
www.elsevier.com/locate/ijpe

Author’s Accepted Manuscript

Optimization of preventive maintenance through a
combined maintenance-production simulationmodel

O. Roux, D. Duvivier, G. Quesnel, E. Ramat

PII: S0925-5273(10)00433-0
DOI: doi:10.1016/j.ijpe.2010.11.004
Reference: PROECO4592

To appear in: International Journal of Production
Economics

Received date: 8 January 2010
Revised date: 28 October 2010
Accepted date: 4 November 2010

Cite this article as: O. Roux, D. Duvivier, G. Quesnel and E. Ramat, Optimization of
preventive maintenance through a combined maintenance-production simulation model,
International Journal of Production Economics, doi:10.1016/j.ijpe.2010.11.004

This is a PDF file of an unedited manuscript that has been accepted for publication. As
a service to our customers we are providing this early version of the manuscript. The
manuscript will undergo copyediting, typesetting, and review of the resulting galley proof
before it is published in its final citable form. Please note that during the production process
errorsmay be discoveredwhich could affect the content, and all legal disclaimers that apply
to the journal pertain.

http://www.elsevier.com/locate/ijpe
http://dx.doi.org/10.1016/j.ijpe.2010.11.004


Optimization of preventive maintenance through a
combined maintenance-production simulation model

O. ROUXa,∗, D. DUVIVIERb,c, G. QUESNELd, E. RAMATb,c,d

aLouvain School of Management and Catholic University of Mons, Chaussée de Binche,
151 B-7000 Mons - Belgium

bUniv Lille Nord de France, F-59000 Lille, France
cUniversité du Littoral Côte d’Opale, LISIC, BP 719, F-62228 Calais Cedex, France

dINRA, UR875 Biométrie et Intelligence Artificielle,
F-31326 Castanet-Tolosan - France

Abstract

Maintenance problems are crucial aspect of nowadays industrial problems. How-
ever, the quest of the efficient periodicity of maintenance for all components of
a system is far from an easy task to accomplish when considering all the antago-
nistic criteria of the maintenance and production views of a production system.
Thus, the objective is to simultaneously ensure a low frequency of failures by an
efficient periodic preventive maintenance and minimize the unavailability of the
system due to preventive maintenance. This implies a minimum impact on the
production. In this paper, several tools are combined to collaborate in order to
optimize multi-component preventive maintenance problems. The structure of
the maintenance-production system is modeled thanks to a framework inspired
by our previous research projects. The dynamic aspects are modeled by a com-
bination of timed petri-nets and PDEVS models and implemented in our VLE
simulator. The parameters of the resulting simulation model are optimized via
a Nelder-Mead (Simplex) Method.

Keywords: Metaheuristics, simulation, decision-making, multi-modeling,
Petri-nets, maintenance

∗Corresponding author
Email addresses: olivier.roux@fucam.ac.be (O. ROUX),

david.duvivier@lisic.univ-littoral.fr (D. DUVIVIER),
gauthier.quesnel@toulouse.inra.fr (G. QUESNEL), ramat@lisic.univ-littoral.fr
(E. RAMAT)

Preprint submitted to IJPE October 27, 2010



1. Introduction

The present economical context requires from companies that they prac-
tice an optimal exploitation of their production tools. In this purpose, every
decision maker is asked to assure a maximum availability of these production
tools at minimal cost [1]. The optimization consists in determining the best
“parameters combination” which provides the best values of the technical and
economical criteria (see for instance [2, 3]). However, in most cases, it appears
to be very difficult to use analytical approaches without formulating restrictive
hypotheses. In order to evaluate these performance criteria, simulation is the
best adapted solution. In this paper, we suggest an approach integrating opti-
mization and simulation. This approach consists in generating more and more
efficient solutions with an optimization tool and to evaluate them via a simu-
lation model until a halt criterion is satisfied. This approach has already been
studied in the literature (see for instance [3, 4]). This integration is illustrated
in figure 1. In the following sections, according to [5], this assembly of different
units, at different levels of combinations is called a ”hybrid model”.

Figure 1 was here

Figure 1: Optimization and simulation integration

Our work aims to provide a framework to facilitate the optimization of pro-
duction and maintenance through simulation. This paper focuses on the simu-
lation aspect. We want to develop a generic modeling tool for simulation, easy
to understand by decision makers. The objective is to facilitate the creation of
simulation models by the use of constructs (elementary components).

The remainder of this paper is organized as follows. The second section
presents the maintenance problem; the third section introduces the simulation
paradigms, formalisms and tools that constitute the bases of our framework;
the fourth section depicts our modeling component; the fifth section describes
an application of our optimization-simulation hybrid model. Finally several
conclusions and perspectives are given.

