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Abstract
The increasing demand for efficient and environmentally sustainable flight profiles requires innovative operational concepts. 
Short-term trajectory adaptations, considering dynamic input variables constitute a reliable solution. According to current 
air traffic regulations, flight trajectories are planned ground based and submitted to Air Navigation Service Providers for an 
overall validation according to airspace and sector capacity constraints. This initial flight plan often relies on static atmos-
pheric forecasts for the entire flight. Sudden changes of atmospheric parameters such as wind speed and wind direction cannot 
be predicted precisely and are not considered in today’s flight operations, except of severe weather phenomena. This paper 
investigates the benefit of en-route weather updates and subsequent short-term trajectory optimization. The resultant benefit 
of dynamic optimization during flight is assessed for varying shares of flights equipped with this novel capability within 
1 hour of Europe’s air traffic. Therefore, fuel, engine emissions and controller task load are used as assessment indicators. 
75% of the frequently optimized trajectories gained in overall fuel savings with an increased task load of 5.4%.
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1  Introduction

In the aviation industry, aircraft operators are striving for 
a reduction of operational costs, specifically fuel-saving 
strategies in flight planning and flight operations. Current 
handling of flight plan data is used for an initial calculation 
of the operational flight plan (OFP) and its upload into the 
Flight Management System (FMS). However, according to 
current regulations (ICAO PANS-ATM [1]), the trajectory 
also has to comply with capacity constraints regulated by 
the air traffic flow management (ATFM) units, e.g., Europe’s 
network manager. Thereafter, short-term changes can often 
no longer be considered and the trajectory is flown as filed. 
Flight path changes will be possible in case of available air-
space capacities (as shortcut to the next FMS waypoint), 

or as operational diversions to avoid safety relevant events, 
such as severe weather (thunderstorms, turbulences, icing). 
However, it is well known that common short-term changes 
of atmospheric conditions (i.e., deviations from weather 
forecasts, as shown in Fig. 1) mainly result in differences 
of flight time, fuel burn, and the optimal paths [2, 3]. For 
example, a head wind component of 6 m per second over 
a distance of 100 nautical miles at FL 370 during approx. 
13.5 min flight time results 15 kilograms (3%) extra fuel 
burn for an Airbus A320 with a gross mass of 67.7 tons) [4].

This paper investigates the benefit in fuel burn, time of 
flight, and air distance flown of periodically in-flight trajec-
tory re-optimization and its application in flight operations. 
Therefore, new flight profiles are calculated hourly from the 
present aircraft position when new weather forecast data are 
available (e.g., Rapid Refresh, formerly Rapid Update Cycle 
[5]). An implementation of those procedures in today’s air 
traffic operation would induce an unpredictable air traffic 
flow, which is why ground-based trajectory optimization is a 
critical issue for ATM. For this reason, three scenarios with 
varying shares of flights with in-flight optimization based 
on a historical real flight schedule are analyzed, regarding 
controller’s task load.

An expected upcoming framework of digitization with 
improved data availability, and improved aircraft–ground 
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and aircraft–aircraft communication will enable new oppor-
tunities for data updates, even during flight [6]. Based on 
this potential, the Single European Sky (SES) Initiative will 
drive a higher flexibility in flight profile implementation by 
2038 in terms of referenced business trajectories (RBT) [7]. 
This is also recommended by the International Civil Avia-
tion Organization (ICAO), forcing the reduction of restric-
tive flight operations between ATS routes if required naviga-
tion performance (RNP) is fulfilled [1].

Those in-flight trajectory optimization strategies are non-
trivial because they require the consideration of dynamic 
input variables. Specifically, the significant effect of wind 
speed and wind direction on the optimum 4D trajectory is 
highly dynamic because the atmospheric conditions are 
underlying permanent fluctuations [2].

This paper is structured as follows: after a brief literature 
review of air traffic simulations with dynamic trajectory 
optimization in Sect. 2, the methodology of the applied sim-
ulation environment and the enhancement towards a trajec-
tory optimization with dynamic input are described in Sects. 
3, 4. Section 5 presents the benefits of those optimized single 
trajectories and also assesses the effects of those trajectories 
on airspace utilization and the controller’s task load.

