
Grimán et al. Issues for Evaluating Reliability in Software Architectures

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

Issues for Evaluating Reliability in Software Architectures

Grimán, A.
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas – Venezuela

agriman@usb.ve

Valdosera, L.
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas – Venezuela

vvalldosera@tspven.com

Mendoza, L.
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas – Venezuela
lmendoza@usb.ve

Pérez, M.
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas – Venezuela

movalles@usb.ve

Méndez, E.
Processes and Systems Department – LISI

Universidad Simón Bolívar
Caracas – Venezuela

emendez@usb.ve

ABSTRACT

Currently, the requirements of Business sector promote more and more complex Information Systems. Reliability is one of
the quality characteristics widely expected by users and developers. This characteristic is architectural by nature since it can
be directly promoted by software architecture. This relation determines the importance of designing architectures that
guarantee reliable systems.

This article presents a research in progress whose objective is developing an architectural evaluation method based on
Reliability. The first step considered for designing the method included: the construction of a Conceptual Model, a model to
specify the architectural quality based on Reliability (Utility Tree), a set of scenarios associated to this characteristic. The
first model allows identifying the concepts inherent to Reliability and their relationships; the second one covers all quality
features related to Reliability in order to specify it; and the scenarios guide the software architect for anticipating context
stimulus and evaluating the architectural responses.

Keywords
Quality Evaluation, Reliability, Software Architecture.

INTRODUCTION

Kazman et al. (2000) state that if a Software Architecture is a key asset for an organization, then architectural analysis should
be a key practice for this organization. It is essential for organizations to count all the time on reliable systems, since their
operations and corporate data protection depend upon them. Reliability is one of the quality attributes that should be offered
by the systems to their users and, since quality characteristics of the software system are determined mainly by their
Architecture (Bass et al., 2003), it is fundamental to adopt strategies to assure reliability of Architecture and, thus, of the
System. The different architectural strategies guaranteeing reliability include components reuse and the use of such
architectural and design patterns and architectural styles in the software design that guarantee Reliability.

In this regard, this research in progress is aimed at developing a Method for the Reliability Assessment of Software
Architectures. To this end, the role of Reliability in Software Quality is first described; a Conceptual Model for Reliability in
Software Architectures is established, followed by a Utility Tree as a technique to specify Architectural Quality. Then the

 2926

mailto:agriman@usb.ve
mailto:vvalldosera@tspven.com
mailto:lmendoza@usb.ve
mailto:movalles@usb.ve
mailto:emendez@usb.ve

Grimán et al. Issues for Evaluating Reliability in Software Architectures

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

potential Reliability Scenarios, which should be considered for the Architecture when developing an Information System, are
presented to close with conclusions and recommendations.

RELIABILITY CONCEPTUAL MODEL IN SOFTWARE ARCHITECTURE

To specify the issues related to Evaluating Reliability in Software Architectures, an Ontology Creation Methodology was
employed: Ontology Development 101 (Noy and McGuinnes, 2001).

With the boom of Web-based distributed systems, Reliability has become a very desirable quality characteristic. Subjects or
concepts related to it abound in recent literature; however, this relationship is not mature. Consequently it was necessary to
create a model to represent concepts and their relationships with Reliability. The idea is to provide researchers and students in
this area with a reference framework.

Figure 1 show a set of concepts related to the Reliability of a Software Architecture. It can be observed that there is a large
number of conceptual relationships that, when considered, shall help to perform a much more systemic assessment of the
architecture, which will translate in a much more objective and effective selection of the software architecture, ideal for the
development of Information Systems (IS). Some of the concepts shown in these figures are described below.

Figure 1. Conceptual Model for Reliability of Software Architecture.

ISO/IEC 9126 (2000) proposes three quality issues: Internal Quality, measurable from the intrinsic characteristics; External
Quality, measurable based on product behavior; and Use Quality, measurable during the effective use by the user. ISO/IEC
9126 (2000) defines a Quality Model to measure Internal and External Quality of a product.

 2927

Grimán et al. Issues for Evaluating Reliability in Software Architectures

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

This Quality Model consists of six (6) Quality Characteristics to be considered at the moment of developing a Quality
software. ISO 9126 (2000) defines Reliability as one of these Quality characteristics. Reliability sub-characteristics are fault
tolerance, maturity and recoverability (ISO/IEC 9126, 2000).