2. Maintenance strategies

A maintenance strategy is defined as a decision rule which establishes the
sequel of maintenance actions. Each maintenance action allows one to maintain
or restore the system in a specified state by using the appropriate resources.
Cost and duration are incurred to execute each maintenance action. Many pa-
pers dealing with preventive maintenance and replacement strategies have been
published in the last two decades [6, 7]. We consider for this paper one ba-
sic replacement policy (Bloc Replacement Policy BRP). Barlow and Proshan
[8] consider also the BRP where the replacements are undertaken at KT with
K = 1, 2, 3, . . . and T a fixed time, or at failure (see figure 2). Only new items
are used to perform replacement. Cp and Cc are respectively the preventive and
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corrective replacement costs. Similarly Tp is defined as the duration for pre-
ventive maintenance action, and Tc as the duration for corrective maintenance
operation. This maintenance strategy is also used in the simulation model de-
scribed in the following sections.

Figure 2 was here

Figure 2: Availability of the system subject to the Block Replacement Policy

In the result section, the availability is considered as the criterion to maxi-
mize. Effectively, since we are simultaneously considering production and main-
tenance in a context where production costs are higher than maintenance costs,
the availability is a more adequate criterion than the maintenance costs. How-
ever, our model can be used to optimize the maintenance costs if needed.

3. Simulation

This section presents the VLE simulator and the underlying paradigm and
formalism. This simulator relies on strong concepts and intrinsically provides
multi-modeling capabilities. This perfectly matches the objective of the simula-
tion and modeling tool that we are currently implementing. This is also largely
facilitated by the available extensions such as Petri-nets [9].

3.1. DEVS, VLE and Petri-nets

Nowadays, it is recognized that multimodeling is a powerful concept for
the modeling and simulation of large complex systems. At the end of 80’s, P.A.
Fishwick and B.P. Zeigler [10] introduced themultimodeling basis concepts. One
can define multimodels as large models which are composed of different types of
models (i.e. different paradigms or formalisms) [11]. Concepts like refinement
and hierarchical composition are basis of multimodeling. The first describes
the decomposition of one model into several other ones in order to refine the
behavior of the composed model. The last defines the opposite process: it is
called models aggregation. In this context, a major issue is how to deal with
the coupling of heterogeneous models. Several works dealing with the coupling
of heterogeneous models have already been published. For a review of concepts
and techniques, see the book of B.P. Zeigler et al. [12]. With DEVS, Discrete
Event System Specification [13], B.P. Zeigler has provided formal basis for the
construction of coupled model in a network or graph manner. In this section,
we focus on the Discrete Event System Specification formalisms (DEVS) and
their associated extensions, in particular Petri-nets.

3.1.1. Discrete Event Simulation

Our works take place in the Modeling and Simulation (M&S) theory defined
by B. P. Zeigler [13]. M&S theory tends to be as general as possible. It addresses
major issues of computer sciences. From artificial intelligence to model design

2



and distributed simulations, M&S theory aims to develop a common framework
(formal and operational) for the specification of dynamical systems. Many the-
oretical basis and formal extensions to DEVS were carried out, therefore, we
advise the second edition of B. P. Zeigler’s book [12] to have an overall picture
of these works. DEVS defines an atomic model as a set of input and output
ports and a set of state transition functions: M = 〈X,Y, S, δint, δext, λ, ta〉
where: X is the set of input values and Y is the set of output values

S is the set of sequential states
δint : S → S is the internal transition function
δext : Q×X → S is the external transition function
λ : S → Y is the output function
ta : S → R

+
0 is the time advance function

Q = {(s, e)|s ∈ S, 0 ≤ e ≤ ta(s)} is the set of total states
e is the time elapsed since last transition

Every atomic model can be coupled with one or several other atomic models
to build a coupled model. This operation can be repeated to form a hierarchy
of coupled models. The set of atomic and coupled models and their connections
are named the structure of the model. This leads to the following notation:

DEV SN = 〈X,Y,D,EIC,EOC, IC〉
where X and Y are input and output ports, D the set of models, EIC,

EOC and IC, respectively, input, output and internal connections. Moreover,
DEVS is an operational formalism, i.e. it provides the algorithms (the abstract
simulators) that implement the formal models. So, since the beginning of the
DEVS works, several DEVS simulators are implemented. The next section
develops the VLE simulator, based on the DEVS formalism.

