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ABSTRACT: The paper presents an approach to automatically generate object-oriented code from 
DEVS graphical model specifications. The generated DEVS code is given afterward to the LSIS_DME 
DEVS simulator to execute the corresponding behavior. The user, even beginner in DEVS modeling, 
increases his trust in simulation results due to the fact he is not interfaced with an intermediate actor 
(modeler or programmer) that would interpret user requirements in the modeling and simulation 
activities. Using appropriate graphical items, the user is capable to develop his own DEVS models, to 
carry out simulations and to analyze them. 
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1 INTRODUCTION 

Discrete event Modeling and Simulation (M&S) is the one of the popular paradigms to model dynamic 
systems (Banks et al., 2000). Scientists and researchers have defined methodologies, approaches and for-
malisms to assist users (experts in a specific domain) to define models and simulate them. 
 The modeling activity is a hard task due to the fact that the modeler needs knowledge on the system 
to model in addition to skills on the modeling language and programming. This activity may be dis-
patched between three actors: the user who specifies the system in his own language (natural language, 
visual models, etc.), the modeler who formalizes the specification using a formal language, and the pro-
grammer who codes the formal specification using a programming language to allow simulations. 
The steps from specifications conducted by the user until coding the formal specifications conducted by 
the programmer may lead to misunderstandings and mistakes. The modeler does not have enough 
knowledge on the target system to specify. However, the user with his knowledge and skills should speci-
fy the system easily but the complexity of formal languages makes this task difficult. So to bridge this 
gap, theorists associated graphical representations to the formalism concepts. In fact it is easy to develop 
formal models using graphics instead of using abstract symbols. 
 On the other hand, coding the specifications using an oriented-object programming language, con-
ducts the programmer to develop patterns to design them. These patterns are generic object classes that 
define the computational concepts of the formalism. So the developed code is pattern-driven and model-
driven specifications. This style of programming was popularized by the gang of four in the book: ele-
ment of reusable object: 23 design patterns (Gamma et al., 1995) to promote the well-practices of an ob-
ject programming. Some of these design patterns are useful for coding DEVS elements like: the compo-
site pattern to code DEVS coupled models and the structure of the simulator or the observer one to 
exchange messages between DEVS process: root, coordinators and simulators (Hamri and Baati, 2010). 
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 Besides programming, discrete event simulation formalisms support a graphical modeling in addition 
to the symbolic one. For example Statecharts (Harel, 1987) are purely graphics. States are modeled with 
opaque rectangles and transitions with directed arcs. Using such formalisms, the dynamic of the system 
may be shown while the simulation runs. So the user may validate his specifications and concludes on 
simulation results in case of advanced software tools. Thanks to the graphical concepts, the user becomes 
a modeler capable of specifying his system using a sound formalism.  
However skills on programming or programmers still indispensable once model functionalities could not 
be supported by the graphical representation. In this case, may be programming the model from scratch 
could be a solution. More better, completing the graphical model afterwards generating code with pro-
grammed functionalities represents a flexible and scalable modeling approach likewise: COSMOS, 
CD++Builder, etc. 
 In this paper we propose an approach that allows generating code automatically from DEVS graphical 
models. This will constitute a good framework for modeling and simulation of DEVS specifications, in 
which the user does not need skills and knowledge on programming or help from a programmer. The fact 
that there is no intermediary between modeling and simulation increases the user confidence in models 
and simulation results and enhances his skills in modeling. 

The paper is organized as follows: the section 2 gives a recall on DEVS formalism and existing soft-
ware tools in the field. The section 3 illustrates the LSIS_DME approach and highlights the code automat-
ic generation technique from DEVS atomic models specified from the LSIS_DME editor. The section 4 
discusses a case study in which we emphasize the limitations of the graphical modeling using the editor 
and how to overcome them. Finally, we conclude on the LSIS_DME approach and our future works 

2 RECALLS 

2.1 DEVS formalism 

According to the literature on DEVS (Zeigler et al., 2000) the specification of a discrete event model is a 
structure, M, given by: M= <X, S, Y, δint, δext, λ, D>, where X is the set of the external input events, S the 
set of the sequential states, Y the set of the output events, δint is the internal transition function that defines 
the state changes caused by internal events, δext is the external transition function that specifies the state 
changes due to external events, λ is the output function, and the function D: S R+ ∞ represents the max-
imum length or the lifetime of a state. Thus, for a given state “s”, D(s) represents the time during which 
the model will remain in state “s” if no external event is incurred. 
In (Praehofer and Pree, 1993), the authors introduced the concept of phase to partition the domains of 
state variables. The benefit of this approach is to get a graphical description of the corresponding atomic 
model. The phases are linked with internal and external transitions. For each internal transition, the user 
specifies the output ports and events to send out, eventually a condition and the next state value of each 
variable. The same definition is applied to each external transition with the difference that the user speci-
fies the input ports and events. 
DEVS atomic models are reusable using DEVS coupled formalism that includes the specification of 
DEVS components and the couplings over them. The obtained model is defined with the following struc-
ture: 

