
제21권 제2호 2012년 6월 19

Structured DEVS Formalism: A Structural Modelling Method of

Discrete Event Systems

Hae Sang Song1†

Structured DEVS Formalism: 이산사건 시스템의 구조적 모델링 기법

송해상

ABSTRACT

In recent decades, it has been known that the Discrete Event System Specification, or DEVS, formalism provides
sound semantics to design a modular and hierarchical model of a discrete event system. In spite of this benefit,
practitioners have difficulties in applying the semantics to real-world systems modeling because DEVS needs to
specify a large size of sets of events and/or states in an unstructured form. To resolve the difficulties, this paper
proposes an extension of the DEVS formalism, called the Structured DEVS formalism, with an associated graphical
representation, called the DEVS diagram, by means of structural representation of such sets based on closure property
of set theory. The proposed formalism is proved to be equivalent to the original DEVS formalism in their model
specification, yet the new formalism specifies sets in a structured form with a concept of phases, variables and ports.
A simplified example of the structured DEVS with the DEVS diagram shows the effectiveness of the proposed
formalism which can be easily implemented in an objected-oriented simulation environment.

Key words : Structured DEVS formalism, DEVS Diagram, Phase, Port and Variable

요 약

최근 몇 십년간 이산사건시스템명세(DEVS) 형식론은 이산사건시스템을 모듈러하고 계층적으로 모델링할 수 있는 잘 정의

된 의미론을 제공하여 왔다. 그럼에도 불구하고 실용 엔지니어들은 실세계의 시스템을 모델링에 적용하는데 어려움을 겪기도

하는데 이는 DEVS가 많은 상태와 사건들을 구조화되지 않은 형태로 명세해야 하는 것 때문이다. 본 논문은 집합 이론을 바탕

으로 그러한 사건 및 상태집합들을 구조화된 형태로 표현하는 Structured DEVS 형식론과 이와 연관된 DEVS 다이어그램을

제안하고자 한다. 위상, 변수, 포트 등의 개념을 사용하여 집합들을 명세한 구조적 DEVS 형식론은 원래의 DEVS 형식론과

동등함을 증명하였다. DEVS 다이어그램을 이용하여 구조적 DEVS 형식론으로 표현된 예시 모델이 쉽게 객체지향 시뮬레이션

환경에서 구현될 수 있음을 보임으로써 제안된 형식론이 효과적임을 보였다.

주요어 : 구조적 DEVS 형식론, DEVS 다이어그램, 위상, 포트 및 변수

접수일(2012년 4월 14일), 심사일(1차 : 2012년 6월 12일),
게재 확정일(2012년 6월 12일)
1)
서원대학교 컴퓨터공학과

주 저 자 : 송해상

교신저자 : 송해상

E-mail; hssong@seowon.ac.kr

1. Introduction

Demands for Modeling and Simulation (M&S) have
grown in recent decades, and Discrete Event Systems

specification (DEVS)-based simulation applications have
become more prolific especially in the domain of artificial
systems such as industrial plant, war-game, communi-
cation network, and hybrid systems (Lee, 2010; Song,
2010; Lim, 2001; Kim, 2011). It is because DEVS has
sound mathematical semantics for modular and hierarchical
modeling and good simulation development environ-
ments (Kim 2010). Nevertheless, a practical M&S
engineer still experiences difficulties in applying the

Vol. 21, No. 2, pp. 19-30 (2012. 6)
한국시뮬레이션학회 논문지

Hae Sang Song

20 한국시뮬레이션학회 논문지

classical DEVS formalism to a practical modeling of
complex discrete event systems. This might be due to
mainly two reasons: 1) the formalism itself is too
mathematical for practical use and the behavior of a
model is distributed into four separated functions; thus no
integrated picture of a model is provided for the modeler
to model and understand intuitively; and 2) in reality the
number of sequential states or events is usually too large
because of the complexity of systems under consider-
ation.

 For these reasons we need a more structured form of
sequential states and sequential events to deal with these
complex systems in M&S. Among DEVS-based simulation
development environments, DEVSim++ (Kim 1992)
introduces the notions of messages and phases rather than
events and sequential states. Nevertheless, the environ-
ment does neither fully implement these concepts nor
explicitly formalize this idea. Moreover, in the real-world
fields, informal graphical modeling notations of their own
have been utilized as an essential step before translating
the graphical models into the mathematical DEVS model.
Nevertheless, there has been no attempt to formally
define a graphical language as well as to prove that it
mathematically conforms to the semantics of the classical
DEVS formalism.