3.1.2. VLE

VLE [14, 15] (Virtual Laboratory Environment1) is a software and an API
(Application Programming Interface) which supports multimodeling and simu-
lation by implementing the DEVS abstract simulator. VLE is oriented toward
the integration of heterogeneous formalisms. Furthermore, VLE is able to in-
tegrate specific models developed in most popular programming languages into
one single multimodel. VLE implements the Dynamic Structure Discrete Event
formalism (DSDE) [16] which provides the abstract simulators for Parallel DEVS
(PDEVS) [12] for the parallelization of atomic models and Dynamic Structure
DEVS (DSDEVS) [17] for the M&S of systems where drastic changes of struc-
tures and behaviors can occur over time. DSDE abstract simulators gives to
VLE the ability to simulate distributed models and to load and/or delete atomic
and coupled models at run-time. VLE proposes several simulators for particu-
lar formalisms; for instance, cellular automata, ordinary differential equations
(ODE), spatialized ODE, difference equations, various finite state automata
(Moore, Mealy, UML statecharts, Petri-nets. . . ) and so on.

1http://www.vle-project.org
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This framework can be used to model, simulate, analyze and visualize dy-
namics of complex systems. His main features are: multi-modeling abilities
(coupling heterogeneous models), a general formal basis for modeling dynamic
systems and an associated operational semantic, a modular and hierarchical
representation of the structure of coupled models with associated coupling and
coordination algorithms, coupling of pre-existing models, distributed simula-
tions, a component based development for the acceptance of new visualization
tools, storage formats and experimental frame design tools, and free and open
source software.

3.1.3. Petri-nets

In order to include the Petri-nets formalism in VLE, the DEVS approach
is applied to the Petri-nets [9]. Works dealing with the mapping of Petri-nets
into DEVS exists (see [18] for instance). In these works, places and transitions
are specified as atomic models and the network as coupled model. In our ap-
proach, a Petri-net simulator is wrapped in a DEVS simulator. In the following
paragraphs, we give the definition of a Petri-net: PN = (P, T, F,W,m0), where:

P = {p1, . . . , pp} is a set of places and p = card(P )
T = {t1, . . . , tt} is a set of transitions and t = card(T )
F ⊆ (P × T ) ∪ (T × P )
W is a weight function: F→N, W = {. . . , ((pi, tj), w

−

ij), . . . , ((tj , pi), w
+
ji)}

m0 is the initial marking: P→N, m0 = {(p1,m
0
1), . . . , (pp,m

0
p)}

In the context of this paper, this definition is not sufficient, therefore timed
transition and inhibitor arc are added to specification and simulator. The defi-
nition of a petri-net is now completed by a wrapping function denoted χ. This
function is divided into two parts:

χT = {(p, tj)} where: p ∈ X and tj ∈ T
χP = {(p, pi)} where: p ∈ Y and pi ∈ P

χT is the input transition-wrapping function and χP is the output place-
wrapping function. The n-uple of χP defines the effect of the marking of an
output place p of the model. When a token arrives to an output place, an
output event is build and send to associated output port. The function χT is
related to input events which have an effect on transition of a petri-net. If an
event arrives on a port belonging to χT , the transition tj is fired.

In this approach, information related to the events are ignored. When a
token or a set of tokens arrives in a place then one can send an event. This event
is marked. The internal dynamic of a Petri-net is controlled by the marking and
the structure of the network. While one ormore transitions are enabled then the
marking evolves. This evolution is independent of the concept of time, except
in the case of timed transition.

4. The MSP component

One of the objectives of this research is to create a versatile “component”
that can be assembled in various ways so as to study the interactions of schedul-
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ing and maintenance in production systems. Our work aims at presenting the
coupling of “as easily understandable as possible” simple-models rather than one
monolithic dedicated model. Another objective of our research is to study the
integration of decision and optimization tools with simulation models applied
to various fields. In the presented work, the VLE simulator is used to imple-
ment our so-called “MSP component” and the optimization tool is a Nelder-Mead
(Simplex) method, but other optimization methods might also be used. The MSP
component comprises several parameters (number of jobs to be performed, sta-
tistical distributions, durations of maintenances...) which are used as degrees of
freedom to be tuned by the decision markers and/or the optimization method.
Several MSP components are assembled to simulate production systems. Each
component contains two Petri-nets presented in figure 3 in their basic version.
The first one is the scheduler, named MaintScheduler (see figure 3(a)). It is
responsible for local scheduling rules as well as internal and external synchro-
nization aspects. The presented results are based on a basic scheduler but it
might be replaced by a more realistic scheduler based on a set of decision rules
for instance. The second Petri-net-based model, named MaintSchedProd, is the
actual operating part of the component, in charge of coupling production and
maintenance aspects (figure 3(b)). The whole “Maintenance and Scheduling
Production” model (MSP for short) is largely based on classical Petri-nets used
in production systems (see for instance [19]). It has been adapted to be used in
conjunction with a scheduler and a maintenance strategy to work properly in
our VLE simulator. In the version of the MSP component presented in figure 3,
two kinds of events may stop the production. The first one is the “breakdown
with recovery” (bdwr for short) event. It can only occur when a process is run-
ning and (only) leads to an extra-duration in the processing time. The second
one is the “breakdown with no recovery” (bdnr for short). This event stops
the production and the current job is discarded. A new instance of the same
job needs to be rescheduled to replace the discarded one. An additional delay
related to the corrective maintenance needed to repair the component is also
considered. Preventive maintenance (prmt) is also handled by the MSP compo-
nent but the related event does not stop the job being processed, instead the
preventive maintenance occurs at the end of the current job.

