D-CNN is trained with historically collected data. The algo-
rithm automatically extracts the features of the dynamic param-
eters, and constructs the regression prediction model of the real-
time power in gear hobbing process. During machining, the data 
collected in real time is used as the input of the model, and the 
trained model will regress to predict and output real-time power 
according to the value of each dynamic feature. Moreover, the 
data generated by this machining will be added to the historical 
data set, and the model will be retrained to continuously enhance 
the dynamic prediction performance of the model.

(10)x� =
x − xmin

xmax − xmin
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1D-CNN consists of an input layer, a series of convolutional 
layers, activation layer, pooling layer, fully connected layer, and 
an output layer. Input data enters the network from the input 
layer. Feature extraction is carried out by the convolution layer, 
that is, according to the set step size, the data is continuously 
slid and convolutional operations are performed. The calculation 
formula of 1-D discrete convolution is shown in Equation (11):

where Yiis the value of the feature map after convolution, 
bias is the bias value, Xi is the ith input data with dimension 
p × 1, θ is the convolution kernel with kernel size N, and ⊗ 
is the convolution operator.

After convolution, the rectified linear unit (ReLU) is used 
in the activation layer to add nonlinear factors to prevent linear 
inseparability. The calculation formula is shown in Eq. (12):

where f(x) is the output after activation and x is the input.
The pooling layer allows only the most influential features 

to be retained, which can reduce the dimension of data and 
prevent overfitting. After multiple convolutions and pool-
ing, the fully connected layer is used to activate all neurons 
through linear transformation to obtain the regression result. 
By calculating the loss between the predicted value and the 
monitored value, and propagating the loss back, the model is 
adjusted continuously by stochastic gradient descent, and the 
results are output in the output layer when the requirements 
are met. Figure 3 shows the structure of the convolutional 
network model used for dynamic prediction in this paper.

3.4  Simulation algorithm for dynamic prediction 
and simulation model

Discrete event system specification (DEVS) is a modular, hier-
archical modeling method. DEVS builds systems by connect-
ing system components, can express dynamic systems, and 
formally describe discrete or continuous systems [38]. DEVS 
model includes atomic model and coupled model. The atomic 
model is used to simulate the most basic behavior of the model. 

(11)Yi = bias +

N
∑

i=1

Xi ⊗ 𝜃i

(12)f (x) = max (0, x)

Multiple atomic models can be coupled to form a coupled model 
to dynamically simulate the behavior of more complex systems.

The hobbing process goes through four continuous stages: 
standby, cut-in, full-cut, and cut-out, which can be regarded as 
a continuous system of carbon emission. Gear hobbing usually 
includes rough hobbing and finishing hobbing twice, and a gear 
production workshop has more than one hobbing machine bed 
for processing; their carbon efficiency of gear hobbing process 
can be regarded as a discrete system. As shown in Fig. 4, the 
atomic model is designed according to the machining process 
of gear hobbing, and it is coupled in chronological order to 
construct the coupled model of rough hobbing and finishing 
hobbing. The two coupling models can be coupled again and 
become a coupled model for a machine tool to complete hob-
bing. Finally, according to the situation of the workshop, several 
hobbing machine bed models are coupled. From this, the DEVS 
dynamic simulation model of the carbon efficiency of the hob-
bing process is constructed from the bottom up to output the 
real-time progress and machining results of the hobbing process.

3.5  Atomic model construction

The traditional DEVS atom model is represented by a seven-
tuple, but it cannot simulate dynamically changing inputs. 
In order to use the fitting value of 1D-CNN for dynamically 
changing real-time power as input for simulation, this paper 
extends the traditional DEVS and proposes dynamic discrete 
event system specification (DDEVS), which is represented by 
an octuple, as shown in Eq. (13):

DI: External dynamic input set. DP = {Pstandby, Pcu-
tin, Pfullcut, Pcutout} represent the real-time power fitting 
values in each period from dynamic prediction model.

X: External input event set. X = {batch, p, os}, batch ∈ N+ 
indicates the batch of gears to be processed this time; p ∈ R 
represents the real-time power of the period, which is 
determined by DI; os = {gh, gc, gm} represent hob, cutting 
fluid, and material respectively.

Y: External output event set. Y = {c, ec, t, am, qam, uam}, 
where c = {cs, cin, cfull, cout, ct}, cs, cin, cfull, cout, ct ∈ R are the 
carbon emissions and total carbon emissions in standby 

(13)A =< DI,X, Y , S, 𝛿int, 𝛿ext, 𝜆, ta >

Fig. 3  The structure of 
1D-CNN

tuptuOraeniLlooPxaMnoitulovnoCtupnI

Loss Backward

Convolution MaxPool
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period, cut-in period, full-cut period, and cut-out period, 
respectively. ec = {nq, np, nc}, nq, np, nc ∈ R represent qual-
ity carbon efficiency, production carbon efficiency, and profit 
carbon efficiency, respectively, ta(s) ∈ R represents the dura-
tion of this period, am ∈ N+ represents the total number of 
gears, and qam, uam ∈ N represent the number of qualified 
gears and the number of unqualified gears, respectively.

