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Abstract

The efficient and accurate management of time in simulations of hybrid
models is an outstanding engineering problem. General a priori knowl-
edge about the dynamic behavior of the hybrid system (i.e., essentially
continuous, essentially discrete, or “truly hybrid”) facilitates this task. In-
deed, for essentially discrete and essentially continuous systems, existing
software packages can be conveniently used to perform quite sophisticated
and satisfactory simulations. The situation is different for “truly hybrid”
systems, for which direct application of existing software packages results
in a lengthy design process, cumbersome software assemblies, inaccurate
results, or some combination of these independent of the designer’s a pri-

ori knowledge about the system’s structure and behavior.
The main goal of this paper is to provide a methodology whereby

simulation designers can use a priori knowledge about the hybrid model’s
structure to build a straightforward, efficient, and accurate simulator with

existing software packages. The proposed methodology is based on a for-
mal decomposition and re-articulation of the hybrid system; this is the
main theoretical result of the paper. To set the result in the right perspec-
tive, we briefly review the essentially continuous and essentially discrete
approaches, which are illustrated with typical examples. Then we present
our new, split system approach, first in a general formal context, then in
three more specific guises that reflect the viewpoints of three main com-
munities of hybrid system researchers and practitioners. For each of these
variants we indicate an implementation path. Our approach is demon-
strated with an archetypal problem of power grid control.
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1 Introduction

A major technical problem encountered when building simulators that combine
discrete event and continuous components is to precisely and efficiently align
in time three discrete elements: i) the points of time at which solutions to
the model’s continuous equations are calculated; ii) events that are contingent
on the continuous state variables; and iii) events that are contingent only on
discrete variables. Solutions to this problem are numerous, but this plurality
is due in large part to each solution being focused on a specific problem or
small class of problems. In this paper, we discuss two types of solutions that
are representative of the majority of extent simulation methods for combined
systems. By merging specific aspects of these two methods we create a third
that mitigates their greatest weaknesses and, at the same time, addresses a
greater range of problems than either method alone.

We begin by reviewing what we consider to be essentially continuous and
essentially discrete approaches to managing time in hybrid simulations, illustrat-
ing these with typical examples of models that extent simulation tools handle
well. Then we present our new approach, first in a general context that de-
fines the hybrid simulation problem, followed by three more-specific guises that
reflect three popular schemes for describing hybrid models. We indicate an im-
plementation path for each of these variants. Finally, we illustrate our approach
on an archetypal problem of power grid control.

The paper is structured as follows. In Section 2 we present a rough clas-
sification of the hybrid systems that existing tools aim to simulate: mostly
continuous, mostly discrete, and a third class that is neither mostly discrete
nor mostly continuous and hereafter will be called truly hybrid. In Sections 3
and 4 we discuss the two widely used approaches to simulating hybrid systems,
namely Continuous Systems Simulation Languages (CSSL) and Combined Dis-
crete Event/Continuous Simulation packages. These can be effectively used to
simulate mostly continuous and mostly discrete systems, respectively, but they
are not suited to simulating truly hybrid systems. Section 5 introduces our
split hybrid system approach that integrates these existing approaches into a
comprehensive simulation capability. Section 6 summarizes and concludes the
paper.

2 Three Main Classes of Hybrid Dynamics

The notion of a hybrid system is encompassed by a broad range of modeling
formalisms. The relative scope and complexity of a model’s discrete and contin-
uous dynamics favors a particular choice of modeling formalisms. This in turn
determines the selection of simulation tools.

A clear-cut, unambiguous classification of hybrid systems is complicated and
beyond the scope of this study. We shall limit ourselves to a rough, but intu-
itively appealing and practically useful, taxonomy whose main goal is to guide
the selection of appropriate simulation technologies for hybrid systems. When
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judging the suitability of a technology, one has to weigh several factors that
include (i) the conceptual simplicity and parcity of the underlying model(s),
(ii) the effort required to construct the simulation software, with special em-
phasis on using existing, off-the-shelf simulation packages, (iii) the accuracy of
the expected results, and (iv) the actual running time of the simulation on the
available hardware.

(a) Type 1 (b) Type 2

(c) Type 3

Figure 1: Typical trajectories for the three classes of hybrid systems.

At a very cursory, but intuitively appealing, level our classification divides
hybrid systems into (1) mostly continuous, (2) mostly discrete, and (3) truly
hybrid. A more precise characterization reads as follows:

1. Type 1 systems with continuous trajectories that have or are interrupted
by rare events,

2. Type 2 systems with essentially discrete event dynamics, possibly with
rare intermittent intervals of continuous behavior, and

3. Type 3 hybrid systems with significant, interacting continuous and discrete
dynamics.
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These three types of systems create distinguishable trajectories, as illustrated
in Fig. 1.

Systems of Type 1 have continuous, typically non-constant, trajectories that
are interrupted by occasional discontinuities (discrete events), and these events
are triggered by threshold crossings. More precisely, when the continuous trajec-
tory of the system reaches a certain (threshold) value, it jumps instantaneously
and discontinuously to a new value (state). Occasionally, the threshold values
are known in advance, but typically they become available only as the solution
progresses. In other words, an event is detectable only when it actually occurs1.

Event locations in time are determined by the roots ti of a set of equations
fi(t) = 0, where i = 1, ..., n. In general, the continuous functions fi(t) are
written in terms of the model’s time dependent, continuous state variables, i.e.,
fi(t) = fi(x1(t), ..., xm(t)). In this way, the time localization of discrete events
and the construction of the continuous solution between events are intimately
connected.

Systems of Type 2 have essentially discrete dynamics with rare intermittent
stretches of non-constant continuous behavior. The discrete events are generated
at times ti, i = 1, 2, ... , that are determined recursively. The system state is
unchanging (constant trajectory) between events. A state transition function
∆ transforms the current state into a new state at times dictated by a time
advance function ta. Denoting the system state variables by x, the general form
of the discrete event evolution is

xn+1 = ∆(xn)

tn+1 = tn + ta(xn) . (1)

This formulation encompasses the DEVS formalism and most other discrete
dynamic modeling frameworks (see, e.g., [1–3]). It is important to note that
the state variables can be complex structures such as lists, queues, sets, etc.,
and that the dynamics described by Eqn. 1 can be sparingly interrupted by
continuous evolutions.