Barbacci et al. (1997) classify system faults into: timing faults (timing overflows), semantics faults (wrong output values),
and resources faults (memory overflow due to misapplied pointers). Sommerville (2000) stresses that there are three
complementary approaches used to improve system Reliability: fault prevention, detection and removal; and fault tolerance.

Pressman (2003) states that all software faults are the result of design or implementation problems. Therefore, decisions
regarding techniques for fault prevention and tolerance are made during the Architecture design, whereas decisions as to
techniques for fault detection and removal are made in the system testing phase. Sommerville (2000) points out that these
three complementary approaches help improve system Reliability.

Bishop (2003), Bass et al. (1997), and Sommerville (2000) confirm that Availability is closely related to Reliability, although
it is not directly specified in ISO 9126 Standard. Losavio et al. (2003) state that Availability is an attribute of fault tolerance.
Availability directly depends on service suspensions in a software system.

Rogina (1999) states that Real-Time Systems should be reliable, since they have to be functioning although faults occur.
Service suspension in these systems leads to critical or catastrophic situations, resulting Reliability a key characteristic of
Real-Time Systems. Reliability measurements are focused on time proportions predicting system faults that lead to service
suspensions.

Bishop (2003) states that Security is closely related to Reliability, since access in a system should be granted only to the
allowed actors, and if the actor is not the one authenticated by the system, certain states guaranteeing system integrity should
be assumed by default.

Losavio et al. (2003) assure that sub-characteristic Maturity is present in the components and connectors of the software
system. Losavio et al. (2003) stress that fault tolerance implies having mechanisms or software devices guaranteeing the
software existence.

A mechanism can be in a component or integrated into a software component (Losavio et al., 2003). A mechanism can be
exceptions manager or redundancy manager (Losavio et al., 2003). Fault tolerance exclusively depends on the system
Architecture.

Recoverability represents the existence of mechanisms or software devices (Losavio et al., 2003). Redundancy favor data
recovery (Losavio et al., 2003). Recoverability is the data recovery capability in a software system (ISO/IEC 9126, 2000).
Kazman et al. (1998) state that Software Architecture determines or mainly favors the system Quality characteristics,
Reliability among them.

It is necessary to apply strategies at the architectural levels to ensure Software Reliability. The different architectural
strategies guaranteeing Reliability are components reuse and the use in software design of architectural patterns, design
patterns, and architectural styles favoring Reliability.

Architectural decisions are used in Software Architecture. Kazman et al. (2000) point out that one of the main reasons
motivating architectural Evaluation is that Software Architectures promote the characteristics of System Quality. All
approaches toward the achievement of system Quality characteristics are of architectural nature.

Evaluation methods determine the Architecture capability to support Quality characteristics. Evaluation methods are based on
a Quality Model that specifies the Quality characteristics to be evaluated.

Architectural Evaluation Methods require the use of evaluation techniques. The different kinds of techniques are: Scenarios,
Mathematical Models, Experience, and Simulation (Grimán et al., 2002).

 2928

Grimán et al. Issues for Evaluating Reliability in Software Architectures

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

The method that will be designed for the Reliability Assessment of Software Architecture (MECAS) is based on the Quality
Model provided by the ISO/IEC 9126 international standard. Non-functional or quality requirements are refined to sub-
characteristics that can be measured at the architectural level according to ISO/IEC 9126, and that are addressed through a
Utility Tree that will serve as a tool to specify Architectural Quality.

SPECIFICATION OF ARCHITECTURAL QUALITY – UTILITY TREE

A Utility Tree (UT) is a technique to transfer the goals of the quality characteristics of the system to Quality Scenarios that
can be proven. UA also helps to elicit a definition of the Quality requirements of the system in a practical and operational
sense that can be understood by the stakeholders (Jones and Lattanze, 2001).

In this sense, Figure 2 shows an example of a UT for Reliability and the associated Quality attributes than can be generated to
assess Reliability in Software Architectures and should be instantiated while MECAS.

