
 

Abstract—Wireless sensor nodes are highly resource 
constrained in terms of memory, processing, battery power 
and communication. Due to these limitations, sophisticated 
security features are not cost effective in most wireless 
sensor network (WSN) applications. Hence WSNs are 
often targeted by viruses and malware, interrupting or 
completely terminating their desired functionalities. In this 
work, we investigate malware propagation patterns in 
WSNs and examine the abilities of different Media Access 
Control (MAC) rules and techniques to limit malware 
propagation. Effectiveness of security patching is also 
analyzed by implementing self-propagating patches. We 
have modeled and simulated wireless communication in 
WSN using parallel Cell-DEVS and investigated malware 
propagation by implementing basic characteristics of two 
commonly used WSN MAC protocols. 
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I. INTRODUCTION 

Wireless Sensor Networks (WSNs) are regarded as one of 
the dominant technology trends of this decade that has 
potential usage in monitoring applications in number of fields 
including defense, health care, environment science, and 
chemical industries. Malware and virus attacks on wireless 
computer networks and wireless telecommunication networks 
have been widely investigated and hold a strong literature. 
However, WSNs differ from traditional computer networks 
and wireless telecommunication networks in various aspects: 
First, wireless sensor networks are highly distributed system 
and consist of a great number of distributed nodes (sensor 
nodes) with the ability to monitor its surroundings. 

Second, sensor nodes are limited in power, computational 
capacities, and memory. Finally, self-organization is a 
fundamental feature of wireless sensor networks, allowing 
normal operation with minimal human interaction. Security 
mechanisms employed on traditional wireless computer 
networks or wireless telecommunication networks could not 
be applied directly to wireless sensor networks. Several 
research works has recently given attention to study malware 
propagation in WSN and proposed number of techniques to 
minimize effects and limit propagation. Some of these 
techniques involve application of signal processing technique 
to model space-time propagation dynamics of topologically-

aware malware in a sensor network with uniformly distributed 
nodes [1]. Some of these authors make use of epidemic 
theoretic model for evaluating malware propagation and 
broadcast protocols in wireless sensor networks. On the other 
hand, substantial amount of work available in the literature, 
that uses Cellular Automata to simulate their proposed 
approaches. Considering the inherent characteristics of WSN, 
existing models for epidemiology cannot be directly applied to 
study malware propagation of wireless sensor network [2]. 

Cellular automata (CA) models complex natural systems, 
containing large numbers of simple identical components with 
local interactions. It defines an infinite regular n-dimensional 
lattice in which each cell can take a finite value. There is a 
substantial literature [3, 4] on the mathematical model based 
on cellular automata which simulates behaviors of natural 
systems. These models based on cellular automata focus on 
the local characteristics of single component that influence the 
global behavior of the system. 

Cell-DEVS can be identified as an advanced version of CA 
which uses DEVS formalism to enhance capabilities of 
conventional CA. It allows interactions with external entities 
and components, explicit timing delays, when computing 
individual cell states. Hence events that trigger local cell state 
computation can be fired by entities that are external to the 
cellular neighborhood. Also more resent versions have 
allowed convenient behavioral modeling using multiple states 
and multiple input and ports that define cells characteristics. 

We have focused on the inherent characteristics of WSN 
and the dynamic process of malware propagation in WSN by 
modeling it employing Cell-DEVS modeling technique. We 
have validated the proposed malware propagation models 
using CD++ [5-7], a simulation engine, which was designed 
specifically to simulate Cell-DEVS models. Simulation study 
revealed that MAC mechanisms of wireless sensor networks 
has the ability greatly slow down the speed of malware 
propagation and reduces the risk of large-scale malware 
prevalence in WSN. Moreover, we show that use of self-
propagating security patches can significantly reduce adverse 
effects of malware attacks. The developed WSN model can be 
used to describe accurately the dynamic behavior of malware 
propagation on WSN, and can be used for developing robust 
and efficient defense system on WSN. 

In this work we talk about three WSN models. First, we 
have developed our initial model to simulate in general CD++. 
Second, we have re-created the model to use multiple ports 
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and simulate in parallel CD++. Finally, we have re-engineered 
the simulation model to resemble more realistic WSN, and 
compare effectiveness of different MAC protocols and self-
propagating patching, in malware spread controlling. In order 
to avoid confusion, we name these three models as initial 
version, converted version and extended version respectively 
in following sections. 

The rest of this term-paper is organized as follows. Section 
2 provides detailed background information, introducing Cell-
DEVS approach towards modeling cellular space. Section 3 
describes conceptual modeling and Cell-DEVS formalism of 
initial version and extended version. We do not talk about 
converted version in this section since its modeling approach 
is similar to initial model. In section 4, simulation 
methodology of the initial version is illustrated with brief 
description of obtained simulation results. The extended 
version is simulated using multi-port parallel CD++ and this 
simulation procedure is discussed in section 5. In section 6, 
performance of initial version is compared with converted 
version. Moreover, effectiveness of different MAC protocols 
and self-propagating patching is analyzed using simulation 
results obtained from extended version. Brief conclusion is 
given in section 7, discussing potential future research 
directions.  

