
Automatic verification of DEVS models

Gabriel Wainer
Systems and Computer Engineering

Carleton University
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.
gwainer@sce.carleton.ca

Liliana Morihama Viviana Passuello
Departamento de Computación
Universidad de Buenos Aires

Pabellón I. Ciudad Universitaria (1428)
Buenos Aires. Argentina.

{lmoriham, vpassuel}@dc.uba.ar

Keywords: DEVS, model verification, Cell-DEVS

ABSTRACT: The Discrete Event System Specification (DEVS) formalism is an abstract basis for model specification
that is independent of any particular simulation implementation. We have developed a tool following DEVS theory that
allows a user to define complex models that can be executed using different abstract mechanisms. Recently, we have
included a set of automatic verification facilities. In this way, the model interaction can be verified with reduced user
intervention. We have employed the new techniques applying them to existing DEVS models, finding errors in the
specifications. This approach helped improving the development times in simulation models.

1. Introduction

In recent years, several efforts have been devoted to de-
fine modelling paradigms, allowing improving the analy-
sis of complex dynamic systems through simulation of
these models. A formalism that gained popularity in re-
cent years is called DEVS (Discrete Event systems Speci-
fication). It allows modular description of models that can
be integrated using a hierarchical approach [1]. In [2] the
Cell-DEVS formalism was presented, as a means to de-
scribe cell spaces as a DEVS models including explicit
timing delays.

We have built a toolkit with the goal of develop models
and simulate them based on the DEVS and Cell-DEVS
paradigms. The core of the toolkit is the CD++ environ-
ment [3, 4], which implements the DEVS and Cell-DEVS
theory. The toolkit has been built as a set of independent
software pieces, each of them independent of the operat-
ing environment chosen. The tool includes a set of auto-
matic verification tools, based on the construction of Ex-
perimental Frameworks used as signal genera-
tors/acceptors. We have also included automatic verifica-
tion for Cell-DEVS rules. In the following sections we
will present these features. First, we will briefly recall the
basic ideas related with DEVS and Cell-DEVS theory.
After, we introduce the main features of the toolkit related

to the model definition and verification. Finally, we show
some examples of application of the techniques devel-
oped.

2. The DEVS formalism

DEVS is a systems theoretical approach that permits de-
fining hierarchical modular models that can be easily re-
used. A real system modeled with DEVS is described as a
composite of submodels, each of them being behavioral
(atomic) or structural (coupled). Each model is defined by
a time base, inputs, states, outputs and functions to com-
pute the next states and outputs.

A DEVS atomic model is formally described by:

M = < X, S, Y, δint, δext, λ, ta >

where
X is the input events set;
S is the state set;
Y is the output events set;
δδint is the internal transition function;
δδext is the external transition function;
λλ is the output function; and
ta is the time advance function.

Each model is provided with an interface consisting of
input and output ports to communicate with other models.
Input external events (those events received from other
models) are collected in input ports. The external transi-
tion function specifies how to react to those inputs. The
internal transition function is activated after a period de-
fined by the time advance function. The goal is to produce
internal state changes. Model execution results are spread
through output ports. This is done by the output function,
which executes before any internal transition.

A DEVS coupled model is composed by several atomic or
coupled submodels. Coupled models are closed under
coupling, therefore they can be integrated to a model hier-
archy, allowing model reuse. Coupled models are for-
mally defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >

where
X is the set of input events;
Y is the set of output events;
D is an index for the components of the coupled model,
and
∀ i ∈ D, Mi is a basic DEVS (that is, an atomic or cou-
pled model),
Ii is the set of influencees of model i (that is, the models
that can be influenced by outputs of model i), and ∀ j ∈ Ii,
Zij is the i to j translation function.

Coupled models are defined as a set of basic components
(atomic or coupled), which are interconnected through the
model's interfaces. The influencees of a model define to
which model outputs must be sent. The translation func-
tion is in charge of converting the outputs of a model into
inputs for the others. To do so, an index of influencees is
created for each model (Ii). This index defines that the
outputs of the model Mi are connected to inputs in the
model Mj, where j is an element of Ii.

Cell-DEVS [2] has extended the DEVS formalism, al-
lowing the implementation of cellular models with timing
delays. A cellular model can be defined as an infinite n-
dimensional lattice with cells whose values are updated
according to a local rule. This is done using the present
cell state and those of a finite set of nearby cells (called its
neighborhood). The goal is to improve performance using
a discrete-event approach, and to enhance timing defini-
tion by making it more expressive. Here, each cell is de-
fined as an atomic model using timing delays, and it can
be later integrated to a coupled model representing the
cell space. Cell-DEVS atomic models can be specified as:

TDC=< X, Y, S, N, delay, d, δint, δext, τ, λ, ta >

Here,

X defines external input events,
Y are the external output events,
S is the set of sequential states for the cell,
N is the set of input events;
delay defines the kind of delay for the cell,
d defines the delay's length;
δδint is the internal transition function,
δδext the external transition function,
ττ is a local computing function,
λλ the output function, and
ta is the state's time advance function.

