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ABSTRACT

In recent decades, it has been known that the Discrete Event System Specification, or DEVS, formalism provides 
sound semantics to design a modular and hierarchical model of a discrete event system. In spite of this benefit, 
practitioners have difficulties in applying the semantics to real-world systems modeling because DEVS needs to 
specify a large size of sets of events and/or states in an unstructured form. To resolve the difficulties, this paper 
proposes an extension of the DEVS formalism, called the Structured DEVS formalism, with an associated graphical 
representation, called the DEVS diagram, by means of structural representation of such sets based on closure property 
of set theory. The proposed formalism is proved to be equivalent to the original DEVS formalism in their model 
specification, yet the new formalism specifies sets in a structured form with a concept of phases, variables and ports. 
A simplified example of the structured DEVS with the DEVS diagram shows the effectiveness of the proposed 
formalism which can be easily implemented in an objected-oriented simulation environment.
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요   약

최근 몇 십년간 이산사건시스템명세(DEVS) 형식론은 이산사건시스템을 모듈러하고 계층적으로 모델링할 수 있는 잘 정의

된 의미론을 제공하여 왔다. 그럼에도 불구하고 실용 엔지니어들은 실세계의 시스템을 모델링에 적용하는데 어려움을 겪기도 

하는데 이는 DEVS가 많은 상태와 사건들을 구조화되지 않은 형태로 명세해야 하는 것 때문이다. 본 논문은 집합 이론을 바탕

으로 그러한 사건 및 상태집합들을 구조화된 형태로 표현하는 Structured DEVS 형식론과 이와 연관된 DEVS 다이어그램을 

제안하고자 한다. 위상, 변수, 포트 등의 개념을 사용하여 집합들을 명세한 구조적 DEVS 형식론은 원래의 DEVS 형식론과 

동등함을 증명하였다. DEVS 다이어그램을 이용하여 구조적 DEVS 형식론으로 표현된 예시 모델이 쉽게 객체지향 시뮬레이션 

환경에서 구현될 수 있음을 보임으로써 제안된 형식론이 효과적임을 보였다.

주요어 : 구조적 DEVS 형식론, DEVS 다이어그램, 위상, 포트 및 변수
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1. Introduction

Demands for Modeling and Simulation (M&S) have 
grown in recent decades, and Discrete Event Systems 

specification (DEVS)-based simulation applications have 
become more prolific especially in the domain of artificial 
systems such as industrial plant, war-game, communi-
cation network, and hybrid systems (Lee, 2010; Song, 
2010; Lim, 2001; Kim, 2011). It is because DEVS has 
sound mathematical semantics for modular and hierarchical 
modeling and good simulation development environ-
ments (Kim 2010). Nevertheless, a practical M&S 
engineer still experiences difficulties in applying the 
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classical DEVS formalism to a practical modeling of 
complex discrete event systems. This might be due to 
mainly two reasons: 1) the formalism itself is too 
mathematical for practical use and the behavior of a 
model is distributed into four separated functions; thus no 
integrated picture of a model is provided for the modeler 
to model and understand intuitively; and 2) in reality the 
number of sequential states or events is usually too large 
because of the complexity of systems under consider-
ation. 

 For these reasons we need a more structured form of 
sequential states and sequential events to deal with these 
complex systems in M&S. Among DEVS-based simulation 
development environments, DEVSim++ (Kim 1992) 
introduces the notions of messages and phases rather than 
events and sequential states. Nevertheless, the environ-
ment does neither fully implement these concepts nor 
explicitly formalize this idea. Moreover, in the real-world 
fields, informal graphical modeling notations of their own 
have been utilized as an essential step before translating 
the graphical models into the mathematical DEVS model. 
Nevertheless, there has been no attempt to formally 
define a graphical language as well as to prove that it 
mathematically conforms to the semantics of the classical 
DEVS formalism. 