S: System state set. S = {ts, bn, am, qam, uam, c, ec, t}, 
where ts = {r, f}, r indicates that the period is running, f 
indicates that the period is idle, bn = {q1, q2, …, qn}, bn = qn 
means that the nth gear of the batch is being processed, and 
the meaning of m, qam, uam, c, ec, t are the same as those 
defined in the external output event set.

δint: Internal transition function, which is used to describe 
the transition logic and operation method of the model state 
when an internal event occurs. δint = {δ1, δ2, δ3, δ4}。δ1 
means that when the state of the period is f and batch = 0, 
this state is maintained, carbon emissions and carbon 
efficiency are not calculated, and the state duration is  ta(s). 
δ2 means that when the state of the period is f and batch > 0, 
the state changes to r, the number of gears to be processed 
batch is reduced by 1;  bn = qam + uam, calculate the carbon 
emission and carbon efficiency, and record the state duration 
 ta(s). δ3 indicates that when the state is r and batch = 0, the 
state changes to f, carbon emissions and carbon efficiency 
are not calculated, and the state duration is  ta(s). δ4 means 
that when the state of the period is r and batch > 0, keep this 
state, calculate the carbon emission and carbon efficiency, 
and record the state duration ta(s).

δext: External transition function, which is used to 
describe the state change of the model when an external 
event occurs. When there is batch input, if the original 
period state is f, change the state to r and batch = input. If the 
original period state is r, keep the state and batch +  = input.

λ: Output function. Information output when an internal 
or external event occurs in the system. When the status of 
this period is f, the information of carbon emission, time, and 
carbon efficiency is collected and sent to the relevant port.

ta: Time advance function. Records the duration of the 
current state, and stops recording when the state transitions.

3.6  Coupled model construction

According to the order of the machining period of gear 
hobbing process, the atomic models can be connected in 
sequence to become the coupled model of gear hobbing pro-
cess that describes the hobbing of a single gear. The coupled 
model is described in the form of a seven-tuple, as shown 
in Eq. (14):

where, the definitions of X and Y refer to the definitions in the 
atomic model. D is the members name set. EIC is the external 
input coupled set, that is, the connection relationship between 
the external input and the input interface of the internal 
atomic model. EOC is the external output coupled set, that 
is, the connection relationship between the external output 

(14)C =< X, Y ,D,EIC,EOC, IC, select >

Fig. 4  Coupled method of 
DEVS
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and the output interface of the internal atomic model. IC is 
the internal coupled relationship set, that is, the connection 
relationship between the atomic models of machining period 
within the coupled model of the hobbing process. select is the 
selection function. When multiple members of the coupling 
model have state changes at the same time, the priority of the 
state changes is determined. In this paper, the priority of the 
coupled model of hobbing process from low to high is the 
standby atomic model, the cut-out atomic model, the fully cut 
atomic model, and the cut-in atomic model.

Figure 5 shows the operation mechanism of the model, in 
which the dotted line represents the transformation mecha-
nism of the internal events of the model, and the solid line 
represents the transformation relationship of the external 
events of the model.

4  Carbon efficiency digital twin in gear 
hobbing process

4.1  Framework of carbon efficiency digital twin

The framework of the carbon efficiency digital twin model in 
gear hobbing process is shown in Fig. 6, which includes three 
modules: physical entity, twin database, and virtual model.

The physical entity of the digital twin includes the device 
layer and the perception layer. The device layer is the gear 
hobbing equipment, including machine tools, workpieces, 
and hobs. The perception layer is based on the Internet of 
Things (IoT) technology to perceive and transmit the data 
in gear hobbing process. The sensor, analyzer, and other 
equipment are used to collect the data in the device layer 
in real time, and the data is transferred to the computer and 
the acquisition terminal for simple processing. In order to 
improve the response rate and reduce the time delay, edge 
server is used to analyze the real-time data. Historical data 
will be transferred to the cloud server for storage during 
idle time.

In the twin database, the data collected by the perception 
layer is collectively referred to as perception data. These per-
ception data will be used as the input of the virtual model to 
realize the dynamic prediction and simulation of the carbon 
efficiency in gear hobbing process.