MC = <X, Y, D, {Md/d D}, EIC, EOC, IC, Select> 
X: set of external events. 
Y: set of output events. 
D: set of components names. 
Md: DEVS models. 
EIC: External Input Coupling relations. 
EOC: External Output Coupling relations. 
IC: Internal Coupling relations. 
Select: defines a priority between simultaneous events intended for different components. 



HAMRI and ZACHAREWICZ 

2.2 Existing DEVS software tools 

In the literature of discrete event M&S, there is about a hundred of tools in the field. This shows the im-
portance of the software tools in the cycle of M&S. The DEVS group standardization lists on his web site 
the most used DEVS tools known by the DEVS community. In the following we give a brief description 
of the most popular tools: 

ADEVS (ADEVS, 2012) is the oldest DEVS tool developed in C++ by the Arizona university. It is an 
ad hoc simulator in which the user requires skills in programming to code his models. DEVS abstract 
classes should be extended to define atomic and coupled models; then, he lunches the simulation. The tool 
automatically designs the kernel simulator according to the DEVS structure to simulate. 

DEVSJAVA (DEVSJAVA, 2012) is a Java framework in which the kernel simulator is ADEVS. It 
supports also modeling and simulation of DEVS with variable structures. The COSMOS environment in-
tegrates this framework and provides a pretty interface to define coupled and atomic models. The user de-
fines in graphical way coupled DEVS. He reuses basic components by the drag and drop technique, then 
he connects them with links to define the port connections over reused models. However, at atomic level, 
the user should implement the corresponding DEVS behavior in Java. He should declare the state variable 
then implement the DEVS interface of an atomic model by implementing the methods: delint(), 
delext(double e, message x), out(). Through the use of the method holdIn(String 
phase, double duration), the user defines for each state its lifetime. To enhance the user inter-
face of this tool and presents the output simulation results in attractive and readable way, DEVS-Suite al-
lows tracking and monitoring simulation results (running step by step or speed up the simulation, plotting 
output simulation, saving trace simulation, etc.). 

CD++Builder (Wainer, 2002, Bonaventura et al., 2010) is a DEVS modeling and simulation envi-
ronment that integrates interesting features and facilities for the user. It allows modeling and simulation of 
other DEVS formalisms (cell-DEVS, Quantized-DEVS, etc). It provides a DEVS graphical editor to 
model coupled and atomic models, and to encapsulate them through components for further reusing. It 
adopts a code automatic generation technique coming from software engineering to generate C++ code of 
a DEVS atomic model. This code respects to a CD++ template for atomic model to implement the corre-
sponding model in form of a C++ class. However the generated code may be updated to specify a com-
plex behavior that a the graphical does not support. Outside the numerous facilities that CD++ Builder 
provides like synchronized a DEVS atomic model with its graphical representation, supporting extensions 
of DEVS, parallel and distributed simulation, etc; we remark that  the generated code is not an object code 
in which the entities of the model are not designed with objects. This lack makes the updating and main-
tainability of the generated code a hard task. 

Other DEVS tools are dedicated for specific areas like: VLE (Quesnel et al., 2009) is a C++ modeling 
and simulation framework that integrates heterogeneous models from different scientific fields. This inte-
gration is based on the agent paradigm. JDEVS is the Java implementation of a DEVS formal framework 
proposed in (Philippi and Bisgambiglia, 2004). It supports multi-modeling paradigms based on DEVS. It 
ensures the interoperability among the reused components. This tool may be connected to a Geographical 
Information System to visualize simulation results.  
By looking to these DEVS tools, we deduce that all of them automate the making of the kernel simulator 
and provide a user interface to define DEVS coupled model in graphical way. DEVSJAVA lets the user to 
program the DEVS behavior by implementing the DEVS atomic interface. With this style of modeling the 
user has a great freedom to implement complex behavior. However, it presents the lack that the user 
should have skills in programming and debugging. The CD++Builder approach is more convenient for 
users. It consists on providing a full user interface to specify coupled and atomic models. The user defines 
atomic in graphical way without skills in programming. A useful approach that avoids spending time in  
programming. In addition this approach adopts a code automatic generation technique from DEVS graph-
ical models, to allows updating the code with new functionalities when the user interface does not support 
them. Nevertheless, from software engineering, the generated code is less object-oriented, even if the 
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code is C++ and comments are automatically added; due to the fact that the tool is not able to define 
atomic models in C++ directly from graphics(Bonaventura et al. 2010).  