In this UT, Reliability is established as the utility (root). Then Quality characteristics such as Maturity, Fault tolerance, and
Availability are determined and attributes associated to each characteristic are refined by describing Reliability scenarios,
prioritized according to risk and/or scope. A quality attribute can be represented by one or more scenarios. For example, six
(6) attributes would exist in Availability, represented by the six (6) scenarios established for this characteristic.

The notion of assessment of Quality characteristics, based on context, leads to adopt Scenarios as a descriptive means for
specifying and assessing Quality characteristics in Software Architecture (Kazman, 1999).

Figure 2. Example of a Utility Tree for Reliability.

RELIABILITY SCENARIOS

A scenario can be conceived as a framework conducting operations in the other structures. Scenarios, besides clarifying
requirements, help to prioritize which parts of the architecture should be elicited in the first place. A quality characteristic can
be used to motivate the creation of a scenario; but the impact of the scenario on other Quality characteristics should also be
considered (Kazman, 1999).

The Reliability analysis starts by considering several fault scenarios. The goal of the Architecture is to manage the different
types of faults: timing, semantic and system faults. The description of the fourteen (14) Reliability Scenarios proposed in this

 2929

Grimán et al. Issues for Evaluating Reliability in Software Architectures

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

research (see Table 1) consists of the six elements defined by Kazman (1999): stimulus, its source, response, environment,
stimulated artifact, and response measurement.

SCENARIO
Scenario 1: A system suffers a software failure in normal operation and is reset.
 Stimulus: A software failure occurs.
 Source of stimulus: Internal.
 Response: Reset.
 Environment: Normal operation.
 Stimulated artifact: System.
 Response measurement: Reset time.
Scenario 2: A power failure occurs in a system in normal operation and it is replaced.
Scenario 3: One of the servers fails in normal operation. Another server assumes operation.
Scenario 4: A failure occurs and the system notifies the user; the system can continue functioning in
degraded mode.
Scenario 5: The demands for electronic FTP come to a site where the FTP server is low, the system is
suspended for a period of time from the first failed demand and all resources are available while demands
are suspended.
Scenario 6: A failure occurs and the system can interrupt its service for a determined period of time. This
interruption is not measured versus the system availability unless it exceeds a well-defined interval.

Scenario 7: Demands for the electronic FTP come to a site where the FTP server is low; the system is
suspended for a period of time from the first failed demand. The user with the failed site continues sending
new orders every 10 minutes, the system queues the demands.

Scenario 8: A failure occurs during demand transaction in normal operation. The system recovers the
demands before the failure. No demand should be lost as a result of the overload or failure of the system.

Scenario 9: Due to previous deliberate intrusions into the system, public data are transformed into private
data and access is regulated in normal operation.

Scenario 10: In Normal operation, A failure occurs in a component of a critical system and it continues
providing its services uninterruptedly.

Scenario 11: A mistake in the replication process results in a loss of synchronization of a transaction in the
database with the backup of the database. The transaction is synchronized with the backup.

Scenario 12: A large number of customers need access to the server side object. The server has to deliver
data within a determined response time.
Scenario 13: A large number of demands on an individual data entity come to the system from a user
interface under normal conditions. The system has to transfer data within a determined period of time.
Scenario 14: An unexpected external message is received by a process during normal operation. The
process informs the operator that the message has been received and continues operating without
interrupting its services.

Table 1. Scenarios proposed.

The Conceptual Model, Utility Tree, and Reliability Scenarios presented in the previous sections will serve as input for the
Design of a Method for Reliability Assessment of Software Architectures, which will provide guidance for stakeholders
involved in the development process of IS when there is necessary to decide which is the most reliable software architecture
to achieve a quality IS.

CONCLUSIONS AND RECOMMENDATIONS

These preliminary results are intended to design a Method for Reliability Assessment of Software Architecture oriented
toward comparison of two potential Architectures with the view to selecting the one that best satisfies the initial quality
requirements of the system and that will be further improved during the Transformation of the Architecture. MECAS will be
inspired in the ATAM method (Architecture Trade-off Analysis Method) but customized for Reliability; it will have to be
refined and tested in an organization devoted to Information Systems development with the aim of determining its
effectiveness. To do this, the DESMET Methodology will be use.

It is established that Reliability is not a trivial quality characteristic but it relates multiple variables that have to be measured
and to which the system architecture should response.