Virtual model includes two modules, prediction layer 
and simulation layer, which undertake the work of dynamic 
prediction and dynamic simulation, and is the focus of this 
paper. The prediction layer of the virtual model first pre-
processes the sensing data of dynamic parameters such as 
machine tools, workpieces, and process parameters collected 
from physical entities and stored in the twin database. The 

Fig. 5  The operation mecha-
nism of DDEVS
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1D-CNN will extract features and predict the real-time 
power in gear hobbing process. After that, the predicted 
real-time power data will be input into the simulation layer 
together with other sensing data, which will be simulated by 
the DDEVS dynamic simulation model, and the real-time 
hobbing states and carbon efficiency results will be output 
to the twin database, which will be used as service data. 
The operator can call to view the service data before the 
formal processing to understand the simulation process and 
results of the machining. Based on this, the operator can plan 
the production process arrangement and time management 
in advance, and improve the carbon emission efficiency of 
hobbing processing. This realizes the mapping of the virtual 
model of the CEDT of gear hobbing process to the physical 
entity.

4.2  Integration relationship of carbon efficiency 
digital twin

The carbon efficiency digital twin model (CEDT) in gear 
hobbing process can be expressed by Eq. (15):

where PE represents the physical entity, TD represents the twin 
database, and VM represents the virtual model. In order to fully 
express the integration relationship of each part, the class dia-
gram of unified modeling language (UML) is used to describe 

(15)CEDT = PE ∪ TD ∪ VM

it. As shown in Fig. 7, the upper part of the box is class name, 
and the lower part is class properties. The solid line-rhombus is 
the aggregation relationship, that is, from the part to the whole, 
such as the physical entity including hobbing machine tool, 
workpiece, and hob. The solid line-solid rhombus represents the 
composite relationship. Compared with aggregation relation-
ship, the whole and part of the composite relationship are more 
closely, such as the atomic model of the hobbing period and 
the coupled model of the gear hobbing process; the latter must 
be composed of the former. The dashed line-arrow represents 
the dependency relationship; that is, the implementation of the 
class needs the assistance of the directed class, such as the hob-
bing parameter data in the perception data needs to be obtained 
from the process data in the CNC system of the machine tool. 
The solid lines without arrows indicate associations, such as 
perception data and service data are associated.

5  Case study

5.1  Case data description

In order to verify the effectiveness of the dynamic prediction and 
simulation carbon efficiency digital twin model in the gear hob-
bing process proposed in this paper, experiments and data col-
lection were carried out in the gearbox manufacturing workshop 
of a company in Chongqing. The workshop has gear hobbing, 
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Fig. 6  The framework of the CEDT in gear hobbing process
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gear shaping, gear grinding, heat treatment, and other gear pro-
cessing equipment. There are two gear hobbing machine tools in 
total; the models are YS3132CNC6 and YS3140CNC6. Table 2 
shows the parameters of the two machine tools.

According to the processing orders of the workshop in 
2021 including hobbing, a total of 271 sets of complete 
data were collected based on the Internet of Things. The 
scene is shown in Fig. 8. Firstly, the information of gears 
being processed and the hob used is collected from the 
manufacturing database of the factory. Process parameters 
are collected in numerical control system.

Then, the clamp-type current sensor and alligator clip are 
installed in the electrical box of the hobbing machine tool. 
HIOKI3390 power analyzer is used to analyze and collect the 
real-time power signal during the gear hobbing process. After 
the hobbing is completed, the WGT400 gear measuring center 
is used for precision inspection. The collected data will be trans-
mitted to the edge server through Ethernet or WIFI for analysis 
and utilization to achieve dynamic prediction and simulation of 
carbon efficiency. The generated simulation data will be used 
to guide operators to plan production process arrangement and 
time management.

5.2  Dynamic prediction and simulation results 
of carbon efficiency in gear hobbing process

5.2.1  Dynamic prediction and simulation results 
of real‑time power

During gear hobbing, there are numerous dynamic param-
eters that have an impact on carbon emissions. Principal 

component analysis (PCA) is used to process the data, which 
can exclude the influence of noise in industrial production on 
real-time power, and only retain the attributes of important 
dynamic parameters.

In this case, the dynamic properties of the machine tool 
are represented by the operating time of the machine tool, the 
dynamic properties of the environment are represented by 
the ambient temperature during the machining process, the 
dynamic properties of the hob are represented by its usage 
time and material, and the dynamic properties of the gear 
are represented by the gear material and modulus, and the 
number of teeth is reflected. As for hobbing parameters, its 
dynamic properties are reflected by spindle speed and feed.

The parameters of 1D-CNN used in this case are shown in 
Table 3. Among the 271 groups of data collected, 54 groups 
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Table 2  Parameters of hobbing machine tool

Machine tool Parameter Value

YS3132CNC6 Max machining diameter
Max machining modulus
Max hob turn angle
Max hob spindle speed
Max table speed
Max hob axial movement

320 mm
10 mm
±45°
700 rpm
60 rpm
200 mm

YS3140CNC6 Max machining diameter
Max machining modulus
Max hob turn angle
Max hob spindle speed
Max table speed
Max hob axial movement

400 mm
16 mm
±45°
500 rpm
35 rpm
200 mm
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are randomly selected as the test set, and the rest data are 
used as the training set. The collected dynamic parameter 
data enter the input layer after preprocessing. In convolution 
layer 1, the convolution operation is carried out by 5 convo-
lution kernels with the size of 3, and the maximum pooling 
with the size of 2 is performed. Then, the data is convolved 
by 10 convolution kernels of size 3 in convolutional layer 
2, and the maximum pooling of size 2 is performed again. 
The output is connected to a fully connected layer with 128 
neurons. After dimensionality reduction through two fully 
connected layers with sizes of 64 and 32, respectively, the 
real-time power prediction of the gear hobbing process is 
realized in the output layer. The predicting value and mon-
itoring value of real-time power in gear hobbing process 
based on 1D-CNN are shown in Fig. 9.