Systems of Type 3 are truly hybrid systems; they are at the core of the
approach we advance in this paper. These systems consist of multiple continuous
and discrete components that are strongly interconnected. Discrete behaviors
are described by both recursively generated event sequences and functions that
depend on continuously evolving variables.

Due to the strong intertwining of continuous dynamics and discrete events,
the mathematical formulation of these systems is quite cumbersome (see, e.g.,
[2, 4–7]). Formalisms that would cover both aspects remain - for various reasons
- anchored in the techniques and philosophy germane to one or the other of
the two domains. Indeed, [5, 6] is attached to continuous techniques, while
[2, 4, 7] favor a discrete event approach. Because of this, existing simulation
packages and techniques that are supposed to address complex hybrid systems

1We note that this “definition” excludes continuous systems with chaotic behavior. Indeed,
while in these systems there are no discrete events, after a certain time, the dynamics cannot be
anticipated (predicted) and no “fix” - continuous or discrete - could restore this predictability.
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meet with only limited success. They remain either difficult to build from
scratch or inaccurate when assembled from off the shelf components; see, e.g.,
the problem of time step selection in EPOCHS [8]; the small timing errors
intrinsic TrueTime’s management of events [9]; and the long execution times of
discrete event models implemented with Modelica [10].

The goal of this paper is to address the problem of managing time in simula-
tions of Type 3 systems by proposing an approach that is truly hybrid in spirit,
convenient from the engineering viewpoint, and efficient and accurate from the
users’ standpoint. To begin, we present a critical analysis of the two main exist-
ing approaches. As we illustrate in Sections 3 and 4, these two approaches are
practicable when the systems are essentially continuous or discrete, respectively.
Our third approach, presented in Section 5, becomes interesting for truly hybrid
systems. Collectively, these three approaches cover the range of hybrid systems
described above.

3 Continuous System Simulation Languages

There has been a concerted effort over the last several years to build discrete
event simulation packages using available continuous system simulation lan-
guages (CSSLs). The Modelica user community has been particularly active
in this area (see, e.g., [10–14]). These efforts have produced several working
products and suggestions for language extensions that could facilitate the con-
struction of discrete event simulation models [15].

The specific techniques that are used to construct discrete event models with
CSSLs vary widely, but there are three main themes (a nice overview is given
in [12]). The most common approach is to use the time or state event features
of the simulation language as a basic discrete event modeling tool (see, e.g.,
[10, 13, 16]). The use of state events leads to an activity scanning world view
and the use of time events to an event-oriented world view (see, e.g., [2]).

A second approach is used in [14] to reproduce much of the Arena discrete
simulation package in the form of a library that can be used from within a
Modelica model. Here, essential discrete event functionality is implemented
outside of Modelica using the C language. The external function facilities of
Modelica are used to access these capabilities.

Several research groups have approached hybrid system simulation by com-
piling Modelica models into a discrete event simulation [15, 17]. The implemen-
tation described in [17] uses quantized state integration to handle continuously
evolving components, and in this way resembles the simulation tools described
in Section 4. In [15], an existing Modelica compiler is extended to include new
language features for discrete event system modeling.

3.1 Advantages

The most compelling advantage of this approach is its strong support for sim-
ulating complex continuous systems. This includes both advanced numerical
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algorithms and libraries of reusable component models. Advanced CSSLs sub-
stantially reduce simulator development time by allowing developers to work
directly with the mathematical model. The compiler automates the symbolic
manipulations and code production that are needed to create a working simula-
tion. This saves time, avoids low level programming errors, and is, consequently,
essential for modeling large, complex systems.

3.2 Disadvantages

The primary disadvantage of this method is rooted in the language features that
make CSSLs what they are. CSSLs are designed for numerical computation. As
a result, they are missing many of the features that are present in languages
favored by builders of discrete event simulation software. These missing fea-
tures include dynamic memory management and objects that support run-time
binding of methods (i.e., objects in the sense of object oriented programming
languages such as Java and C++ [18]).

This lack of general purpose, object-oriented language features seriously
hampers the construction of essential data structures such as lists, queues, sets,
and maps. Packet level network models and manufacturing process models are
two concrete examples of discrete event systems that require these kinds of dy-
namic data structures. It is worth noting that many popular discrete event
simulation tools, both commercial and academic - examples include OPNET,
OMNEST and OMNeT++, GloMoSim, NS-2 and NS-3, and Flexsim - use gen-
eral purpose programming languages to define new dynamic components.

Extended CSSLs that include strong support for object oriented program-
ming, dynamic memory management, and other common features of general pur-
pose programming language could greatly facilitate the construction of discrete
event models. However, new language features necessarily expand the scope for
programmer errors (this is particularly true of dynamic memory management),
complicates compiler implementation, and generally make the language more
difficult to use. The extent to which CSSLs can be extended while preserving
their basic utility as a continuous system simulation tool remains to be seen.

3.3 Type 1 Example: Automotive Engine Control

A four-stroke internal combustion engine has an inherently hybrid represen-
tation. The power train and air pressure dynamics are continuous processes,
whereas the pistons are modeled with four discrete operating states: intake,
compression, combustion, and exhaust [19]. The time interval separating sub-
sequent discrete states depends on the continuous motion of the power train,
which in turn depends on the torque produced by the pistons.

This system is a Type 1 hybrid system. Discrete events in this model are
triggered, almost exclusively, by threshold crossings of a non-trivial continuous
function. Existing continuous system simulation languages, such as Modelica,
can model these types of processes efficiently and accurately.
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Figure 2: Pressure as a function of time in a single cylinder engine. The discrete
changes in pressure are readily apparent.

The classification of this model as a Type 1 model is justified by Fig. 2,
which shows the variation of air pressure with time inside of a single cylinder
engine. The smooth variation in pressure between combustion events is modeled
by continuous equations, but the rapid pressure changes immediately following
combustion are modeled by a discrete event; that is, by an instantaneous change
in pressure. We simulated the model using DYMOLA, a commercial tool that
implements the Modelica language. Discontinuities in the pressure function are
readily apparent. Note, for example, the instantaneous change in pressure at
t ≈ 0.13.

