
A Stand–Alone Quantized State System Solver for
Continuous System Simulation

Joaqúın Fernández and Ernesto Kofman∗

CIFASIS–CONICET. FCEIA - UNR.
27 de febrero 210 bis - (S2000EZP) Rosario, Argentina

Phone: +54 (341) 4237248 Ext. 336
fernandez@cifasis-conicet.gov.ar kofman@fceia.unr.edu.ar

∗ Corresponding author

Abstract

This article introduces a stand–alone implementation of the Quantized State
System (QSS) integration methods for continuous and hybrid system simulation.
QSS methods replace the time discretization of classic numerical integration by
the quantization of the state variables. These algorithms lead to discrete event
approximations of the original continuous systems and show some advantages over
classic numerical integration schemes.

For simplicity reasons, most implementations of QSS methods were confined to
discrete event simulation engines. The problem is that they were not fully efficient
as they wasted much of the computational load in the discrete event simulation
mechanism. The Stand–Alone QSS solver presented here overcomes this problem,
improving in more than one order of magnitude the computation times of the pre-
vious discrete event implementations.

Besides describing the solver structure and functionality, the article analyzes
four different models and compares the performance of the new solver with that of
the discrete event implementation, and with that of different classic solvers.

Keywords: ODE Solvers, Discontinuity Handling, Quantized State Systems Methods

1 Introduction

Solving ordinary differential equations, requires the use of numerical integration methods.
Classic integration algorithms [14, 15, 7] are based on the discretization of the independent
variable (which usually represents time).

1

The QSS (Quantized State System) numerical integration methods [20, 7], replace
the time discretization of classic integration algorithms by the quantization of the state
variables. That way, these methods lead to discrete event approximations of the originally
continuous systems and have some advantages over their classic counterparts:

• They satisfy strong stability and error bound theoretical properties [20, 16].

• They are very efficient to simulate continuous systems with frequent discontinuities
[17].

• Due to their intrinsic capacity to exploit sparsity, they are very efficient in the
simulation of large scale discontinuous models [13].

• They can integrate some stiff systems in a very efficient way, without performing
iterations or matrix inversion [22, 21].

For these reasons, there are several applications where QSS methods simulate much faster
than the most efficient discrete time algorithms, including power electronic circuits [17,
22, 21], biological models [13, 1], Heating, Ventilation, and Air Conditioning (HVAC)
systems [23, 27], among other systems that combine different features under which QSS
methods are efficient.

The easiest way of implementing the QSS algorithms is through the use of a DEVS
(Discrete EVent System Specification) [28] simulation engine. For this reason, most im-
plementations of the QSS methods are limited to DEVS simulation tools.

These implementations, although simple, are inefficient, as they waste much of the
computational effort in synchronization and event transmission mechanisms of the DEVS
engine itself. Additionally, the models must be defined as block diagrams, which can be
inconvenient.

These drawbacks motivate the development of a Stand–Alone QSS solver, following
the idea of classic numerical integration solvers such as DASSL [24, 7].

The Stand–Alone QSS solver was implemented as a set of modules coded in the C
programming language. It implements the whole family of QSS methods and the models
can contain time and state discontinuities.

A difficulty imposed by the QSS methods is that it makes use of structural information
of the model. Each step in a QSS method involves a change in a single state variable
and in the state derivatives that depend on it. Thus, the model must provide not only
the expression to compute the state derivatives (as in classic ODE solvers) but also an
incidence matrix so the solver knows which state derivatives are changed after each step.

Since it would be very uncomfortable for a user to provide this structure informa-
tion, the solver has also a Modeling Front–End that automatically obtains the incidence
matrices from a standard model definition. This front–end allows the user to describe

2

the models using a sub–set of the standard Modelica language [11], and automatically
generates the C code of the model including the structure.

Additionally, a simple Graphic User Interface that integrates the solver with the Mod-
eling Front–End and some plot and debug tools was developed.

In this article, we describe the Stand–Alone QSS solver with the mentioned additional
tools. We also study and compare the performance of the new tool with that of a DEVS
implementation of QSS methods and with DASSL and Runge–Kutta solvers.

The article is organized as follows: Section 2 presents the family of QSS methods,
their implementations, and a brief introduction to the Modelica language. Then, Section 3
describes the structure, the components and the functionality of the QSS Solver. Similarly,
Section 4 describes the modeling front–end. Section 5 analyzes the performance of the
solver on three benchmark problems, comparing the results with DEVS implementations
of QSS methods and with Runge–Kutta and DASSL solvers.

2 Background

In this section we introduce the Quantized State System numerical integration algorithms
and their previous implementations. We also provide a brief description of the Modelica
language.

2.1 Quantization State System Methods

QSS methods replace the time discretization of classic numerical integration algorithms
by the quantization of the state variables.

Given the ODE
ẋ(t) = f(x(t), t) (1)

the first order Quantized State System method (QSS1) [20] approximates it by

ẋ(t) = f(q(t), t) (2)

Here, q is the quantized state vector. Its entries are component-wise related with those of
the state vector x by the following hysteretic quantization function:

qj(t) =

{
xj(t) if |xj(t)− qj(t−)| ≥ ∆Qj

qj(t
−) otherwise

(3)

where ∆Qj is called quantum.
It can be easily seen that qj(t) follows a piecewise constant trajectory that only changes

when the difference between qj(t) and xj(t) becomes equal to the quantum. After each
change in the quantized variable, it results that qj(t) = xj(t).

The QSS1 method has the following features:

3

• The quantized states qj(t) follow piecewise constant trajectories, and the state vari-
ables xj(t) follow piecewise linear trajectories.

• The state and quantized variables never differ more than the quantum ∆Qj. This
fact ensures stability and global error bound properties [20, 7].

• The quantum ∆Qj of each state variable can be chosen to be proportional to the
state magnitude, leading to an intrinsic relative error control [19].

• Each step is local to a state variable xj (the one which reaches the quantum change),
and it only provokes evaluations of the state derivatives that explicitly depend on
it.

• The fact that the state variables follow piecewise linear trajectories makes very easy
to detect discontinuities. Moreover, after a discontinuity is detected, its effects are
not different to those of a normal step. Thus, QSS1 is very efficient to simulate
discontinuous systems [17].

However, QSS1 has some limitations as it only performs a first order approximation, and
it is not suitable to simulate stiff systems.

The first limitation was solved with the introduction of higher order QSS methods like
the second order accurate QSS2 [16], where the quantized state follow piecewise linear
trajectories, and the third order accurate QSS3 [18], where the quantized state follow
piecewise parabolic trajectories.

Regarding stiff systems, a first order Backward QSS (BQSS) method was introduced
in [22]. This method, in spite of being backward, is explicit. While BQSS cannot be
extended to higher order approximations, a family of Linearly Implicit QSS (LIQSS)
methods of order 1 to 3 was also proposed in [21]. LIQSS methods, like BQSS, are also
explicit algorithms.

LIQSS methods have the same advantages of QSS methods, and they are able to
efficiently integrate many stiff systems, provided that the stiffness is due to the presence
of large entries in the main diagonal of the Jacobian matrix.

All QSS and LIQSS methods share the representation of Eq.(2). They only differ in
the way that qi is computed from xi.