Each cell uses N inputs to compute its next state. These
inputs, which are received through the model's interface,
activate the local computing function. A delay can be as-
sociated with each cell, allowing the deferral of the com-
puted result to be transmitted to other models. Transport
delays model a variable commuting time. Instead, inertial
delays have preemptive semantics (some scheduled events
can be avoided). The model advances through the activa-
tion of the internal, external, output and state's time ad-
vance functions, as in other DEVS models.

Once the cell behavior is defined, a coupled Cell-DEVS
can be created by putting together a number of cells inter-
connected by a neighborhood relationship. A Cell-DEVS
model is defined by:

GCC=< Xlist, Ylist, X, Y, n, {t1,..,tn}, N, C, B, Z >

Here,
Xlist is an input coupling list,
Ylist is an output coupling list,
X is the set of external input events,
Y is the set of external output events,
n defines the dimension of the cell space,
{t1,...,tn} is the number of cells in each dimension,
N is the neighborhood set,
C is the cell space state set,
B is the set of border cells, and
Z the translation function.

This specification defines a coupled model composed of
an array of atomic cells, whose size and dimensions are
defined by the n and {t1,..,tn} parameters. Each cell is
connected to its neighborhood, whose shape must be de-
fined. As the cell space must execute within finite
boundaries, border cells should be provided with a differ-
ent behavior than the rest of the space. Otherwise, the
space is considered to be "wrapped", meaning that the
cells in a border are connected with those in the opposite
one. Finally, the Z function defines internal and external
couplings, which uses the Xlist and the Ylist (devoted to
define external coupling) and the neighborhood definition
(for internal coupling.

3. CD++

CD++ [3, 4] is a modeling tool that was defined using the
specifications presented in the previous section, and the
basic simulation techniques introduced in [1, 2]. The tool-
kit includes facilities to build DEVS and Cell-DEVS
models. DEVS Atomic models can be programmed and
incorporated onto a class hierarchy programmed in C++.
Coupled models can be defined using a built-in specifica-
tion language. Cell-DEVS models are built following the
formal specifications of the previous section, and we also
provided a built-in language to describe them. The fol-
lowing sections will define the facilities available in the
toolkit. We begin by introducing the definition of Cell-
DEVS models and the verification tools associated. Then,
we show how to define DEVS models and how to use the
automatic verification tools associated with them.

3.1 Cell-DEVS models definition

The CD++ tool includes an interpreter for a specification
language that allows describing the behavior of each cell
of a cellular model, including its delay and neighborhood.
In addition, it allows to define the size of the cell space
and their connection with other DEVS models, the border
and the initial state of each cell. These definitions are
based on the formal specifications defined earlier, and can
be completed by considering a few parameters: size, in-
fluencees, neighborhood and borders. The following fig-
ure shows the definition for the "Life" Game [5]. This
model represents a cell space with entities that evolve ac-
cording to the neighbors' states.

[life]
type : cell
width : 20 height : 2
delay : transport
border : wrapped
neighbors : life(-1,-1) life(-1,0) life(-1,1)
neighbors : life(0,-1) life(0,0) life(0,1)
neighbors : life(1,-1) life(1,0) life(1,1)
localtransition : new-life-rule

[new-life-rule]
Rule: 1 10 { (0,0) = 1 and (truecount = 3
 or truecount = 4) }
Rule: 1 10 { (0,0) = 0 and truecount = 3 }
Rule: 0 10 { t }

Figure 1. Definition of the Life game.

As we can see, the model specification includes all the
parameters defined in section 2 for Cell-DEVS models.
We also see that the behavior of the local computing
function is defined using a set of rules. Each rule has the
form:

VALUE DELAY { CONDITION }

These indicate that when the CONDITION is satisfied, the
state of the cell will change to the designated VALUE,
whose output it will be DELAYed for the specified time. If
the precondition is false, the next rule in the list is evalu-
ated until a rule is satisfied or there are no more rules.

In the Life game example, the rules define that a cell re-
mains active when the number of active neighbors is 3 or
4 (truecount indicates the number of active cells) using a
transport delay of 10 ms. If the cell is inactive ((0,0) =
0)and the neighborhood has 3 active cells, the cell acti-
vates (represented by a value of 1 in the cell). In every
other case, the cell remains inactive (t indicates that
whenever the rule is evaluated, a True value is returned).