 There have been a few efforts on how to represent 
DEVS models in much easier ways rather than in 
mathematical one. Most of them are either graphical 
approaches or language-based approaches. The original 
version of DEVS diagram revised here is depicted as an 
example of RT-DEVS model (Hong and Song et al., 
1997). The diagram notation has been used for a large 
number of commercial projects for large-sized defense 
modeling simulation fields (Kim 2010) with its capability 
to enrich the expressiveness. GGAD (Generic Graphical 
Advanced environment for DEVS Modeling and 
simulation) is a tool that adopts the diagram but with 
somewhat different appearance (Moallemi and Wainer 
2010). An extension of UML for DEVS is proposed as a 
SysML/DEVS profile (Nikolaidou, 2008). However, we 
think that DEVS has to have its dedicated diagram rather 
than depending on existing ones to best express the 
mathematical model. It should also support necessary 

new notions for modeling large and complex systems, 
such as co-modeling (Kim, 2006) and structuring states 
and events. 

Although the DEVS formalism and the DEVS graph 
form specify discrete systems in a modular and 
hierarchical manner in a system theoretical form, and they 
are adequate for logical analysis in our experience, it has 
been required to have other forms of graphical model 
representation for the development of large and complex 
systems’ modeling simulations. Ad-hoc graphical notations 
have been used in war game modeling simulations (Kim, 
2010; Lee, 2010). However, to authors’ best knowledge, 
there has been no explicit literature dealing with such a 
graphical representation of the DEVS formalism in a 
structured form. 

Thus this paper somewhat extends and compensates 
our previous works (Song and Kim, 2010) as an effort to 
revise the original diagram (Hong and Song et al., 1997) 
to support the mathematical foundation of the diagram.

Fig. 1 shows the scope of this paper that provides the 
modeling practitioners with a new graphical modeling 
language called the DEVS diagram with its semantics. To 
narrow gaps of mathematical models in the classical 
DEVS formalism and implementation models, we first 
define the structured form of the classical DEVS 
formalism, called structured DEVS formalism. It exploits 
the notion of port and message as a structured form of 
related events, and of state variables to aggregate relevant 
sequential states. These two types of DEVS formalism are 
of mathematical form best fit for M&S experts.

Meanwhile, for modeling practitioners we provide a 
graphical modeling language, called DEVS diagram. It 
not only depicts models in structured DEVS formalism 
but also aggregates many state transitions into a smaller 
number of ‘phase transitions’ to express them graphically 
in a simple way. To give confidence to the practitioners 
we prove that a graphical model in DEVS diagrams can 
be transformed to a mathematical model in structured 
DEVS formalism, which will then turn to the model of 
classical DEVS formalism, if some conditions are met. 
By this mechanism modelers could use the DEVS 
diagram for discrete event systems modeling and 
implementation without any concerns to learn mathe-
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Fig. 1. Scope of the paper: structured DEVS and DEVS 
diagram with its relevance to the original DEVS 
formalism

matical notations of the DEVS formalism.
This paper is organized as follows. The next section 

introduces the background knowledge of the DEVS 
formalism, its basic graphical representation, and DEVS 
graph with their one-to-one relationship. Then we 
propose the structured DEVS formalism that is a 
structured form of the original one in Section 3. Then we 
define the DEVS diagram in Section 4. An illustrative 
example model in the DEVS diagram helps comprehend 
these concepts and shows how to implement the diagram 
models. Then we conclude the discussion.

2. Background

2.1 The classical DEVS formalism 

Being well-known, the classical DEVS formalism can 
specify a system in two aspects: one for the behavior of a 
basic component, and the other for the overall structure of 
a system. An atomic DEVS formalism describes the 
behavior of a unit component as no further decomposable, 
which consists of three sets and four functions.

extint 

where 
   X: input event set,
   Y: output event set,
   S: sequential state set, and total state set

∈ ≤  ≤  ,
     ×→ : external transition function, for  

  ′′   ′  .
   int  → : internal transition function, for

   ′′   ′  .
     →:output function, for ∈   .
     →

: time advance function, where 
 is the  

non negative real number set.

There are two types of transitions in an atomic model: 
1) external state transitions caused by external events; and 
2) internal state transitions in the case of no event 
occurrence until time on the current state has elapsed. In 
the latter case, just before the internal transition, an output 
event is generated at the state. In an analogy to the 
continuous systems, the external transitions correspond to 
the input-driven state transitions and the internal ones to 
the input-free state transitions.