In order to reflect the simulation accuracy of the 1D-CNN 
model on real-time power under the influence of dynamic 
parameters in gear hobbing process, this paper compares its 

prediction results with those of traditional machine learning 
such as back propagation neural network (BPNN), extreme 
learning machine (ELM), and support vector regression 
(SVR). The parameters of each machine learning algorithm 
are shown in Table 3. In this paper, four indicators of root-
mean-square error (RMSE), mean absolute error (MAE), 
mean absolute percentage error (MAPE), and determination 
coefficient (R2) are used to evaluate the prediction effect of 
each model. The formulas of the four indicators are shown 
in Eqs. (16–19):

(16)RMSE =
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√

√
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where N is the total number of samples. yi is the ith monitor-
ing value, ỹi is the ith predicting value, and y is the average 
value of the monitoring value.

Table 4 shows the effect of each prediction model. Among 
them, RMSE, MAE and MAPE can be used to evaluate the 

(18)MAPE =
100%

N

N
∑

i=1

∣
yi − ỹi

yi
∣

(19)R2 = 1 −

∑N

i=1

�

yi − ỹi
�2

∑N

i=1

�

yi − y
�2

deviation between the predicting value and monitoring value 
of the model. The smaller the value of them, the better the 
prediction effect of the model on the real-time power in gear 
hobbing process and the more stable the performance. The 
determination coefficient R2 ∈ [0, 1], which is used to evalu-
ate the fitting effect of the model on the real-time power of 
hobbing for each dynamic parameter. The closer its value is 
to 1, the better the fitting effect of the model, and the more 
it can fit the influence of dynamic parameters on real-time 
power in gear hobbing process.

According to the results in Table  4, among the four 
evaluation indicators, 1D-CNN has the best results. Compared 
with the other three methods, the values of RMSE, MAE, 
and MAPE of it are reduced on average by 43.98%, 34.55%, 
and 30.67%, respectively. The RMSE of 1D-CNN is 209.41, 
indicating that the error between the predicting value and the 
monitoring value is small, and the prediction stability of this 
method is better. MAE shows the actual error between the 
predicted value and the monitored value. 1D-CNN has the 
smallest MAE value, indicating that its absolute error is the 
smallest. MAPE is the percentage of error to the monitoring 
value. The MAPE of 1D-CNN is 1.59%, indicating that the 
prediction accuracy is above 98% and has a good prediction 
effect. As for R2, the R2 of the model used in this paper is 
0.99, which is the closest to 1 among several models, which 
shows that 1D-CNN is feasible for the fitting between dynamic 
parameters and real-time power. It should be noted that although 
the 1D-CNN model used in this paper has better prediction 
effect, its training time is also far longer than the other three 
models, which is a common constraint of deep learning.

Table 3  Model parameters

Model Parameter Value

1D-CNN Learning rate
Stride
Padding
Dropout
Activation function
Epochs

9e−5
1
1
0.1
“ReLU”
300

BPNN Hidden layer sizes
Max iteration
Learning rate
Activation function

9
1000
0.001
“Sigmiod”

ELM Hidden layer sizes
Activation function

19
“Sigmiod”

SVR Kernel
Gamma
C

“Poly”
0.95
10

Fig. 9  Simulation of real - time power in gear hobbing process by 1D-CNN
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In gear hobbing process, the standby period is mainly 
determined by the parameters of the machine tool itself and 
environmental factors, and is less affected by dynamic fac-
tors. The impact of dynamic parameters on carbon emission 
is more reflected in the three processes of the cutting period. 
Figure 10 shows the index evaluation of the real-time power 
simulation accuracy of 1D-CNN for rough gear hobbing and 
finishing gear hobbing in the three processes of the cutting 
period.