Complex cellular models can be defined with simple rules
(see, for instance, [6, 7]), and several useful operations
are included: boolean (AND, OR, NOT, XOR, IMP and
EQV), comparison (=, !=, <, >, <= and >=), and arithme-
tic (+, -, * and /). In addition, different types of functions
are available: trigonometric, roots, power, rounding and
truncation, module, logarithm, absolute value, minimum,
maximum, G.C.D. and L.C.M. Other existing functions
allow to check if a number is integer, even, odd or prime.
Some functions allow to query the cell state of the neigh-
borhood: truecount, falsecount, undefcount and state-
count(n). The Time function returns the model's simulated
time. Functions RadToDeg and DegToRad are used for
angle conversion. There are also conversion for polar and
rectangular coordinates and temperatures in Celsius,
Fahrenheit or Kelvin degrees. Other functions allow
evaluating conditions. Some common constants are prede-
fined: pi, e, gravitational constant, light speed, Planck’s
constant, etc. Finally, pseudorandom numbers generation
is included, using different probability distributions.

We have included diverse verification facilities for Cell-
DEVS models. The most simple ones include checks on
the number of cells in each dimension, initialization of
each of the cells, position of the border cells (and zones
with specialized behavior) and positions of the in-
put/output cells representing the Xlist and Ylist.

The most complex verification aids are related with the
definition of the local computing function rules. For in-
stance, if no rule satisfy a precondition, an error will be
raised, aborting the simulation process. This error indi-
cates that the model specification is incomplete. The ex-
istence of two or more rules with same condition but with
different state value or delay is also detected, avoiding the
creation of ambiguous models. In these situations, the
simulation will be aborted.

3.2 Defining DEVS Atomic models

CD++ was built as a class hierarchy of models related
with a simulation processing entity. DEVS Atomic mod-
els can be programmed and incorporated onto the Models
basic class hierarchy using C++. A new atomic model is
created as a new class that inherits from the Atomic base
class. The state of a model is defined in the AtomicState
class. When creating a new atomic model, a new class de-
rived from Atomic has to be created.

class Atomic : public Model {
public:
virtual ~Atomic(); // Destructor

protected:
//User defined functions.
virtual Model &initFunction() = 0;
virtual Model &externalFunction(const External-
Message &);
virtual Model &internalFunction(const Internal-
Message &) = 0 ;
virtual Model &outputFunction(const CollectMes-
sage &) = 0 ;
virtual string className() const

//Kernel services
Time nextChange();
Time lastChange();

Model &holdIn(const AtomicState::State &, const
Time &);
Model &sendOutput(const Time &time, const Port &
port , Value value);
Model &passivate();
virtual ModelState* getCurrentState() ;
}; // class Atomic

Figure 2. The Atomic Class

Atomic is an abstract class that declares a model’s API
and defines some service functions the user can use to
write the model. The Atomic class provides a set of serv-
ices and requires a set of functions to be redefined:

- holdIn(state, Time) : tells the simulator that the model
will remain in the state state for a period of Time time. It
corresponds to the ta(s) function of the DEVS formalism.

- passivate(): sets the next internal transition time to in-
finity. The model will only be activated again if an exter-
nal event is received (this function is equivalent to
holdIn(passive, Infinite)).

- sendOutput(Time, port, BasicMsgValue*): sends an
output message through the port. The time should be set
to the current time.

- nextChange(): Returns the remaining time for the next
internal transition.

- lastChange(): Returns the time since the last state
change.
- state(): Returns the current model’s phase.

The new class should override the following functions:

- virtual Model &initFunction(): this method is invoked
by the simulator at the beginning the simulation and after
the model state has been initialized.

- virtual Model &externalFunction(const External-
Message &): this method is invoked when one external
event arrives to a port. It corresponds to the δext function
of the DEVS formalism.

- virtual Model &internalFunction(const Internal-
Message &): this method corresponds to the δint function
of the DEVS formalism.

- virtual Model &outputFunction(const CollectMes-
sage &): it is in charge of sending all the output events of
the model. It corresponds to the λ function of the DEVS
formalism.

Figure 3. Format for the verification framework.

We have developed an Experimental Framework that
automatically verifies DEVS base models. Once an
atomic model has been built and incorporated to the mod-
elling hierarchy, we can control if the model being veri-
fied returns the expected results at a given time. The Ex-
perimental Framework composed by a Generator and a
Transducer doing these tasks for any existing atomic
model. These models are coupled to the base model to be
verified. The Generator recognizes the input ports of the
base model, and connects its outputs to the model's inputs.
The Transducer recognizes output ports to be analyzed.

The Generator verification data is provided by the mod-
eler, who should write an entry table indicating the testing
values, and their corresponding correct results. The input
for the generator is a three-column table using the fol-
lowing format :

Transition Type Time Value
1 E 00:00:08:00 28
2 E 00:00:10:00 40
3 I 00:00:20:00 30
4 I 00:00:22:00 42
Figure 4. Input format for the verification framework.