This combustion engine model is a fairly typical example of a system that
is handled well by available continuous system modeling packages. Discrete dy-
namics in these types of models are characterized by events that are conditional
on continuous variables satisfying logical statements. Figure 2 nicely illustrates
the kind of trajectory that is characteristic of Type 1 systems.

4 Discrete Event Simulation Approaches

Combined continuous/discrete event simulation capabilities are available in most
discrete event simulation tools. Two seemingly predominate approaches are dis-
cussed here. Both techniques allow for, and even promote, direct interactions
between continuous and discrete variables in a hybrid model. Because of this,
simulators that support these approaches must have tightly coupled continuous
and discrete event simulation algorithms.

The Generalized Discrete Event System Specification (GDEVS [7, 20]) is an
overarching formalization of several hybrid simulation techniques couched in
terms of the Discrete Event System Specification (DEVS). DEVS is a modular
modeling formalism for discrete event systems. GDEVS based approaches seek
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to preserve this modular modeling approach by allowing any desired decompo-
sition of the hybrid system model. In particular, GDEVS-like techniques allow
separating the event detection and continuous dynamics of a hybrid process into
separate sub-components.

Within a GDEVS-like modeling framework, continuous sub-components ex-
change the coefficients of polynomial functions that approximate their internal
dynamics, thereby simulating continuous interaction in a modular and event
driven way. With this technique it is possible to approximate a coupled hybrid
system as a coupled DEVS with an identical structure [2, 7, 21]. Consequently,
the hybrid system can be simulated directly using discrete event simulation
software.

A different approach to hybrid simulation is frequently adopted by non-
modular simulation frameworks. In this approach, a numerical method is glob-
ally applied to evolve continuous variables in a combined model. Interactions
between continuous and discrete event sub-components are not restricted to rigid
interfaces. In an implementation, conceptually distinct sub-processes frequently
access the internal state variables of other sub-processes (see, e.g., [22, 23]).

Because access to state variables is not explicitly regulated by the simulation
engine, it is essential that all state variables be up to date at each simulation
event time. Consequently, the integration scheme used to evolve continuous
variables is evaluated whenever a discrete event occurs, as well as at time points
required to control numerical errors and process events due to threshold cross-
ings of continuous variables.

4.1 Advantages

Both of these approaches allow discrete event and continuous processes to be
freely intermingled, and this gives the modeler a great deal of flexibility when
building the simulator. Any decomposition of the system into sub-components
can be simulated directly, and so there are no special restrictions in this respect
when building hybrid models. Moreover, existing discrete event simulation soft-
ware can be easily extended to support this kind of hybrid simulation approach.

4.2 Disadvantages

The tight coupling of discrete event and continuous simulation algorithms con-
fers distinct disadvantages. When a continuous simulation algorithm is added
to a non-modular simulation framework, there is a significant increase of the
computational cost (in terms of time) for large simulations. When a modular
framework uses a GDEVS-like approach, it is possible to introduce subtle, but
significant, numerical errors that can have a dramatic effect on the simulated
model behavior.

The increased computational cost of a non-modular combined continuous /
discrete event simulation is a direct result of evaluating the integration scheme
at each event. If the derivative function is expensive to compute, then the
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event execution time explodes. Frequent events combined with computationally
complex continuous behaviors make the simulation grind to a halt.

This scalability problem is avoided by GDEVS-like schemes because a modu-
lar structure explicitly limits the scope of sub-component interactions. However,
this is also the greatest barrier to an effective implementation: because the un-
restricted decomposition of the system’s model is reflected in the simulator, it
may happen that the simulator does not produce an accurate calculation. A
simulator for a bouncing ball gives a simple example of how this can occur.

The model of the ball has two part. The first describes how the ball moves
through the air:

ḣ = v (2)

v̇ = −g

where h is the height of the ball, v is the velocity, and g acceleration due to
gravity. The second part dictates the ball’s behavior when it strikes the floor:
when this event occurs, the ball rebounds, changing its velocity immediately.
The condition for the event’s occurrence and its consequence are

h = 0 & v < 0 =⇒ v ← −v (3)

where ← denotes assignment.
Suppose that this model is partitioned into two processes. The first process

simulates the continuous trajectory given by Eqn. 2. The output of this con-
tinuous process is a piecewise polynomial function that describes h. The second
process watches this polynomial for satisfaction of Eqn. 3. When this occurs, it
generates an event for the first process to change the velocity of the ball. Figure
3 illustrates this decomposition.

Figure 3: Decomposition of the bouncing ball into two interacting sub-processes.

If we solve Eqn. 2 with an implicit, first order accurate Euler integration
scheme, then it is reasonable to use a line as the first process’s output; this line
is

hn + vn(t− tn) (4)

where hn and vn are the most recent values of h and v, computed at time tn.
The second process extrapolates using Eqn. 4 to find the point at which Eqn.
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3 is satisfied. This extrapolation produces collision times that are inconsistent
with h = 0 as computed by the first process. Consequently, the system exhibits
serious simulation artifacts. Indeed, the ball appears to be bouncing on an
uneven surface.

This could have been anticipated by observing that the height of the ball
over a single integration time step is computed as

vn+1 = vn −∆tg

hn+1 = hn + ∆tvn+1 = hn + ∆t(vn −∆tg) .

The height of the ball obtained by extrapolating with Eqn. 4 is

h̃n+1 = hn + ∆tvn .

The difference is
h̃n+1 − hn+1 = −(∆t)2g .

The effect of this discrepancy is shown in Fig. 4 for two different implementa-
tions of the model; one using the GDEVS approach and the other a method for
simulating Type 1 models (a variable step integrator and a state event locator
using the interval bisection method; see, e.g., [24]).

This particular problem can be alleviated by ensuring that the integration
scheme and extrapolation scheme produce consistent results. For example, us-
ing an explicit Euler integration scheme would remove the event detection error
(Eqn. 4 is, in fact, the explicit Euler scheme). Alternatively, we could use
a second order interpolating polynomial (which, in this case, completely char-
acterizes the dynamics of the falling ball). In general, where these types of
problems emerge, their solution will require a careful, and therefore restricted,
selection of algorithms for numerical integration and event detection.

4.3 Type 2 Example: Automated Manufacturing Processes

A manufacturing process model, such as that described in [25], is an excellent
illustration of a Type 2 system that is handled well by existing discrete event
modeling tools. This particular model characterizes the machining of a part
with a physical state subject to continuous time dynamics. The queuing of
raw and semi-finished materials at machining stations is modeled with discrete
events.