2 � State of the art

The optimization of trajectories is already comprehensively 
embedded in research topics of trajectory-based operations 
(TBO) [8] considering a differentiation between dynamic 
input variables and dynamic optimization. Promising solu-
tion approaches of trajectory optimization are formulated 
as dynamic optimum control problems (OCP) or numeri-
cal approaches using simplified flight performance models 
and several objective functions [9–14]. The approaches 
are mostly based on steady input data assuming constant 
cruising altitudes, speeds and focusing on heading changes 
as function of time [11, 15, 16]. Hence, this analytical 
approach is limited to a small number of state variables, 
which, considering the unsteady flow characteristic, do not 

allow for a precise flight performance calculation. Numerical 
approaches (e.g., the A* lateral path finding algorithm) use 
discretized optimization methods and effective heuristics by 
considering a variability of flight performance parameters, 
such as wind speed and direction at different altitudes, air-
space capacity constraints, and aircraft type-specific per-
formance. Those approaches enable an overall assessment 
of the lateral and vertical profile [17–20] accompanied by a 
partial loss of the dependence on time due to missing actual 
aircraft speed information during the dynamic path search. 
Because the heuristic estimates a cost minimum between 
departure and destination, which is used as abort criterion 
for path finding, those algorithms need constant weightings 
of each node. With this method, a promising potential of 
free route trajectories regarding costs, emissions, and the 
environmental impact of condensation trails under single 
weather conditions has already been identified [17].

However, dynamic input variables such as wind fluctua-
tions are significant for a realistic performance calculation, 
although the required input data are merely available dur-
ing flight. González et al. [21] use wind as a dynamic input 
variable and investigate a corridor for probable flight path. 
Kamgarpour et al. [22] avoid severe weather conditions in 
the planning horizon based on time variations and the cor-
responding dynamic forecasts. In both calculations, the tra-
jectory has not been improved while the aircraft is already 
in-flight.

Beside the methodological side of dealing with dynamic 
input variables in trajectory optimization, solutions for 
numerous operational aspects are required. For handling 
dynamic input variables or changed weather forecasts, the 
computation instrument for trajectory and performance cal-
culation on board is the aircraft FMS (especially past genera-
tions) and is not suitable for a dynamic trajectory prediction. 
Today’s FMS databases are restricted to static wind predic-
tions along those waypoints included in the filed flight plan. 
Both research associations, FAA’s NextGen and the Euro-
pean SES program, aspire 4D trajectory-based operations 
and function for mission optimization on next-generation 
FMS [23]. However, these FMS will mainly be limited to 
their own specific navigation database. Commercial prod-
ucts such as the Flight Profile Optimizer or Godirect Flight 
Optimization have already enabled the re-calculation of the 
optimum vertical profile due to changed input data using the 
electronic flight bag (EFB) [24, 25]. Therefore, live data of 
weather and aircraft are considered but the lateral optimiza-
tion is missing, mainly due to ATM restrictions. Forster et al. 
[26] use the EFB to visualize severe weather conditions and 
organize re-routings but do not provide a trajectory opti-
mization. In the Traffic Aware Strategic Aircrew Requests 
(TASAR), NASA combined a lateral and vertical trajectory 
optimization in case of convective weather situations with 
onboard conflict avoidance algorithms, implemented on a 

Fig. 1   Absolute change of wind speed [m/s] between 07:00 and 08:00 
UTC on 2018-01-03. Red: Speed increase, Green: Speed reduction
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EFB [27, 28]. Hereby, the onboard algorithms suggest the 
aircrew with recommended trajectory improvements that are 
assumed as more likely to be approved by ATC.

By contrast, this paper focuses on the potential of a multi-
objective optimization for the entire flight and investigates 
the consequence of re-planning trajectories to air traffic con-
troller’s task load from the traffic flow perspective. Finally, 
case studies of those products declare an annual cost-saving 
potential of 0.2–1%, which is low but within the typical 
range for airline fuel and cost-saving actions.

Our analysis differs from available research and commer-
cial products by optimizing the entire profile using global 
weather updates, a 4D-trajectory calculation as well as the 
assessment of airspace utilization. Therewith, we do not only 
alter a trajectory in cases of bad weather conditions or short-
cuts, but we additionally consider an in-flight potential of 
spontaneous wind changes provided by means of improved 
and frequent forecasts.

For this purpose, we enhanced our air traffic simulation 
environment called TOolchain for Multi-criteria Aircraft 
Trajectory Optimization (TOMATO) [18–20, 29] (compare 
Sect. 3), focusing on a precise trajectory prediction and an 
analytical tool for the demand in airspace capacity and con-
trollers’ task load. Thereby, we consider the methodologi-
cal implementation of dynamic input variables without the 
renunciation of unsteady flow characteristics or heuristics in 
path finding. A comprehensive validation of TOMATO with 
the widely used AirTOp can be found in [30].