 There have been a few efforts on how to represent
DEVS models in much easier ways rather than in
mathematical one. Most of them are either graphical
approaches or language-based approaches. The original
version of DEVS diagram revised here is depicted as an
example of RT-DEVS model (Hong and Song et al.,
1997). The diagram notation has been used for a large
number of commercial projects for large-sized defense
modeling simulation fields (Kim 2010) with its capability
to enrich the expressiveness. GGAD (Generic Graphical
Advanced environment for DEVS Modeling and
simulation) is a tool that adopts the diagram but with
somewhat different appearance (Moallemi and Wainer
2010). An extension of UML for DEVS is proposed as a
SysML/DEVS profile (Nikolaidou, 2008). However, we
think that DEVS has to have its dedicated diagram rather
than depending on existing ones to best express the
mathematical model. It should also support necessary

new notions for modeling large and complex systems,
such as co-modeling (Kim, 2006) and structuring states
and events.

Although the DEVS formalism and the DEVS graph
form specify discrete systems in a modular and
hierarchical manner in a system theoretical form, and they
are adequate for logical analysis in our experience, it has
been required to have other forms of graphical model
representation for the development of large and complex
systems’ modeling simulations. Ad-hoc graphical notations
have been used in war game modeling simulations (Kim,
2010; Lee, 2010). However, to authors’ best knowledge,
there has been no explicit literature dealing with such a
graphical representation of the DEVS formalism in a
structured form.

Thus this paper somewhat extends and compensates
our previous works (Song and Kim, 2010) as an effort to
revise the original diagram (Hong and Song et al., 1997)
to support the mathematical foundation of the diagram.

Fig. 1 shows the scope of this paper that provides the
modeling practitioners with a new graphical modeling
language called the DEVS diagram with its semantics. To
narrow gaps of mathematical models in the classical
DEVS formalism and implementation models, we first
define the structured form of the classical DEVS
formalism, called structured DEVS formalism. It exploits
the notion of port and message as a structured form of
related events, and of state variables to aggregate relevant
sequential states. These two types of DEVS formalism are
of mathematical form best fit for M&S experts.

Meanwhile, for modeling practitioners we provide a
graphical modeling language, called DEVS diagram. It
not only depicts models in structured DEVS formalism
but also aggregates many state transitions into a smaller
number of ‘phase transitions’ to express them graphically
in a simple way. To give confidence to the practitioners
we prove that a graphical model in DEVS diagrams can
be transformed to a mathematical model in structured
DEVS formalism, which will then turn to the model of
classical DEVS formalism, if some conditions are met.
By this mechanism modelers could use the DEVS
diagram for discrete event systems modeling and
implementation without any concerns to learn mathe-

Structured DEVS Formalism: A Structural Modelling Method of Discrete Event Systems

제21권 제2호 2012년 6월 21

Original
DEVS

formalism

Structured
DEVS

formalism

Mathematical model Graphical model

DEVS graph

DEVS
diagram

Theoretical View
- M&S Expert
- mathematician

Practical View
- Programmer
- Modeler

Association
αs, αx, αy

transform

1:1

Association
αs, αx, αy

State variables
X, Y ports

Structured Func.

State variables
X, Y ports
Phase diagram

Sequential states
X, Y events
4 functions

State nodes
X, Y events
State diagram

Fig. 1. Scope of the paper: structured DEVS and DEVS
diagram with its relevance to the original DEVS
formalism

matical notations of the DEVS formalism.
This paper is organized as follows. The next section

introduces the background knowledge of the DEVS
formalism, its basic graphical representation, and DEVS
graph with their one-to-one relationship. Then we
propose the structured DEVS formalism that is a
structured form of the original one in Section 3. Then we
define the DEVS diagram in Section 4. An illustrative
example model in the DEVS diagram helps comprehend
these concepts and shows how to implement the diagram
models. Then we conclude the discussion.

2. Background

2.1 The classical DEVS formalism

Being well-known, the classical DEVS formalism can
specify a system in two aspects: one for the behavior of a
basic component, and the other for the overall structure of
a system. An atomic DEVS formalism describes the
behavior of a unit component as no further decomposable,
which consists of three sets and four functions.

extint 

where
 X: input event set,
 Y: output event set,
 S: sequential state set, and total state set

∈ ≤  ≤  ,
   ×→ : external transition function, for

  ′′   ′  .
 int  → : internal transition function, for

   ′′   ′  .
   →:output function, for ∈   .
   →

: time advance function, where 
 is the

non negative real number set.

There are two types of transitions in an atomic model:
1) external state transitions caused by external events; and
2) internal state transitions in the case of no event
occurrence until time on the current state has elapsed. In
the latter case, just before the internal transition, an output
event is generated at the state. In an analogy to the
continuous systems, the external transitions correspond to
the input-driven state transitions and the internal ones to
the input-free state transitions.