2.2 Implementation of QSS Methods

Each component of the QSS1 approximation given by Eq.(2) can be thought of as the
coupling of two elementary subsystems: a static one,

ẋj(t) = fj(q1, · · · , qn, t), (4)

4

and a dynamical one

qj(t) = Qj(xj(·)) = Qj(

∫
ẋj(τ)dτ) (5)

where Qj is the hysteretic quantization function defined by Eq.(3) (notice that it is not a
function of the instantaneous value xj(t), but a functional of the trajectory xj(·)).

Taking into account that the quantized variables qj(t) follow piecewise constant trajec-
tories, and assuming that fj(·) depends on t through a piecewise constant approximation,
it results that both Subsystems, Eq.(4) and Eq.(5), receive piecewise constant input tra-
jectories and compute piecewise constant output trajectories. These piecewise constant
trajectories can be represented by sequences of events in a straightforward manner.

The relation between the input and output sequences of events of these subsystems
can be expressed by simple DEVS models. The DEVS representations of Eq.(4) are called
static functions and the DEVS representations of Eq.(5) are called quantized integrators
[7].

Then, the QSS approximation Eq.(2) can be simulated by a DEVS model consisting in
the coupling of n quantized integrators, n static functions (with the eventual addition of
signal sources). The resulting coupled DEVS model looks identical to the block diagram
representation of the original system of Eq.(1).

Higher order QSS methods are implemented in the same way. In this case, the events
represent the changes in piecewise linear or piecewise parabolic trajectories and the static
functions and quantized integrators take into account not only the values but also the
slopes and second derivatives of the trajectories they receive and send.

Based on these ideas, the whole family of QSS methods were implemented in Pow-
erDEVS [3], a DEVS–based simulation platform specially designed for and adapted to
simulating hybrid systems based on QSS methods. In addition, the explicit QSS methods
of orders 1 to 3 were also implemented in a DEVS library of Modelica [2] and imple-
mentations of the first–order QSS1 method can also be found in CD++ [8] and VLE
[25].

DEVS–based implementations of QSS methods are simple but they are not efficient.
The following example illustrates this fact.

Consider the second order ODE

ẋ1(t) = 2 · x2

ẋ2(t) = − sin(x1)− 3 · x2

and its QSS approximation

ẋ1(t) = 2 · q2

ẋ2(t) = − sin(q1)− 3 · q2

(6)

This approximation can be simulated by the PowerDEVS model depicted in Figure 1.

5

Figure 1: PowerDEVS model for Eq.(6)

Let us assume that the first step of this simulation corresponds to a change in variable
q2. This case corresponds to an internal transition on the quantized integrator x2 in the
DEVS model.

Then, the DEVS simulation engine proceeds as follows

1. The simulation engine advances the time to the next event time (i.e., the time of
the change in q2).

2. The quantized integrator x2 computes the new value of q2 and sends the correspond-
ing output event to blocks WSum0 and Gain0 (1 function call).

3. The static functions Wsum0 and Gain0 execute their external transition functions
where they receive q2 and set their time advance σ = 0 (4 function calls).

4. The quantized integrator x2 executes its Internal Transition Function and computes
the time for its next output event (2 function calls).

5. The engine searches which of the 5 block performs the next event. It finds that
blocks WSum0 and Gain0 should perform an event immediately and chooses the one
with highest priority. Let us assume that it chooses Gain0

6. The static function Gain0 computes 2 · q2 and sends the corresponding output event
to block x1 (1 function call).

7. The quantized integrator x1 executes its external transition function where it re-
ceives 2 · q2, recomputes x1 and the time to its next output event (i.e., the time for
the next change in q1) (2 function calls).

6

8. The static function Gain0 executes its Internal Transition Function and sets its
time advance σ =∞ (2 function calls).

9. The engine searches which of the 5 block performs the next event. It finds that
block Wsum0 should perform an event immediately.

10. The static function Wsum0 computes sin(q1) + 3 · q2 and sends the corresponding
output event to block x2 (1 function call).

11. The quantized integrator x2 executes its external transition function where it re-
ceives sin(q1) + 3 ·x2, recomputes x2 and the time for its next output event (i.e., the
time for the next change in q2) (2 function calls).

12. The static function Wsum0 executes its Internal Transition Function and sets its
time advance σ =∞ (2 function calls).

13. The engine searches which of the 5 block performs the next event. It should be a
quantized integrator (x1 or x2).

Thus, each change in a quantized variable triggers a lot of actions that are performed by
the different blocks and by the DEVS simulation engine.

During the step, a minimum of 17 function calls are performed. Here, we take into
account calls to external, internal, output and time advance functions of the DEVS blocks.
Also, the engine performs three searches of the minimum time between 5 blocks.

Notice that these actions are independent on the DEVS simulation platform. It is just
due to the DEVS simulation mechanism.

However, during a change in q2 the only necessary actions are

1. Advance the time to the next change of q2.

2. Calculate the new value for q2.

3. Calculate the new derivatives ẋ1(t) = 2 · q2 and ẋ2 = − sin(q1)− 3 · q2.

4. Recompute the time of the new changes in q1 and q2.

5. Search which of the two variables performs the next change.

From this analysis, it is apparent that splitting the model into quantized integrators and
static functions to build an equivalent DEVS model is inefficient. In order to perform a
single simulation step, the DEVS simulation mechanism computes and propagates several
events.

7

A more efficient DEVS implementation would consist of only two atomic super–blocks :
the first one computing q1 out of q2 and the second one computing q2 out of q1. However,
the behavior of those super–blocks would be far more complex than that of the quantized
integrators and static functions. These models would depend on the functions fi(q, t)
and the users would need to code a different DEVS atomic block for each state, which is
impractical or even impossible for large and complex models.

Also, that implementation would still perform some unnecessary steps, such as trans-
mitting the values of qi between blocks. It is more efficient to share the variables in a
common array.

These facts motivated the development of stand alone QSS solvers like the one de-
scribed in this work. Although the concept of stand–alone implies that the simulations
are not carried out by a DEVS simulation engine, we shall see that the algorithms involved
contain routines that can be thought as a sort of ad–hoc DEVS simulator.

A first approach to a stand–alone version of QSS1 to 3 was implemented in the Java–
based simulation tool Open Source Physics [9], but that implementation was even less
efficient than that of PowerDEVS and it required the users to provide manually the
system structure information needed by QSS methods.

2.3 Modelica Language

Old modeling and simulation tools required the models to be directly coded on a pro-
gramming language, typically Fortran or C. Modeling in this way was very uncomfortable
and it was almost impossible to code in that way large and complex models.

In the 1970’s, some specific modeling languages started developing and, at the end of
the 1990’s, a standard language called Modelica [11] was defined and widely adopted by
the Modeling and Simulation community.

Modelica is a free high level, object-oriented language for modeling of large, complex,
and heterogeneous systems.

Models in Modelica are mathematically described by differential, algebraic and discrete
equations. Sub–models can be inter–connected to create more complex models and there
are several software tools to compose Modelica models in a graphical way.

There are several compilers that convert Modelica models into simulation code. Among
the most popular Modelica–based simulation tools we can mention Dymola [6] and Open-
Modelica [12].