3 � Pre‑flight aircraft trajectory optimization

TOMATO has been used to optimize aircraft trajectories 
and quantify the operational costs and the environmental 
impact. Therein, the COmpromized Aircraft performance 
model with Limited Accuracy (COALA) is implemented 
for vertical trajectory optimization and an A* path finding 
algorithm is used for lateral trajectory optimization.

With the included assessment tool, trajectories are 
assessed and iteratively improved [19, 20]. The trajectory 
design criteria can be weighted with different optimization 
target functions such as minimum environmental, opera-
tional or time costs. Furthermore, a multi-criteria optimum 
can be chosen.

The separation of the lateral and the subsequent vertical 
profile may lead to solutions that are not globally optimal. 
However, the identification of the true optimum is unknown 
and it is not possible to prove whether the global optimum 
has been reached or not. The reasons for this are on the 
one hand the formulation of the correct target function at 
every point of the trajectory. On the other hand, the trace-
ability of the correct execution of the target function for each 
point increases the complexity of trajectory optimization. 

The implementation of an iterative optimization strategy 
approaches the optimal solution within a non-measurable 
gap. Figure 2 illustrates TOMATO’s iterative optimization 
process.

3.1 � Lateral path optimization in TOMATO

In the first iteration, a lateral path with optimum direct oper-
ating costs is calculated for a given initial target altitude 
in a discretized space grid (variable resolution) or between 
waypoints of the latest Aeronautical Information Regulation 
And Control (AIRAC) cycle. This lateral path considers the 
present atmospheric conditions corresponding to the latest 
available weather cycle. If no AIRAC cycle is given, the 
resolution of the solution grid is user-defined and mainly 
based on the weather forecast information or finer, which 
can be significantly denser, compared to AIRAC. The used 
NOAA Global Forecast System GFS provides resolutions 
up to 0.25° [31]. The A* connects each node from the world 
grid (each with unique coordinates) towards the destination 
with minimum cost. The cost to use an edge between two 
nodes is determined by distance, a time-related cost fac-
tor and a mean cruising speed, which are initially assumed 
for each aircraft type. Each of the following iterations uses 
improvements of those values retrieved from the trajectory 
assessment module.

The most relevant input parameters for path finding are:

•	 Grid resolution or AIRAC cycle.
•	 Departure, destination and -time, aircraft type.
•	 Initial cruising altitude, initial mean cruising speed.
•	 Initial direct operating cost rates per time interval.
•	 Restricted airspace areas.

3.2 � Vertical optimization in TOMATO

Within the iterative optimization procedure of TOMATO, 
the lateral path is used by the aircraft performance model 

Fig. 2   Trajectory calculation and assessment process in TOMATO 
with improvement of calculation results in each step
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COALA for the estimation of distances and weather infor-
mation along the path [20, 32]. COALA analytically solves 
the equation of motion considering the required maneu-
ver-specific forces of acceleration for each time step (1 s). 
Thereupon, the equation of motion is integrated gaining 
the corresponding true air speed and distance flown. The 
true air speed is used as a regulative variable in a propor-
tional/integral/differential (PID) controller, wherein the 
lift coefficient is used as a controlled variable. The target 
true airspeed is calculated according to the target function 
given as trajectory design criteria mentioned above. This 
input target function additionally determines the algo-
rithm to calculate the desired cruising speed. The vertical 
profile is calculated using continuous climb and descent 
operations. Except for thrust-specific fuel consumption 
and maximum available thrust during climb, the model 
is independent of the Base of Aircraft Data (BADA 4) 
performance model, where a validation for the trajectory 
optimization approach can be found in [33].

The main input parameters of COALA are:

•	 Lateral path.
•	 Aircraft type, traffic load, initial fuel on board.
•	 Weather data.
•	 Objective function (min. fuel, time, operational costs, 

environmental costs, a specific cost index (CI) or 
weighting in each cost component).

•	 Target speed function.
•	 Target altitude functions.

The output of COALA is a 4D trajectory (latitude, lon-
gitude, altitude, time).

The GFS weather data are available for the calculation 
of the lateral and vertical profile in a gridded format and 
discretized for only four pressure heights relevant for typi-
cal cruising altitudes. For this reason, a linear interpola-
tion of the weather information (wind, geo-barometric alti-
tude, temperature, relative humidity) is performed. This is 
done first for the location and then for the altitude.

3.3 � Trajectory assessment in TOMATO

In the third step of each iteration, an assessment of the tra-
jectory regarding operating costs, fuel burn, and induced 
environmental impact including the radiative forcing of 
condensation trails is executed. Thereby, input parameters 
affecting the path finding algorithm (i.e., the assumed ini-
tial operational costs, a mean cruising altitude, a mean 
cruising speed and the tanked fuel mass) are adapted 
and taken over in the next iteration for the A* algorithm. 
For the assessment, the following input parameters are 
required:

•	 Direct operating cost rates for fuel, maintenance, insur-
ance, depreciation, crew, and delay.