II. BACKGROUND 

This section focuses on providing brief introduction to 
closely related and employed technologies such as cellular 
automata, DEVS, Cell-DEVS and several MAC techniques 
specifically designed for WSN. 

A. Cellular Automata (CA) 

Cellular Automata is a discrete dynamical system formed 
by a finite number of identical objects called cells which are 
arranged uniformly in a two-dimensional cellular space. Each 
cell is endowed with a state (from a finite state set S), that 
changes at every step of time accordingly to a local transition 
rule. 

In this sense, the state of a particular cell at time t depends 
on the states of a set of cells, called its neighborhood, at the 
previous time step t-1. More precisely, a CA is defined by; 

CA = < S, n, C, η, N, T, τ
 
> 

Where C is the cell’s set of state variables and S is the 
finite alphabet to represent each cell’s state. η represents the 
dimensional space while N defines set of neighboring cells or 
in other words, cells neighborhood. T global transition 
function and τ is the local computing function of each cell in 
the cell space.  

As shown in Figure 1, all the cells in the cell space have 
the same neighborhood and state of each cell is computed by 
using their neighborhood cell states.  There are two basic 
neighborhoods. Von Neumann’s neighborhood has the cells to 
up, down, left and right while Moor’s neighborhood has all 
eight cells around a cell in 2-dimensional cell space as shown 
in Figure 2. 

B. Discrete Event system Specification (DEVS) 

DEVS is a system that allows modeling real system 
experimental frames in to a module hierarchy [6]. As shown in 
Figure 3, a real system modeled using DEVS can be 
represented as a set of atomic or coupled sub-models. The 
atomic DEVS model is defined as: 

M =< X, S, Y, dint , dext , l, ta > 

where X is the input events set, S is the state set, Y is the 
output events set, dint is the internal transition function, dext is 
the external transition function, l is the output function, and ta 
is the time advance function. 

 

Figure 2  Neighborhood of a cell 

 

(a)          (b) 

Figure 1 Neighborhood types; (a) Moor’s 
neighborhood (b) Von-Neumann’s neighborhood 

 

Figure 3 DEVS Atomic Model 
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The atomic model can be considered as the base element in 
which we define dynamics of any system, while the coupled 
structural model consists of one or more atomic and/or 
coupled models. Coupled models are defined as a set of basic 
components (atomic or coupled).The coupled model can be 
defined as: 

CM =< X, Y, D, {Md ∣ d ∈ D}, EIC, EOC, IC, select > 

where X is the input events set, Y is the output events set, 
D is the set of component names, Md is a DEVS basic 
model(i.e., atomic or coupled), EIC is the set of external input 
couplings, EOC is the set of external output couplings, IC is 
the set of internal coupling, and select is the tie-breaker 
function. The coupled model explains how to convert the 
outputs of a model into inputs for the other models, and how 
to handle inputs/ outputs to and from external models. 

C. Cell-DEVS 

Cell-DEVS [8] has extended the DEVS formalism, 
allowing us to implement cellular models with timing delays. 
Once the behavior of a cell is defined, a coupled Cell-DEVS 
can be created by interconnecting a number of cells with their 
neighbors. Each cell is defined as a DEVS atomic model, as 
shown in Figure 4. 

Each cell uses N inputs to compute its next state. These 
inputs, which are received through the model’s interface, 
activate a local computing function τ. A delay d can be 
associated with each cell. A coupled Cell-DEVS model is the 
resulting array of cells (atomic models) with given 
dimensions, borders, and zones. 

D. WSN MAC protocols 

In order to evaluate and compare malware propagation 
patterns in WSN, we have simulated basic characteristics of 
following MAC protocols.  

Sensor S-MAC [9] a contention based MAC protocol is 
modification of IEEE 802.11 protocol specially designed for 
WSN. In this MAC protocol sensor node periodically goes to 
the fixed listen/sleep cycle. A time frame in S-MAC is divided 
into two parts: one for a listening session and the other for a 
sleeping session. Only for a listen period, sensor nodes are 

able to communicate with other nodes and send some control 
packets such as SYNC, RTS (Request to Send), CTS (Clear to 
Send) and ACK (Acknowledgement). By a SYNC packet 
exchange all neighboring nodes can synchronize together and 
using RTS/CTS exchange the two nodes can communicate 
with each other. A lot of energy is still wasted in this protocol 
during listen period as the sensor will be awake even if there is 
no reception/transmission. 