Transition Type might be I or E, indicating if it refers to
an internal or external transition respectively. For an E
type transition, data in the table should be interpreted as
“Value X enters the model at time T”. Taking as reference,
line number 1 in the example, we should interpret “Value
28 enters the model at 00:00:08:00”. In the same way, for
an I type transition, data in the table should be interpreted
as “Model must output value Y at time T”. Line 3 of the
example should be read “Model must output value 30 at
00:00:20:00”.

The data corresponding to external transitions, is sent by
the Generator to the base model in order to be processed,
while the ones corresponding to internal transitions are
sent to the Transducer. The Transducer stores this infor-
mation, and later on, compares it with the real values is-
sued by the model.

As a result, output error messages are issued. For every
error found, the following message is issued:

Invalid result
 Expecting: XXX At: Expected_Time
 Getting: YYY At: Output_Time

The Results file allows checking the differences between
the expected data and the outputs issued by the model.
Also, differences in timing can be analyzed.

3.3 Defining DEVS Coupled models

Once an atomic model is defined, it can be combined with
others into a multicomponent model. Coupled models are
defined using a specification language specially defined
with this purpose. The language was built following the
formal definitions for DEVS coupled models.

The coupled model at the higher level is always named
[top]. As showed in formal specifications presented in
section 1, four properties must be configured: compo-
nents, output ports, input ports and links between models.
The following syntax is used:

Components: model_name1[@atomicclass1]
[model_name2[@atomicclass2] ...
Lists the components integrating the coupled model. A
coupled model might have atomic models or other cou-
pled model as components. For atomic ones, an instance
name and a class name must be specified. This allows a
coupled model to use more than one instance of an atomic
class. For coupled models, only the model name must be
given. This model name must be defined as another group
in the same file.

Out: portname1 portname2 ...

Enumerates the model’s output ports. This clause is op-
tional because a model may not have output ports.

In: portname1 portname2 ...

Enumerates the input ports. This clause is also optional
because a coupled model is not required to have input
ports.

Link: source_port[@model] destina-
tion_port[@model].
It describes the internal and external coupling scheme.
The name of the model is optional. If it is not included,
the model used by default will be the coupled model cur-
rently being defined.

The following figure shows a sample coupled model and
its specification in CD++. It consists of three models: a
generator, in charge of creating data, a consumer, and a
transducer, in charge of measuring the consumer speed.
The consumer is also a coupled model, composed by a
processor and a queue to keep waiting jobs.

In the top level of this example, the Generator influences
the Transducer and the Consumer. The Consumer also
influences the Transducer. The Consumer influences the
Queue and the Processor also influences it. Then, the
Queue influences the Processor. Finally, the Transducer
influences the top model. These influences define the in-
fluencee's sets for each of the components, which is used
to define the translation functions. The figure shows the
influences for this example, which are carried out by
transmitting information through the input/output ports in
the models.

[top]
components : Transd@Transducer Gen@Generator Consum
Out : out
Link : out@generator arrived@transducer
Link : out@generator in@Consumer
Link : out@Consumer solved@transducer
Link : out@transducer out

[Consum]
components : Qu@Queue Proc@CPU
in : in
out : out
Link : in in@qu
Link : out@qu in@Proc
Link : out@Proc done@qu
Link : out@Proc out

Figure 5. Definition of a DEVS coupled model [3]

The verification tools for coupled models are in charge of
authenticate ports and their links between DEVS Models.
It will be checked that every input port is associated to an
output port, and vice-versa.

A list of influencees is defined and associated to each
output port. This Influencee_List holds all the input ports
linked to the current output port. The influencee lists are
analyzed to find if there is any unlinked port. First, we
check every output port, analyzing their influencee lists
for every model. An empty list means that the output port
is not linked to any input port in the simulation.

Figure 6. Output ports not linked.

A global influencees list is built using with all the input
ports that are linked to any output port. This list must
contain all the input ports defined in the coupled model. If
a port does not belong to it, no output port is linked to it.

Figure 7. Input ports not linked.

In both cases, the simulation will be aborted, and an error
message will be displayed, enabling the analysis of the
problem. In some cases, the modeler does not want to use
an existing port, but in others, this can result in undesir-
able errors complex to be discovered. As we can see, no
other couplings are verified, as this is not needed. We
have followed the DEVS specifications for couplings, and
the tool use this constructive approach. Therefore, we
know that the links built from the specifications are cor-

rect. The tool includes type validation, ensuring compati-
bility of the data shared through input/output ports.

4. Some verification examples

As we explained earlier, the automatic verification facili-
ties can improve the definition of models. We will first
show some aspects related to Cell-DEVS models, and
then we will explain how to verify DEVS models using
the toolkit.