As shown in figure 3, the CMSP component is a coupled model. This cou-
pled version of the MSP component is composed of several interchangeable and
parametrized models. These models are presented in the following sub-sections.
Due to the implementation of the Petri-nets in the VLE simulator, all input-
ports are connected to specific input transitions “>|” that only accept the input
port as incoming event and no incoming arc.

More sophisticated versions of the MSP component are also used to generate
the results presented in section 5, when comparing VLE to other simulators.
These versions include additional external synchronization input-ports as well
as supplementary output-ports providing information about the state of the
MSP component to external ”schedulers”. These added functionalities are not
detailed here since they will require lots of space without providing substantial
useful information on the functioning of the MSP component.
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Figure 3(a) was here

Input/Output-ports:
bdnr: non-recoverable breakdown
cmnrdone: end of corrective maintenance
currentprocready: scheduler is ready
endproc: normal end of current process
endtempo: end of (external) temporization
fault: process rejected due to breakdown
idle: scheduler in idle state
interrupttempo: stop temporization (bdnr)
mpdone: product & prev. maintenance done
nextprocready: next component is ready
prevprocready: previous component is ready
standby: external synchronization
starttempo: start (external) temporization
synccurrentproc: synchronize component
syncnextproc: next component synchro
syncprevproc: previous component synchro
Initial marking (model parameters):
P1token: # tokens at place P1 at t=0
P2token: # tokens at place P2 at t=0

(a) Maint-scheduler Petri-net (MSC model)

Figure 3(b) was here

Input/Output-ports:
bdnr: non-recoverable breakdown
bdwr: breakdown with resume/recovery
cmnrdone: end of corrective maintenance
endofp: end of (current) process/product
mpdone: product & prev. maintenance done
prmt: preventive maintenance request
procend: process end or prev. maintenance
procrun: performing/processing a product
ready: ready to perform next product
reinit: initialization post-process/bdnr/prmt
standby: component received a reinit signal
start: immediate start of process
synchro: external synchro of component
Timed transitions, related parameters:
T4: bdwr duration, bdwrdur parameter
T5: cmnr duration, cmnrdur parameter
T6: prmt duration, prmtdur parameter
T89: might be timed to simulate setups
Initial marking (fixed):
1 token at P11 and 1 token at P89 at t=0.

(b) Maint-sched-prod Petri-net (MSP model)

Figure 3(e) was here

Figure 3(c) was here
(c) Details of the MSP component

Figure 3(d) was here
(d) CMSP component

Figure 3: The MSP component
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4.1. MaintSchedProd model

The MainSchedProd model is designed to be compatible with production
problems comprising stocks and auxiliary resources. The initial marking de-
pends on the configuration of the overall MSP component. In the presented re-
sults, there are one token at place P11 (reinit) and one token at P89 (standby)
when starting the simulation (at t=0). The MainSchedProd Petri-net model is
composed of two sub-nets. The first-one deals with synchronization aspects. It
is composed of two input-ports (synchro and reinit) and two output-ports
(standby and ready). The other sub-net comprises all remaining input-ports
and output-ports and acts as the “operating part” (that is, the machine or the
component of a machine to be modeled). Assuming that reinit and standby

are appropriately initialized, here is a summary of the model constraints and
internal functioning.

When no maintenance and breakdown event occur, the default path of to-
kens is the following. An external event on input-port start indicates that the
current MSP component is processing a job (i.e. there is a token in place P2).
At the end of current job, an external event is received on input-port endofp
to indicate the end of processing phases (i.e. a token is send to place P3).
In addition to this default path, when current MSP component is processing a
job, three paths are also possible when a recoverable breakdown bdwr, a non-
recoverable breakdown bdnr or a preventive maintenance prmt occurs. This
respectively send the token from P2, to T14→P4, T15→P5 or T2→P3→T9→P6.
As illustrated by the latter path, in this version of the MSP component preventive
maintenance is performed just after the end of the current job. Several (consec-
utive) preventive maintenance requests prmt are allowed. They are memorized
via several tokens in P9 and performed through several cycles in the loop con-
stituted of P3, T9, P6, T6. Similarly, several (consecutive) breakdowns with
recovery bdwr are allowed. They are memorized via several tokens in P14 and
performed through several cycles in the loop constituted of P2, T14, P4, T4.
Contrary to previous events, there is no loop when considering P5 (start of
bdnr). In fact, when bdnr occurs the objective is to restart the production as
soon as possible just after corrective maintenance. All corrective maintenance
operations are done at one time. The current product is scrapped and a new
product must be processed.