3 The Stand–Alone QSS Solver

In this section, we describe the structure and the components of the new stand alone QSS
solver.

8

3.1 Solver Structure

As we explained above, QSS integration methods solve the equation

ẋ = f(q, t) (7)

where each component of q(t) is a piecewise polynomial approximation of the correspond-
ing component of the state x(t). Different QSS methods are characterized by the way
they perform this approximation.

The fact that Eq.(7) stands for all algorithms can be exploited by including a common
module to solve Eq.(7) independently of the way in which q is computed from x.

Taking this remark into account, the core of the solver is composed by two modules:

1. The Integrator that integrates Eq.(7) assuming that the piecewise polynomial
quantized state trajectory q is known.

2. The Quantizer that given x(t), effectively calculates q(t) using the corresponding
method. There is a different Quantizer for each QSS method.

In order to integrate Eq.(7), the Integrator must evaluate function f , which is pro-
vided by the Model, which constitutes a separated module of the scheme.

Classic solvers evaluate the complete right hand side at every step. Consequently, the
models only contain the code to calculate f(x, t).

A distinctive feature of QSS methods is that different state variables are updated at
different times. Thus, the QSS solver needs to know about the system structure so that
after a change in a given quantized state qi, it only evaluates those components of f that
explicitly depend on qi.

In consequence, the models should provide the possibility of evaluating the individual
components of function f . Moreover, the QSS solver must also know which components
must be evaluated after a change in a quantized variable. This structure information is
also provided by the Model through incidence matrices.

From an end–user point of view, it is very uncomfortable to provide a model with
these features. Thus, the QSS solver was complemented with another separated module
that automatically generates the structure information from a standard model definition.

Fig. 2 shows the basic interaction scheme between the four modules mentioned above.
This scheme was simplified for the purely continuous case. In presence of discontinu-

ities, the model also contains zero-crossing functions and event handlers, providing the
corresponding structure information.

For the general case, in presence of discontinuities, we consider a system of the form

ẋ(t) = f(x,d, t) (8)

9

Figure 2: Stand–Alone QSS Solver – Basic Interaction Scheme

where d is a vector of discrete variables that can only change when a condition

ZCi(x,d, t) = 0 (9)

is met. The components ZCi form a vector of zero crossing functions ZC(x,d, t). When
a zero crossing condition of Eq.(9) is verified, the state and discrete variables can change
according to the corresponding event handler:

(x(t),d(t)) = Hi(x(t−),d(t−)) (10)

3.2 Integrator Module

The Integrator module is in charge of advancing the simulation time and computing the
polynomial representation of the components xi(t) of the state vector x(t):

xi(t) =
n∑

k=0

xi,k · (t− txi)k (11)

using a known approximation of the state given by the components qi(t) of the quantized
state vector q(t):

qi(t) =
n−1∑
k=0

qi,k · (t− tqi)k (12)

where n is the order of the method. For that goal, it integrates Eq.(8) evaluating the
components of f and, in presence of discontinuities, the zero crossing functions.

10

Each simulation step may correspond to a change in a quantized variable qi or an
event triggered by a zero-crossing function ZCi.

When the next step corresponds to a change in a quantized variable qi at time t, the
Integrator proceeds as follows:

• Advance the simulation time to t.

• Ask the Quantizer the new coefficients qi,k and set tqi = t.

• Ask the Quantizer the next time of change in qi.

• Ask the Model which state derivatives ẋj = fj depend on qi.

• For each j so that fj depends on qi:

– Obtain xj,0 = xj(t) from Eq.(11), and set txj = t.

– Ask the Model which quantized state variables ql other than qi affect the
expression of fj and update the values of ql(t) from Eq.(12).

– Evaluate ẋj(t) from the Model to obtain the coefficients for xj,k with k =
1, · · · , n.

– Ask the Quantizer to recompute the next time of change for qj.

• For each j so that ZCj depends on qi:

– Ask the Model which quantized state variables ql other than qi affect the
expression of ZCj and update the values of ql(t) from Eq.(12).

– Evaluate ZCj(t) from the Model and estimate the next event time, at which
ZCj(t) = 0.

• Select the next step time as the minimum time of change in all quantized states and
zero crossing functions.

Otherwise, when the next step corresponds to an event triggered by the condition
ZCi(t) = 0, the Integrator proceeds as follows:

• Advance the simulation time to t.

• Ask the Model which quantized state variables qj affect the right hand side of the
expressions inside the event handler Hi, and update qj(t) according to Eq.(12).

• Tell the Model to execute the event handler Hi.

11

• Ask the Model which state derivatives ẋj = fj depend on discrete variables dl
changed at the Handler Hi.

• For each j so that fj depends on some dl:

– Obtain xj,0 = xj(t) from Eq.(11), and set txj = t.

– Ask the Model which quantized state variables qm affect the expression of fj
and update the values of qm(t) from Eq.(12).

– Evaluate ẋj(t) from the Model to obtain the coefficients for xj,k with k =
1, · · · , n.

– Ask the Quantizer to recompute the next time of change for qj.

• For each j so that ZCj depends on discrete variables dl changed at the Handler Hi:

– Ask the Model which quantized state variables qm affect the expression of ZCj

and update the values of qm(t) from Eq.(12).

– Evaluate ZCj(t) from the Model and estimate the next event time, at which
ZCj(t) = 0.

• For each j so that xj is changed at the event handler Hi, proceed as if a change had
occurred in qj at time t.

• Select the next step time as the minimum time of change in all quantized states and
zero crossing functions.

3.3 QSS Quantizer Module

As it was described above, the Integrator module invokes the Quantizer in order to
obtain the quantized state trajectories qi(t) as a function of the state trajectories xi(t).
The Quantizer then computes the quantized state according to the QSS method specified
(QSS1, QSS2, QSS3, LIQSS1, LIQSS2, etc) and the tolerance selected.

The quantized state trajectories are characterized by the polynomial coefficients (qi,k)
and the instants of change (tqi), as it is expressed in Eq.(12). Thus, the role of the
Quantizer can be summarized by the following functions:

• Update Quantized State: It calculates the coefficients qi,k according to xi,k.

• Compute Next Time: It computes the time of the next change in qi(t) after a new
section of qi(t) starts.

12

• Recompute Next Time: It recomputes the time of the next change in qj(t) after the
derivative ẋj(t) changes.

These three functions depend on the QSS method in use and the selected tolerance. The
tolerance is characterized by two parameters: ∆Qmin and ∆Qrel, so it is possible to
use logarithmic quantization. The mentioned parameters can be different for each state
variable, and the quantum is computed as:

∆Qi = max(∆Qi,rel · |xi,0|,∆Qi,min)

For instance, in the first order accurate QSS1 method the functions of the Quantizer
calculate the quantized state as follows:

• Update Quantized State: It sets
qi,0 = xi,0.

• Compute Next Time: It computes the next time of change as

tq
+

i = t+
∆Qi

xi,1

• Recompute Next Time: It recomputes the time of the next change as the minimum
t at which

|xi(t)− qi(t)| = ∆Qi

where xi(t) and qi(t) are obtained from Eqs.(11)–(12).