The coupled DEVS formalism specifies the structure 
of discrete event systems composed of components 
communicating with each other through event couplings,

  

where 
   X: an input event set,
   Y: an output event set,
   M: a component model set, either atomic models or 

coupled models,
   ⊆ × ∪ : external input coupling 

relation,
   ⊆ ∪× : external output coupling 

relation,
    ⊆ ∪× ∪ : internal coupling relation,

     ∅→: select function.
Notice that the coupled DEVS formalism above has the 

closure property, so that, for example, a coupled model 
may contain other coupled models as well as atomic 
models as its components. Thus it captures the structure 
of a system, the components hierarchy, and the interfaces 
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Fig. 2. The notation of DEVS graph (a) original idea, (b) 
more abbreviate form (c) the final form of DEVS 
graph

between components. The SELECT function specifies 
the priorities of components when more than one 
component is to be scheduled at the same time in 
simulation.

2.2 The DEVS graph
The DEVS graph has been used for a long time in 

DEVS communities to sketch an atomic DEVS model, 
so that they have one-to-one correspondence with each 
other as the following definition demonstrates: 
Definition 1. (DEVS graph) The DEVS graph of an 
atomic model  is defined 
as a labeled graph:



where
    : the state node set.
   ⊆×∪∪×: the two-color labeled 

edge set with constraints: ∪,  
  ′   ′
  ′   ′ ,     
     or    if   is not defined.

        →
: time advance,   , for

       . ■

A node is depicted by a circle with a note name ‘s’ 
inside and its time advance @ta(s) located near the 
circle. Each element of external transitions set  is 
depicted by a solid arc with label ?x; meanwhile, an 
element of internal transitions set  is denoted by a 
dotted arc with label !y.
By definition it can be easily noticed that there can be 
only one internal transition at a state. The non- event  
represents the absence of an event. Since the time 
advance only depends on its state, it is just subordinate 
information. If the time advance of a state is not 
specified, then it is assumed to be infinite. Fig. 2 shows 
how the notation of the DEVS graph is derived; at first, 
the semantics of the internal and the external state 
transitions are shown in Fig. 2(a); then, its abbreviated 
form in 2(b); finally, the notation of the DEVS graph is 
defined in Fig. 2(c).

Since both the atomic and coupled models have their 

external interfaces, X and Y, we represent a model M as a 
box frame B with its name. Located along the border of 
the box are triangles inward for input events and outward 
for output events. Thus an atomic model corresponds to a 
box frame which owns a DEVS graph inside which 
represents the behavior of the atomic model drawn like 
above. The graphical model of a coupled DEVS model is 
also denoted by a box frame like the atomic model, in 
which, however, there exist many box frames of its child 
models connected to one another by links according to the 
coupling relations specified by EIC, EOC and IC. The 
name of a child model has the form of m:M, an instance or 
object ‘m’ of model ‘M’. The SELECT function should 
be described in a list of selections; for example, SEL 
(m1,m2,m4) = m1, SEL(m2,m3) = m3. 

Consequently, the DEVS graph is a tool to specify in 
graphical form a discrete event system model which is 
one-to-one correspondence to the mathematical model in 
the classical DEVS formalism. 

Definition 2. (Proper DEVS Graph) A DEVS graph is 
said to be proper if it satisfies the following constraints:

C1) (functionality) For outgoing edges from a node 
have unique events.

C2) (singleton output) For a node there is at most one 
internal transition.

Lemma 1. (Convertibility) A DEVS graph model 
always can be transformed to a (classical) DEVS atomic 
model in one to one manner if the graph is proper.  
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Proof) It is obvious and trivial by the definition of 
DEVS graph in Def. 1. ■

3. Structured DEVS formalism

According to Zeigler (1984, ch2), the classical DEVS 
atomic model specifies a system’s behavior in I/O system 
level where states and events are sequential or flattened. 
This paper proposes a more structured form of the DEVS 
formalism called structured DEVS formalism, where the 
events sets and the state sets are transformed to structured 
sets. This section proposes a methodology of how to make 
structures over three essential modeling elements: events, 
states, and transitions. Then we define the structured 
DEVS formalism.