•	 En-route navigation charges.
•	 Environmental cost functions depending on emission 

species (CO2, NOx, H2O, SO4, HO, H2SO4, black car-
bon) and quantified environmental impact according to 
scientific state of the art knowledge.

With the help of this assessment, the objectives (e.g., CI, 
time costs, fuel costs, crew costs, etc.) can be calculated and 
compared either with the input target function or with the 
assessment of the last iteration. If a certain abort criterion 
or a maximum number of iterations is reached, the optimum 
4D trajectory is stored together with the assessment results.

3.4 � Airspace and task load assessment in TOMATO

The impact of the implementation of new air traffic con-
troller systems, airspace configurations, or capacity plan-
ning methods are usually assessed with the task load of air 
traffic controllers. In a post-processing of TOMATO, the 
trajectories are assessed regarding changes in the required 
airspace capacity (i.e., number of aircraft per volume) and 
the resulting controller’s task load. For both analyses, the 
airspace is split into artificial sectors defined by the geo-
graphical coordinates with an edge length of one degree. 
Therewith, an almost equal size of all sectors is realized for 
small observation areas. For each sector, the task load of the 
controller is then calculated for time intervals and compared 
for different scenarios.

There is a variety of subjective, physiological and activity 
monitoring methods along the genesis of new ATM sys-
tems [34]. The evaluation of the traffic flow shift due to 
the applied flight optimization is orientated on the control-
ler’s task load model CAPAN (Capacity Analyser) by Euro-
control and Deutsche Flugsicherung (DFS. The TOMATO 
implementation is described in Rosenow et al. [35, 36]. This 
model provides predefined activities (traffic monitoring, 
radio telephony, coordination, clearances, conflict detection 
and conflict resolution) with an associated load per activ-
ity. Herewith, typical controller tasks (traffic monitoring 
and conflict resolution) can be expressed as a need of time 
in seconds to solve those tasks. The needed time for each 
task is declared not only according to the task type but also 
dependent on the flow of traffic (e.g., angle between cross-
ing traffic). The associated times and the calibration of the 
model are based on the experience of the controllers with 
common used ATC systems.

Conflicts between aircraft are not counted explicitly. Due 
to constantly changing headings and altitudes, the highest 
task load category for conflict detection and resolution is 
applied based on the number of aircraft in each sector.
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An acceptable limit of task load for capacity planning 
is usually set to 70%, i.e., a total of 2520 s of a full hour 
of working time. In practice, exceeding this capacity limit 
would result in a splitting of the sector with involving addi-
tional controller teams. Here, due to the artificially selected 
sector dimension of 1° lateral resolution and no vertically 
partitioning, the size of the investigated ATC sectors is in 
the same dimension as real ATC sectors. However, to ensure 
comparability of the scenarios, the apportionment is avoided 
and the sector dimension remains constant. For this reason, 
it is expected that the sum of the task load in many sectors 
will be greater than the specified capacity level. The calcu-
lated task load is, therefore, only a theoretical comparison 
value, which, however, indicates a direct traffic shift. As a 
reference for the comparison, historical traffic scenarios can 
be used, which will also have a task load greater than 2520 
s per sector. Since safe flight operations have already taken 
place here, a fundamental transferability of the results can 
be assumed.

4 � In‑flight aircraft trajectory optimization

4.1 � Concept of in‑flight trajectory optimization

The following section introduces a basic process of optimiz-
ing flight trajectories during flight and describes a necessary 
approach for data exchange. As soon as weather updates 
are available, the trajectory is periodically re-optimized. 
Hereby, we consider differences in fuel, emissions quanti-
ties, and operational costs between the old trajectory and 
the dynamic trajectory adjustment. Figure 3 illustrates the 
concept of the operational process behind the dynamic tra-
jectory re-calculation.

In current procedures (Fig. 3, solid lines), the airline’s 
dispatch department calculates an initial trajectory and OFP 

according to airspace constraints. This trajectory is provided 
to the crew for cross-checking the integrity of the flight plan 
data and transferring it to the FMS. Optionally, the EFB 
uses the data showing enhanced information (present aircraft 
position, planned route, performance calculation).