Figure 5 shows a single manufacturing stage in this model. This stage con-
sists of a discrete arrival process and queue. The machining tool is activated
whenever it is idle and there is a part to work on. It ejects discrete parts. The
machining process is modeled with a differential equation.

To demonstrate a Type 2 system, we implemented this single stage manu-
facturing model with Arena. The Arena discrete event simulation package is an
example of a non-modular modeling and simulation tool that effectively supports
modeling of Type 2 systems. Its continuous system modeling and simulation
capabilities are described in [26]. Continuous trajectories are simulating using
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(b) Implicit Euler with interval bisection

Figure 4: Simulation artifacts in the bouncing ball problem.

either an explicit, variable time step Runge-Kutta scheme or a simple fixed step
Euler scheme.

The state event detection scheme used in Arena is relatively sophisticated.
The user specifies event thresholds on continuous variables, and the simulator
will search for crossings of those threshold values by retrying integration steps.
Arena advances every continuous sub-component at every event time to ensure
the continuous variables are up to date whenever a discrete event handler needs
to access them. In this way, combined continuous and discrete dynamics are
accurately simulated.

For this example, the queue capacity is infinite and blanks arrive at inter-
vals determined by a uniform random variable with a range of [0.1, 10]. The
machining process is described by

ẋ = k(1.1− x)
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Figure 5: Model of a single manufacturing stage.

where k is a discrete variable that turns the machine on when a part arrives
and off when a part is completed. The machining process starts with x = 0 and
finishes when x = 1.

This manufacturing model is illustrative of systems that are easily modeled
with existing discrete event modeling packages. Figure 6 shows the relative
simplicity of the continuous dynamics that are generally associated with Type
2 models.
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Figure 6: The continuous machining process in one simulation run of the single
stage manufacturing process.
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5 Split Hybrid System Modeling

The split hybrid system modeling approach explicitly recognizes discrete event
and continuous variables in a system model, and this knowledge is used to
construct an efficient simulator. We simulate individual sub-components using
the most appropriate algorithms: numerical integration methods for continuous
components and discrete event algorithms for discrete components. This over-
comes the major limitation of CSSL and discrete event simulation techniques,
where the simulation approach assumes the predominance of a particular type
of component.

The idea underlying our approach is simple. The overarching modeling
paradigm is based on discrete events. Continuously interacting sub-components
are treated as a single entity. The internal dynamics of these entities are sim-
ulated using any suitable numerical method. However, interactions with other
components occur at time and state events through an explicitly defined inter-
face. These events are the only mechanism for interacting with the continuous
entities.

This strict and explicit disentanglement of discrete and continuous dynamics
distinguishes the split hybrid modeling approach from its predecessors. By focus-
ing on the (large) subclass of split hybrid systems, we avoid the numerical prob-
lems inherent in GDEVS. The computational problems of a non-modular mod-
eling approach are overcome by restricting discrete/continuous interactions to
specific discrete events. This clear distinction between continuous and discrete
components allows us to use sophisticated continuous simulation algorithms
within the confines of a general purpose discrete event simulation framework.

Figure 7 illustrates this disentanglement principle by comparing two decom-
positions of a hybrid model. This model has four components, two of which
interact continuously. Figure 7(a) shows a decomposition that is disallowed in
our approach, but permitted by GDEVS. A GDEVS-like approach allows the
continuously interacting components to be described and simulated as separate
blocks. Figure 7(b) reorganizes this system to be compatible with the split
hybrid system modeling approach.

This modular, self-contained description of the continuous sub-components
explicitly identifies and distinguishes continuous and discrete event dynamics.
The simulation algorithm takes advantage of this by using continuous system
simulation algorithms to generate the internal dynamics of continuous blocks.
Interactions with other discrete event components is coordinated through the
discrete event interface of the continuous model. In this way, proper coordina-
tion of the discrete and continuous components is assured, accurate continuous
trajectories are generated, and the resulting simulation software is efficiently
executed.

The split hybrid system modeling approach describes self-contained, contin-
uous sub-components with four functions. The evolution function F describes
how the continuous, internal state variables evolve between discrete events. The
event scheduling function G indicates how much time will elapse before the next
discrete internal event. The discrete action function A describes how the dis-
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(a) Incompatible decomposition

(b) Compatible decomposition

Figure 7: Two decompositions of a hybrid system, one compatible and the
other incompatible with the split hybrid system approach. Solid blocks interact
continuously with each other; dotted blocks are purely discrete.

crete state changes in response to internal (state) and external (input) events.
The discrete output function L describes how the output changes in conjunction
with discrete internal events.

Continuous sub-components are formalized with a structure

X and Y , the input and output value sets

S , the internal state set

F : S × R→ S , the evolution function (5)

G : S → R , the event scheduling function

A : S ×XΦ → S , the discrete action function,

where XΦ = X ∪ {Φ} and Φ is the non-event, and

L : S → Y , the discrete output function.
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The set X is the range of values that can be injected into the system. The set
Y is the range of values that can be produced by the system. The set S is the
range of the system’s internal state variables.

The evolution function F (q, h), with q ∈ S and h ∈ R, takes the system
from a state q at time t to a later state q′ at time t+h. This function describes
continuous, autonomous evolution of the model’s internal state. The system
evolves continuously until G(q) = 0 or a change occurs in the input trajectory.
At these points, the discrete action function dictates an immediate and, possibly,
discontinuous state change.

The discrete action function A(q, u), with u ∈ XΦ, determines the response
of the model to discrete events. These events can be inputs to the system or
be triggered by its internal dynamics. In either case, the system changes state
instantaneously from q to q′ = A(q, u). Changes due to internal dynamics occur
when G(q) = 0, and the subsequent state of the system is determined by A(q, Φ).
External events are due to a change in the input trajectory. In this case, the
state immediately following the event is given by A(q, x), where x ∈ X is the
value of the input trajectory immediately after the input event occurs.

The discrete output function L(q) defines the model’s output trajectory. The
initial output value is given by L(q0), where q0 is the initial state of the system.
Discrete changes in the output trajectory occur when G(q) = 0. At these times,
the output trajectory takes the value L(q), and it keeps this value until the
system again enters a state in which G evaluates to zero.