3.1 Structured set

Formally, a structured set A of sequential set  is 
defined as:

A∈ 
where 

 is a sequential set to be structured
 is an ordered set of coordinates,  
  is a range set of ∈
  is the assignment function

subject to the constraint:
  →×∈

is a one to one map. Since the assignment function  is a 
one to one map, it is assumed that the inverse function 
 × ∈→ always exists.

Here we consider a coordinate as a variable with a 
name (e.g. a) and a range set  (e.g. a). The concept 
of structured set is a system theoretic way to use variables 
in complicated systems modeling and simulation.

A structured function maps one structured set to the 
other. If  is structured by A and   by B , then function 
  →  is said to be structured. In this instance,  is a 
vector of coordinate functions, b  →b , one for each 
coordinate b of  . Note each b need not always depend 
on all of the coordinates of B  so that a subset of 
coordinates of B , on which coordinate b depends, could 
be used to define the function.

3.2 Structuring event: port and message 

First, event is a means of interaction between models. 
In real-systems modeling, however, the number of events 
is so huge and sometimes infinite that we cannot treat it 
easily by directly applying the DEVS formalism in the 
course of modeling. Thus, we need a mechanism of 
grouping these sequential events together into a related 
class to handle them in an easier way.
A collection of relevant events, in the sense that they are 
from the same source and headed to the same 
destination model with related information, can be 
classified into equivalent events. To treat them formally 
we introduce the notion of ports, message, and channel. 
A model has input and output ports instead of input and 
output events. A message is a datum that represents the 
information uniquely related to an event. A message 
variable is a container that can have the same type of 
messages. If a message   is arrived at an input port x, 
then it is called an input event denoted by x ; if a 
message   is leaving a port y, it is called an output 
event represented by y . A port p, either an input port 
or an output port, is assumed to have its type or domain 
dom p  and ∈p . A channel is a connection 
from one port y to another y such that y
⊆ x . Therefore, it can be said the events of the 
same port are equivalent. 
Now using the notion of structured sets, we can 
formally define structured events sets stated above. An 
input events set  is structured to a structured input 
events set X  as follows:

Xin xx∈inin 
where 

 is a sequential events set to be structured
in  is a set of input ports, xx 
x  is the range set of a port x∈in
in  is the assignment function

subject to the constraint:
in × x∈inx→

such that  xx∈in∈x. Similarly 
the output events set  can be represented by a structured 
output events set Y : 
     Yout yy∈out out 
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such that  yy∈out ∈y by the 

one-to-one assignment function out . 
Hereafter for convenience we will often use X  instead 

of its input port set in  and Y  instead of out in case of no 
confusion; therefore, for instance, x∈X  actually denotes 
x∈in . Also can a structured input set X  often be called 
the input ports set without confusion. Usually the range of 
a port is called the port type.

A channel is a connection from a port of a structured 
event set to a port of another structured event set. For 
example, a coupling yx  of a source output port y∈Y  
and an destined input port x∈X  such that 
y ⊆ x  is called a channel. A message 
∈y  placed at the output port is assumed to be 
transported to the input port instantly with no message 
buffer; that is, if the receiver cannot get it instantly, the 
message will be discarded.

3.3 Structuring state: state variable 

Analogy to the continuous systems specification, a 
discrete-event system’s status can be specified by a set of 
system variables or attributes variables. Each state 
variable represents an attribute characterizing the system. 
Thus a system state is a combination of values that the 
state variables have at a time. This is a useful means of 
forming the structure of the sequential states.

Formally, a sequential states set   in DEVS is 
structured to a structured set S, 

Svv∈ 
where 

  is a sequential events set to be structured
 is a set of state variables, vv 
x  is the range set of 

                  a state variable v∈
s is the one-to-on assignment function

subject to the constraint:

s × v∈ v→
is a bijection such that     
∈v∈v∀v∈. An element 
    mapped to a sequential state  is called a 
composite state. Since the assignment function is 

straightforward and the range set for each state variable is 
implicit, we often mixedly use the structured states set S 
and the variables set ; for instance, v∈S means v∈.