Several parameters are available in this atomic-model. The first one is the
number of tokens (parameterized by the auxresnum parameter) that are re-
quired to fire the T10 transition. It is used to allow multiple synchronization
signals/events before sending the ready signal. It might also be used to include
auxiliary resources in our models. In the presented results, this parameter is
systematically set to one. Three additional parameters are available through
the (constant) durations of the T4, T5 and T6 timed-transitions. They are used
to parametrize the duration of breakdowns and maintenances. In this paper,
these parameters are set to constant values, but it is also possible to add several
additional models to implement variable durations either randomly generated
(see for instance the MaintDuration model) or read from actual production
logs/histories. Setups might be included by using a timed transition at T10,
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transport or setup delays might also be considered by using a timed transition
at T89.

This paper focuses on maintenance aspects, so the MaintSchedProd model
is configured in a simplified version, ignoring breakdowns with recovery (bdwr),
stocks and auxiliary resources. This leads to a systematic “default wiring” where
the output-port ready is connected to input-port start and the output-ports
mpdone and cmnrdone are connected to input-port reinit.

The MaintSchedProd needs a scheduler to obtain start/stop events, as well
as a maintenance strategy to deal with breakdowns and preventivemaintenance.

4.2. MaintScheduler model

The “Scheduler” model (MaintScheduler, or MSC for short) is based on a
basic scheduling algorithm. In the presented study, its aim is to systemati-
cally load the production process at its maximum level of production through
the MaintSchedProd model. This allows us to concentrate on maintenance
aspects when considering heavily loaded periods. The details of its function-
ing are not explained in this paper due to lack of space. However, it can
be summarized in a few words. This scheduler acts as an infinite loop that
sends sequences of events to the MSP model to process as many as possible
jobs while taking into account the events provided by the maintenance strategy
(MaintStrat<strat>). There is also an internal loop (materialized through
the cycle P10→T11→P11→T12→P12→T14→P9→T15→P90→T10→P10) that is
used to restart scrapped jobs resulting from bdnr breakdowns. The place P10

acts as P2 of the MSP model. A token in this place indicates that a job in run-
ning. The place P11 send its token to T13 when no non-recoverable breakdown
occur, it sends its token to T12 otherwise.

The MaintScheduler uses the MaintDuration model to generate process
durations. The MaintDuration model is reduced to its simplest version to
generate random durations: When an event occurs at its start input-port, a
random duration (using a uniform distribution for example) is generated and
a countdown is started. When the countdown is over or when an event occurs
at the interrupt input-port, an event is send to the end output-port and this
model is set to an “idle state” waiting for next start event. However, it is
possible to replace this model by a more sophisticated one that reads a list
of orders from a file and sorts these orders on the basis of various criteria so
as to implement classical dispatching rules such as SPT (Shortest Processing
Time first) for example... The interrupt input-port is also used to regenerate
same duration to model several processing attempts of the same order when
breakdowns occur. The initial marking depends on the interconnections of the
overall MSP component, as well as the kind of production (cyclic production...).
In order to facilitate the integration of this model in various schemes, the initial
marking (i.e. the number of tokens available at t=0) in places P1 and P2 are
parametrizable through the configuration file of the models. The duration of the
scheduled products are not stored and/or generated in/by this model. It also
needs an external MaintDuration model to compute these durations. In this
paper, the durations are randomly generated by the MaintDuration model.
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It is a temporization that can be interrupted when a breakdown occurs (see
figure 3(c)).

The tandem MaintScheduler-MainSchedProd requires amaintenance strat-
egy to deal with breakdowns and preventive maintenance.

4.3. MaintStrat<strat> model

The “Maintenance-Strategy” models (MaintStrat<strat>, or MS<strat>
for short) are based on various maintenance strategies. Several models
MaintStrat<strat> can be used. For instance, the bloc-strategy is available
through the MainStratBloc model. It relies on a MaintDistrib<Distrib>

model to “compute” breakdowns occurrences. In the presented example, the
MainStratBlocmodel is directly implemented in C++. However, it might also
be implemented via a Petri-net, a finite state automaton or a more sophisti-
cated coupled-model. The MaintStratBloc is controlled by two input-ports,
namely cont and stop, that are respectively used to (re-)activate or deactivate
the outputs. The output-ports are used to send recoverable and non-recoverable
breakdowns (through bdwr and bdnr output-ports) as well as preventivemainte-
nance requests (through prmt output-port). The algorithm is given in figure 4.