4.1 Cell-DEVS models verification

As we explained in section 3.1., we have included differ-
ent verification techniques for the rules defining the cell
behavior in Cell-DEVS models. For instance, the follow-
ing figure shows a modification of the Life game model
(using 0, 1 or 2 as cell values), in which the rules are not
completely defined. Here, we can find cases in which all
the preconditions are False (i.e., if the cell being evaluated
has a value of 2).

[new-life-rule]
rule : 2 100 { (0,0) = 1 }
rule : 1 100 { (0,0) = 0 }

Figure 8. Redefinition of the Life game.

In these situations, an error will be raised, as shown in the
following figure. The message describes the event oc-
curred, and shows the state values for the neighboring
cells.

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: 00:00:05:000

Exception thrown!
Description: None of the rules evaluate TRUE!
 Model used is: new-life-rule
 The state of the Neighbours is:
 +--+
 | 0.00000 1.00000 2.00000 |
 | 1.00000 2.00000 1.00000 |
 | 0.00000 1.00000 2.00000 |
 +--+
Aborting simulation...

Figure 9. Error detected: no valid rule.

The error describes that the rules are not complete (in the
absence of this verification, the simulation would crash,
as there are no rules to be executed). In this case, the ori-
gin cell has a value of 2, and there is no rule whose pre-
condition is valid for this case.

The tool includes rule definition using three-valued logic.
Therefore, when a set of rules is being defined, the values
True, False, or Undefined can be obtained. If any of the
rules results in an Undefined value, the cell state will be
Undefined. In this case, a warning is issued. For instance,
the following figure shows a redefinition of the previous
example.

[new-life-rule2]
rule : 2 100 { (0,0) = 1 and (0,1) = ? }
rule : 1 100 { (0,0) = 0 }
rule : 0 100 { (0,0) = 2 }

Figure 10. Life game with Undefined values.

When the state value for the cell is 1, and the neighbor
(0,1) is not Undefined (?), the first rule will result in an
Undefined state. In that case, when we evaluate (0,1) =
?, the result is ?, and the result of the AND operation will
be Undefined. When the rest of the rules are evaluated, no
valid precondition is found. In this case, the value of the
cell is set to Undefined, and the following warning mes-
sage is issued:

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: 00:00:05:000

Warning! – None of the rules evaluate to True,
but any evaluates to undefined

...

Figure 11. Warning: undefined state for a cell.

If there are two or more rules whose condition evaluate to
True, and their postconditions or delays are different, an
error is raised. In this case, the model is ambiguous, and
the simulation will be aborted, avoiding the execution of
models running in a non deterministic fashion. In the fol-
lowing figure we show a set of ambiguous rules for the
Life game.

[new-life-rule3]
rule : 2 100 { (0,0) = 1 }

rule : 1 100 { (0,0) = 0 or (0,0) = 1 }
rule : 0 100 { (0,0) = 2 }

Figure 12. Life game with ambiguous rules.

In this case, if a cell has a value of 1, the first and second
rules are valid, but the results are different. The following
figure shows the execution when these rules are evalu-
ated. Instead, when two different rules are valid, but their
results are the same, a warning is raised, but the simula-
tion continues. In this case, although two rules are valid
simultaneously, the simulation results would be the same
if any of them is executed. The warning enables the mod-
eler to check possible ambiguities.

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: 00:00:05:000

Exception thrown!
Description: Two rules evaluate to TRUE and the

result is different!
 Model used is: new-life-rule3
 The state of the Neighbours is:
+--+
| 1.00000 0.00000 0.00000 |
| 1.00000 0.00000 1.00000 |
| 1.00000 0.00000 0.00000 |
+--+
Aborting simulation...

Figure 13. Error detected: ambiguous rules.

There are a few special cases to consider: if a stochastic
model is used, it might either happen that multiple rules
are be valid or that none of them is. For the first case, the
first valid rule will be considered. For the second case, the
cell will have an undefined value (?), and the delay time
will be the default delay time specified for the model. In
any case, the simulator will notify this situation to the
user, showing a warning message on standard output, but
the simulation will not be aborted.

[new-life-rule4]
rule : 2 100 { (0,0) = 1 }
rule : 1 100 { (0,0) = 1 and random < .8 }
rule : 0 100 { (0,0) = 2 or (0,0) = 0 }

Figure 14. Ambiguous rules with random values.

In this case, when the value of the cell is 1, and the ran-
dom number generated is smaller than 0.8, the first and
second rule are valid. The cell's future value is different
for both rules. Therefore, the first rule is considered as the
valid one, and the following message is generated:

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: 00:00:05:000
Warning! – Stochastic model with two or more

rules evaluated to TRUE
...

Figure 15. Warning: ambiguous stochastic model.