 3.4 Structured atomic DEVS formalism

Now that we have reviewed the notion of structured 
sets and structured functions, we apply them to the 
classical DEVS formalism by introducing state variables 
and ports. Formally the structured atomic DEVS 
formalism has a structure: 
AM XY Sextint 

where 
   X: a structured input event set,
   Y: a structured output event set,
   S: a structured state (or state variable) set, where

∈ ≤  ≤  ,
     ×→ : 

external structured transition function, for  
  ′′   ′  .

   int  → :
 internal structured transition function, for
  ′′   ′  .

    →: structured output function, for 
  ∈, ∈,  . 

     →
: structured time advance function, where 


 is the  non negative real number set.

subject to the constraint:
  - input port set X  is a structured set as defined above 

Xinpp∈in . 
  - output port set Y  is a structured set as defined above 

Youtyy∈out out.
  - state variable set S is a structured state set as defined 

above,
Svv∈ .

Note that the four characteristic functions are all 
structured functions; therefore, any one of the functions 
can be defined as a multiple of sub-functions for each 
state variable. For instance, a state ∈  is equivalent to a 
structured state or a composite state   

∈× v∈v  with a map     and a 
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structured internal transition function 
 ′′′  so ′   could 
be defined as a multitude of individual transition 
functions on kth variable, 

   ′′  .
  As indicated in Zeigler (1984, p. 45), we know the 
coordinate assignment functions  ,  ,  can be 
trivially defined by assigning each structured element to a 
distinct sequential element name (i.e., unique integer). 

  Lemma 2. (Association) A structured atomic DEVS 
model always can be transformed to a classical DEVS 
atomic model.

Proof) It is trivial to transform from a structured DEVS 
model to the corresponding non-structured one by 
inversely applying the coordinate assignment functions, 
. ■
 3.5  Structured coupled DEVS formalism

The structured version of coupled modeling formalism 
is the same as the original formalism except the fact that 
the events sets are all structured, and that the model set 
contains structured model instances. Formally a structured 
coupled model has a 7-tuple,

DNXY MEIC EOC ICSELECT
where 
   X: a structured input event set,
   Y: a structured output event set,
   M: a component instances set of either structured 

atomic model or structured coupled model, where 
an instance has its name and model type. 

   EIC⊆ DNX × ∪iMiXi : external input port 
coupling relation,

   EOC⊆ ∪iMiYi×DNY : external output port 
coupling relation,

   IC⊆ ∪iMiYi× ∪iMiXi : internal port coupling 
relation,

   SELECT  M∅→M: select function,
with constraints:
  for any for ∈EIC∪EOC∪IC , 

                      ⊆  .
It is guaranteed that the above-mentioned constraints 

will work as a strong type of tool to check messages 

flowing from a source port to the destination port.

4. The DEVS Diagram

4.1 Abstracting states into a phase
Although adopting the notion of state variables seems 

to suffice for structuring sequential states, we often need 
more abstraction of the behavior of a system with respect 
to controlling a point of view. For this purpose, in general, 
the concept of modes or phases has been frequently used. 

Formally, a phase is a representative value of a set of 
equivalent states which produce the same output event 
and/or have the same time advance at the states. Using the 
notion of phase, we can simplify the state transitions even 
more by fewer numbers of phase transitions. A logical 
expression that filters out a subset of composite states 
belonging to a phase is called the phase guard. We call 
such states of a phase selected by the phase guard the 
phase elements. 

Now consider that we partition the composite state set 
of a structured set S into disjoint equivalent classes such 
that each class has a set of sequential states with the same 
state sojourn time and/or output event. Let each class have 
a single representative name, called a phase. We can add a 
phase variable having such phases as its values to the state 
variable set to get an augmented state variables set. We 
designate a phase variable as a high-level state variable, 
and the original ones as the low-level state variables or 
system attribute variables. Then, a state of the system 
becomes a combination of a phase value and a composite 
state of state attributes. Formally an augmented structured 
state  set S including a phase variable   is defined as:
S∪vv∈∪ 

where,   ,   is a phase of the phase 
variable . The phase guard of a phase   is a logical 
expression on system attributes set  that discriminates 
the phase elements of the phase among all states. It is 
denoted by  × v∈domv→ , where the 

phase elements set of phase   selected by guard   is 

denoted by   ∈    and the 

phase elements sets should be disjoint with each other.
A phase can be hierarchical; that is, the elements of a 
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MODEL