During flight, a supporting decision for a trajectory 
re-optimization request is carried out, defined as trig-
gers (Fig. 3, dotted lines). During the climb and descent 
phase, triggering is avoided due to the dense airspace and 
the already intensive workload of pilots and controllers. 
Here, the filed OFP or latest validated trajectory by ATC 
is used. During cruise, one of the following situations and 
events might be used as triggers, implying a re-optimization 
process:

•	 New weather forecast data (usually each hour).
•	 Identification of severe icing/turbulence (extending the 

onboard weather radar range which is limited to < 200 
NM, compared to Forster et al. [26]).

•	 Right before the Top of Climb (ToC) or a (unexpected) 
deviation from the filed flight plan.

•	 Diversions, e.g., as a result of ATC advisories.
•	 Change of the objective function (e.g., increasing time 

costs or increasing interest in contrail avoidance).

Such triggers can be consolidated by the EFB which is 
monitoring the aircraft position and updates of flight rel-
evant information. However, each triggered re-optimization 
requires a data uplink and downlink providing an optimiza-
tion request and input data, which is usually not required on 
board (compare Sect. 3). Otherwise, a fully ground-based 
optimization with a subsequent sharing of the 4D trajectory 
between airline and ATC is required. The latter would reduce 
the required bandwidth and data volume, which in the first 
case would contain several bytes for the optimization request 
sent by the EFB and less than 1 Mb for trajectory uplink, 

Fig. 3   Operational updating 
process of the trajectory with 
solid arrows representing the 
current and dotted arrows 
enhancing the process
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depending on resolution of time and space. The on-board 
optimization (using the EFB) and weather data uplink will 
be possible by future communication technologies which 
will be able to provide up to 10 Gbit per second based on 
5G mobile communication technology [37] (VHF Datalink 
Mode 3: 31.5 kbps). Significant differences of the trajectory 
after re-optimization, e.g., different waypoints or altitude 
changes, require a second ANSP validation. This could be 
only done with Eurocontrol’s Integrated Initial Flight Plan 
Processing System (IFPS), if this system is able to validate 
RBTs from TBO concepts in real time. After validation, the 
filed flight plan in the FMS will be updated.

4.2 � Dynamic input variables in in‑flight trajectory 
optimization

Each triggered trajectory re-optimization may require dif-
ferent input data according to the objective function. Those 
input variables for TOMATO, which may be changed during 
the flight, are listed in Table 1. The aircraft dry operating 
mass as well as the traffic load are kept constant.

Dynamic weather input affects the complete set of 
weather data. In particular, this includes wind direction, 
wind speed, temperature, geometric altitude, and relative 
humidity. To compare trajectories before and after in-flight 
optimization, the configuration of the airspace does not 
change.

If the next weather dataset is published, this information 
will be used for the calculation of the trajectory. At each 
triggered point, TOMATO’s iterative process (Fig. 2) is 
applied. Therefore, the current aircraft position defines the 
starting point and the temporally closest weather data set. 
Each lateral position and altitude, where a re-optimization 
has been triggered, is treated as a fixed waypoint which must 
be overflown in all subsequent re-optimizations. After reach-
ing the last triggered position and pressure altitude, the flight 
proceeds to the destination based on the new cost calculation 
(and weather data set). Thereby, the old path is fixed and 
not influenced by the new weather. During the assessment 
(Fig. 2), only the costs of the future flight path are used for 
iterative optimization.

No further significant changes to the implemented opti-
mization processes of the lateral and vertical profiles are 

required. In addition, TOMATO was adapted in such a way 
that an automated calculation and assessment of the entire 
in-flight optimized flight takes place. For this purpose, in 
the first step, all weather data and their updates were loaded 
into the system and are then activated according to the flight 
progress and optimization point of time. Since TOMATO 
and the numerical methods do not use random variables for 
the optimization, it is assumed that every change or improve-
ment of the new calculated trajectory is a consequence of the 
change of the input values.

As the A* heuristic cannot handle dynamic input vari-
ables, the costs for connecting nodes along the grid can only 
be modeled with a single weather data set per flight segment 
(1 h, in most cases). Hence, in each optimization step (i.e., 
each flight segment), the actual weather data set is assumed 
as steady and does not change over time, because a time-
linear interpolation of the weather behavior does not cor-
respond to reality. However, this approach underestimates 
the accuracy of today’s weather forecasts, as no time-related 
change in the weather is considered. This can result in a 
reduction of the calculated fuel-saving potential in reality. 
However, this approach represents the current practice of 
long-haul flights, which are planned and filed at least 1 h 
before departure. These flights then spend several hours in 
this presumed weather behavior without updating the input 
values and the trajectory.

Using the re-optimization procedure described above, dif-
ferent scenarios are simulated with an increasing amount of 
re-optimized trajectories in a real historical air traffic sce-
nario above Central Europe.