In the second order accurate QSS2 method, in turn, the functions calculate as follows:

• Update Quantized State: It sets

qi,0 = xi,0, qi,1 = xi,1

• Compute Next Time: It computes the next time of change as

tq
+

i = t+

√
∆Qi

|xi,2|

• Recompute Next Time: It recomputes the time of the next change as the minimum
t∗ > t at which

|xi(t∗)− qi(t∗)| = ∆Qi

where xi(t
∗) and qi(t

∗) are obtained from Eqs.(11)–(12). For computing t∗, the
Quantizer finds the roots of two second order polynomials.

13

The Quantizer function for QSS3 is similar.
For the case of LIQSS1, the quantizer functions work as follows:

• Update Quantized State: It sets

qi,0 = xi,0 + δqi.

where

δqi =


∆Qi if xi,1 > 0 and f̃i(xi,0 + ∆Qi) > 0

−∆Qi if xi,1 < 0 and f̃i(xi,0 −∆Qi) < 0

q̃i − xi,0 otherwise

where f̃i(qi) = ai ·qi+ui is a linear estimate of the state derivative ẋi and q̃i = −ui/ai
is the value at which the linear estimate is zero.

• Compute Next Time: It computes the next time of change as

tq
+

i = t+
∆Qi

xi,1

• Recompute Next Time: It recomputes the time of the next change as the minimum
t at which

|xi(t)− qi(t)− δqi| = ∆Qi

where xi(t) and qi(t) are obtained from Eqs.(11)–(12).

It also updates the parameter ui of the linear estimate as:

ui = xi,1 − ai · qi,0

If the function is invoked to recompute the time of change in qi due to a change in
qi, the function first updates the parameter ai of the linear estimate as:

ai =
xi,1 − old(xi,1)

qi,0 − old(qi,0)

where old(xi,1) is the previous value of the state derivative xi,1 and old(qi,0) is the
previous value of the quantized state qi,0.

LIQSS2 and LIQSS3 quantizers combine this implementation with those of QSS2 and
QSS3.

14

3.4 QSS Model Module

The Integrator module solves Eq.(8), obtaining q(t) from the Quantizer and evaluating
the state derivatives ẋi = fi(q,d, t) and the zero crossing functions ZCi(q,d, t) at the
Model instance. Besides evaluating these functions, the model should also provide the
already mentioned structure information.

The main functions of a Model must allow:

• Evaluating a single state derivative ẋi = fi(q,d, t).

• Evaluating a zero crossing function ZCi(q,d, t).

• Executing a handler Hi(q,d, t).

• Evaluating 4 incidence matrices expressing the direct influence from state variables
and handlers to state derivatives and zero crossing functions.

The main incidence matrix SD contains the information about the influence from state
variables to state derivatives. In the implementation it is treated as a sparse matrix.

Thus, the entry SD(j, k) = l tells that the k–th state derivative which is influenced
by xj is ẋl. This means that xj appears explicitly on the right hand side of ẋl = fl(x, t).

Similarly, there is an incidence matrix SZ that contains the information about the
influence from state variables to zero–crossing functions.

Also, an incidence matrix HZ contains the information about the influence from event
handlers to zero crossing functions. The entry HZ(j, k) = l tells that the k–th zero
crossing function influenced by the j–th event handler is ZCl. This means that the
execution of handler Hj modifies the value of ZCl.

Similarly, the incidence matrix HD contains the information about the influence from
event handlers to state derivatives.

In addition, for efficiency reasons, the Model module provides routines that allow:

• Evaluating all the state derivatives depending on one state xj at once. That
way, the Integrator can re–evaluate all the state derivatives that change after a
step in a single function call.

• Evaluating higher order derivatives of state variables and zero crossing functions.
These higher order derivatives are required by high order QSS methods. When they
are not available, they are numerically computed which involves more function calls
and computations.

As we shall see below, the incidence matrices and the routines that compute higher
order derivatives as well as the functions that evaluate several derivatives in a single
call are automatically obtained by the Modeling Front End based on a standard model
description given by the user.

15

3.5 Simulation

After defining a Model instance, it is compiled together with the Integrator (which acts
as the Simulation Engine) and the Quantizer modules to obtain the runtime simulation
code. The three modules are written in plain C language.

3.6 Efficiency analysis

In Section 2.2 we explained why the DEVS implementations of QSS methods were ineffi-
cient, analyzing a simple simulation example given by Eq.(6). There, we saw that during
a single change in q2(t), the DEVS engine took several simulation steps.

Let us analyze what the QSS solver does with the same system under the same change
in variable q2:

1. The Integrator advances the time to the next change in q2.

2. The Integrator asks the Quantizer the new value of q2 (1 function call).

3. The Integrator asks the Model the new values of the derivatives ẋ1 and ẋ2 (1
function call).

4. The Integrator asks the Quantizer to recompute the time of the next change in
variables q1 and q2 (2 function calls).

5. The Integrator searches which of the two variables perform the next change.

During this process, the solver performs only 4 function calls and 1 search for the
minimum between two values.

Compared with the 17 function calls and the 3 searches between 5 values performed
by the DEVS mechanism, we can expect the implementations of the Stand–Alone QSS
solver to be more efficient than those based on DEVS.

This analysis performed over a simple example can be easily extended to general
systems with similar conclusions, as the model analyzed can be thought of as a part of a
larger system.

4 Modeling Front-End

Compared to classic solvers, the Stand–Alone QSS solver has the disadvantage that each
model must provide additional information about the system structure, so that the state
derivatives ẋi = fi(q,d, t) and zero crossing functions ZCi(q,d, t) are only evaluated

16

when it is necessary. This structure information should be given in the form of incidence
matrices.

To overcome this difficulty, a Modeling Front–End was developed that allows the user
to describe models in a standard way, using a subset of the Modelica language called
µ–Modelica, and then it automatically generates the corresponding plain C code with the
structure matrices required by the solver.

The transformation from the original model described in µ–Modelica to the final plain
C code is performed in different stages by the modules described below:

1. The µ-Modelica Parser module, transforms the model described in µ-Modelica to
get a new structured representation.

2. The Model Intermediate Representation (IR) module, obtains information re-
garding all the state, algebraic and discrete variables defined in the model equations
and events.

3. The Model Generator module, constructs the incidence matrices of the system
and generates the Model instance.

In order to complete the Modeling Front–End, we developed a simple Graphic User
Interface (GUI) as a separate module, to be able to create, edit models and interact with
the simulation environment. The basic interaction between the modules mentioned above
is depicted in Fig. 3.

Figure 3: Modeling Front–End basic scheme.

17

4.1 The µ–Modelica Parser Module

The µ-Modelica Parser module transforms a model described using a high level mod-
eling language into a structured representation, the AST (Abstract Syntax Tree), that is
used by the subsequent layers of the front-end.

To achieve this goal, we defined a language called µ-Modelica consisting of a subset of
the Modelica language. µ-Modelica was conceived so that it contains only the necessary
Modelica keywords and structures to define an ODE based hybrid model like that of
Eq. (8)-(10).