Network
k

Plant

y1,y2,...

x1,x2,...

Figure 8: Illustrative model of proportional gain control through a network.
The subscripted x are samples of the plant’s continuous state variable that are
sent through the network; the subscripted y are the same samples received by
the controller through the network.

A simple example will illustrate how these functions are used to define a
hybrid model. Consider the proportional gain controller illustrated in Figure
8. The continuous state variable x of the plant is sampled at intervals ∆t
and these samples travel through a shared network (e.g., an Ethernet) that
introduces some delay before they are multiplied by the control gain k and fed
back into the plant. The continuous elements of this model comprise three state
variables: the plant state x, the output sample y last received from the network,
and the time te that has elapsed since a sample of x was last obtained. Assume
that the differential equation governing the plant between changes in y is

ẋ = x− ky (6)

If explicit Euler is used to solve this equation, then its simulation model in terms
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of the structure 5 is

X = Y = R

S = {(x, y, te) | x, y ∈ R & 0 ≤ te ≤ ∆t}

F ((x, y, te), h) = (x + h(x− ky), y, te + h)

G((x, y, te)) = ∆t− te

A((x, y, te), u) =

{

(x, y, 0) if u = Φ

(x, u, te) otherwise

L((x, y, te)) = x

The dynamics associated with the structure 5 can be described in three ways:
as a Discrete Event System Specification (DEVS) atomic model (see, e.g., [2]), a
Hybrid Input/Output Automata (HIOA) (see, e.g., [5]), and algorithmically as
an event scheduling simulation. In what follows, we detail these three equivalent
descriptions. In doing so, the class of split hybrid systems is described in the
context of well established analysis and simulation frameworks for discrete event
and hybrid systems.

5.1 DEVS

Our first characterization associates the structure (5) with a DEVS atomic
model. The atomic model’s set of states is S, and its input and output sets
are X and Y . The state transition, time advance, and output function are de-
fined in terms of the evolution function F , event scheduling function G, discrete
output function L, and discrete action function A. These definitions are

δint(q) = A(F (q, ta(q)), Φ)

δext(q, e, x) = A(F (q, e), x)

δcon(q, x) = A(F (q, ta(q)), x) (7)

ta(q) = G(q)

λ(q) = L(F (q, ta(q))) .

Output and internal events coincide with the expiration of the time advance.
The discrete output is computed using the system state just prior to the discrete
event (i.e., prior to applying the discrete action function).

An implementation of this atomic model will, in general, require events that
do not result in discrete actions (i.e., an evaluation of A) or discrete output
(i.e., an evaluation of L). These types of events are needed, for instance, when
the evolution and event scheduling functions are implemented with numerical
integration and state event detection algorithms (see, e.g., [24]). A DEVS model
that is functionally equivalent to (7) can be had by defining a function

IntegStep : S → R
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that picks the next integration step size. The system dynamics are then defined
by

δint(q) =
{

A(F (q, ta(q)), Φ) if G(q) ≤ IntegStep(q)

F (q, ta(q)) otherwise

δext(q, e, x) = A(F (q, e), x)

δcon(q, x) = A(F (q, ta(q)), x) (8)

ta(q) = min{G(q), IntegStep(q)}

λ(q) =
{

L(F (q, ta(q))) if G(q) ≤ IntegStep(q)

Φ otherwise .

5.2 HIOA

We can also characterize the structure (5) by associating it with an appropriate
subclass of HIOA. Let x(t), y(t), and q(t) denote points on the input, output,
and state trajectories of the HIOA. The notation x(t−) is used to refer to the
value of the function x when t is approached from the left, and x(t+) the value
when t is approached from the right. Any particular HIOA is acceptable so long
as it satisfies the following restrictions.

1. A set of internal variables is defined whose range is the set of states S.

2. A set of input variables is defined whose range is the set of inputs X .

3. A set of output variables is defined whose range is the set of outputs Y .

4. Input and output variables are discrete (i.e., their trajectories are piecewise
constant functions).

5. y(t) = L(q(t∗)) where

t∗ ≤ t &

(G(q(t∗)) = 0 or t∗ = 0) &

∀τ ∈ (t∗, t], G(q(τ)) 6= 0.

.

6. If G(q(t)) = 0 and x(t−) = x(t+), then the subsequent internal state q′(t)
is given by q′(t) = A(q(t), Φ).

7. If x(t−) 6= x(t+), then the subsequent internal state q′(t) is given by
q′(t) = A(q(t), x(t+)).

8. Otherwise, the trajectory q(t) is dictated by the evolution function F .
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Items 5, 6, 7, and 8 impose a particular form on the system trajectories. These
conditions are sufficient for the hybrid automaton to have a DEVS representa-
tion in the form of (7). The advantage of this is that the hybrid automaton
can be simulated with an event scheduling algorithm, and therefore can be in-
tegrated directly with a discrete event simulation tool.

Condition 5 forces change in the automaton output variables to coincide with
internal states that cause the function G to be zero. The output at this time is
dictated by the discrete output function L, and the output value is maintained
until the next state for which G is zero.

Conditions 6, 7, and 8 allow for explicit scheduling of discrete changes to
the internal state of the hybrid automaton. This preserves the semantics of the
DEVS time advance function, and makes possible a discrete event simulation of
the system.

5.3 Event Scheduling

Lastly, we describe the dynamic behavior of structure (5) in terms of an event
oriented simulation program. For this purpose, the hybrid system is assumed
to be contained within a logical process, or to be otherwise partitioned from
the rest of the discrete event model (see, e.g., [27]). Three types of events are
required. A Step event performs an integration step in which discrete actions
do not occur. A Change event performs an integration step at the end of which
a discrete action does occur. An External(x) event describes a change in the
discrete input to the system. The discrete input value is denoted by x.

Let q denote the state of the logical process, h the preferred time step for
integration scheme, Φ denote an absence of input events, tl be the last event
time, and t be the current time. Algorithms 1, 2, and 3 describe the processing
required at Step, Change, and External(x) events.