In other cases, the random execution can make every pre-
condition to be evaluated to False. In this case, the cell
will be assigned an Undefined value, and will use the de-
fault delay time for the cell. For instance, the following
figure shows a set of rules producing this kind of error:

[new-life-rule5]
rule : 1 100 { (0,0) = 1 and random <= .8 }
rule : 0 100 { (0,0) = 2 }
rule : 2 100 { (0,0) = 0 }

Figure 16. Ambiguous rules with random values.

In this case, if the cell has a value 1 and the random func-
tion generates a value higher than 0.8, all the rules are
evaluated to False. In this case, the following warning
message is issued:

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: 00:00:05:000

Warning! – None of the rules evaluates to True
in an Stochastic model

...

Figure 17. Warning: ambiguous stochastic model.

4.2 DEVS models verification

Let us show now how to verify different examples of
DEVS models. Figure 5 presented a coupled model repre-
senting a Producer/Consumer scheme. We have checked
the Proc model separately using the verification Experi-
mental Frame, using the following input data:

E 00:00:08:000 2
I 00:00:11:000 2
E 00:00:10:000 15
I 00:00:10:003 15
E 00:00:12:000 20
I 00:00:12:003 40
E 00:00:15:000 60
I 00:00:15:003 60
E 00:00:19:000 70
I 00:00:22:000 70

Figure 18. Input data for the Proc model.

We have injected different types of inputs, to show the
possible errors that can be obtained. The behavior of the
Proc model is to act as a standard server model: it re-
ceives inputs that are served, providing outputs. Every
time an input is received (representing a job id), it is
stored during 0.003 seconds, and an output (representing
the job id) is generated. When we run the verification
frame in this model, we obtain the results presented in
Figure 19.

In the first case, we inject a value 2 to the model, and we
say that the model should generate a value 2 in simulated
time 11:000. Nevertheless, the processor outputs job 2
only 0.003 seconds after the input. This results in an out-
put error. Then, we inject the value 15, and we say that
we expect the output 15 at 10:003. As we can see, no er-
rors were raised in this case. The following error shows
that, after injecting a value 20 at 12:000, the model re-
turns a 40 at 12:003, which is an unexpected value ac-
cording to the input definition. The final error shows an-
other timing problem according to the input specification.

Output file:

00:00:08:003 out 2
00:00:10:003 out 15
00:00:12:003 out 20
00:00:15:003 out 60
00:00:19:003 out 70

Verification results file:
Invalid result:

Expecting: 2.000000 At: 00:00:11:000
Getting: 2.000000 At: 00:00:08:003

Invalid result:
Expecting: 40.000000 At: 00:00:12:003
Getting: 20.000000 At: 00:00:12:003

Invalid result:
Expecting: 70.000000 At: 00:00:22:000
Getting: 70.000000 At: 00:00:19:003

Figure 19. Output data for the Proc model.

As explained in section 3.3, we also included verification
mechanisms enabling automatic checking of model cou-
pling. We used 18 previously existing models, and they
were verified with the tool. In most cases no errors were
found. Nevertheless, the following models presented in-
consistencies.

The producer/consumer example presented in Figure 5
includes a stop port in the Qu model. This port is used to
send stop signals, in order to avoid buffer overruns. In this
example, the port is not being used, therefore, it is not
linked to any input port. When the model is verified, the
following error message is issued:

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: Infinity

Exception thrown!
Model Name: Qu
Output Port Name: stop, has not influences.
Description: Output Ports without Influences!

Aborting simulation...

Figure 20. Error detected: Unlinked ports.

Another model in which we detected inconsistencies rep-
resents an Operation Room in a hospital Emergency
Room. The idea is to enable better scheduling of the ex-
isting resources. This model is composed by the following
submodels:

• Scheduler: it handles the waiting list of operations.
When a patient arrives, it will first do some filing and
recording. After a certain time, it will output a re-
quest to a doctor. The requests are added into a wait-
ing list that can be managed using different strategies.

• Doctor: it models the examination time of a patient,
after which the patient is passed on to a nurse.

• Nurse: models routine check-ups on the patient be-
fore sending him into the operation room.

The Operation Room includes two components:

• Monitoring: it models the check-ups done to the upon
arrival to the operation room.

• Operation: when the operation is finished, this model
will send a “done” message to the scheduler so that it
can output the next patient on the list to get the doc-
tor’s examination.

This example was executed with different configurations,
in order to analyze scheduling strategies. The couple
model representing the system is shown in the following
figure:

[top]
components : scheduler@Scheduler doctor@DOCTOR
components : nurse@Nurse Operationroom
out : out in : in

Link : in in@scheduler
Link : out@scheduler in@doctor
Link : out@doctor in@nurse
Link : out@nurse in@Operationroom
Link : out@Operationroom out
Link : done@Operationroom done@scheduler

[Operationroom]
components : equipment@Equipment
components : operation@Operation

in : in out : out done
Link : in in@equipment
Link : out@equipment in@operation
Link : out@operation out
Link : done@operation done

Figure 21. Operation room model [8].