For instance, the following code corresponds to a bouncing ball model represented in
µ-Modelica:

model bball

Real y(start = 10),vy(start = 0), F;

parameter Real m = 1, b = 30, g = 9.8, k = 1e6;

discrete Real contact(start = 0);

equation

F = k*y+b*vy;

der(y) = vy;

der(vy) = -g - (contact * F)/m;

algorithm

when y < 0 then

contact := 1;

elsewhen y > 0 then

contact := 0;

end when;

end bball;

The QSS Solver was conceived to support the simulation of large scale models. Thus,
arrays and for statements are allowed and efficiently handled. The following example
shows this feature of the language on the model of an Advection–Reaction model.

model advection

parameter Real alpha=0.5,mu=1000;

constant Integer N = 500, T = 0.3*N;

Real u[N];

initial algorithm

for i in 1:T loop

u[i]:=1;

end for;

equation

der(u[1])=(-u[1]+1)*N-mu*u[1]*(u[1]-alpha)*(u[1]-1);

for i in 2:N loop

der(u[i])=(-u[i]+u[i-1])*N-mu*u[i]*(u[i]-alpha)*(u[i]-1);

end for;

end advection;

The µ-Modelica language has the following restrictions with respect to Modelica:

• The model is in flat form, i.e. no classes are allowed.

18

• All variables belong to the predefined type Real and there are only three cate-
gories of variables: continuous states, discrete states and algebraic variables.
For instance, in the bouncing ball model, y and vy are continuous states, F is an
algebraic variable and contact is a discrete state.

• Parameters are also of type Real. In the Advection–Reaction Model, alpha and mu
are parameters.

• Arrays are allowed. Indexes in arrays inside for clauses are restricted to expressions
of the form:

α · i+ β (13)

where α and β are integer expressions and i is the iteration index.

• The equation section is composed of:

– Definitions of state derivatives: der(x) = f(x(t),d, a(t), t); in explicit ODE
form.

– Definitions of algebraic variables:

(a1, · · · , an) = g(x(t),d, a(t), t); (14)

with the restriction that each algebraic variable can only depend on states and
on previously defined algebraic variables.

• Discontinuities are expressed only by when and elsewhen clauses inside the algorithm
section. Conditions on both clauses can only be relations (<,≤, >,≥) and, inside
the clauses, only assignment of discrete variables and reinit of continuous states
are allowed.

A complete specification of the µ–Modelica language can be found in [10].
Given a model defined in this language, the µ-Modelica parser produces the first

transformation, generating the structured representation of the AST.

4.2 The Model IR Module

The next transformation is performed by the Model IR module. The goal of this trans-
formation is to extract structure information from the AST obtained before.

Additionally, in presence of events, this stage is in charge of building the zero crossing
functions from the zero crossing conditions. A zero crossing condition

f1(x,d, a, t) < f2(x,d, a, t)

19

is transformed into the zero crossing function

zc(x,d, a, t) = f1(x,d, a, t)− f2(x,d, a, t)

The Model IR module analyzes all the equations and statements of the model to
obtain the lists of variable dependences involved in each expression.

Thus, given an expression of the form e = f(x(t),d(t), a(t), t), the Model IR module
must first construct a list of:

• The state variables xi involved in the computation of e.

• The discrete variables di involved in the computation of e.

• The algebraic variables ai involved in the computation of e.

Here, we say that a variable v is involved in the computation of an expression e if:

• v appears in e, or

• v is involved in the computation of an algebraic variable which is in turn involved
in the computation of expression e.

This information is used to build the incidence matrices SD (from states to state deriva-
tives), SZ (from states to zero crossing functions), HZ (from event handlers to zero
crossing functions) and HD (from event handlers to state derivatives).

For instance, when we have the equations

a1=f1(x2,x3);

der(x1)=f2(a1,x4);

a simple algorithm finds that variables x2, x3 and x4 are involved in the calculation of
der(x1) Then, this information is used as follows to build the incidence matrix SD:

• The number of influenced derivatives of x2 is increased as NSD2 = NSD2 + 1.

• The incidence matrix entry SD2,NSD2 = 1 is added, saying that x2 is involved in
the computation of der(x1).

• The number of influenced derivatives of x3 is increased as NSD3 = NSD3 + 1.

• The incidence matrix entry SD3,NSD3 = 1 is added, saying that x3 is involved in
the computation of der(x1).

• Idem for variable x4.

20

The module also finds that algebraic variable a1 is involved in the calculation of der(x1).
This information is used by the Model Generator module in the next stage.

Now, let us suppose that we have the piece of µ-Modelica code:

equation

der(x1)=d1;

algorithm

when x1>2 then

d1=-1;

end when;

Here, the Model IR module first constructs the zero crossing function ZC1 = x1 − 2.
Then it finds that the event handler H1 (corresponding to the zero–crossing function ZC1)
influences the calculation of der(x1) (through the discrete variable d1) and that the state
variable x1 influences the zero crossing function ZC1.

With this information, the corresponding incidence matrices are built as follows:

• The number of influenced derivatives of H1 is increased as NHD1 = NHD1 + 1.

• The incidence matrix entry HD1,NHD1 = 1 is added, saying that the execution of
handler H1 modifies a variable involved in the calculation of der(x1).

• The number of influenced zero crossing functions of x1 is increased as NSZ1 =
NSZ1 + 1.

• The incidence matrix entry SZ1,NSZ1 = 1 is added, saying that x1 is involved in the
computation of the zero crossing function ZC1 .

In order to efficiently handle large scale models, expressions inside for statements are
treated generically without expansion. In this case, the lists of variables associated to
each expression include information about the index ranges.

For instance, given piece of code

for i in 2:100 loop

der(x[i])=x[i-1]+x[i];

end for;

the module finds that

• variable x[i] influences der(x[i]) for the range 2 ≤ i ≤ 100.

• variable x[i] influences der(x[i+1]) for the range 1 ≤ i ≤ 99.

This information is used to build matrix SD in the following way:

21

• For i ∈ [2, 100] we increase NSDi = NSDi + 1 and we set SDi,NSDi
= i.

• For i ∈ [1, 99] we increase NSDi = NSDi + 1 and we set SDi,NSDi
= i+ 1.

This way of treatment of for statements without expansions allows to generate a
significantly shorter code for the construction of the incidence matrices. In large scale
models, this saves a huge amount of compilation time.

4.3 The Model Generator Module

This module is in charge of generating the plain C code of a Model instance suitable
for the Stand–Alone QSS solver. Based on the Model IR described above, the Model
Generator module writes the following functions:

• Initialization code, which performs the following actions:

– Initialization of the model variables and parameters.

– Initialization and computation of structure matrices.

– Initialization of the model events.

– Obtention of the initial step time for each state variable and event defined in
the model.

• Code for state derivative computations, which involves

– Calculation of individual state derivatives ẋi = fi(x(t),d(t), a(t), t)

– Calculation in a single call of the set of state derivatives depending on a given
state variable.

– In both cases, it may include the code for the calculation of higher order deriva-
tives (ẍi,

...
x i). The corresponding expressions are obtained making use of sym-

bolic differentiation with the GNU library libmatheval.

• Code for evaluation of zero crossing functions zci (it may also generate the code to
compute higher-order derivatives of zci).

• Code for event handler routines.

For instance, the following C code shows part of the Model instance generated by the
Model Generator module for the bouncing ball example introduced above.