The coupled DEVS formalism specifies the structure
of discrete event systems composed of components
communicating with each other through event couplings,

  

where
 X: an input event set,
 Y: an output event set,
 M: a component model set, either atomic models or

coupled models,
 ⊆ × ∪ : external input coupling

relation,
 ⊆ ∪× : external output coupling

relation,
  ⊆ ∪× ∪ : internal coupling relation,

   ∅→: select function.
Notice that the coupled DEVS formalism above has the

closure property, so that, for example, a coupled model
may contain other coupled models as well as atomic
models as its components. Thus it captures the structure
of a system, the components hierarchy, and the interfaces

Hae Sang Song

22 한국시뮬레이션학회 논문지

s0 s0

internal transition + output

(ε,e)

external transition

s2(x,e)

s1

(y, ta(S0)-e)

s0

s1

s2

(x,e)

(y, ta(S0))

s0

s1

s2

?x

!y

@T=ta(s0)

(a)

(b)

(c)

Fig. 2. The notation of DEVS graph (a) original idea, (b)
more abbreviate form (c) the final form of DEVS
graph

between components. The SELECT function specifies
the priorities of components when more than one
component is to be scheduled at the same time in
simulation.

2.2 The DEVS graph
The DEVS graph has been used for a long time in

DEVS communities to sketch an atomic DEVS model,
so that they have one-to-one correspondence with each
other as the following definition demonstrates:
Definition 1. (DEVS graph) The DEVS graph of an
atomic model  is defined
as a labeled graph:



where
  : the state node set.
 ⊆×∪∪×: the two-color labeled

edge set with constraints: ∪,
  ′   ′
  ′   ′ ,   
 or   if  is not defined.

   →
: time advance,   , for

   . ■

A node is depicted by a circle with a note name ‘s’
inside and its time advance @ta(s) located near the
circle. Each element of external transitions set  is
depicted by a solid arc with label ?x; meanwhile, an
element of internal transitions set  is denoted by a
dotted arc with label !y.
By definition it can be easily noticed that there can be
only one internal transition at a state. The non- event 
represents the absence of an event. Since the time
advance only depends on its state, it is just subordinate
information. If the time advance of a state is not
specified, then it is assumed to be infinite. Fig. 2 shows
how the notation of the DEVS graph is derived; at first,
the semantics of the internal and the external state
transitions are shown in Fig. 2(a); then, its abbreviated
form in 2(b); finally, the notation of the DEVS graph is
defined in Fig. 2(c).

Since both the atomic and coupled models have their

external interfaces, X and Y, we represent a model M as a
box frame B with its name. Located along the border of
the box are triangles inward for input events and outward
for output events. Thus an atomic model corresponds to a
box frame which owns a DEVS graph inside which
represents the behavior of the atomic model drawn like
above. The graphical model of a coupled DEVS model is
also denoted by a box frame like the atomic model, in
which, however, there exist many box frames of its child
models connected to one another by links according to the
coupling relations specified by EIC, EOC and IC. The
name of a child model has the form of m:M, an instance or
object ‘m’ of model ‘M’. The SELECT function should
be described in a list of selections; for example, SEL
(m1,m2,m4) = m1, SEL(m2,m3) = m3.

Consequently, the DEVS graph is a tool to specify in
graphical form a discrete event system model which is
one-to-one correspondence to the mathematical model in
the classical DEVS formalism.

Definition 2. (Proper DEVS Graph) A DEVS graph is
said to be proper if it satisfies the following constraints:

C1) (functionality) For outgoing edges from a node
have unique events.

C2) (singleton output) For a node there is at most one
internal transition.

Lemma 1. (Convertibility) A DEVS graph model
always can be transformed to a (classical) DEVS atomic
model in one to one manner if the graph is proper.

Structured DEVS Formalism: A Structural Modelling Method of Discrete Event Systems

제21권 제2호 2012년 6월 23

Proof) It is obvious and trivial by the definition of
DEVS graph in Def. 1. ■

3. Structured DEVS formalism

According to Zeigler (1984, ch2), the classical DEVS
atomic model specifies a system’s behavior in I/O system
level where states and events are sequential or flattened.
This paper proposes a more structured form of the DEVS
formalism called structured DEVS formalism, where the
events sets and the state sets are transformed to structured
sets. This section proposes a methodology of how to make
structures over three essential modeling elements: events,
states, and transitions. Then we define the structured
DEVS formalism.

3.1 Structured set

Formally, a structured set A of sequential set  is
defined as:

A∈ 
where

 is a sequential set to be structured
 is an ordered set of coordinates, 
 is a range set of ∈
 is the assignment function

subject to the constraint:
  →×∈

is a one to one map. Since the assignment function  is a
one to one map, it is assumed that the inverse function
 × ∈→ always exists.

Here we consider a coordinate as a variable with a
name (e.g. a) and a range set (e.g. a). The concept
of structured set is a system theoretic way to use variables
in complicated systems modeling and simulation.

A structured function maps one structured set to the
other. If  is structured by A and  by B , then function
  → is said to be structured. In this instance,  is a
vector of coordinate functions, b  →b , one for each
coordinate b of  . Note each b need not always depend
on all of the coordinates of B so that a subset of
coordinates of B , on which coordinate b depends, could
be used to define the function.