SEND
@[q > 0] Tsend

@[ELSE] Tretry

(b)

in?[v ==0]
@[p==FREE] 
/ {q=q+1}

@[p==FREE] 
out!w

/ {p=BUSY}

(c) (d)

(a)

+phase: {SEND, WAIT} = WAIT
+p: {BUSY, FREE} = FREE
+q: Integer = 0

(e)

in:Job out:Job

SP DP DPSP

Fig. 3. Notations of atomic DEVS diagram (a) a variable 
box for a structured states set (b) a phase with time 
advances (c) an external phase transition with an 
input/guard/action label on it (d) an internal phase 
transition with a guard/output/action label (e) a 
model box for the model name at the center with a 
structured input port:type (left) and an output event 
port:type (right)

phase can be once again partitioned into sub-phases 
having disjoint composite state members, and so on.  It is 
always true that a union of states sets of sub-phases within 
a phase gives the states set of the phase and the 
intersection of any sub-phases results in an empty set. 

Finally we define a structured state change function, 
called an action, as a function from the composite state set 
to itself;  × v∈domv→× v∈domv . As an action 
is a structured function, it may construct a vector of  
individual actions for each variable: v × v∈domv
→domv , v∈. Using the notion of phase, guard, and 
action, we can now define the state transitions in a more 
finite form.

 4.2  Phase transition diagram
Let there be an input ports set, an output ports set and 

state variables set of a structured atomic model. Let 
there be a phase variable where each  has a disjoint 
composite member states set with its unique phase 
guard. We then formally define the specification of the 
phase transition diagram as follows:

Definition 3. Phase (Transition) Diagram: A phase 
diagram for a structured DEVS atomic model 
AMX YS with a structured input event 
set X , a structured output event set Y , and an 
augmented structured state set S including a phase 
variable  is defined as a labeled graph, 
NET

where for actions set  and guards set  on system 
attributes set V  (excluding the phase variable),

   : a phase nodes set for phase variable ,
   ⊆××: the two-color labeled edge set, where 

 x∪y with a guarded input/action set 
x ⊆×× , a guarded output/action set 
y⊆×∪×

   ×→
: time advance of a phase.■

Fig. 3 shows the DEVS diagram notations for the 
behavior of a structured atomic DEVS model based on 
phase.  Fig. 3(a) represents a list of structured variables 
with their domains (or types) and optionally their initial 

values. A variable is the form of ‘name:type=init_value’ 
to denote a variable name ‘name’ with its type ‘type’ 
and its initial value ‘init_value’ in accordance with 
UML notation. A model is represented by a box with  
port:type pairs. A structured input event ‘in:type’ and a 
structured output event ‘out’ of type ‘Job’ is denoted by 
(e). The rest of the sub-figures are elements of a phase 
transition diagram as defined above. Fig. 8(b) is a phase 
node with its name ‘SEND’ and two time advances at 
that phase: ‘@[q>0] Tsend’, ‘@[ELSE] Tretry’. This 
means, at phase ‘SEND’, if an attribute variable ‘q’ is 
greater than ‘0’, then the time advance is ‘Tsend’ or 
‘Tretry’ elsewhere. An external transition is represented 
by (c); from a source phase ‘SP’ to a destination phase 
‘DP’ with a guarded input action label, ‘in?[v==0]  
@[p==FREE] / {q = q+1}’, which means that if the 
value input to port ‘in’ is ‘0’ stored temporally in 
variable ‘v’, and a system attribute variable ‘p’ has 
value of ‘FREE’, then it changes the state to ‘phase = 
DP’ and ‘q = q+1’. Note that the action set is described 
in sub-function only for a variable ‘q’. The rest of 
attributes are not changed at all. Finally, Fig. 8(a) shows 
that if ‘p == FREE’ at phase ‘SP’, then an output to port 
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M12in:Job out:Job

m1 : M1

x y

m2 : M2

in out
EIC IC

EOC

Prioritymodel instance

model

Fig. 4. DEVS diagram notations of structured coupled 
model. M12 - coupled DEVS model type, m1:M1, 
m2:M2 - component model instances, the priorities 
are specified for a select function, and three types 
of port couplings according to the context

‘out’ with the value in variable ‘v’ is produced and it 
changes the state to ‘phase=DP’ and ‘p=BUSY’ leaving 
the rest attributes intact. Extended notations and 
applications of the diagram can be found in our previous 
work (Song and Kim 2010). 