tbpm ←− pm
while not EndOfSimulation do

Generate tbf using MaintDistrib distribution
if tbf < tbpm then // Next event is a breakdown (bdnr) followed by corrective maintenance

Wait tbf time-units
if OutputAllowed then Send an event on bdnr output-port
tbpm ←− tbpm − tbf

else // Next event is a preventive maintenance (prmt)
Wait tbpm time-units
if OutputAllowed then Send an event on prmt output-port
tbpm ←− pm

tbf : time before failure
tbpm : time before preventive maintenance
pm : preventive maintenance period; this is a parameter of the algorithm
OutputAllowed: boolean variable (flip-flop on cont and stop input-ports)
MaintDistrib : Probability distribution (this is seen as a parameter)

Figure 4: MaintStratBloc algorithm.

The three main atomic-models MaintScheduler, MainSchedProd and
MaintStratBloc constitute the heart of the MSP component. The following
sub-section presents one simple example of additional models that can be used
to enhance the component or to allow the assembly of several components: The
MaintSwitch model.

4.4. MaintSwitch model

The MaintSwitchmodel is a simple Petri-net used to interconnect MSP com-
ponents. The objective of thismodel is to send an event from the input-port (in)
to the output-port out1 or out2 according to (respectively) the events received
through input-ports avail1 or avail2 (see figure 7). If one or several couple(s)
of events are simultaneously sent to the input-ports avail1 and avail2, one
output-port (out1 or out2) is randomly selected.
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4.5. Coupled CMaintSchedProd component

Thanks to the intrinsic properties of DEVS models, the “Coupled Mainte-
nance and Scheduling Production” model (CoupledMaintSchedProd, or CMSP

for short) is composed of the previously described models linked together (see
figure 3(d)). It constitutes the “building bloc” (i.e. an elementary component)
of our parametrized simulation model to be optimized through an optimization
tool.

4.6. Modeling through a Graphical User Interface

Figure 5 was here

Figure 5: The OptiMain GUI used to assemble four coupled models in a parallel/serial scheme

In order to facilitate the composition of simulationmodels, we are adapting a
GUI (see figure 5) to the development of maintenance-production optimization
and simulationmodels based on the VLE simulator. Previously dedicated to the
rapid development of maintenance simulation models, this GUI was developed
in the context of the OptiMain project [20, 7]. However, in this paper the
production aspects are also considered contrary to the OptiMain project that
exclusively focuses on the maintenance point of view.

5. Our results

After a brief introduction to the Nelder-Mead optimization method, this
section presents the results obtained by the optimization of a production system
via our hybrid model.

5.1. Nelder Mead

In the presented study, the optimization tool is a Nelder-Mead [21] (Simplex)
method, but other tools might be used. To be more precise, our implementa-
tion uses the Nelder Mead method included in the Gnu Scientific Library [22].
Nelder-Mead is a local optimization method which is frequently used. This de-
terministic method is known as “direct”: it tries to solve the problem by directly
using the value of the objective function, without calling upon its derivative.
This method is especially appreciated for its robustness, its simplicity, its low
use of memory (few variables) and its short computing time. This algorithm is
robust because it is very tolerant with the noises in the values of the objective
function. Contrary to the other methods which start from an initial point, the
Nelder-Mead method uses a “polytope” departure. A polytope is a geometrical
figure of N + 1 points, N being the dimension of the problem. The starting
polytope is composed by a randomly selected point in the search space; and N
other points selected so as to form a base, generally an orthogonal base. At each
iteration of the algorithm, the N+1 points are used to determine a set of points
which are obtained by using very simple algebraic operations, which result in
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elementary geometrical transformations (reflection, contraction, expansion, and
polytope contraction). These points are accepted or rejected according to the
value of the objective function. The polytope changes, it extends, contracts,
with each movement. Thus it adapts to the search space, until it approaches an
optimum. To determine the adequate transformation, the method uses only the
value of the objective function at the considered points. With each transforma-
tion, the worst current point is replaced by the new given point. The stopping
condition of the algorithm depends on the difference in value of the objective
function between the best and the worst points.