5 � Applications of in‑flight optimization

5.1 � Single trajectory in‑flight optimization

The following section investigates the potential of the in-
flight optimization problem using TOMATO. As a first step, 
we formulate a scenario with a single flight departing 05:06 
UTC in Nairobi, Kenia (NBO) and arriving at approximately 
14:41 UTC in Paris, France (CDG) on January 3rd, 2018. 
The reference weather scenario is chosen on a typical day 
with no significant dynamics in weather change. The aircraft 

Table 1   Adapted input 
variables for triggered trajectory 
re-optimization

Trip fuel Fuel on board

Fixed waypoints Actual aircraft position, AIRAC if necessary
Cruising flight level Fixed by initial value, as triggered or as a result of optimization
Weather Nearest to trigger and changing with forecasts, if available
Time costs, fuel price As initial or updated, if available
Cruising speed Fixed by initial value, as triggered or as a result of target optimization
Cost calculation Rest of the flight after trigger
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is a Boeing 787 with a traffic load of 60 tons. We distinguish 
between three different operational cases:

•	 The tracked/reference flight path, retrieved from the 
Eurocontrol Network Manager Operations Centre 
(NMOC) [38] in the SO6 traffic file format with varying 
resolution in time and space.

•	 The initially optimized and flown trajectory following 
single aircraft trajectory optimization (Sect. 3) with con-
stant input parameters.

•	 The final optimized flight with triggered re-optimizations 
each hour following in-flight aircraft trajectory optimiza-
tion (Sect. 4) during cruise.

Icing and other severe weather conditions are not consid-
ered to achieve a focused assessment of the in-flight opti-
mization approach. Echoing these assumptions, only the 
ToC and periodic weather updates each hour have a trig-
gering effect. NOAA and GFS provide the weather data in 
GRIB2 data format [39] with a spatial resolution of 0.25 
degrees. The weather data are updated in 4-h cycles with 

hourly forecasts included in each cycle. Figure 4 exhibits the 
tracked path and profile in black, modeled with TOMATO, 
and the initially optimized trajectory in green. Figure 5 indi-
cates the finally flown profile, where triggers are highlighted 
as black squares.

The final cost and fuel burn assessment of this flight 
(NBO-CDG) considering dynamic weather conditions 
depending on actual position, altitude and time is summa-
rized in Table 2. Obviously, differences between the refer-
ence/tracked, the initial and the final trajectory are marginal 
because only minor lateral improvements were found by 
TOMATO (compare Fig. 4) and the reference trajectory 
almost follows the great circle, which equals the minimum 
time track in this special case. Nevertheless, there is a ten-
dency for further fuel savings in the case of the application 
of an in-flight optimization (680 kg of fuel saved compared 
to the reference and 175 kg compared to the initial optimi-
zation). However, it should be noted that the resulting delta 
fuel is within the fuel flow error of the BADA model used, 
which amounts to 2.77% for a Boeing 787-800 Rolls-Royce 
(B788RR) during cruise [40]. Hence, fuel savings cannot be 

Fig. 4   Historical (black) and 
initially optimized flight path 
(green). Wind data from 06:00 
UTC is shown at a pressure 
altitude of 227 hPa (FL 360)

Fig. 5   Final lateral pro-
file (green) of the in-flight 
optimized trajectory (dotted: 
initial optimized profile). Black 
squares represent optimiza-
tion triggers. Right: Areas 
of increased (orange) and 
decreased (green) wind speed in 
percent between 06:00 UTC and 
15:00 UTC​
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determined exactly. Furthermore, the assessment uses lin-
ear interpolation between the weather updates, resulting in 
smoothing out of atmospheric turbulences.

Figure 5 indicates significant differences in the filed flight 
path after each optimization step, especially at the ToC. 
Depending on the extent of change in trajectory and atmos-
pheric conditions, a new flight path would require another 
ANSP validation check. Furthermore, the controller’s task 
load would increase by operating along the new profiles, 
which should be considered in the task load assessment.

5.2 � Multiple in‑flight optimization and airspace 
assessment

After exemplifying the impact of dynamic optimization 
on a single trajectory, the potential analysis at a large scale 
has been examined using the corresponding traffic scenario 
(tracked/reference, retrieved from the Eurocontrol NMOC). 
Again, changes in sector utilization and controller’s work-
load compared to the tracked/reference scenario have 
been determined following the methodology described in 
Sect. 4.1. Thereby, the share of re-optimized trajectories is 

gradually increased (0%, 10% and 27%). Table 3 summarizes 
the scenario parameters.