When the model was verified, we found the following er-
ror:

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: Infinity

Exception thrown!
Model Name: Operation
Input Port Name: done, is not influenced.
Description: Input Ports without Influences!

Aborting simulation...

Figure 22. Error detected: Unlinked ports.

Studying the model, we could see that the coupled model
addresses the Operation class. Here, done is defined as an
output port, while in source code it is defined as an input
port.

Another model verified represents a switching station for
mobile phones. The coupled model representing the sta-
tion has the following structure:

Figure 23. Switching station coupled model [8].

HLR model is in charge of managing the call flow. When
it receives a request, it enqueues it, and advances the
switching time associated to the call. When the call is
sent, it will receive an ACK signal. The MSC model is in
charge of connecting a call. It runs individual switching
tasks in a non preemptive fashion. If the model receives a
new call and it is already processing one, the new one is
discarded. The BSC is in charge of computing the num-
bers of call finished in a given time unit. It computes the
usage ratios for the MSC and transfers the outputs with a
given frequency.

When this model was verified, we found the following
errors:

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: Infinity

Exception thrown!
Model Name: HLR1
Input Port Name: stop, is not influenced.
Description: Input Ports without Influences!

Model Name: HLR2
Input Port Name: stop, is not influenced.
Description: Input Ports without Influences!

Aborting simulation...

Figure 24. Error detected: Unlinked ports.

In this case, the HLR class includes an input port named
stop. This port was not used in the MA file.

The last model we will describe represents a resin proc-
essing tank. The different types of raw material are put
into a storage tank. When the raw material is ready, a
control system is activated, and a mix tank and mould
tank will heat up to certain temperature. After heating, the
material should be mixed for certain time, and then cast to
the mould tank. The mix and mould tanks are only able to
process one batch of raw material at a time, so new mate-
rial is stored in the storage tank.

The structure of this coupled model can be seen in the
following figure:

Figure 25. Mix Tank structure.

[top]
components : controlsystem prodline
out : out in : in
Link : in in@controlsystem
Link : in in@prodline
Link : storetankEmpty_out@prodline

storetankEmpty_in@controlsystem
Link : mixtankTemp_out@prodline

mixtankTemp_in@controlsystem
Link : mixtankEmpty_out@prodline

mixtankEmpty_in@controlsystem
Link : mouldtankTemp_out@prodline

mouldtankTemp_in@controlsystem
Link : mouldtankEmpty_out@prodline

mouldtankEmpty_in@controlsystem
Link : out@controlsystem start_in@prodline
Link : storetankControl_out@controlsystem

storetankControl_in@prodline
Link : mixtankControl_out@controlsystem

mixtankControl_in@prodline
Link : out@prodline out

[controlsystem]
components : compu@Computer
in : in storetankEmpty_in mixtankTemp_in
in : mixtankEmpty_in mouldtankTemp_in
in : mouldtankEmpty_in
out : out mixtankControl_out storetankControl_out
Link : in in@compu
Link : storetankEmpty_in storetankEmpty_in@compu
Link : mixtankTemp_in mixtankTemp_in@compu
Link : mixtankEmpty_in mixtankEmpty_in@compu
Link : mouldtankTemp_in mouldtankTemp_in@compu
Link : mouldtankEmpty_in mouldtankEmpty_in@compu
Link : out@compu out
Link : storetankControl_out@compu

storetankControl_out
Link : mixtankControl_out@compu mixtankControl_out

[prodline]
components : Stank mtk@mixtank motk@mouldtank
Out : out storetankEmpty_out mixtankTemp_out
out : mixtankEmpty_out mouldtankTemp_out
out : mouldtankEmpty_out
in : start_in mixtankControl_in
in : storetankControl_in in
Link : in in@stank
Link : start_in start_in@mtk
Link : start_in start_in@motk
Link : storetankControl_in

storetankControl_in@stank
Link : mixtankControl_in
 mixtankControl_in@mtk
Link : out@stk in@mtk
Link : out@mtk in@motk
Link : out@motk out
Link : out@stank storetankEmpty_out
Link : mixtankTemp_out@mtk mixtankTemp_out
Link : mixtankEmpty_out@mtk mixtankEmpty_out
Link : mouldtankTemp_out@motk mouldtank-
Temp_out
Link : out@motk mouldtankEmpty_out

[Stank]
components : cou@count stk@storetank
in : in storetankControl_in
out : out
Link : storetankControl_in

storetankControl_in@stk
Link : in in@cou
Link : out@cou in@stk
Link : out@stk out
Link : out@stk done@cou

Figure 26. Mixing tank coupled model.