In our M&S approach, we take back the several points discussed above and we enhance the code au-
tomatic generation process by adopting the DEVS-phase design pattern, specific for implementing DEVS 
models specified with phases. In this design pattern, we objectify phase and transition into classes that ex-
tends abstract ones (the model ports are only object instances) to get a modular and structured code. This 
allows to get a code more abstract and structured around classes. Each DEVS generated class behaves in-
dependently from others according to user model. Consequently, every phase and transition classes have 
their own methods (action, condition, etc.). With this design, the user may easily update the DEVS code. 
Due to the fact that each DEVS element is implemented with a class, the user may update a specific phase 
or transition to add new functionalities in object paradigm. This is a main advantage for the maintainabil-
ity of code that the DEVS-phase design pattern guaranties. 

In addition, our approach is based on a direct mapping from the DEVS atomic model into a Java 
code: each active and passive phase, internal and external transition are automatically transformed into 
ActivePhase, PassivePhase, InternalTransition and ExternalTransition classes respec-
tively. To note this DEVS generated code is compilable code that the Java Virtual Machine interprets to 
generate byte code without amendment. 

3 LSIS_DME: AN ENVIRONMENT FOR M&S OF COMPLEX SYSTEMS 

 

 
a) The LSIS_DME approach         b) The LSIS_DME architecture 

 

Figure 1 : The approach and architecture of LSIS_DME 
 
The LSIS_DME (Lab of Sciences of Information and Systems_DEVS Models Editor) tool is developed 
by the LSIS team since 2005 to enhance the process of M&S of discrete event systems and make easier 
the description of models than existing tools (Hamri and Zacharewicz, 2007). The environment was de-
signed according to the following user requirements: allow a graphical modeling since design atomic 
models until coupled ones by “drag & drop”, to avoid the programming step and focus on DEVS model-
ing step. Consequently, the user, with no difficulty, is able to describe DEVS computerized models and 
analyze them by simulation and avoids consuming time in coding and handling code due to modifications 
that often occur to enhance specifications. 
 Secondly, LSIS_DME generates automatically a code from the DEVS graphical user specification to 
the simulation kernel. The generated code is an object-oriented code in which we map the DEVS atomic 
model into a class that keeps the behaviors of the specification and the DEVS coupled specification that 
specifies DEVS submodels and port connections into a logical structure. In fact, the generated code re-
spects the DEVS pattern in which we objectify states and transitions. The associated process extends the 
class diagram according to the DEVS graphical user-specification: each state, transition and port is 
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mapped into a specific class and not with an object instance; the submodels and port connections are ob-
ject instances. To note that mapping state and transition to abstract classes is not an arbitrary choice. This 
allows to get a code more abstract and easy to update with action and condition of transitions. 
The LSIS_DME embeds the Java compiler to produce the byte code from the generated code. Afterwards, 
it calls the kernel simulation with the byte code to make simulations and generate the output report visual-
ized through graphical window. The figure above shows the different steps and architecture of 
LSIS_DME. Each step calls to a process that produces the output to start the next step. 

3.1 User specification of a DEVS atomic model 

Some DEVS tools introduce the concept of action and condition related to transition. An action is a pri-
mary operation on a state variable. It may consist on a simple affectation of a value or a result of a math-
ematical operation (x = 2, x = 2*elapsed_time, etc.). An action in addition to the transition computes the 
next state in which all values of state variables are identified. However, a condition is a logical expression 
made on state variables with the logical and comparison operators (&&, ||, <, >, == and !=). The condition 
is a part of model behavior. In fact, a transition is fired only if the corresponding event occurs and the as-
sociated condition is true. Otherwise, there is no state change to do. 
At encapsulation level, the port declaration requires specifying the name and domain definition. We re-
strict this domain to integer, float, interval of integers or floats, and finite set of strings. 
In addition to these concepts states and transitions are graphically specified. A state is defined by the 
name and duration that expresses the lifetime. This duration may take the form of a fixed value or a com-
bination of numerical values of state variables at a state change. 
 To note that a phase could be an active or a passive one based on its duration. The graphical represen-
tation is customized according to the phase type. We represent an active and passive phases with contin-
ued and discontinued circles. In case of a phase with a function duration, by default we represent it with a 
continued circle. At the end, a transition is decomposed into an internal and external transitions. We rep-
resent them with dark and dashed arrows on which we show output and input ports and events respective-
ly and associated condition and action. The figure below shows the mapping of a DEVS model example 
into classes according to the data user filled from dialog boxes. 
 