22

void model(int _i, double **_x, double *_d, double _t, double *_dx)

{

switch(_i)

{

case 0:

_dx[1] = _x[1][0];

return;

case 1:

_algvars[0][0] = k*_x[0][0]+b*_x[1][0];

_dx[1] = -g-(_d[0]*(_algvars[0][0]))/m;

return;

}

}

void model_zero_crossing(int _i, double **_x, double *_d, double _t, double *_zc)

{

switch(_i)

{

case 0:

_zc[0] = _x[0][0]-(0);

return;

}

}

void model_handler_pos(int _i, double **_x, double *_d, double _t)

{

switch(_i)

{

case 0:

_d[0] = 0;

return;

}

}

void model_handler_neg(int _i, double **_x, double *_d, double _t)

{

switch(_i)

{

case 0:

_d[0] = 1;

return;

}

}

void MD_initializeDataStructs(SD_init _init)

{

...

//incidence matrix from states to derivatives

_localData->I[1][0] = 0;

_localData->I[1][1] = 1;

_localData->I[0][0] = 1;

//incidence matrix from states to zero--crossings

_localData->IE[0][0] = 0;

...

//incidence matrix from handlers to derivatives

_localData->events[0].deps[0] = 1;

...

}

23

4.4 Graphic User Interface

The Modeling Front–End was complemented with a simple Graphic User Interface (GUI)
that simplifies and unifies the usage of the different components of the solver.

The GUI has the following features:

• It has a text editor, where models in µ-Modelica can be defined and modified.

• It invokes the corresponding tools to compile and run simulations.

• It provides debug information in case of errors during the model generation.

• It invokes GNUPlot to plot the simulation output trajectories.

• It shows statistics about simulations (number of steps, simulation time, etc.).

Fig. 4 shows the GUI with the Advection–Reaction model presented before. The
left side of the GUI allows plotting the simulation results, providing an interface with
GNUPlot.

Figure 4: Graphic User Interface

24

5 Results

This section studies the performance of the new solver on four examples, comparing results
with the same algorithms in PowerDEVS and also with DASSL and Runge Kutta solvers
in OpenModelica, an efficient tool for simulation of continuous and hybrid systems.

The examples analyzed cover different features of systems where QSS methods are
efficient. The first example simulates the power consumption of a large population of air
conditioners, resulting in a non–stiff, large–scale model with frequent discontinuities. The
second example corresponds to a large scale sparse system with certain stiffness resulting
from the Method of Lines discretization of an Advection–Reaction 1D equation. The
third example is a stiff model with frequent discontinuities corresponding to a power
electronic converter. The last example combines all the features: it is a large scale stiff
and discontinuous system representing a logic inverter chain.

In all the cases, we used QSS methods for different tolerance settings. In each model,
the errors reported correspond to the mean squared error, computed against a reference
solution obtained using DASSL with a tolerance of 10−10.

All the simulations were run on the same computer, with an Intel i7 Processor running
under Ubuntu OS. Results using Dymola with DASSL solver were also obtained, but
they are not reported in most examples since they do not differ much from those of
OpenModelica and they required the usage of a different OS (Windows XP). They are
only analyzed in one case where OpenModelica simulations failed.

5.1 Power Consumption of an Air Conditioning population

The first example, taken from [23], is a model proposed to study the power consumption
of a large population of Air Conditioners (AC).

Each AC keeps the room temperature close to a common temperature reference θref(t),
turning on and off the cooling system.

The evolution of the i–th room temperature θi(t) is described by a differential equation:

dθi(t)

dt
= − 1

Ci ·Ri

[θi(t)− θa +Ri · Pi ·mi(t)], (15)

where Ri and Ci are the thermal resistance and capacity of the room, respectively. Pi is the
power of the air conditioner when it is in its on state, and θa is the outside temperature.

The term mi(t) represents the on–off control of the AC, that follows the law:

mi(t) =


1 if mi(t

−) = 0 and θi(t) > θref(t) + 0.5

0 if mi(t
−) = 1 and θi(t) < θref(t)− 0.5

mi(t
−) otherwise

(16)

25

We simulated this system for N = 100 rooms, considering a pulse in the reference tem-
perature:

θref(t) =

{
20 if t < 1000 or t > 2000

20.5 otherwise

We used QSS2 and QSS3 methods with PowerDEVS and with the new Stand–Alone QSS
solver. We also simulated it using DASSL and Runge–Kutta algorithms in OpenModelica.
Figure 5 plots the total power consumption and Table 1 summarizes the simulation times
and errors.

-200

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 500 1000 1500 2000 2500 3000

S
ta

te
 V

a
ri
a
b
le

s

Time

airconds

ptotal

Figure 5: Total Power Consumption.

The results show that stand–alone QSS methods are from 5 to 10 times faster than the
same algorithms implemented in PowerDEVS under identical tolerance settings. However,
the errors obtained by the QSS solver are better than those of PowerDEVS, particularly
for low tolerance settings. This is due to the fact that the solver takes into account the
global tolerance settings in the event detection routines.

QSS results are also about two orders of magnitude faster than Runge–Kutta and more
than three orders of magnitude faster than the stiff stable DASSL algorithm. Anyway, as
this is a non stiff problem, the usage of DASSL is not actually necessary.

For low accuracy settings, the second order accurate QSS2 is faster than the third
order accurate QSS3 algorithm. For more restrictive tolerances, however, QSS3 becomes
more efficient.

26

Tolerance CPU time Simulation
(msec) Error

QSS Solver

QSS2 10−3 5 4.16E-03
QSS2 10−7 123 7.01E-07
QSS3 10−3 11 2.84E-03
QSS3 10−7 28 4.29E-07

LIQSS3 10−3 12 2.48E-02
LIQSS3 10−7 30 2.12E-06

OpenModelica

RUNGE KUTTA 10−3 1260 1.13E-02
RUNGE KUTTA 10−7 1290 1.40E-02

DASSL 10−3 25056 2.56E-02
DASSL 10−7 28280 1.42E-02

PowerDEVS

QSS2 10−3 50 4.64E-03
QSS2 10−7 1180 1.04E-06
QSS3 10−3 60 1.26E-02
QSS3 10−7 140 3.88E-04

Table 1: Air Conditioner Population results.

Regarding Runge–Kutta and DASSL algorithms, the usage of different tolerance set-
tings did not affect much the simulation times. Discontinuities are so frequent in this
system that the step size cannot be increased even when the tolerance is low. For this
same reason, the error does not change much with the tolerance, as it depends more on
the accuracy of the event detection.

In this case, we also simulated with the stiff–stable LIQSS3 method, that showed
an identical speed as the non–stiff QSS3 solver. This tells that LIQSS algorithms can
be used as default algorithms to cover stiff and non-stiff cases without paying an extra
computational cost. In classic algorithms this is not possible, as it can be seen comparing
the simulation times of DASSL and Runge–Kutta.

5.2 Advection–Reaction Equation

This example is the Method of Line discretization of an Advection–Reaction model, which
leads to the set of ODEs:

u̇i = (−ui + ui−1) ·N − µ · ui · (ui − α) · (ui − 1);

for i = 1, . . . , N . We used parameters u0 = 1, α = 0.5 and µ = 1000 with initial conditions
ui(0) = 1 for i < 0.3 ·N and ui(0) = 0 otherwise.