Algorithm 1 Step event

Cancel pending Step and Change events
q′ ← F (q, t− tl) {Update the continuous state variables}
tl ← t
Find the next integration time step
if t + h < t + G(q′) then

schedule a Step event at time t + h
else

schedule a Change event at time t + G(q′)
end if

q ← q′ {Store the new variable values}

When External(x) and Change events coincide, it is preferable to define
a fourth event type to handle this case (see [28–30] for a discussion of some
issues surrounding this fourth event type). In the DEVS formalization, this
fourth event is described by the confluent transition function. It is implicit in
restrictions 5, 6, 7, and 8 of the HIOA formalization.
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Algorithm 2 Change event

Cancel pending Step and Change events
q′ ← F (q, t− tl) {Update the continuous state variables}
Schedule output events at t using the output value L(q′)
q′′ ← A(q′, Φ) {Apply the discrete event}
tl ← t
Find the next integration time step
if t + h < t + G(q′′) then

schedule a Step event at time t + h
else

schedule a Change event at time t + G(q′′)
end if

q ← q′′ {Store the new variable values}

Algorithm 3 External(x) event

Cancel pending Step and Change events
q′ ← F (q, t− tl) {Update the continuous state variables}
q′′ ← A(q′, x) {Apply the discrete event}
tl ← t
Find the next integration time step
if t + h < t + G(q′′) then

schedule a Step event at time t + h
else

schedule a Change event at time t + G(q′′)
end if

q ← q′′ {Store the new variable values}

If this fourth event type can be defined within the simulation environment,
then the desired computational steps are given as Algorithm 4. The Conflu-
ent(x) event allows output events to be produced using the state just before the
discrete state change occurs. A subsequent Change event can be scheduled via
the G function if additional output is desired immediately following the discrete
change.

If a fourth event type is not possible, then a preferred priority for Change
and External(x) events must be given based on knowledge of the system be-
ing simulated. Also note that the DEVS and HIOA definitions require that
simultaneous input events be presented simultaneously to the continuous sub-
component. If this option is not available in a particular simulation tool, then
some preferred prioritization of External(x) events must be specified as well.

5.4 Advantages

The split hybrid modeling method combines the use a general purpose discrete
event simulator with advanced numerical algorithms for handling continuous
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Algorithm 4 Confluent(x) event

Cancel any pending Step or Change events
q′ ← F (q, t− tl) {Update the continuous state variables}
Schedule output events at t using the output value L(q′)
q′′ ← A(q′, x) {Apply the discrete event}
tl ← t
Find the next integration time step
if t + h < t + G(q′′) then

schedule a Step event at time t + h
else

schedule a Change event at time t + G(q′′)
end if

q ← q′′ {Store the new variable values}

dynamics. Continuous blocks can be implemented directly or generated auto-
matically by CSSL compilers that produce software modules with a suitable
programming interface (e.g., the acslXtreme API produced by the AEgis ACSL
compiler). By combining advanced discrete event simulation tools and state of
the art continuous modeling capabilities, it is possible to build large and com-
plex hybrid system simulations that are numerically robust and computationally
efficient.

The three main disadvantages of CSSL, GDEVS-like, and non-modular com-
bined simulations are overcome by the split hybrid modeling approach. The
overarching discrete event modeling and simulation framework ensures an ade-
quate set of basic structures for describing discrete event dynamics. The com-
putationally tractability problem of a non-modular approach is eliminated by
restricting discrete/continuous interactions to explicitly defined input and out-
put events.

By forcing continuously interacting elements into atomic blocks, our ap-
proach allows the numerical integration and state event detection schemes to
be mutually consistent without restricting the choice of algorithms. The use
of consistent schemes eliminates the simulation artifacts that can emerge in a
GDEVS-like approach. At the same time, the simulation builder can use any
desired set of numerical techniques to simulate continuous processes.

For instance, consider the bouncing ball problem discussed in Section 4.2.
The GDEVS solution gets into trouble because it uses two different approxi-
mations of the ball’s trajectory, namely (i) an implicit Euler approximation to
the differential equations and (ii) a linear extrapolation for anticipating bounce
events. The GDEVS solution requires these two different approximations be-
cause the event detector cannot access the state of the integrator and vice versa.
The solution shown in Fig. 4(a) is the result of this inconsistency.

The two parts of the ball’s dynamics interact continuously because the event
condition depends on the continuously evolving height of the ball. Consequently,
the split system approach requires that they be combined into a single modeling
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entity. Combining the event condition and continuous dynamics makes it possi-
ble to use a coordinated state event detector and numerical solver. In particular,
we can use the interval bisection method to find bounce events and produce the
desired solution shown in Fig. 4(b) (see, e.g., [24]).

For simple models it is often possible to construct an adequate approxima-
tion from an almost intuitive understanding of the dynamics. The bouncing ball
is an extreme case where the solution of the corresponding differential equation
is easily written down and bounce events can be trivially anticipated. Complex
hybrid dynamics, on the other hand, have non-intuitive continuous dynamics
and events that are difficult to anticipate. Satisfactory simulation of these mod-
els requires the use of the split approach.

5.5 Disadvantages

The success of our proposed approach is predicated on a suitable split of the
hybrid system into discrete and continuous dynamics.2 This is avoided by the
previous approaches (i.e., Section 4 and Section 3), which allow for direction
simulation of any model decomposition. There are at least two dangers in
requiring an explicit decomposition. The first is that such a description will
be so unnatural and cumbersome that it, by itself, defeats the modeling effort.
This, at least, can be determined early and another (less accurate, precise, or
computationally efficient) approach attempted.

The second danger is more subtle, occurring when the model description is
not split but the model implementation is split by the programmer. In prac-
tice, this after the fact decomposition can create two different software artifacts:
the model description and its simulation software. This substantially increases
the possibility of errors in both the paper model description and its computer
implementation (this is a well-known software engineering problem [18]). This
danger is also avoided by the previous approaches, which allow any model de-
composition to be translated directly into a software implementation.

The greatest strength of the proposed approach is reuse of existing continu-
ous system simulation tools within a discrete event simulation framework. Un-
fortunately, most current continuous system simulation packages support only
half of the features needed to do this. The two features that are widely sup-
ported are

1. an interface for setting and getting the values of continuous variables and

2. functions or methods for evaluating a single step of the integrator.