4.4 Atomic DEVS diagram
Now we define a class of phase transition diagrams 

that confirms to the four characteristic functions of the 
structured DEVS formalism.
Definition 4. (Proper phase diagram) A phase diagram 
  of an atomic structured DEVS model 
AMX YS is said to be proper if it 
satisfies all of the following constraints on each phase 
node: 

C1) (functionality) for any outgoing edges from the 
node with the same (either input or output) event, 
the guards should be disjoint.

C2) (singleton output) for any outgoing edges with 
different output events, the guards of the edges 
should be disjoint. If no internal transition edge is 
defined, then the time advance is assumed to be 
infinite.

C3) (time integrity) if there are more than one time 
advances on the node, which are defined, then the 
guards of them should be disjoint.

 
Theorem 1. (Convertibility) A proper phase transition 
diagram NET of a atomic DEVS model 
AMX YS can always be converted to 
a structured atomic DEVS model, AMX YSext
int .

Proof) (Rationale) It is straightforward to transform a 
proper phase transition diagram to a structured atomic 
DEVS AMX YSextint  by the con-
straints in Definition 3. Taking into account that a 
composite state consists of a combination of a phase and 
attribute values of system attribute variables, external/
internal transitions should form a function of composite 
states and input/output events respectively since the 
source states are all different by the guards, even though 
the event is the same. We see that this is guaranteed by 
constraint C1. Additionally, as an output event is defined 

on a state in DEVS, only single internal transition should 
be defined on a composite state. Constraint C2 makes 
sure of this. Just like the output function mentioned above, 
the time advance function is also a function of composite 
states which is assured by constraint C3. ■
If a model box has a variable box and a phase transition 
diagram, then the box is called an atomic DEVS 
diagram. 

4.5 Coupled DEVS diagram
Fig. 4 illustrates the notations of a coupled DEVS 

diagram. As the diagram has a one-to-one relationship 
with the structured coupled DEVS formalism, extracting 
a mathematical model from the diagram is rather 
straightforward. For example, the mathematical model 
M12 of coupled DEVS diagram in Fig. 4 is obtained as 
follows:
M XY MEIC EOC ICSELECT
where
X = {in:Job}, Y = {out:Job}, M={m1:M1,m2:M2},
EIC = {(in, m1.x)}, IC={(m1.y, m2.in)}, 
EOC={(m2.out,out)}, 
SELECT({m1,m2}) = m1.

5. An Illustrative Example

Consider an example of proper atomic DEVS 
diagram in Fig. 5. The phase diagram is proper since it 
satisfies all the constraints of Def. 3: C1) functionality 
since the guards of edges with the same event name are 
disjoint; for example, for an external input event ‘in’ at 
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in:Job

out:Jobdone

+phase: {SEND, WAIT} = WAIT
+proc: {BUSY, FREE} = FREE
+n: Integer = 0;

in?@[ELSE] / {n=n+1}
WAIT

@∞
SEND
@ Tsend

done?@[n==0] 
/ {proc=FREE}

in?@[p==BUSY] /{n=n+1}

in?/{n=n+1}

done?@[ELSE] / {proc=FREE}

out! /{proc=BUSY, n=n-1}

BUFFER:Atomic

Fig. 5. An example of an atomic model: BUFFER

in in
B

F

n1 2 30
inin in

in

(out, r) (out, r) (out, r)done done done done

proc
phase = WAIT

phase = SEND

Fig. 6. The DEVS graph corresponding to the phase 
transition diagram of model BUFFER in Fig. 5

phase ‘WAIT’, the guards are [p==BUSY] and [ELSE] 
that are disjoint, C2) singleton output as there is only 
one internal edge with an output event ‘out’ at phase 
‘SEND’ , C3) time-integrity because for each phase, one 
time advance is defined. Thus by corollary 1, we can 
obtain a mathematical model in the structured atomic 
DEVS formalism,

 BUFFER XY Sextint , 
whose sets are as follows:
 X = {in:Job, done},  Y = {out:Job}, 
 S = {phase:{WAIT,SEND}, proc:{FREE,BUSY}, n} 
where the initial state is (WAIT, FREE, 0).
According to the phase diagram, the four functions are 
defined as follows:
   ,
   ,
   ,
    ,
  

int    ,
  ,
 ,
 ∞.