According to Fig. 10a, it can be seen that the RMSE 
values of rough hobbing in the three stages are greater 
than that of finishing hobbing, which indicates that the 
stability of real-time power simulation for rough hobbing 
is weaker. Figure 10b depicts the MAE values of the three 
periods. It can be seen that the absolute error of real-time 
power prediction for rough hobbing is larger. The results 
of the previous two figures are caused by the machining 
allowance. The machining allowance of rough hobbing 
and finishing hobbing is related to the full tooth height of 
the gear. Generally, the rough hobbing will cut off most 
of the material, and only the machining allowance of 40 
μm is reserved for finishing hobbing. This also leads to a 
huge change in the power of rough hobbing in the three 
stages of cut-in, full-cut, and cut-out, while finishing hob-
bing due to small machining allowance, the power change 
is relatively small in the three periods of cutting, so the 
real-time power prediction value is relatively more stable. 
It can be found from Fig. 10c that for rough hobbing, the 
mean absolute percentage error is smaller than that for 
fine hobbing. From Fig. 10d, it can be found that the R2 
of rough hobbing is closer to 1, indicating that the fit-
ting effect of the model for rough hobbing is better than 
that of finishing hobbing. This is caused by the change of 
dynamic parameters. After rough hobbing, the workpiece 
is changed from gear blank to a gear; that is, the workpiece 
parameters have changed. However, in the input of the 
model, only the spindle speed and feed are changed, which 
leads to the reduction of the fitting effect and prediction 
accuracy of the model.

5.2.2  Dynamic prediction and simulation results of carbon 
efficiency

The prediction results of the dynamic prediction model 
cannot directly describe the carbon emission and carbon 

Table 4  Comparison of simulation accuracy of different models

Model RMSE MAE MAPE R2

1D-CNN
BPNN
ELM
SVR

209.41
459.42
321.79
340.27

154.81
287.30
219.40
202.88

1.59%
2.81%
2.17%
1.90%

0.990
0.950
0.976
0.973

(a) 

(b) 

(c) 

(d) 

Fig. 10  Evaluation of prediction effect in cutting periods
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efficiency results of gear hobbing process, nor can they intui-
tively describe the real-time state. Therefore, the prediction 
results and other dynamic parameters should be taken as 
input, and the dynamic simulation model should be used to 
simulate the process and output the results of carbon effi-
ciency and real-time processing state.

In order to validate the feasibility of CEDT and dem-
onstrate its practical application, based on the processing 
configuration of the data acquisition shop, this paper takes 
single gear hobbing and batch gear hobbing processing of 
WS2001-04372 workpiece as examples to further illustrate 
the visual expression and simulation application of the 
model. Table 5 shows the design parameters of the gear.

(1) Single gear hobbing process simulation

Based on the description in Section 3.2, this paper adopts 
CD++ Builder [39] to establish dynamic simulation models 
based on DEVS. Figure 11 shows the dynamic simulation 

model of the single gear hobbing process of gear hobbing 
machine bed YS3132CNC6. The model has three input 
ports, which are batch (Batch), power (P), and others (Os). 
There are 13 output ports, which are the total number of 
processed workpieces (am), the number of qualified gears 
(qam), the carbon emissions of rough hobbing in each period 
(including croustd, croucin, croufct. and croucot), the total 
carbon emissions of rough hobbing (crough), the carbon 
emissions of finishing hobbing in each period (including 
cfinstd, cfincin, cfinfct, and cfincot), the total carbon emis-
sions of finishing hobbing (cfinishing), and the total carbon 
emissions (ctotal). The dynamic simulation model of gear 
hobbing simulates the process of rough hobbing and fin-
ishing hobbing, respectively, by using four atomic models: 
standby, cut-in, full-cut, and cut-out. Three statistical atomic 
models are used to integrate the carbon emission data and 
send them to corresponding output ports.

Tables 6 and 7 show the simulation parameters (includ-
ing the time and the weight of the waste) for the hobbing 
machine tool to process it. The standby time of rough 
machining is related to the proficiency of operator. This 
paper adopts the average service time according to the inves-
tigation. The standby time of the machine tool YS3132CNC6 
is 300 s, and that of the YS3140CNC6 is 240 s. The standby 
time of finishing is related to the program code, in which the 
standby time of machine tool YS3132CNC6 is 8 s and that 
of the YS3140CNC6 is 11 s. The simulation time for the rest 
of the period is determined by cutting parameters and tooth 
thickness. The circulation cycle of cutting fluid is 83,000 s; 
the circulation usage and waste volume of cutting fluid are 
both 13 L. The tool life is 112,800 s, and weight is 2.35 kg.

Table 5  Gear design parameter

Items Unit Value

Material
Modulus
Tooth number
Pressure angle
Spiral angle
Pitch diameter
Tooth height
Full tooth height
Tooth thickness

/
mm
/
°
°
mm
mm
mm
mm

20Cr2Ni4A
4.7
40
20
left 16
188
4.7
10.951
53.5

Fig. 11  The dynamic simulation model of the single gear hobbing process
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The single gear hobbing process is simulated based on 
YS3132CNC6, and the results are shown in Table 8. The 
simulation results show the real-time working state and car-
bon emissions of gear hobbing process. For example, during 
the period from 09:49 to 12:25, it is in the full-cut period of 
rough hobbing, and a total of 1.50963  kgCO2 is produced in 
this period. The rough processing is completed in 18:01, and 
5.47073  kgCO2 is produced. Finishing processing is com-
pleted at 24:06, resulting in 1.22903  kgCO2, and a total of 
6.69977  kgCO2 is generated from machining the workpiece.