5.2. Experimental results

In order to assess our coupled model, two “academical” scenarii based on
two parametrizations of a CMSP component are used to determine the optimal
preventive maintenance period (pm) on a mono-component production system.
In figure 6, the abscissa are the values for pm. The ordinates are the percentage of
availability, this corresponds to the ratio between the total time while the CMSP
is processing jobs over the total elapsed time (i.e. 10000 in these examples).
In the first case (figure 6(a)), the breakdowns have no significant impact on
the production excepted when preventive maintenance occurs so often that it
reduces the availability of the machine or equipment modeled by the CMSP.
In the second case (figure 6(b)), the breakdowns have significant impact on
the production and the maintenance period must be carefully adjusted. These
are well-known results, but they perfectly illustrate the fact that it is crucial
to estimate the impact of the maintenance on the production before trying to
optimize themaintenance policy. So, we assume that the studied problem is such
that the maintenance has significant impact on the production in the remainder
of this paper.

Figure 6(a) was here
Parameters:
jobs durations: uniform distribution [2, 5]
breakdowns distribution: Weibull(13,20)
bdnr / prmt duration: Tc=2.5 / Tp=2.5
total duration: 10000

(a) One CMSP with short breakdowns

Figure 6(b) was here
Parameters:
jobs durations: uniform distribution [2, 5]
breakdowns distribution: Weibull(13,20)
bdnr / prmt duration: Tc=9.5 / Tp=3.5
total duration: 10000

(b) One CMSP with long breakdowns

Figure 6: To maintain or not to maintain? This is the question!

Several preliminary tests have been done, using serial or parallel combina-
tions of CMSPs. By extension, all production structures are accessible to our
simulation model through a decomposition in serial and/or parallel pairs of
CMSPs. In order to present the minimum serial and parallel pairs of CMSPs, the
considered simulated and optimized model is composed of four identical CMSPs
as presented in figures 5 and 7.

Our aim is to determine optimal values of the preventivemaintenance period-
icity for the BRP strategy. The components are parametrized as follows: the du-
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Figure 7 was here

Figure 7: Four coupled models in a parallel/serial scheme

Figure 8 was here

Figure 8: Gantt chart (First operations at the beginning of the simulation T ∈ [0, 1000])

ration of preventive maintenance action is set to Tp = 10 and duration of correc-
tive maintenance operation is Tc = 60, lifetime of each component is modeled by
aWeibull distribution (λ = 300, k = 200). The processing times of the scheduled
jobs are randomly generated according to a uniform distribution ranging from
dmin= 20 to dmax= 50 time-units. The presented average results are obtained
from twenty runs of T = 18000 time-units. Each evaluation corresponds to the
average value over seven simulations to take stochastic aspects into account.
In the presented results, the set of parameters (λ, k, Tp, Tc, dmin, dmax, T, pm) is
common to all the CMSP excepted for the pm parameter. The number of runs
(20), the number of simulation per evaluation (7) and the number of time-units
per simulation (18000) are chosen to obtain statistically significant results.

The Nelder-Mead optimizationmethod gives the following average results for
components 1 to 4, (pm1, pm2, pm3, pm4) = (281.29, 467.55, 390.57, 292.54) with
availability equals to 92.9% in 23 iterations (i.e. 525 simulations, corresponding
to 75 evaluations). The results are obtained in approximately 8 minutes on a
Intel Core2 Duo CPU running at 2.80GHz. The synchronizations resulting from
the consideration of the production leads to add gaps in the schedule as well
as extra-delays before preventive maintenance periods. This is illustrated by a
Gantt chart given in figure 8. These gaps and delays in turn modify the global
availability of the system.

In order to illustrate the quality of the solution found by the Nelder Mead
algorithm, it is possible to use a combination of pmi inspired by the best ever
found solution to plot the variation of the availability while pm varies (see fig-
ure 9). To be more precise, pm1 = pm4 = pm, pm2 = pm3 = k ∗ pm, where k is the
ratio between the maintenance period of CMSP2 and CMSP3 and the maintenance
period of CMSP1 and CMSP4 inspired by the best ever found solution. The only
modification applied to the best ever found solution is the balance of pm1 and pm4

as well as pm2 and pm3 to take the symmetrical aspects of the modeled problem
into account. In figure 9, each evaluation corresponds to the average value over
seven simulations, the standard-deviation is also plotted via vertical segments
above and below each average value. This graphical result shows that the “op-
timal” solution found by the Nelder Mead method is on top of a periodic curve
that shows an overall decreasing amplitude. The periodical vertical fronts cor-
respond to the values of pm that are multiple of the Mean Time Between Failure
(MTBF), conditioned by the Weibull parameters in this example. The decrease
of the availability illustrates the increasing degradation of the system, subject
to more and more breakdowns, due to the lack of preventive maintenance.