3.2 Structuring event: port and message

First, event is a means of interaction between models.
In real-systems modeling, however, the number of events
is so huge and sometimes infinite that we cannot treat it
easily by directly applying the DEVS formalism in the
course of modeling. Thus, we need a mechanism of
grouping these sequential events together into a related
class to handle them in an easier way.
A collection of relevant events, in the sense that they are
from the same source and headed to the same
destination model with related information, can be
classified into equivalent events. To treat them formally
we introduce the notion of ports, message, and channel.
A model has input and output ports instead of input and
output events. A message is a datum that represents the
information uniquely related to an event. A message
variable is a container that can have the same type of
messages. If a message  is arrived at an input port x,
then it is called an input event denoted by x ; if a
message  is leaving a port y, it is called an output
event represented by y . A port p, either an input port
or an output port, is assumed to have its type or domain
dom p and ∈p . A channel is a connection
from one port y to another y such that y
⊆ x . Therefore, it can be said the events of the
same port are equivalent.
Now using the notion of structured sets, we can
formally define structured events sets stated above. An
input events set  is structured to a structured input
events set X as follows:

Xin xx∈inin 
where

 is a sequential events set to be structured
in is a set of input ports, xx
x is the range set of a port x∈in
in is the assignment function

subject to the constraint:
in × x∈inx→

such that  xx∈in∈x. Similarly
the output events set  can be represented by a structured
output events set Y :
 Yout yy∈out out 

Hae Sang Song

24 한국시뮬레이션학회 논문지

such that  yy∈out ∈y by the

one-to-one assignment function out .
Hereafter for convenience we will often use X instead

of its input port set in and Y instead of out in case of no
confusion; therefore, for instance, x∈X actually denotes
x∈in . Also can a structured input set X often be called
the input ports set without confusion. Usually the range of
a port is called the port type.

A channel is a connection from a port of a structured
event set to a port of another structured event set. For
example, a coupling yx of a source output port y∈Y
and an destined input port x∈X such that
y ⊆ x is called a channel. A message
∈y placed at the output port is assumed to be
transported to the input port instantly with no message
buffer; that is, if the receiver cannot get it instantly, the
message will be discarded.

3.3 Structuring state: state variable

Analogy to the continuous systems specification, a
discrete-event system’s status can be specified by a set of
system variables or attributes variables. Each state
variable represents an attribute characterizing the system.
Thus a system state is a combination of values that the
state variables have at a time. This is a useful means of
forming the structure of the sequential states.

Formally, a sequential states set  in DEVS is
structured to a structured set S,

Svv∈ 
where

 is a sequential events set to be structured
 is a set of state variables, vv
x is the range set of

 a state variable v∈
s is the one-to-on assignment function

subject to the constraint:

s × v∈ v→
is a bijection such that    
∈v∈v∀v∈. An element
   mapped to a sequential state  is called a
composite state. Since the assignment function is

straightforward and the range set for each state variable is
implicit, we often mixedly use the structured states set S
and the variables set ; for instance, v∈S means v∈.

 3.4 Structured atomic DEVS formalism

Now that we have reviewed the notion of structured
sets and structured functions, we apply them to the
classical DEVS formalism by introducing state variables
and ports. Formally the structured atomic DEVS
formalism has a structure:
AM XY Sextint 

where
 X: a structured input event set,
 Y: a structured output event set,
 S: a structured state (or state variable) set, where

∈ ≤  ≤  ,
   ×→ :

external structured transition function, for
  ′′   ′  .

 int  → :
 internal structured transition function, for
  ′′   ′  .

  →: structured output function, for
  ∈, ∈,  .

   →
: structured time advance function, where


 is the non negative real number set.

subject to the constraint:
 - input port set X is a structured set as defined above

Xinpp∈in .
 - output port set Y is a structured set as defined above

Youtyy∈out out.
 - state variable set S is a structured state set as defined

above,
Svv∈ .

Note that the four characteristic functions are all
structured functions; therefore, any one of the functions
can be defined as a multiple of sub-functions for each
state variable. For instance, a state ∈ is equivalent to a
structured state or a composite state   

∈× v∈v with a map    and a

Structured DEVS Formalism: A Structural Modelling Method of Discrete Event Systems

제21권 제2호 2012년 6월 25

structured internal transition function 
 ′′′  so ′  could
be defined as a multitude of individual transition
functions on kth variable, 

   ′′  .
 As indicated in Zeigler (1984, p. 45), we know the
coordinate assignment functions  ,  ,  can be
trivially defined by assigning each structured element to a
distinct sequential element name (i.e., unique integer).

 Lemma 2. (Association) A structured atomic DEVS
model always can be transformed to a classical DEVS
atomic model.