 
 

Figure 2: Class diagram of an example based on the DEVS-phase pattern 
 

 In the left of the figure, we have a simple example and its equivalent DEVS classes automatically 
generated from the example. The reader may believe that the example does not need an extension (with 
inheritance) of DEVS abstract classes, this is true. However to customize the condition and action of each 
transition and the lifetime function of each state, we should, according to the user specification, extends 
the DEVS abstract classes, then we fill them with data and functions. 
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3.2 User specification of a DEVS coupled model 

A specification of a DEVS model consists on choosing DEVS basics models (submodels) that define the 
structure of the current model. Then, the user defines the different couplings over the chosen models. This 
modeling may be conducted in declarative or graphical way. Many DEVS tools adopt a graphical model-
ing by dragging and dropping the basic models and port connections. In our tool we adopt the same mod-
eling way to construct DEVS coupled models. We structure these models according to the class diagram 
shown in figure XX. In fact, we integrate in our design the composite pattern (Gamma et al., 1995) that 
designs an object in hierarchical and recursive way.  
 

 
Figure 3: Class diagram of a DEVS coupled model based on the composite pattern 

 
 However, in LSIS_DME we do not allow to the user to redefine the function select. In fact, by de-
fault, the tool chooses the first declared model in case of a conflict between DEVS basic models. This 
presents a limitation of our tool in case of modeling concurrent systems like logical gates, micro-
controllers, etc. 

3.3 Detection of errors 

In the literature of DEVS, verification consists on checking the DEVS syntax correctness. In fact, the 
DEVS atomic and coupled are formalized with a Backus Naur Form grammar. This is the case of DEVS 
language definition proposed by (Zeigler et al., 2000). All known DEVS tools are based explicitly or im-
plicitly on a BNF grammar. A such checking allows to detect for: 

1) Atomic models: i) check in case of a finite state machine, if all state are linked over them by tran-
sitions; ii) check for each passive state there is no internal transition that occurs and for each active 
holds at least an internal transition. 
2) Coupled models: check port connections that means to verify for each port is connected to another 
one with avoiding that an output port of an atomic model is connect to another input port of the same 
model. 

 Nevertheless, this verification concerns only static features. In fact, logical errors cannot be detected 
only when the simulation run. We distinguish the logical errors into two classes: 

1) At a DEVS atomic model: i) the user may define a bad initialization of the default state; ii) while 
conditions are introduced at transitions, the user should take care for each occurring external and in-
ternal events. In this case if the condition is false, so the model is blocked and there is no state 
change to do. 
2)At a DEVS coupled model: i) there is no way to verify if the port connections among models are 
correctly defined. In other words, the user should take care if the definition domain of a port is a sub-
set of that to which is connected; ii) more evident, the user should avoid a recursive definition of a 
DEVS model by reusing the DEVS in current specification. 

 The LSIS_DME calls to an original approach that consists on transforming a DEVS model into a Z 
specification to check such errors. Then, the Z/EVES prover (Saaltink, 1999) checks the following theo-
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rems : determinism, ambiguity, completeness and port connection. The approach is computerized through 
the DEVS-compiler (Trojet et al., 208 and Trojet, 2010). In fact the user, may start a formal checking on 
its DEVS model before gives it to simulation. So the trustiness in the checked model increases and the 
simulation could be lunched with a trusted model. 
 

 
 

Figure 4: The Z/EVES window showing that the model of the below example does not respect determin-
ism property. In fact the model defines two possible internal transitions from the phase Waiting. An error 
that the simulator detects if and only if the corresponding scenario is simulated. 