The missing features are, however, crucial for applying the split hybrid system
modeling approach. These features are

3. functions or methods for getting the next step selected by the numerical
solver without actually committing to that step and

2This assumes that a useful decomposition can be found for the particular system of inter-
est.
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4. separation of the numerical integration step and state event evaluation.

To summarize, the shortcoming of existing continuous system simulation soft-
ware is that the step size selection, integration step, and application of state
events are, from the end user perspective, rolled into a single function or method.
These three activities need to be split into three distinct, end user controlled
phases to allow proper event scheduling, output event production, and input
event handling (i.e., as per the formulations in Sections 5.1, 5.2, and 5.3).

5.6 Type 3 Example: An Automatic Load Control System

The efficient and reliable delivery of electric power increasingly depends on net-
worked SCADA (Supervisory Control and Data Acquisition) and distributed
control systems. These systems often operate over commercially available, fre-
quently IP based, communication networks. Problems of control and commu-
nication in the smart electric grid have recently focused attention on modeling
and simulation of distributed, wide area control systems in this context (see,
e.g., [8, 31]).

A system for under frequency protection of wide area electric power systems
illustrates several aspects of Type 3 hybrid systems. The objective of this system
is to prevent under frequency generator failures by making small and rapid
changes to the network load. The idea is to incur small service interruptions
when under frequency failures are imminent, and then to automatically restore
service when the system stabilizes.

5.6.1 Continuous elements

The continuous component in this system is a power generation and transmission
model of a 17 bus system that is derived from the IEEE 14 bus system. The
model consists of twelve loads and five generators that are interconnected as
shown in Fig. 9. Frequency, and not voltage, disturbances are the focus of the
current investigation. Therefore, only real power flow is considered [32].

The generators are modeled as synchronous machines using the swing equa-
tion plus additional equations that model a governor, non-reheat turbine, and
over speed breaker. One of the five generators also includes a basic Automatic
Generation Control (AGC) unit that eliminates steady-state frequency error
throughout the system. The three equations that describe the generator dy-
namics are

∆δ̇g = ∆ω

∆ω̇ = (∆Pm −∆Pe)/M

∆P̈m = −100(kagc∆δg + ∆ω/R + 0.25∆Ṗm + Pm)

where ∆Pm and ∆Pe are the deviations of mechanical power output and elec-
trical demand from the initial steady state operating point, ∆δg is the change
in relative generator shaft angle, and ∆ω is the deviation of the shaft angu-
lar velocity from 60 Hz. The values R, M , and kagc are the generator’s speed
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Figure 9: The 5 generator and 12 load bus power system model.

droop constant, rotational inertia, and the AGC gain. If the speed deviation
of a machine exceeds ±0.1 Hz, then it is disconnected from the transmission
network.

Real power flow is calculated using known generator shaft angles and elec-
trical power demand at the load buses. Disconnected generators are treated as
load buses with zero power demand [32]. To facilitate the calculation of electri-
cal demand Pe on the generators, the network admittance matrix Y is broken
into the four sub-blocks shown in Eqn. 9. The Yll block describes load to load
connections, Ylg and Ygl describe the symmetric generator-load/load-generator
connections, and Ygg describes generator to generator connections. Similarly,
the bus angle and electric power vectors are split into upper and lower blocks.
The vectors Θ̄l and P̄l denote the load bus angles and injected power. The vec-
tors P̄e and Θ̄g are the electrical demand on the generators and the generator
shaft angles. The power flow equations are

[

P̄l

P̄e

]

=

[

Yll Ylg

Ygl Ygg

] [

Θ̄l

Θ̄g

]

. (9)

The electrical demand on the generators is given by

Θ̄l = Y −1
ll (P̄l − YlgΘ̄g)

P̄e = YglΘ̄l + YggΘ̄g .
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Attached to each generator is a monitor that is frequency sensitive. The
monitor is triggered when the generator frequency differs by 0.001 Hz with
respect to the last triggering event, i.e., the monitor samples the generator when
its frequency reaches 60.0 Hz plus and minus 0.001 Hz, 0.002 Hz, etc. and at
these times it measures five quantities: the generator’s mechanical power ∆Pm,
rate of change in mechanical power ∆Ṗm, electrical load ∆Pe, shaft velocity
∆ω, and shaft acceleration ∆ω̇.

Using the DEVS approach described in section 5.1, this continuous model is
encapsulated in a single atomic component. Input to the component are discrete
changes in the electric load; these inputs cause instantaneous change to the di-
agonal elements of Yll. Output from the component are sensor measurements,
which occur at discrete values of the ∆ωs. The evolution function F gives the
solution to the continuous generator equations at the instants of discrete input
and output and at time points selected to control numerical errors. The evo-
lution function is implemented with a fourth/fifth order Runge-Kutta (RK45)
integrator with error control (see, e.g, [33]). This numerical integrator is partic-
ularly attractive because its step size can be adjusted at will to accommodate
discrete events. The Template Numerical Library is used to solve the power
flow equations at each integration step.

The event scheduling function G gives the smaller of i) the time remaining
to the next sampling instant, ii) the next opening of a frequency protection
breaker, and iii) the step size h selected by the numerical integrator. The last
of these is calculated first, and this is the largest value that G will report. Items
(i) and (ii) are calculated by looking for the first instant in the interval [0, h] at
which any of the ∆ωs reach a threshold value. This is a root finding problem
and we solve it here using a relatively simple interval bisection approach (see,
e.g., [24]). If no such instant exists, then G simply returns h.

The discrete action function A opens frequency protection breakers, sets
the elements of Yll to indicate changes in load, or both as is required by the
events that triggered the evaluation of A. In the DEVS implementation of this
model, load changes are due to an external event (i.e., δext), frequency protection
breakers are opened due to an internal event (i.e., δint) that has one of the ∆ωs
at the tripping threshold of 0.1 Hz, and a confluent event (i.e., δcon) may cause
both. The output function L returns a sample for the generators that are at a
sampling threshold, or the non-event Φ if there is no such generator. Note that
the input and output trajectories for this model of the generators, loads, and
transmission network comprise only discrete events. This is the characteristic
feature of the split system method.

5.6.2 Discrete elements

Samples output by the model of the generators, loads, and transmission network
are input to the model of the control and communication system. At each
sampling instant, the monitors at the sampled generators estimate the time to
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an under-frequency failure by

tf =

{

60.0(∆ω+1)−59.9
|∆ω̇| if ∆ω̇ < 0.0

∞ if ∆ω̇ ≥ 0.0

and time to meet demand by

ts =
|∆Pm −∆Pe|

|∆Ṗm|
.