Proof) It is trivial to transform from a structured DEVS
model to the corresponding non-structured one by
inversely applying the coordinate assignment functions,
. ■
 3.5 Structured coupled DEVS formalism

The structured version of coupled modeling formalism
is the same as the original formalism except the fact that
the events sets are all structured, and that the model set
contains structured model instances. Formally a structured
coupled model has a 7-tuple,

DNXY MEIC EOC ICSELECT
where
 X: a structured input event set,
 Y: a structured output event set,
 M: a component instances set of either structured

atomic model or structured coupled model, where
an instance has its name and model type.

 EIC⊆ DNX × ∪iMiXi : external input port
coupling relation,

 EOC⊆ ∪iMiYi×DNY : external output port
coupling relation,

 IC⊆ ∪iMiYi× ∪iMiXi : internal port coupling
relation,

 SELECT  M∅→M: select function,
with constraints:
 for any for ∈EIC∪EOC∪IC ,

  ⊆  .
It is guaranteed that the above-mentioned constraints

will work as a strong type of tool to check messages

flowing from a source port to the destination port.

4. The DEVS Diagram

4.1 Abstracting states into a phase
Although adopting the notion of state variables seems

to suffice for structuring sequential states, we often need
more abstraction of the behavior of a system with respect
to controlling a point of view. For this purpose, in general,
the concept of modes or phases has been frequently used.

Formally, a phase is a representative value of a set of
equivalent states which produce the same output event
and/or have the same time advance at the states. Using the
notion of phase, we can simplify the state transitions even
more by fewer numbers of phase transitions. A logical
expression that filters out a subset of composite states
belonging to a phase is called the phase guard. We call
such states of a phase selected by the phase guard the
phase elements.

Now consider that we partition the composite state set
of a structured set S into disjoint equivalent classes such
that each class has a set of sequential states with the same
state sojourn time and/or output event. Let each class have
a single representative name, called a phase. We can add a
phase variable having such phases as its values to the state
variable set to get an augmented state variables set. We
designate a phase variable as a high-level state variable,
and the original ones as the low-level state variables or
system attribute variables. Then, a state of the system
becomes a combination of a phase value and a composite
state of state attributes. Formally an augmented structured
state set S including a phase variable  is defined as:
S∪vv∈∪ 

where,   ,  is a phase of the phase
variable . The phase guard of a phase  is a logical
expression on system attributes set  that discriminates
the phase elements of the phase among all states. It is
denoted by  × v∈domv→ , where the

phase elements set of phase  selected by guard  is

denoted by   ∈    and the

phase elements sets should be disjoint with each other.
A phase can be hierarchical; that is, the elements of a

Hae Sang Song

26 한국시뮬레이션학회 논문지

MODEL

SEND
@[q > 0] Tsend

@[ELSE] Tretry

(b)

in?[v ==0]
@[p==FREE]
/ {q=q+1}

@[p==FREE]
out!w

/ {p=BUSY}

(c) (d)

(a)

+phase: {SEND, WAIT} = WAIT
+p: {BUSY, FREE} = FREE
+q: Integer = 0

(e)

in:Job out:Job

SP DP DPSP

Fig. 3. Notations of atomic DEVS diagram (a) a variable
box for a structured states set (b) a phase with time
advances (c) an external phase transition with an
input/guard/action label on it (d) an internal phase
transition with a guard/output/action label (e) a
model box for the model name at the center with a
structured input port:type (left) and an output event
port:type (right)

phase can be once again partitioned into sub-phases
having disjoint composite state members, and so on. It is
always true that a union of states sets of sub-phases within
a phase gives the states set of the phase and the
intersection of any sub-phases results in an empty set.

Finally we define a structured state change function,
called an action, as a function from the composite state set
to itself;  × v∈domv→× v∈domv . As an action
is a structured function, it may construct a vector of
individual actions for each variable: v × v∈domv
→domv , v∈. Using the notion of phase, guard, and
action, we can now define the state transitions in a more
finite form.

 4.2 Phase transition diagram
Let there be an input ports set, an output ports set and

state variables set of a structured atomic model. Let
there be a phase variable where each has a disjoint
composite member states set with its unique phase
guard. We then formally define the specification of the
phase transition diagram as follows:

Definition 3. Phase (Transition) Diagram: A phase
diagram for a structured DEVS atomic model
AMX YS with a structured input event
set X , a structured output event set Y , and an
augmented structured state set S including a phase
variable  is defined as a labeled graph,
NET

where for actions set  and guards set  on system
attributes set V (excluding the phase variable),