In this case, when the model was verified, the following
error raised:

CD++
--
Version 2.0-R.43

Starting simulation. Stop at time: Infinity

Exception thrown!
Model Name: Computer
Input Port Name: out, is not influenced.
Description: Input Ports without Influences!

Aborting simulation...

Figure 27. Error detected: Unlinked ports.

The Computer model defined an input port named out.
Nevertheless, this port was used as an output port in the
coupled model defined in the previous figure.

5. Conclusion

We have presented some of the verification features of
CD++, a toolkit for DEVS modelling and simulation. The

tool was built using the DEVS formal modelling para-
digm, improving the safety and development times of the
simulations.

We used existing models, and found inconsistencies.
Some of the errors found do not affect the model execu-
tion, but others could generate logical errors difficult to be
found. Besides, we were able to be sure that no errors ex-
ist in other models.

Verification tools can improve the security and cost in the
development of the simulations. The main gains are in the
testing and maintenance phases, the more expensive for
these systems. The use of a formal approach like DEVS
made easy the development of the verification tools. The
next step is to attack automatic verification based on the
mathematical properties that can be derived from DEVS
specifications.

The tools are public domain and can be obtained at
"http://www.sce.carleton.ca/faculty/wainer/celldevs".

References

[1] ZEIGLER, B.; KIM, T.; PRAEHOFER, H. Theory of
Modeling and Simulation: Integrating Discrete Event
and Continuous Complex Dynamic Systems. Aca-
demic Press. 2000.

[2] WAINER, G.; GIAMBIASI, N. "Timed Cell-DEVS:
modelling and simulation of cell spaces ". In "Discrete
Event Modeling & Simulation: Enabling Future Tech-
nologies", Springer-Verlag. 2001.

[3] WAINER, G.; BARYLKO, A.; BEYOGLONIÁN, J.
"Experiences with DEVS modelling and simulation".
In IASTED Journal on Modelling and Simulation.
March 2001.

[4] CHRISTEN, G.; DOBNIEWSKI, A.; WAINER, G.
"Defining DEVS models with the CD++ toolkit". In
Proceedings of European Simulation Symposium.
Marseilles, France. 2001.

[5] GARDNER, M. "The fantastic combinations of John
Conway's New Solitaire Game 'Life'.". Scientific
American. 23 (4). pp. 120-123. April 1970.

[6] AMEGHINO, J.; WAINER, G. "Application of the
Cell-DEVS paradigm using CD++". In Proceedings of
the 32nd SCS Summer Multiconference on Computer
Simulation. Vancouver, Canada. 2000.

[7] AMEGHINO, J.; TROCCOLI, A.; WAINER, G.
"Modelling and simulation of complex physical sys-
tems using Cell-DEVS". In Proceedings of the 33rd

SCS Summer Multiconference on Computer Simula-
tion. Seattle, WA. USA. 2001.

[8] CHEN, S.; DU, H.; HU, R.; XIE, P.; WAINER, G.
"Modelling and simulation of DEVS models". Internal
report. SCE, Carleton University. 2001.

Gabriel A. Wainer received the M.Sc. (1993) and the
Ph.D. degrees (1998, with highest honours) at the Univer-
sidad de Buenos Aires, Argentina, and DIAM/IUSPIM,
Université d'Aix-Marseille III, France. He is Assistant
Professor at the Systems and Computer Engineering,
Carleton University (Ottawa, Canada). He was Assistant
Professor at the Computer Sciences Dept. of the Univer-
sidad de Buenos Aires, Argentina, and a visiting research
scholar at the Arizona Center of Integrated Modelling and
Simulation (University of Arizona). He has published
more than 50 articles in the field of operating systems,
real-time systems and Discrete-Event simulation. He is
author of a book on real-time systems and another on Dis-
crete-Event simulation. He has been the PI of several re-
search projects, and participated in different international

research programs. Prof. Wainer is a member of the
Board of Directors of The Society for Computer Simula-
tion International (SCS). He is the coordinator of a group
on DEVS standardization. He has been appointed Associ-
ate Editor of the Transactions of the SCS. He is also a Co-
associate Director of the Ottawa Center of The McLeod
Institute of Simulation Sciences.

LILIANA MORIHAMA received her B.Sc. degree at
the Universidad de Buenos Aires in 1999. At present she
is a M.Sc. student at the same University, and an inde-
pendent software developer in Buenos Aires, Argentina.

VIVIANA PASSUELLO received her B.Sc. degree at
the Universidad de Buenos Aires in 1998. At present she
is a M.Sc. student at the same University, and an inde-
pendent software developer in Buenos Aires, Argentina.