This is a large scale sparse system, which is also stiff due to the presence of the reaction
term µ · ui · (ui − α) · (ui − 1).

27

We simulated the model for N = 500, obtaining the trajectories shown in Fig. 6 and
the CPU times and errors reported in Table 2. Taking into account the stiffness of the
system, it was only simulated with stiff solvers (LIQSS and DASSL).

0

0.2

0.4

0.6

0.8

1

1.2

0 0.2 0.4 0.6 0.8 1

S
ta

te
V

ar
ia

bl
es

Time

Advection

u[100]
u[200]
u[300]
u[400]
u[500]

Figure 6: Advection–Reaction trajectories.

The results show now a speed up of more than one order of magnitude with respect to
PowerDEVS and a speed–up of almost two orders of magnitude compared with DASSL.

Regarding the errors, they are similar in all methods for the same tolerance settings,
except for PowerDEVS that with low tolerances does not experience the error reduction
of the other implementations.

As it occurred with QSS2 and QSS3 in the previous example, the second order accurate
LIQSS2 method is more efficient for low tolerance settings, while the third order accurate
LIQSS3 method is faster for higher accuracy goals.

28

Tolerance CPU time Simulation
(msec) Error

QSS Solver

LIQSS2 10−3 8 1.59E-03
LIQSS2 10−7 600 2.60E-11
LIQSS3 10−3 64 1.04E-03
LIQSS3 10−7 217 4.21E-12

OpenModelica
DASSL 10−3 789 4.01E-03
DASSL 10−7 3260 3.45E-11

PowerDEVS

LIQSS2 10−3 250 3.40E-03
LIQSS2 10−7 17000 7.30E-07
LIQSS3 10−3 950 8.32E-03
LIQSS3 10−7 1870 6.87E-07

Table 2: Advection–Diffusion–Reaction results.

5.3 Interleaved Buck Converter

We consider here an interleaved buck converter with 4 branches, shown in Fig.7, with
parameters C = 10−4 for the capacitor, L = 10−4 for the inductance, R = 10 for the load
resistance, Vcc = 24 for the input voltage. Also, we considered that the switches have a
period of T = 10−4, a duty cycle DC = 0.5/4, and we assumed that the switch and diode
have a resistance Ron = 10−5 in on state and Roff = 105 in off state.

This is a stiff model with frequent discontinuities. Due to stiffness, it was only sim-
ulated with LIQSS and DASSL solvers. Fig. 8 shows the state trajectories of the model
(inductance currents and capacitor voltages).

The results, summarized in Table 3, show a similar relation between the QSS Solver
and PowerDEVS than in the previous example (i.e., the new solver is more than 10 times
faster than PowerDEVS). Comparisons with DASSL show a similar speed up.

Figure 7: Interleaved Buck Converter

29

-1

0

1

2

3

4

5

6

7

8

9

10

0 0.0001 0.0002 0.0003 0.0004 0.0005 0.0006 0.0007 0.0008 0.0009 0.001

S
ta
te
V
ar
ia
bl
es

Time

Interleaved

iL[1]
iL[2]
iL[3]
iL[4]
uC

Figure 8: Interleaved Buck Converter state trajectories.

Tolerance CPU time Simulation
(msec) Error

QSS Solver

LIQSS2 10−3 7 1.50E-04
LIQSS2 10−7 186 7.13E-10
LIQSS3 10−3 25 1.67E-04
LIQSS3 10−7 59 7.29E-10

OpenModelica
DASSL 10−3 157 3.16E-04
DASSL 10−7 264 6.76E-10

PowerDEVS

LIQSS2 10−3 300 1.55E-06
LIQSS2 10−7 10200 5.13E-07
LIQSS3 10−3 780 1.72E-04
LIQSS3 10−7 1640 5.12E-07

Table 3: Interleaved Buck Converter results.

30

5.4 Logical Inverter Chain

The following model, presented in [26], represents a chain of m logical inverters

ω̇j(t) = Uop − ωj(t)−Υg (ωj−1(t), ωj(t)) (17)

with j = 1, . . . ,m where

g(u, v) = (max(u− Uth, 0))2 − (max (u− v − Uth, 0))2 (18)

We used the set of parameters and initial conditions given in [26]: Υ = 100 (which
results in a very stiff system), Uth = 1 and Uop = 5, ωj(0) = 6.247 · 10−3 for odd values of
j and ωj = 5 for even values of j. The input u0 follows a trapezoid signal, that rises from
0 to 5 from time 5 to time 10 and then stays at that level, falling back to 0 from t = 15
to t = 17.

We consider a system ofm = 100 inverters, so we have a set of 100 differential equations
with 200 discontinuity conditions due to the ’max’ functions in Eq.(18).

Fig. 9 plots some of the state trajectories obtained using LIQSS2 on this system.

0

1

2

3

4

5

6

0 50 100 150 200

S
ta

te
V

ar
ia

bl
es

Time

Inverters

x[101]
x[1]

x[201]
x[301]
x[401]
x[501]

Figure 9: Logical Inverter Chain trajectories obtained with the QSS solver.

Table 4 summarizes the simulation time and errors for different solvers and tolerance
settings.

31

Tolerance CPU time Simulation
(msec) Error

QSS Solver

LIQSS2 10−3 28 3.90E-03
LIQSS2 10−7 996 6.38E-09
LIQSS3 10−3 44 1.30E-06
LIQSS3 10−7 210 4.16E-11

OpenModelica
DASSL 10−3 4405 8.43E-03
DASSL 10−7 8734 9.01E-08

PowerDEVS

LIQSS2 10−3 300 2.66E-05
LIQSS2 10−7 10200 3.98E-06
LIQSS3 10−3 780 6.06E-02
LIQSS3 10−7 1640 3.74E-06

Table 4: Logical Inverter Chain results.

Like in the previous examples, the Stand–Alone QSS solver performed consistently
faster than PowerDEVS showing also a huge speed up with respect to DASSL.

In this last example, we fixed the tolerance at 10−3 and repeated the simulations for
different number of inverters, using LIQSS2 for the solver and PowerDEVS, and using
DASSL for OpenModelica and Dymola1. The CPU Time variation with the number of
inverters is depicted in Fig. 10.

We can see that the simulation time of LIQSS grows about linearly with the size
and the new solver implementation keeps a constant advantage of more than one order
of magnitude over PowerDEVS. However, DASSL times grow almost cubically. Conse-
quently, for 1000 inverters, LIQSS2 takes less than 200 milliseconds against 7000 seconds
of DASSL.

In the simulation of 500 inverters, LIQSS2 takes about 110 milliseconds. In this case,
the usage of specialized multi–rate algorithms reported a simulation time of about 6
seconds [26]. Thus, the QSS Solver is performing more than 50 times faster than those
special purpose methods.

1Starting with 500 inverters, OpenModelica could not simulate the system, so we analyze Dymola
results.

32

1

10

100

1000

10000

100000

1e+06

1e+07

1 10 100 1000

Ti
m
e
(m

se
c)

Number of inverters

Inverters

QSS Solver
PowerDEVS

Dymola
OpenModelica

Figure 10: CPU Time vs. Number of Inverters.