 : a phase nodes set for phase variable ,
 ⊆××: the two-color labeled edge set, where

 x∪y with a guarded input/action set
x ⊆×× , a guarded output/action set
y⊆×∪×

  ×→
: time advance of a phase.■

Fig. 3 shows the DEVS diagram notations for the
behavior of a structured atomic DEVS model based on
phase. Fig. 3(a) represents a list of structured variables
with their domains (or types) and optionally their initial

values. A variable is the form of ‘name:type=init_value’
to denote a variable name ‘name’ with its type ‘type’
and its initial value ‘init_value’ in accordance with
UML notation. A model is represented by a box with
port:type pairs. A structured input event ‘in:type’ and a
structured output event ‘out’ of type ‘Job’ is denoted by
(e). The rest of the sub-figures are elements of a phase
transition diagram as defined above. Fig. 8(b) is a phase
node with its name ‘SEND’ and two time advances at
that phase: ‘@[q>0] Tsend’, ‘@[ELSE] Tretry’. This
means, at phase ‘SEND’, if an attribute variable ‘q’ is
greater than ‘0’, then the time advance is ‘Tsend’ or
‘Tretry’ elsewhere. An external transition is represented
by (c); from a source phase ‘SP’ to a destination phase
‘DP’ with a guarded input action label, ‘in?[v==0]
@[p==FREE] / {q = q+1}’, which means that if the
value input to port ‘in’ is ‘0’ stored temporally in
variable ‘v’, and a system attribute variable ‘p’ has
value of ‘FREE’, then it changes the state to ‘phase =
DP’ and ‘q = q+1’. Note that the action set is described
in sub-function only for a variable ‘q’. The rest of
attributes are not changed at all. Finally, Fig. 8(a) shows
that if ‘p == FREE’ at phase ‘SP’, then an output to port

Structured DEVS Formalism: A Structural Modelling Method of Discrete Event Systems

제21권 제2호 2012년 6월 27

M12in:Job out:Job

m1 : M1

x y

m2 : M2

in out
EIC IC

EOC

Prioritymodel instance

model

Fig. 4. DEVS diagram notations of structured coupled
model. M12 - coupled DEVS model type, m1:M1,
m2:M2 - component model instances, the priorities
are specified for a select function, and three types
of port couplings according to the context

‘out’ with the value in variable ‘v’ is produced and it
changes the state to ‘phase=DP’ and ‘p=BUSY’ leaving
the rest attributes intact. Extended notations and
applications of the diagram can be found in our previous
work (Song and Kim 2010).

4.4 Atomic DEVS diagram
Now we define a class of phase transition diagrams

that confirms to the four characteristic functions of the
structured DEVS formalism.
Definition 4. (Proper phase diagram) A phase diagram
  of an atomic structured DEVS model
AMX YS is said to be proper if it
satisfies all of the following constraints on each phase
node:

C1) (functionality) for any outgoing edges from the
node with the same (either input or output) event,
the guards should be disjoint.

C2) (singleton output) for any outgoing edges with
different output events, the guards of the edges
should be disjoint. If no internal transition edge is
defined, then the time advance is assumed to be
infinite.

C3) (time integrity) if there are more than one time
advances on the node, which are defined, then the
guards of them should be disjoint.

Theorem 1. (Convertibility) A proper phase transition
diagram NET of a atomic DEVS model
AMX YS can always be converted to
a structured atomic DEVS model, AMX YSext
int .

Proof) (Rationale) It is straightforward to transform a
proper phase transition diagram to a structured atomic
DEVS AMX YSextint  by the con-
straints in Definition 3. Taking into account that a
composite state consists of a combination of a phase and
attribute values of system attribute variables, external/
internal transitions should form a function of composite
states and input/output events respectively since the
source states are all different by the guards, even though
the event is the same. We see that this is guaranteed by
constraint C1. Additionally, as an output event is defined

on a state in DEVS, only single internal transition should
be defined on a composite state. Constraint C2 makes
sure of this. Just like the output function mentioned above,
the time advance function is also a function of composite
states which is assured by constraint C3. ■
If a model box has a variable box and a phase transition
diagram, then the box is called an atomic DEVS
diagram.

4.5 Coupled DEVS diagram
Fig. 4 illustrates the notations of a coupled DEVS

diagram. As the diagram has a one-to-one relationship
with the structured coupled DEVS formalism, extracting
a mathematical model from the diagram is rather
straightforward. For example, the mathematical model
M12 of coupled DEVS diagram in Fig. 4 is obtained as
follows:
M XY MEIC EOC ICSELECT
where
X = {in:Job}, Y = {out:Job}, M={m1:M1,m2:M2},
EIC = {(in, m1.x)}, IC={(m1.y, m2.in)},
EOC={(m2.out,out)},
SELECT({m1,m2}) = m1.