Figure 12 shows the carbon emissions and total carbon 
emissions in each period of gear hobbing process. It can be 
seen that the carbon emissions of rough hobbing account for 
more than 80% of the total carbon emissions. On the one hand, 
the rough hobbing feed is smaller. Although the real-time 
power of the finishing hobbing is higher, the longer processing 
time results in more carbon emissions from electrical energy, 
cutting fluid, and tool preparation during the rough hobbing 
process. On the other hand, because rough hobbing removes 
more machining allowance, it produces more waste disposal 
carbon emissions. In addition, in the three periods of cutting, 
since the time for full-cut is shorter, it produces less carbon 
emissions than both cut-in and cut-out.

(2) Batch gear hobbing process simulation

The dynamic simulation of single hobbing carbon 
emission can help us analyze the carbon emission of 
hobbing process. However, to take into account economic 
and environmental benefits, it is still necessary to simulate 
the carbon efficiency of batch hobbing.

According to the actual workshop investigation, we 
designed the dynamic simulation model of carbon efficiency 
in the workshop gear hobbing process as shown in Fig. 13. 
We split a complete gear hobbing process into two coupled 
models of rough hobbing and finishing hobbing, and con-
struct a dynamic simulation model of carbon efficiency in 
gear hobbing workshop based on the two machine tools. The 
model has 4 input ports including batch (Batch), power (P), 
others (Os), and radial runout of gears (Fr). The output ports 
of the dynamic simulation model include the number of pro-
cessed gears (amout), the number of qualified gears (qamout), 
the number of unqualified gears (uamout), total carbon emis-
sions (cout), production carbon efficiency (npout), profit car-
bon efficiency (ncout), and quality carbon efficiency (nqout).
The Buffer atomic model assigns the input processing batches 

to the two gear hobbing machine tools according to the run-
ning state of them. The four coupled models in the middle 
simulate the rough hobbing and finishing hobbing of the two 
machine tools respectively, and finally, the Statistic atomic 
model calculates and outputs the results.

Figure 14 shows the dynamic simulation results of carbon 
efficiency of the processing task with the number of batch 
hobbing being 9.

Figure 14a shows the total number of processed gears, 
the number of qualified gears, and the number of unquali-
fied gears in this batch. This batch has a total of nine work-
pieces. The first work piece is processed at 00:23:09, and 
the last work piece is processed at 01:55:45. No unqualified 
gears are produced. According to the simulation data of the 
number of processed workpieces, the operator can operate 
another machine when the workpiece is processed, and then 
return to the machine tool until the processing is completed.

Figure  14b shows the cumulative change in carbon 
emissions from this batch of gear processing. A total of 
59.97089  kgCO2 is produced in this batch. The  CO2 gener-
ated rises in a step pattern. The large step contains the  CO2 
generated by rough gear hobbing and finishing gear hobbing 
of machine tool YS3140CNC6 and rough gear hobbing of 
machine tool YS3132CNC6, while the small step only con-
tains the  CO2 generated by finishing gear hobbing of machine 
tool YS3132CNC6. This is due to the different standby time, 
which leads to the parallel generation of carbon emissions.

Figure 14c, d, and e show the changes of carbon efficiency 
of this batch, which are respectively quality carbon efficiency, 
production carbon efficiency and profit carbon efficiency. The 

Table 6 Simulation parameters of rough gear hobbing

Tstandby Tcut − in Tfull − cut Tcut − out

Time/s 300/240 289 156 336
Waste/kg 0 0.275 0.365 0.275

Table 7  Simulation parameters of finishing gear hobbing time

Tstandby Tcut − in Tfull − cut Tcut − out

Time/s 8/11 136 82 139
Waste/kg 0 0.003 0.004 0.003

Table 8  Simulation results of single gear hobbing

Time Port Value

00:05:00:000
00:09:49:000
00:12:25:000
00:18:01:000
00:18:01:000
00:18:09:000
00:20:25:000
00:21:47:000
00:24:06:000
00:24:06:000
00:24:06:000
00:24:06:000
00:24:06:000

croustd
croucin
croufct
croucot
crough
cfinstd
cfincin
cfinfct
cfincot
cfinishing
qam
am
ctotal