6 Conclusions and Future Research

We developed an efficient stand–alone solver for QSS algorithms. In addition, we presented
a Modeling Front–End that translates models written in a subset of the Modelica language
into the plain C code required by the solver, providing support for discontinuity handling
and large scale models.

In all the examples analyzed, the new tool is more than one order of magnitude faster
than PowerDEVS using the same QSS algorithm. Moreover, the efficiency of QSS methods
on these systems makes also this tool about two orders of magnitude faster than other
solvers.

Regarding future work, we are considering the following issues:

• We have plans to specialize versions of our solver for some large–scale problems
including Spiking neural networks and MOL approximations of advection
equations.

• Another goal is to implement in the solver some recently developed parallel sim-
ulation techniques for QSS methods [5].

• The main limitation of the Modeling Front–End is that it is limited to a sub-set of
Modelica language (µ–Modelica). However, we are developing an extension of the

33

OpenModelica compiler [12] which converts models from Modelica to µ–Modelica
[4].

• We plan to extend the Modeling–Front End in order to produce also code for con-
ventional solvers like DASSL, DOPRI45, etc. in order to be able to integrate in the
same tool QSS and conventional methods.

The QSS Solver is an open source project, and the source code and binaries for Linux
and Windows can be downloaded from http://sourceforge.net/projects/qssengine/. The
distribution contains also the models simulated in this article.

Acknowledgment

The current work was partially supported by a CONICET grant PIP 2012–2014 Nr. 00216
and ANPCYT-FONCYT grant PICT 2012 Nr. 0077.

References

[1] Rodrigo Assar and David J Sherman. Implementing biological hybrid systems: Al-
lowing composition and avoiding stiffness. Applied Mathematics and Computation,
223:167–179, 2013.

[2] T. Beltrame and F.E. Cellier. Quantised state system simulation in Dymola/Mod-
elica using the DEVS formalism. In Proceedings of the Fifth International Modelica
Conference, volume 1, pages 73–82, Vienna, Austria, 2006.

[3] F. Bergero and E. Kofman. PowerDEVS. A Tool for Hybrid System Modeling and
Real Time Simulation. Simulation: Transactions of the Society for Modeling and
Simulation International, 87(1–2):113–132, 2011.

[4] Federico Bergero, Xenofon Floros, Joaqúın Fernández, Ernesto Kofman, and
François E. Cellier. Simulating Modelica models with a Stand–Alone Quantized
State Systems Solver. In 9th International Modelica Conference, Munich, Germany,
2012.

[5] Federico Bergero, Ernesto Kofman, and François E. Cellier. A Novel Parallelization
Technique for DEVS Simulation of Continuous and Hybrid Systems. Simulation:
Transactions of the Society for Modeling and Simulation International, 89(6):663–
683, 2013.

34

[6] D. Brück, H. Elmqvist, S.E. Mattsson, and H. Olsson. Dymola for multi-engineering
modeling and simulation. In Proceedings of the Second International Modelica Con-
ference, pages 55.1–55.8, 2002.

[7] F.E. Cellier and E. Kofman. Continuous System Simulation. Springer, New York,
2006.

[8] M. D’Abreu and G. Wainer. M/CD++: Modeling continuous systems using Modelica
and DEVS. In Proceedings of MASCOTS 2005, pages 229 – 236, Atlanta, GA, 2005.

[9] F. Esquembre. Easy Java Simulations: a software tool to create scientific simulations
in Java. Computer Physics Communications, 156(1):199–204, 2004.

[10] Joaqúın Fernández. µ–Modelica Language Specifica-
tion. CIFASIS–CONICET, Rosario-Argentina, December 2013.
http://www.fceia.unr.edu.ar/control/modelica/micromodelicaspec.pdf.

[11] Peter Fritzson. Principles of Object-Oriented Modeling and Simulation with Modelica
2.1. Wiley-Interscience, New York, 2004.

[12] Peter Fritzson, Peter Aronsson, Hakan Lundvall, Kaj Nystrom, Adrian Pop, Levon
Saldamli, and David Broman. The OpenModelica Modeling, Simulation, and De-
velopment Environment. In Proceedings of the 46th Conference on Simulation and
Modeling (SIMS’05), pages 83–90, 2005.

[13] G. Grinblat, H. Ahumada, and E. Kofman. Quantized State Simulation of Spiking
Neural Networks. Simulation: Transactions of the Society for Modeling and Simula-
tion International, 88(3):299–313, 2012.

[14] E. Hairer, S. Nørsett, and G. Wanner. Solving Ordinary Dfferential Equations I.
Nonstiff Problems. Springer, Berlin, 2nd edition, 1993.

[15] E. Hairer and G. Wanner. Solving Ordinary Differential Equations II. Stiff and
Differential-Algebraic Problems. Springer, Berlin, 1991.

[16] E. Kofman. A Second Order Approximation for DEVS Simulation of Continuous
Systems. Simulation: Transactions of the Society for Modeling and Simulation In-
ternational, 78(2):76–89, 2002.

[17] E. Kofman. Discrete Event Simulation of Hybrid Systems. SIAM Journal on Scien-
tific Computing, 25(5):1771–1797, 2004.

35

[18] E. Kofman. A Third Order Discrete Event Simulation Method for Continuous System
Simulation. Latin American Applied Research, 36(2):101–108, 2006.

[19] E. Kofman. Relative Error Control in Quantization Based Integration. Latin Amer-
ican Applied Research, 39(3):231–238, 2009.

[20] E. Kofman and S. Junco. Quantized State Systems. A DEVS Approach for Contin-
uous System Simulation. Transactions of SCS, 18(3):123–132, 2001.

[21] G. Migoni, M. Bortolotto, E. Kofman, and F. Cellier. Linearly Implicit Quantization-
Based Integration Methods for Stiff Ordinary Differential Equations. Simulation
Modelling Practice and Theory, 35:118–136, 2013.

[22] G. Migoni, E. Kofman, and F. Cellier. Quantization-Based New Integration Methods
for Stiff ODEs. Simulation: Transactions of the Society for Modeling and Simulation
International, 88(4):387–407, 2012.

[23] C. Perfumo, E. Kofman, J. Braslavsky, and J.K. Ward. Load Management: Model-
Based Control of Aggregate Power for Populations of Thermostatically Controlled
Loads. Energy Conversion and Management, 55:36–48, 2012.

[24] Linda R. Petzold. Description of dassl: A differential/algebraic system solver. Tech-
nical report, Sandia National Labs., Livermore, CA (USA), 1982.

[25] G. Quesnel, R. Duboz, E. Ramat, and M. Traoré. Vle: a multimodeling and simu-
lation environment. In Proceedings of the 2007 Summer Computer Simulation Con-
ference, pages 367–374, San Diego, California, 2007.

[26] V. Savcenco and R.M.M. Mattheij. A multirate time stepping strategy for stiff
ordinary differential equations. BIT Numerical Mathematics, 47:137–155, 2007.

[27] Victor Manuel Soto Frances, Emilio Jose Sarabia Escriva, and Jose Manuel
Pinazo Ojer. Discrete event heat transfer simulation of a room. International Journal
of Thermal Sciences, 75:105–115, 2014.

[28] B.P. Zeigler, T.G. Kim, and H. Praehofer. Theory of Modeling and Simulation.
Second edition. Academic Press, New York, 2000.

36