Note that letter ‘-’ in the lefthand side of the equation 
means that any value possible in the context and the one 
in the righthand side are not changed at all by the action. 
If there exist variables in an equation rather than values, 
the equation is a representative one for many possible 
equations with a combination of values of the variables. 
In addition, the elapsed time e appearing on the 
righthand side means the continuation of existing 
schedule. 

Starting from the initial state, we can obtain a DEVS 
state transition graph as in Fig. 6 from the phase 
transition diagram in Fig. 5 substituting all possible 
combinations of values to the state variables. 
Conversely, we see that the two phases ‘WAIT’ and 
‘SEND’ are partitioning the total composite states set 
into two subsets with their phase guards:
o SEND := (n > 0) and proc == FREE 
o WAIT := (n==0) or proc == BUSY 

We can often use these phase guards to check the 
correctness of actions. Practically when we describe the 
behavior of an atomic model, usually we first define 
phases and their phase guards for consistency. Com-
paring the phase transition diagram in Fig. 5 with the 
corresponding state transition graph in Fig. 6, we can 
easily notice that the former is even a compact 
representation of the same behavior from a developers’ 
view. 

Fig. 7 illustrates a pseudo-code to implement the 
phase diagram in Fig. 5. It also includes an optional 
assertion function to check the consistency of actions. 
As shown in the code, what developers have to do is to 
translate the diagram into code in a straightforward way.

6. CONCLUSION

This paper proposed structured DEVS formalism as 
well as the DEVS diagram for practical modeling of 
discrete event systems. The main idea is to introduce the 
notions of port and message, and state variable and 
phase, which group together sequential states and events 
into ports and variables. The diagram itself has been 
used for years but not defined formally, and it has 
lacked a mathematical foundation; thus, sometimes it 
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ExtTransFn(s, e, x)  //External Trans 
function

case x.port () of
        in: 
            if phase == WAIT //current phase

   if proc == BUSY //guard
n := n+1, // action

        continue ;  // old 
schedule
                    else 

        phase := SEND,
        n := n+1,

                if phase == SEND
                   n := n+1, 

    continue;                 
              done: 
                if phase == WAIT && n == 0 
                    proc := FREE   //new schedule
                else

phase := SEND, proc := FREE;
AssertPhase(); // phase assertion

IntTransFn(s)   //  DEVS Internal Trans 
function

if phase == SEND
phase := WAIT,
proc := BUSY, n := n - 1;

AssertPhase();

OutputFn(s) //   DEVS Output function
       if phase == SEND 

output to out; // output to port out

TimeAdvanceFn(s)  // DEVS Time advance 
function

if phase == SEND              
            ta = Tsend;
      else

            ta = ∞;

AssertPhase() // optional phase assertion
if phase == SEND

if not (n > 0 and proc == FREE)error;
else if phase == WAIT

if not (n == 0 or proc == BUSY) 
error;

Fig. 7. Pseudo-code of the characteristic functions of the 
expanded atomic model BUFFER

has lacked semantics, has been incomplete, and even 
violated the DEVS formalism. We did a comprehensive 
and thorough job for the definition of the DEVS 
diagram to provide engineers with an efficient tool for 
modeling and designing of a simulation software. Due 
to lack of space, however, this paper cannot provide the 
thorough mathematical foundation based on the 
structured DEVS formalism; thus we have tried to focus 
on the diagram itself. Our subsequent full paper to be 
submitted will prove that the DEVS diagram is based on 

the thorough mathematical foundation. Based on this 
work, we will update DEVS Specification Language in 
script form and plan to make a computer-aided 
modeling tool for the DEVS based simulation develop-
ment. More work, however, is required to implement a 
DEVS simulation tool conforming to the proposed 
DEVS diagram. As we expect, the more prolific DEVS 
applications become as M&S demands grow, the more 
our work will be utilized in the domain of the complex 
M&S.
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