0.419323
1.70407
1.50963
1.83771
5.47073
0.0115394
0.456734
0.285125
0.475636
1.22903
1
1
6.69977
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quality carbon efficiency is related to the precision of the pro-
cessed gear. It can be seen that the radial runout of the 1st, 5th, 
and 7th gear is larger, resulting in lower quality carbon effi-
ciency. These three gears are all processed by the machine tool 
YS3140CNC6, so the operator could check the situation of 
the hob and make certain adjustments. The production carbon 
efficiency is related to the processing time. Since the opera-
tor of machine tool YS3140CNC6 has higher proficiency and 
less standby time, the production carbon efficiency is higher 
than that of machine tool YS3140CNC6. The profit carbon 
efficiency is related to the qualified rate. Although it fluctu-
ates under the influence of the cumulative carbon emissions, 
it can be found that with the continuous increase of the num-
ber of gears processed in batches, the profit carbon efficiency 

gradually stabilizes at a higher value. To ensure that the profit 
carbon efficiency does not decline, it is necessary to combine 
with the quality carbon efficiency, and adjust the processing 
technology in time before unqualified gears appear to ensure 
the smooth progress of processing.

Based on the output results of the dynamic simulation 
system, the operator can predict the machining process and 
results of the batch gear, and allocate the operation time rea-
sonably. By adjusting the processing technology or changing 
the hob in advance, the production can be ensured smoothly 
and the emission of  CO2 can be reduced. This plays an 
important role for enterprises to achieve refined management 
of carbon emissions and ensure a win-win situation between 
economic and social environmental benefits.

Fig. 12  Comparison of carbon 
emissions in each period

Fig. 13  The dynamic simulation model of carbon efficiency in workshop gear hobbing process
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(3) Validation

To verify the validity of CEDT, we compare the results of 
dynamic prediction and simulation with the results of work-
shop data collection. Then, the reason of error is analyzed.

Figure 15 shows the error (absolute value of the differ-
ence between simulated value and monitored value) between 
dynamic simulation results and actual machining results for 
a single gear hobbing. It can be seen that the simulation error 
of carbon emission in standby period is the smallest, because 
the power of the machine tool in this stage is related to its 
own performance and environment, and is less affected by 
dynamic parameters. For the cutting stage, the error of the 
full cut period is lower than that of the other two cut periods, 
which is due to the existence of air cuts in the cut-in and 
cut-out periods, resulting in the difference between the simu-
lated time and the actual time. The error of finishing hobbing 
is lower than that of rough hobbing mainly because of its 
smaller absolute value. In general, the MAPE value of the 
dynamic simulation of carbon emissions for single hobbing 
is 1.68%, which indicates the effectiveness of the model.

Figure  16 shows the percentage error between the 
dynamic simulation results and the actual machining 
results of CEDT for batch hobbing carbon efficiency. The 
error in quality carbon efficiency is the most obvious, 
which indicates that there may be dynamic factors affecting 
machining quality that are not taken into account. The error 
of production carbon efficiency is relatively smooth, which 
indicates that the model is fairly stable and can maintain a 
high accuracy for its simulation. Overall, the MAPE value 
of the batch gear carbon efficiency simulation is 3.14%, 
indicating that the proposed method is feasible.

5.3  Analysis of the effect of dynamic parameters

During gear hobbing, changes in dynamic parameters have 
an impact on carbon emissions and carbon efficiency. These 
dynamic parameters are derived from machine tools, tools, 
workpieces, environmental and process parameters, etc., and 
each has different effects on carbon emissions and carbon effi-
ciency. When the output results of the carbon efficiency digital 
twin model in gear hobbing process cannot meet the require-
ments, it is necessary to optimize the dynamic parameters to 
improve the processing, so as to obtain satisfactory results.

Based on the grey correlation analysis (GRA), we 
obtained the ranking of the effects of each dynamic 
parameter on carbon emission and carbon efficiency, as 
shown in Fig. 17.

Figure  17a shows the correlation between dynamic 
parameters and carbon emissions, which are in order 
of modulus, number of teeth, gear width, rough spindle 
speed, finishing spindle speed, rough feed, finishing feed, 
hob wear (number of gears machined by that hob), gear 

(a) 

(b) 

(c) 

(d) 

(e) 

Fig. 14  Simulation results of batch gear hobbing
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material, operator proficiency (standby time), ambient 
temperature, machine tool service time, and hob material. 
It can be seen that the parameters of the gear itself have 
the highest correlation with carbon emissions, followed by 
the four hobbing parameters, which can well explain why 
researchers focus on the impact of process parameters on 
carbon emissions in the static model. When the carbon 
emissions generated by the hobbing process are too large, 
and the parameters of the gear itself cannot be changed, 
the best optimization solution is to optimize the hobbing 
parameters. As for the following dynamic parameters, due 
to the low degree of correlation, after optimizing the gear 
hobbing parameters, it can be decided whether to optimize 
according to the optimization results.