Assuming that the most demanded sectors would be the 
most restrictive sectors [41], we define an area of interest 
(AOI) including these sectors and enabling the focus on 
workload estimation with reduced computational effort. Fig-
ure 6 shows the AOI as bounding box as well as the direction 
of motion of high-level wind in a time horizon of 10 h. The 
illustrated North Atlantic jet stream and the jet stream in the 
African/Arabian airspace will probably infer the most flight 
plan updates.

Furthermore, the number of flights has been limited to a 
set of candidates for trajectory re-calculation during cruise. 
Long-haul flights with several hours of flight time as well 
as flights with a departure time later than the latest avail-
able weather update are expected to have the highest fuel-
saving potential. However, flights with a minimum of 60 min 
are mainly restricted by ATC constraints as SIDs, STARs, 
or altitudes (cruising in lower airspace). Subsequently, we 
prioritize medium- and long-haul aircraft as candidates for 
optimization and consider small jet and turbo props only 

Table 2   Assessment of the single flight NBO-CDG for different opti-
mization steps with a single pre-flight optimization (initial) and with 
a dynamic optimization (final)

Tracked (reference) Initial Final

Operating Costs (€) 127,159 127,363 125,527
Emission Costs (€) 3956 4070 5490
Fuel Burn (kg) 42,665

(100%)
42,160
(− 1%)

41,985
(− 1%)

Flight Duration (min) 575 555 559
Air Distance (km) 7330 7350 7312
Ground Distance (km) 7038 7240 6937

Table 3   Scenario definition 
for dynamic optimization and 
airspace utilization assessment

Date Jan. 3rd, 2018
Time of interest 06:00–16:00 UTC​
Number of flights 14,955
Weather data NOAA GFS, Grib 2, 1.0°
Weather update rate Hourly
Spatial resolution 0.3°
Area of interest AOI Western and Central Europe Latitude [°] = [41.0…54.0]

Longitude [°] = [− 8.0…25.0]
(cf. Figure 6)

Share of inflight optimization 0% (reference), 10%, 27%
Minimum flight level in cruise FL 250
Re-optimization trigger ToC, 60-min weather update
Minimum criteria for re-optimization candidates 60 min flight time, maximum altitude above FL250, 

assigned aircraft type from below
Used aircraft performance types A310, A319, A320, A321, A330, A380, B737-800, 

B747-800, B777, MD11, B787, B767-300

Fig. 6   Motion of medium and high-speed wind fields (> 35 m/s) from 
06:00 UTC (green) to 16:00 UTC (red) with trend arrows and the 
AOI as black box
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for airspace assessment. Figure 7 indicates the number of 
candidate flights for in-flight optimization (blue) compared 
to non-suitable flights, which are characterized by cruising 
altitudes below FL250 and with a flight time of less than 
60 min, and not implemented small aircraft type.

However, these assumptions restrict the assessment of 
those flights to airspace utilization with input from SO6 
flight plan data only. It should be noted that a second trajec-
tory validation using Eurocontrol IFPS is not possible with 
historical flights. Furthermore, the intended waypoint-less 
optimization represents a future concept of operation.

Figure  8 shows the tracked/reference (left) and the 
scenario with a 27% share of dynamically optimized 

trajectories and the resulting task load in each sector as 
heat map. It should be noted that the used sector dimen-
sions (1° lateral, complete upper air space) do not rep-
resent the real ATC sector shapes and are used only to 
compare the traffic complexity. The evaluations are made 
for the most demanding time interval 10:00–11:00 UTC 
representing the basic trends similar for all other time 
intervals. The maximum measured values of the task load 
increased slightly from 11,931 s in the tracked/reference 
scenario to 11,975 s in the 27% scenario. However, the 
average task load increased by 214.6 s (growth by 5.4%). 
Figure 9 indicates the change in task load distribution for 
both scenarios with a trend towards higher air space com-
plexity due to trajectory optimization. Note, also in the 
initial optimization case, the average task load increased 
by 2.7% due to traffic complexity.