4 A CASE STUDY: THE LIFT CONTROLLER 

4.1 A graphical modeling of the lift control system 

A lift control system (LCS) is required to control a single lift in a multi-storey building. Requests for the 
lift can either be made by someone waiting on a floor of the building, or by another travelling in the lift. 
The task of the LCS is to satisfy these requests by moving the lift to the required floor. If the lift is empty, 
it serves always the first request. Otherwise, it serves the request of the customer inside. There are no 
waiting requests, only one request is satisfied. The lift still in the final position reached until it moves to 
satisfy a new request. The DEVS model of the LCS is described in the figure XX using LSIS_DME. 
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Figure 5: The correct DEVS atomic model of the LCS with LSIS_DME 
 

First, the user defines the name of DEVS atomic model and input and output port numbers. The tool 
creates a box with the different ports that the user names. Then he drags and drop inside this box from the 
tool palette all required states and transitions for the model and fills data of each component. Once the 
model is checked, the user saves it and the tool generates the corresponding object code (see figure 6). 
Then, the JVM produces the corresponding byte code. This byte code is lunched to the simulation kernel, 
when the user decides to run the simulation process. 

 

 
Figure 6: The object code of the LCS model generated automatically with LSIS_DME 
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4.2 A Scalable modeling approach with LSIS_DME 

The graphical DEVS modeling could be an obstacle for some models in which a complex function should 
be implemented and then used by the DEVS behavior (ex: create a connection to a database to store out-
put events at run time). In fact, a such function cannot be expressed inside an action of a transition, it 
should be programmed with a programming language. Fortunately, LSIS_DME approach is based on an 
automatic generation of Java code from the graphical DEVS model. The user may access to the corre-
sponding code and complete it with the new features that the tool could not keep them through the 
graphics. Still to guaranty that the modification is correct and does not change the specified behavior.  

Let us consider the LCS specified above with a memory variable that stores all user requests. Howev-
er, the strategy of request satisfaction changes, it consists on reducing the change of moving. According 
to the moving sense and the current floor, the lift controller chooses the request to satisfy. Consequently, 
the LCS should store each user request and then decide which one to satisfy among those stored.  

The request satisfaction algorithm could not be implemented inside an action of the lift control model. 
In fact, to avoid the overloading of the concerned actions with a dozen of code lines, we propose to en-
capsulate this algorithm into an external class UserRequest. Then, the external transition, that the lift 
control model firing, passes to this class, the following parameters: current floor, moving sense and stored 
user requests. The sequence diagram shown in the figure below, illustrates the interaction between the ex-
ternal transitions that store the current request and ask the new ReqPos with the UserRequest class. It 
implements the user-request satisfaction algorithm. 

 

 
 

Figure 7: The modification introduced in the LCS model through the external transitions 
 

Based on these modifications, we develop a new lift controller model under the name LCS_1 (see 
figure 8). 

The same approach is supported by internal transition, state duration and output function. We can call 
methods from external classes to compute a state variable or an output event of the DEVS model. In fact, 
the user gets more freedom with object code than graphics to define the DEVS model. However, the 
graphics modeling step still an important one that allows the user to define the template of the DEVS 
model, to avoid starting from scratch and to spend less time in coding. Thanks to the DEVS code genera-
tion process that generates from the DEVS model the corresponding Java class, the user can update the 
code by adding the classes that interact with the class of DEVS atomic model when the simulation run. 
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Figure 8: The object code generated from the new model of LCS after completing the external transi-
tion MovingDown MovingDown calling the UserRequest method 

 

5 CONCLUSION 

In this paper, we pointed the automatic code generation process that LSIS_DME approach integrated. 
This process consists on mapping a DEVS atomic model specified with graphics into a Java class. It en-
capsulates the different phases and transitions classes and expresses the DEVS behavior specified through 
data user. The user may describe complex DEVS behaviors by defining actions and conditions, and speci-
fying lifetime of phases with equations based on state variables. Also a DEVS coupled model is specified 
in graphical way by reusing stored atomic models and coupling them using graphical connections, then 
the tool stores the coupled model into a formatted file. In addition, our approach calls to a Z verification 
to check a DEVS specification and to avoid logical errors that the static verification based on BNF could 
not detect. 

The DEVS kernel simulator simulates the DEVS model based on the byte code of the generated Java 
classes and the formatted file that describes graphical and structural data. The simulation results are 
shown under a window that user can analyze. 

Other features of LSIS_DME were not detailed in this paper like XML storage of DEVS models and 
distributed simulations using High Level Architecture. In fact, a bridge between this work and DEVS 
standardization works (Sarjoughian and Chen, 2011) could be established to standardize the storage for-
mats of DEVS models specified from LSIS_DME and the simulated code. 

Currently, we extend the tool to model and simulate DEVS models in which no phase was specified. 
In this case, the user should declare the input and output ports, then he codes in Java the specified model 
by implementing the specific interface that defines the interaction between the simulator and model. 
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