5. An Illustrative Example

Consider an example of proper atomic DEVS
diagram in Fig. 5. The phase diagram is proper since it
satisfies all the constraints of Def. 3: C1) functionality
since the guards of edges with the same event name are
disjoint; for example, for an external input event ‘in’ at

Hae Sang Song

28 한국시뮬레이션학회 논문지

in:Job

out:Jobdone

+phase: {SEND, WAIT} = WAIT
+proc: {BUSY, FREE} = FREE
+n: Integer = 0;

in?@[ELSE] / {n=n+1}
WAIT

@∞
SEND
@ Tsend

done?@[n==0]
/ {proc=FREE}

in?@[p==BUSY] /{n=n+1}

in?/{n=n+1}

done?@[ELSE] / {proc=FREE}

out! /{proc=BUSY, n=n-1}

BUFFER:Atomic

Fig. 5. An example of an atomic model: BUFFER

in in
B

F

n1 2 30
inin in

in

(out, r) (out, r) (out, r)done done done done

proc
phase = WAIT

phase = SEND

Fig. 6. The DEVS graph corresponding to the phase
transition diagram of model BUFFER in Fig. 5

phase ‘WAIT’, the guards are [p==BUSY] and [ELSE]
that are disjoint, C2) singleton output as there is only
one internal edge with an output event ‘out’ at phase
‘SEND’ , C3) time-integrity because for each phase, one
time advance is defined. Thus by corollary 1, we can
obtain a mathematical model in the structured atomic
DEVS formalism,

 BUFFER XY Sextint ,
whose sets are as follows:
 X = {in:Job, done}, Y = {out:Job},
 S = {phase:{WAIT,SEND}, proc:{FREE,BUSY}, n}
where the initial state is (WAIT, FREE, 0).
According to the phase diagram, the four functions are
defined as follows:
   ,
   ,
   ,
    ,
  

int    ,
  ,
 ,
 ∞.

Note that letter ‘-’ in the lefthand side of the equation
means that any value possible in the context and the one
in the righthand side are not changed at all by the action.
If there exist variables in an equation rather than values,
the equation is a representative one for many possible
equations with a combination of values of the variables.
In addition, the elapsed time e appearing on the
righthand side means the continuation of existing
schedule.

Starting from the initial state, we can obtain a DEVS
state transition graph as in Fig. 6 from the phase
transition diagram in Fig. 5 substituting all possible
combinations of values to the state variables.
Conversely, we see that the two phases ‘WAIT’ and
‘SEND’ are partitioning the total composite states set
into two subsets with their phase guards:
o SEND := (n > 0) and proc == FREE
o WAIT := (n==0) or proc == BUSY

We can often use these phase guards to check the
correctness of actions. Practically when we describe the
behavior of an atomic model, usually we first define
phases and their phase guards for consistency. Com-
paring the phase transition diagram in Fig. 5 with the
corresponding state transition graph in Fig. 6, we can
easily notice that the former is even a compact
representation of the same behavior from a developers’
view.

Fig. 7 illustrates a pseudo-code to implement the
phase diagram in Fig. 5. It also includes an optional
assertion function to check the consistency of actions.
As shown in the code, what developers have to do is to
translate the diagram into code in a straightforward way.

6. CONCLUSION

This paper proposed structured DEVS formalism as
well as the DEVS diagram for practical modeling of
discrete event systems. The main idea is to introduce the
notions of port and message, and state variable and
phase, which group together sequential states and events
into ports and variables. The diagram itself has been
used for years but not defined formally, and it has
lacked a mathematical foundation; thus, sometimes it

Structured DEVS Formalism: A Structural Modelling Method of Discrete Event Systems

제21권 제2호 2012년 6월 29

ExtTransFn(s, e, x) //External Trans
function

case x.port () of
 in:
 if phase == WAIT //current phase

 if proc == BUSY //guard
n := n+1, // action

 continue ; // old
schedule
 else

 phase := SEND,
 n := n+1,

 if phase == SEND
 n := n+1,

 continue;
 done:
 if phase == WAIT && n == 0
 proc := FREE //new schedule
 else

phase := SEND, proc := FREE;
AssertPhase(); // phase assertion

IntTransFn(s) // DEVS Internal Trans
function

if phase == SEND
phase := WAIT,
proc := BUSY, n := n - 1;

AssertPhase();

OutputFn(s) // DEVS Output function
 if phase == SEND

output to out; // output to port out

TimeAdvanceFn(s) // DEVS Time advance
function

if phase == SEND
 ta = Tsend;
 else

 ta = ∞;

AssertPhase() // optional phase assertion
if phase == SEND

if not (n > 0 and proc == FREE)error;
else if phase == WAIT

if not (n == 0 or proc == BUSY)
error;

Fig. 7. Pseudo-code of the characteristic functions of the
expanded atomic model BUFFER

has lacked semantics, has been incomplete, and even
violated the DEVS formalism. We did a comprehensive
and thorough job for the definition of the DEVS
diagram to provide engineers with an efficient tool for
modeling and designing of a simulation software. Due
to lack of space, however, this paper cannot provide the
thorough mathematical foundation based on the
structured DEVS formalism; thus we have tried to focus
on the diagram itself. Our subsequent full paper to be
submitted will prove that the DEVS diagram is based on

the thorough mathematical foundation. Based on this
work, we will update DEVS Specification Language in
script form and plan to make a computer-aided
modeling tool for the DEVS based simulation develop-
ment. More work, however, is required to implement a
DEVS simulation tool conforming to the proposed
DEVS diagram. As we expect, the more prolific DEVS
applications become as M&S demands grow, the more
our work will be utilized in the domain of the complex
M&S.