Figure  17b shows the correlation degree between 
dynamic parameters and quality carbon efficiency, which 

is in order of modulus, number of teeth, gear width, finish-
ing feed, hob wear, rough feed rate, finishing spindle speed, 
rough spindle speed, gear material, hob material, ambient 
temperature, operator proficiency, and machine tool service 
time. Quality carbon efficiency is related to gear machining 
accuracy and carbon emissions, and the parameters of the 
gear itself still have the highest correlation degree. Among 
the hobbing parameters, the hob wear is mixed, indicating 
that both the wear degree of hob and hobbing parameters 
have great influence on gear machining accuracy. When the 
hobbing parameters cannot be changed to achieve satisfac-
tory results, it is necessary to replace a new hob. In addi-
tion, the material of the gears and hob also have a certain 
impact on quality carbon efficiency.

Figure  17c shows the correlation between dynamic 
parameters and production carbon efficiency, which is in 

Fig. 15  Simulation error of sin-
gle hobbing carbon emission

Fig. 16  Simulation percentage 
error of batch hobbing carbon 
efficiency
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order of gear width, rough feed, operator proficiency, modu-
lus, finishing feed, number of teeth, rough spindle speed, 
finishing spindle speed, hob wear, gear material, hob mate-
rial, ambient temperature, and machine tool service time. 
The production carbon efficiency is mainly related to the 
processing time and carbon emissions, and has a certain 
relationship with the processing quality (requires qualified). 
The big difference between this result and the previous two 
results is mainly due to the influence of various dynamic 
parameters on the machining time, such as gear width, feed 
rate, and standby time. The following parameters with high 
correlation degree affect carbon emissions, such as hobbing 
parameters and gear parameters. When the production car-
bon efficiency cannot meet the requirements, the feed can be 
changed preferentially, or the operator can be strengthened 
to reduce the standby time.

Figure 17d shows the correlation degree between dynamic 
parameters and profit carbon efficiency, which is in order of 
modulus, finishing feed, finishing spindle speed, gear width, 
tooth number, rough feed, rough spindle speed, hob wear, 
gear material, hob material, operator proficiency, ambient 
temperature, and machine tool service time. Profit carbon 
efficiency is related to cost and carbon emission, and also 

has a certain relationship with processing quality, because 
when there is unqualified gear, it will seriously reduce 
profit carbon efficiency. When the profit carbon efficiency 
decreases, the hobbing parameters should be optimized 
preferentially, especially the hobbing parameters of finish-
ing hobbing. Then, according to the situation to predict and 
simulate again, decide whether to replace a new tool.

Although grey correlation analysis cannot provide specific 
weight between dynamic parameters and the carbon emission 
or carbon efficiency, it can provide optimization priority for 
operators according to the correlation degree, and also pro-
vide direction for the dynamic optimization of carbon effi-
ciency digital twin in gear hobbing process in the next step.

6  Conclusion

Considering the influence of dynamic parameters on 
machining under actual production conditions, this paper 
proposed the dynamic prediction and simulation model of 
carbon efficiency in gear hobbing process based on digital 
twin. Firstly, the carbon emission dynamic characteristics of 
hobbing process was analyzed and three carbon efficiencies 

(a)                                              (b) 

(c)                                              (d) 

Fig. 17  The ranking of the effects of each dynamic parameter
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were defined to describe the carbon emission results. Then, 
DDEVS was proposed, which used 1D-CNN to fit the influ-
ence of dynamic parameters on the real-time power of gear 
hobbing to carry out dynamic simulation of the gear hobbing 
process and its carbon efficiency. Finally, the dynamic pre-
diction and simulation model of hobbing carbon efficiency 
was constructed and integrated into CEDT as virtual model.

The RMSE, MAE, and MAPE of the proposed prediction 
model were 209.41, 154.81, and 1.59% respectively, which 
were 43.98%, 34.55%, and 30.67% lower than traditional 
methods on average. In addition, the fitting effect was as high 
as 0.99, which further proved the superiority of the model. 
The simulation results showed that CEDT could effectively 
reflect the carbon emission of single hobbing and carbon 
efficiency of batch hobbing, and the MAPE values are 1.68% 
and 3.14%, respectively. It could provide effective guidance 
for operators to plan production process arrangement and 
time management. Meanwhile, this paper discussed the cor-
relation effect of dynamic parameters on carbon emission 
and carbon efficiency in the process of gear hobbing, and 
proposed process modification suggestions according to the 
processing objectives, which provided ideas for the realiza-
tion of dynamic optimization in the follow-up research.

Although CEDT provides a new approach for low-carbon 
hobbing, future research needs to address the following 
issues: (1) With the accumulation of data, we need to 
deeply explore the mapping relationship between dynamic 
parameters and carbon emissions in the processing process, 
so that the model can learn continuously and simulate the 
actual processing process more accurately. (2) Based on the 
CEDT model proposed in this paper, iteratively adjust the 
variable parameters in batch hobbing for real-time dynamic 
optimization of the carbon efficiency of the hobbing process. 
(3) Improve the model’s guidance strategy for operators, 
and develop CEDT-based application platforms and 
corresponding software for the actual conditions of factory.
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