In summary, dynamic optimization increases the con-
troller’s task load, considering the most demanding sce-
nario for conflict detection due to non-constant headings 
and altitudes of all aircraft [35]. The results of the task 
load assessment and the potential of the optimization is 
shown in Table 4 for a share of 10% and 27% aircraft using 
this capability.
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Fig. 7   Number of Candidates for in-flight optimization

Fig. 8   Task load assessment 
(10:00–11:00 UTC) for the 
reference (left) and the 27% sce-
nario (right). Green: minor task 
load, Red: maximum task load

Fig. 9   Left: Change of task load 
(Red: increase up to 3042 s, 
Green: reduced (− 1622 s) or 
neutral). Right: Density plot of 
re-optimized points (AOI only)
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6 � Summary and conclusion

Today, aircraft trajectories are constrained by airspace struc-
ture (e.g., ATS routes), sector capacity and a less flexible 
planning and negotiating process. Hence, trajectories are 
filed by operators and are accepted by ATC only with spe-
cial consideration of ATFM. The flight efficiency depends 
on atmospheric conditions such as wind speed and direction, 
which are hardly to predict due to their dynamic fluctua-
tions, especially several hours in advance. Hence, the flight 
path is calculated in a single and steady atmosphere, which 
could potentially be outdated at actual departure time. This 
paper investigated the potential of re-calculated trajectories 
when the aircraft is already in cruise, whenever a weather 
update is. Therefore, the aircraft trajectory optimization 
simulation environment TOMATO has been applied for a 
set of flights with a flight time longer than 60 min, cruising 
altitudes higher than FL 250, and aircraft types larger than 
mid-haul category for a European air traffic scenario from 
January 3rd, 2018. After an initially waypoint-less optimi-
zation using time-independent weather conditions from the 
recent forecast, the trajectory has been re-calculated the first 
time at ToC and afterwards each hour corresponding to the 
weather update cycle from GFS and NOAA.

Dynamic changing wind conditions and jet streams result 
in significant modifications of the trajectory with changes 
in the lateral and vertical profile. Considering an example 
of a single flight (NBO-CDG), a fuel-saving potential of 
approximately 1%, compared to a historically tracked ref-
erence flight was shown. The expected fuel saving due to 
re-calculations in the dynamic weather conditions is mar-
ginal compared to the initially optimized trajectory based 

on the boundary conditions of the reference flight (approx. 
17% fuel saving). Safety is considered in the pre-tactical 
phase by assessing the airspace usage and the controller’s 
task load within several sectors. Integrating both the initially 
optimized trajectories as well as the dynamically optimized 
trajectories into an air traffic simulation with real histori-
cal flights results in a change in lateral distribution of air-
craft and in an increase of the controller’s task load. Due to 
dynamic changes of flight plans, the controller’s task load 
for conflict detection and resolution increases significantly. 
The additional workload due to optimization with dynamic 
input seems manageable but depends on how frequently it 
is employed and on the share of aircraft using the capability 
for re-optimization. To conclude, the dynamically optimized 
trajectories are possibility for a fuel burn benefit. However, 
the benefit significantly relies on precise weather informa-
tion. However, considering the future implementation of 
TBO (e.g., SESAR RBT), a dynamic trajectory optimiza-
tion would result in short-term fuel savings.

Future research should certainly further investigate the 
effect of additional task load by re-planning of airborne 
flights by considering human factors and real ATC sector 
shapes. This raises research questions regarding the param-
eterization of the workload by dividing the ATC control-
ler and pilot tasks into individual activities with a better 
estimation of their duration. The methods shown can then 
be used to conduct a deeper analysis of the complexity of 
the airspace. This also allows to draw conclusions when the 
capacity is saturated due to re-optimization: how many re-
optimizations are possible, e.g., in a period or a sector and 
how does this limit relate to our assumptions about the share 
of in-flight optimization capability?

Table 4   Results of ATC task load assessment (10:00 UTC to 11:00 UTC) and total fuel-saving potential

Reference: tracked flights from Eurocontrol SO6 traffic file; 10% and 27% scenarios represent a share of 10% and 27% of all Flights with a In-
flight optimization capability

Reference 10% In-flight opt. (990 flights) 27% In-flight opt. (2673 
flights)

Initial opt Final opt Initial opt Final opt

Fuel burn savings, per flight (kg) –
(Total: 1.2875*108)

404 473 435 506

Air distance reduction, per flight (kg) –
(Total: 6.0378*1010)

172 205 177 212

Sector in assessment (when task load > 1 s) 341 341 341 341 341
Avg. sector task load (s) 3935.8 3998.4 4003.9 4097.3 4150.4
Sectors with increased task load, avg. value (s) – 17%, + 198 17%, + 201 26%, + 277 26%, + 291 s
Sectors with decreased task load, avg. value (s) – 3%, − 170 3%, − 172 6%, − 237 6%, − 230
Number of sectors with task load > 2520 s 246 (72%) 250 (73%) 250 (73%) 258 (75%) 257 (75%)
Maximum task load (s) 11,931 11,914 11,608 11,869 11,975
Number of re-optimizations – – Total 125

0.26/h
(max: 5/h)

– Total 309
0.64/h
(max: 10/h)
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