In order to compare our results to the OptiMain [20, 7] and Reliabili-
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Figure 9 was here

Figure 9: Impact of the maintenance period (pm) on the availability in the 4-CMSP model

tix [23, 24] models, it seems reasonable to configure our model to obtain similar
results based on figure 9, however it is not possible to integrate the production
in the OptiMain and Reliabilitix tools. Moreover, these tools are based on a
global synchronization of components, incompatible with the previously pre-
sented functioning of the CMSPs. Indeed, the CMSPs are configured in such way
that the corrective maintenance automatically starts as soon as possible in each
component without global synchronization. This makes sense when considering
a production line with several teams of maintainers. However, the OptiMain
and Reliabilitix tools are based on several strategies which impose to wait that
all parallel components fail before stopping the whole system, start the mainte-
nance of all components that require maintenance and restart the whole system
at the end of lastmaintenance action. Moreover, in order to generalize ourmodel
and to extend our comparisons to other tools, the following ”repair-strategies”
are available in our model: repair all components independently (indep), repair
all components in parallel (para), repair all components in sequence (seq), re-
pair all parallel components simultaneously and other components in sequence
(seqpara). In addition to these strategies, it is possible to perform maintenance
actions while some components of the system are still running or to impose to
stop the whole system before starting maintenance actions.

In the previously presented results, lifetime of each component is modeled
by a Weibull distribution (λ = 300, k = 200). These parameters lead to almost
constant MTBF. This is useful to amplify the impact of the variation of pm on
the system in figure 9, but not realistic when considering actual systems. In the
following results, the Weibull distribution (λ = 300, k = 5) and the seqpara and
indep repair-strategies are used. The production has also been disabled in our
CMSPs to compare our results to OptiMain and Reliabilitix. Figure 10 shows that
the results of the three models are quite similar and even indistinguishable when
considering different values of the preventive maintenance period (pm). When
pm is greater than 350, Optimain and Reliabilitix tend to give indistinguishable
values. It is also possible to parametrize our CMSPs to obtain similar results. The
slight differences in the results of the three models might be explained by the
completely different approaches and modeling tools that are used to model the
described problem. Further investigations also show that the differences between
the pseudo random number generators might partly explain the differences in
the results. However these results are sufficient to experimentally validate our
model by comparison to two previously published approaches when disabling
the production.

Figure 10 was here

Figure 10: Comparison of VLE, OptiMain and Reliabilitix on the 4-CMSP model
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Moreover, in order to show the impact of the repair-strategies as well as the
global synchronization mechanism implemented in our model, we have chosen
to plot the maximum (using indep strategy with no synchronization) and the
minimum values (using seqpara strategy with a global synchronization mecha-
nism that implies to stop the whole system whenever a breakdown occur) that
are generated by the various configurations available in our model. The ob-
tained minimum and maximum results perfectly bound the results obtained by
Optimain and Reliabilix and experimentally validate the obtained results.

Model Optimal Average Std. dev.
name pm availability availability
OptiMain 114 90.53% 0.6044
Reliabilitix 140 91.45% 0.6601
VLE seqpara 126 87.17% 0.8084
VLE indep 146 90.40% 1.0962

Table 1: Comparison of best availabilities given by the models

The values for the optimal preventive maintenance period and the corre-
sponding availabilities given by the models are presented in table 1. On the
basis of pm values, these results show that, when using the indep strategy, our
model (denoted by VLE indep) provides similar results than those obtained by
Reliabilitix. When using the seqpara strategy, our model (denoted by VLE

seqpara) provides similar results than those obtained by OptiMain. On the ba-
sis of the average availability, the obtained results are similar when taking the
standard deviation into account. However, the seqpar strategy gives the worst
value for the average availability, this is due to the fact that CMSP1, CMSP2//CMSP3
and CMSP4 are repaired in sequence, but also to the fact that we add a strict con-
dition which imposes that each maintenance action requires to stop the whole
system. The validation of our hybrid model is confirmed by additional tests
which are not presented in this paper due to lack of space.

6. Conclusions and perspectives

Thanks to our VLE simulator, we have presented in this paper an hybrid
method composed of the Nelder-Mead algorithm hybridized with a simulation
multimodel. Thismultimodel is decomposed into severalmodels implemented in
the VLE simulator. This implementation is largely simplified by the extensions
of the VLE simulator which provides several skeletons (similar to design patterns
or constructs in other modeling tools/languages) to guide the implementation
of the models.

Our results have been experimentally validated by comparisons to two previ-
ously published approaches when disabling the production. However, contrary
to these approaches, our model is able to integrate production aspects and to
simulate sophisticated scheduling and maintenances strategies thanks to the
integration of several extensions in our VLE simulator such as ”Decision rules”.
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All possibilities of the simulation model are not used in this paper. Our next
objective is to provide a new framework to optimize the combined scheduling
of production and maintenance. Short term work will consist in the integration
of more efficient maintenance strategies as well as sophisticated schedulers. We
are also working on the building blocs (constructs) of our multimodels that will
provide a complete GUI, easy to understand by decision makers.
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