Acknowledgments

I would like to express special thanks to Prof. Tag Gon
Kim who advised me on this work with a lot of
discussions and comments.

References

1. Lee, S.Y, Jang, S.H., Lee, J.S. (2010) “워게임 시뮬레이

션에서 전장상황을 고려한 최적경로 모델링 및 시뮬레이

션”, 한국시뮬레이션학회논문지, Vol. 19, No. 3, pp. 27-35.
2. Lim, S.Y. and Kim, T.G. (2001) “DEVS형식론에 기반한

하이브리드 시스템 모델링 시뮬레이션 방법론 - 제1부:모
델링 및 시뮬레이션 방법론”, 한국시뮬레이션학회논문지,
Vol. 10, No. 3, pp.1-14.

3. Song, Hae S., Lee, J.Y., Kim, T.G. (2010) “DEVS-based
Modeling Simulation for Semiconductor Manufacturing
Using an Simulation-based Adaptive Real-time Job Control
Framework”, 한국시뮬레이션학회논문지, Vol. 10, No. 3,
pp. 45-54.

4. Hong, Jun S.; Hae S. Song; Tag G. Kim and K. H. Park.
1997. “A Real-Time Discrete Event System Specification
Formalism for Seamless Real-Time Software Develop-
ment”, Discrete Event Dynamic Systems, Vol. 7, No. 4,
pp. 355-375.

5. Hong, Ki J. and Tag G. Kim. (2006) “DEVSpecL-DEVS
specification language for modeling, simulation and
analysis of discrete event systems”, Information and
Software Technology, Vol. 48, No. 4, pp. 221-234.

6. Kim, Jae H. and Tag G. Kim. (2006) “Parametric Behavior
Modeling Framework for War Game Models Develop-
ment Using OO Co-Modeling Methodology”, 2006 Spring
Simulation MultiConf., Huntsville, USA, pp. 69-75.

7. Kim, Tag G.; C. H. Sung; S.Y. Hong; J.H. Hong; C.B.

Hae Sang Song

30 한국시뮬레이션학회 논문지

송 해 상 (hssong@seowon.ac.kr)

1991 한국과학기술원 전기및전자공학과 공학석사

2000 한국과학기술원 전기및전자공학과 공학박사

1999～2000 고등기술연구원 연구원

2002～현재 서원대학교 컴퓨터공학과 교수

학술활동 : 한국시뮬레이션 학회 종신회원, 한국시스템공학회 이사

관심분야 : 이산사건시스템 M&S 이론 및 응용, 국방시스템공학.

Choi, J.H. Kim; K.M. Seo; and J.W. Bae. (2011) “DEVSim++
Tools Set for Defense M&S and Interoperation”, The
Journal of Defense Modeling and Simulation: Appli-
cations, Methodology, Technology, Vol. 8, No. 3, pp.
129-142.

8. Kim, Tag G. and S. B. Park. (1992) “The DEVS formalism:
hierarchical modular systems specification in C++”, 1992
European Simulation Multi-conference, York, United
Kingdom. pp. 152-156.

9. Moallemi, M. and Gabriel A. Wainer. (2010) “Designing
and Interface for Real-Time and Embedded DEVS”,
Proceedings of 2010 Spring Simulation Conference, pp.
154-161.

10. Nikolaidou, M.; V. Dalakas; L. Mitsi; G.D. Kapos; and
D. Anagnostopoulos. (2008) “A SysML Profile for Classical

DEVS Simulators”, Proceedings of 3rd Internal Conference
on Software Engineering Advances, pp. 445-450.

11. Song, Hae S. and Tag G. Kim. (2005) “Application of
Real-time DEVS to Analysis of Safety-critical Embedded
Control Systems: Railroad-crossing Control Example”,
Simulation, Vol. 81, No. 2, pp. 119-136.

12. Song, Hae S. and Tag G. Kim. (2010) “DEVS Diagram
Revisited: A Structured Approach for DEVS Modeling”,
Proc. of 2010 European Simulation and Modelling
Conference, oct. 25-27 Hasselt, Belgium, pp. 94-101.

13. Zeigler, B.P. (1984), Multifacetted Modeling and Discrete
Event Simulation, Academic Press.

14. Zeigler, B. P. and Tag G. Kim. (2000) Theory of Modelling
and Simulation (2nd Ed.), Academic Press.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