The generator is in danger of being disconnected if

tf ≤ ts .

In this case, the monitor broadcasts a request asking all load buses to reduce
their power demand. If, on the other hand,

tf > kts

where k >> 1 is a safety factor, the system is operating under capacity. In this
case, the monitor broadcasts a message indicating that demand for power can
be increased.

Load change requests are summarized by the load service fraction α, with
α ∈ [0, 1]. When α = 1, the generator can tolerate the full electrical demand
seen at its terminal. When α < 1, the generator would like to see the demand
on its terminal reduced to a fraction α of the full power demand. Changes to α
occur in discrete increments ∆α.

The operation of the monitor is depicted in Fig. 10. The monitor state and
output are computed at each sampling event. Circles denote discrete phases,
and the action performed in each phase is denoted by state change / output.
Labeled arrows denote phase change conditions. At each sampling instant, the
phase change conditions are evaluated and the phase is changed accordingly.
Then the output value is produced and, subsequently, the state variable change
is applied. A new monitor state and output is calculated every time the monitor
takes a measurement.

Load buses remember the last load service fraction received from each mon-
itor. The remembered requests are denoted αi, with i ∈ [1, 5] indicating the
monitor that produced the request. Each load bus is also aware of its electrical
demand. On receiving a message, the load bus removes or restores some of its
power demand from the transmission network. The serviced load Ls at each
bus is a fraction of the total demand Ld given by

Ls = Ld

(

1

5

5
∑

i=1

αi

)

.

With five generators in the system, all of the demand is serviced if the αi are
all 1, and no demand is serviced if the αi are all zero. Note that the monitor

25



Figure 10: State transition diagram for the generator monitor.

attached to a disconnected generator will continue to operate with ∆Pe = 0,
and this causes the service fraction for the monitor to eventually settle at 1.

The monitors and load buses communicate through a packet switching net-
work. Communication lines follow the network transmission lines, and pack-
ets are routed from origin to destination through this shared communication
medium. The communication lines are modeled as queues with a fixed through-
put, measured in bits per second (bps), and base delay. The time required for
a packet to traverse a single line is given by

bits

throughput
+ base delay .

Each line has a buffer for queuing packets, and only one packet can traverse
the communication line at any time. No packets are dropped. In general, a
message will need to travel through several lines before reaching its destination.
Network flooding is used to implement the broadcast function (see, e.g., [34]).

The control and communication system is implemented in three parts. The
monitors and actuators at the loads are DEVS atomic models; these are pure
discrete event components and their implementation is straightforward. The
communication network is modeled using NS2, and it is encapsulated in a com-
ponent whose input and output are the commands produced by the monitors
and consumed by the load actuators. All of the components and their interac-
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tions are illustrated in Figure 11.

Network

Generators, transmission, and loads

Freq. monitor

Load actuator

Figure 11: Components and their interconnections in the power system model.
A solid outline indicates the component has continuous dynamics; a dashed
outline indicates a component that is entirely discrete.

5.6.3 An experiment

One experiment will serve to demonstrate the hybrid trajectories produced by
this system. The line admittances used in this experiment are described in [32].
The initial power at each generator is calculated to ensure steady state at a
selected bus angle [32]. Other generator parameters are listed in Table 1. The
controller parameters are k = 104 and ∆α = 0.1. The size of a control message
is 900 bytes. The base link latency is 10 ms and throughput is 560 kbps.

Generator 1/R kagc

1 300 0
2 225 200
3 300 0
4 300 0
5 225 0

Table 1: Generator parameters

Table 2 shows the electrical demand schedule that is used in this experiment.
The t = 0 column shows initial power demand at each bus. Subsequent columns
contain an entry only for buses at which the power demand changes. Electrical
demand is described by ‘per unit’ power injected at the load bus. Without any
load control, this schedule causes all five generators to trip offline following the
load spike at t = 10 seconds. The failure scenario is shown in Figure 12.
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Load bus t = 0.0 t = 1.0 t = 10.0
1 0.0
2 -0.217
3 -0.942
4 -0.112
5 -0.478
6 -0.076
7 -0.295 0.0 -0.4
8 -0.09 0.0 -0.09
9 -0.035
10 -0.061 0.0 -0.4
11 -0.135 0.0 -0.135
12 -0.149 0.0 -0.149

Table 2: Electrical demand schedule

Figure 13 shows that, in this scenario, the control scheme prevents a system
collapse. The frequency dips, but this is detected by the generator monitors
and appropriate control messages are acted on by the load actuators. Figure
14(b) shows the total load fraction requested by the controllers. These messages
are able to traverse the network rapidly enough that the load manipulations are
effective. As Fig. 14(a) shows, however, the control action is delayed and very
ragged due to communication delays. The combined effect on overall system
behavior would be difficult to anticipate without an integrated, dynamic model
of the power, control, and communication systems.

6 Conclusions

This paper proposes a split modeling approach for simulating hybrid systems.
The overarching modeling paradigm is based on discrete events. Continuously
interacting sub-components are treated as a single entity. These entities interact
with other components through a discrete event interface that is defined in
terms of time and state events. Their internal dynamics are simulated using
any suitable numerical method. However, interactions with other (continuous
or discrete) autonomous components occurs through well defined events. These
events are the only mechanism for interacting with the continuous entities.

The split hybrid system modeling approach explicitly recognizes discrete
event and continuous variables in a system model, and this knowledge is used to
construct an efficient simulator. Individual sub-components are simulated using
the most appropriate algorithms: numerical integration methods for continuous
components and discrete event algorithms for discrete components. This intrin-
sic capability overcomes the major limitations of CSSL and GDEVS techniques
and enables the reuse of powerful, existing continuous system simulation algo-
rithms as part of existing discrete event simulation models. Thus, the resulting
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Figure 12: System failure in the absence of any load control scheme.

software is computationally efficient, ensures accurate interactions between dis-
crete event and continuous components, and requires only a modest software
integration effort.
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Figure 14: Actual load and load fraction requested during the control action.
The jagged load profile is due to delay in the communication network.
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