 2930

Grimán et al. Issues for Evaluating Reliability in Software Architectures

Proceedings of the Eleventh Americas Conference on Information Systems, Omaha, NE, USA August 11th-14th 2005

REFERENCES

1. Barbacci, M., Kein, M. and Weinstock Ch. (1997) Principles for Evaluating the Quality Attributes of a Software
Architecture, Recuperado el 03 de Agosto de 2004 en www.sei.cmu.edu/pub/documents/96.reports/pdf/96tr036.pdf

2. Bass, L., Clements, P., Kazman, R. and Bass K. (1997) Software Architectures, Addison-Wesley Pub Co.

3. Bass, L., Clements, P. and Kazman, R. (2003) Software Architecture in Practice, Segunda Edición, Addison-Wesley.

4. Bishop, M. (2003) Computer Security - Art and Science, Addison-Wesley

5. Grimán, A., Pérez, M. and Mendoza, L. (2002) Evaluación Arquitectónica de Software basada en la Técnica de
Escenarios, AsoVAC 2002
Barquisimeto, Venezuela. 17-22 de noviembre de 2002, Recuperado el 18 de Junio de 2004 en
http://www.lisi.usb.ve/publicaciones/Evaluación%20Arquitectónica.pdf

6. ISO/IEC 9126 (2000) ISO9126 International Organization for Standarization Software Engineering Product Quality.

7. Jones, L. and Lattanze, A. (2001) Using the Architecture Tradeoff Analysis Method to Evaluate a Wargame
Simulation System: A Case Study, Recuperado el 22 de Agosto de 2004 en
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tn022.pdf

8. Kazman, R., Klein, M., Barbacci, M., Longstaff T., Lipson H. and Carriere J. (1998)The Architecture Tradeoff
Analysis Method, Recuperado el 08 de Junio de 2004 en
http://www.sei.cmu.edu/pub/documents/98.reports/pdf/98tr008.pdf

9. Kazman, R. (1999) Using Scenarios in Architecture Evaluations, Recuperado el 03 de Agosto de 2004 en
http://www.sei.cmu.edu/news-at-sei/columns/the_architect/1999/June/Architect.jun99.pdf

10. Kazman, R., Klein, M. and Clements, P. (2000) ATAM: Method for Architecture Evaluation, Technical Report
CMU/SEI-2000-TR-004, Recuperado el 05 de Junio de 2004 en
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr004.pdf

11. Losavio, F., Chirinos, L., Lévy, N. and Ramdane-Cherif, A. (2003) Quality Characteristics for Software
Architecture, Journal of Object Technology, 2, 2, pp. 133-150, Recuperado el 20 de mayo de 2004 en
http://www.jot.fm/issues/issue_2003_03/article2.pdf

12. Noy, N. F. and McGuinness, D. L. (2001) Ontology Development 101: A Guide to Creating Your First Ontology,
Stanford Knowledge Systems Laboratory Technical Report KSL-01-05 and Stanford Medical Informatics Technical
Report SMI-2001-0880.

13. Pressman, R. (2003) Ingeniería del Software. Un enfoque práctico, McGraw-Hill.

14. Regina, P. (1999) Tolerancia a Fallas en Sistemas de Tiempo Real, Recuperado el 13 de Julio de 2004 en
www.dc.uba.ar/people/proyinv/cso/rt- minix/Tesis.doc+sistemas+en+tiempo+real.html

15. Sommerville, I. (2000) Ingeniería del Software, Addisson-Wesley.

 2931

http://www.sei.cmu.edu/pub/documents/96.reports/pdf/96tr036.pdf
http://www.lisi.usb.ve/publicaciones/Evaluaci
http://www.sei.cmu.edu/pub/documents/01.reports/pdf/01tn022.pdf
http://www.sei.cmu.edu/pub/documents/98.reports/pdf/98tr008.pdf
http://www.sei.cmu.edu/news-at-sei/columns/the_architect/1999/June/Architect.jun99.pdf
http://www.sei.cmu.edu/pub/documents/00.reports/pdf/00tr004.pdf
http://www.jot.fm/issues/issue_2003_03/article2.pdf
http://www.dc.uba.ar/people/proyinv/cso/rt-