In the Optimized MAC protocol [10], the sensors duty cycle is 
changed based on the network load. If the traffic is more than 
the duty cycle will be more and for low traffic the duty cycle 
will be less. The network load is identified based on the 
number of messages in the queue pending at a particular 
sensor. The control packet overhead is minimized by reducing 
the number and size of the control packets as compared to 
those used in the S-MAC protocol. This protocol may be 
suited for applications in which apart from energy efficiency 
there is need for low latency. 

III. MODELING MALWARE IN WSN 

We have performed simulations on two different versions 
of CD++. Initially few basic characteristics of WSN is 
modeled and simulated using general CD++ version. After 
that, model was further enhanced and simulated in more 
powerful, Parallel CD++ [11] version. Parallel CD++ allows 
using multiple state variables that define sensor node state, to 
be defined and handled in the same plane. Moreover it allows 
defining multiple input and output ports for cells. Use of this 
extended version of CD++ has significantly reduced the 
complexity of the implementation. Hence we were able to 
introduce additional functionalities and fine-tune the model to 
represent more detailed realistic malware propagation 
scenarios in WSN.  

In this section, we provide detailed information of our 
WSN modeling approach. Conceptual and Cell-DEVS 
modeling for the general CD++ is described in first two 
subsection followed by enhanced modeling for parallel CD++. 

A. Conceptual Modeling of the initial design 

We have modeled the wireless sensor network as a 2 
dimensional lattice, with each cell may or may not occupied 
by a stationary wireless sensor node as shown in Figure 5. 

 

Unoccupied 

cells

Cells with 

wireless sensor 

nodes

 

Figure 5 WSN lattice 

Each node can have one of the states given in Table 1. 

 

Figure 4 A Cell-DEVS atomic model with transport delay 
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Changes of states and assignment of these state values can 
be represented by state transformation diagram as shown in 
Figure 6. 

Initially all the nodes in the lattice are in the susceptible 
state with fixed battery power. If no malware is received, it 
assumes sensor nodes perform their normal designed functions 
using relatively smaller battery power. Hence un-infected node 
will take long time to go to dead state. However if node 
receive a malware message, it moves to infected & spreading 
state and start broadcasting malware to its neighbors. 
Broadcasting consumes significant amount of power, draining 
its battery faster and result in moving to dead state quickly.  

Wireless media access protocols are used in wireless 
sensor networks to transfer data minimizing collisions and 
improve battery power usage. In the initial model, we have 
considered basic characteristics of media access protocol to 
guarantee channel access fairness and minimize collisions. 
Table 2 shows media access states of each node used to model 
wireless data transfer with minimal collisions. Transformation 
of states and assignment of these state values can be 
represented by state transformation diagram in Figure 7. 

Due to media access (MAC layer) rules, node has to wait 
for channel to be free, to start broadcasting. Basic 
characteristic of wireless channel access is modeled by 

introducing infected & dormant state. Infected & spreading 
node wait for random delay before next malware broadcast by 
moving to infected & dormant state after each broadcast.  

Finally sensor node battery power is modeled by starting 
with fixed sized battery power of value 20 and reduced to 
minimum of 10 in different rates for each node state. 

B. Cell-DEVS modeling of the initial design 

The general version of CD++ does not facilitate assigning 
multiple state variables or multiple ports in a single plane. 
Hence we have modeled the system in Cell-DEVS using three 
planes to represent three state variables of a sensor node that 
can exist at a particular time instance. These three state 
variables are defined, and handled by malware plane, power 
plane and access plane as shown in Figure 8.  

Malware plane is used to handle malware related states 
variable values of wireless sensor nodes. As we discussed 
earlier, a cell in the malware plane can be; dead/unoccupied, 
susceptible, spreading or dormant. Power plane is used to keep 
power state values of the sensor node. This power state can be 
any real number between 10 and 20. Initial power value 20 
represents battery levels of sensor node is full and value 10 
represents completely depleted battery power in the sensor 
node. Access defines MAC related states and has state variable 
values; channel free, receiving and broadcasting. 

Table 3 provides formal Cell-DEVS specifications for each 
plane and detailed descriptions of each element are given 
below. 

Node States Value 

Dead or unoccupied -1 

Susceptible 0 

Infected & spreading node 1 

Infected & dormant node 2 

Table 1 Sensor node states 

Free

Broadcasting Receiving
Neighbor 

broadcasts  

 = false 

= true

Broadcasted

Received

Node =
 infection 

spreading

Neighbor broadcasts

and

 

Figure 6 States transformation diagram for access plane (initial 
model) 

Power Plane = Pp

[Battery Power]

Malware Plane = Pm

[Malware Infection]

Access Plane = Pa

[Media Access]

 

Figure 7 Three planes used to assign three state variables in 
general CD++ 
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Infected & 
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Figure 8 States transformation diagram for malware plane 
(initial model) 

MAC layer node state value 

Free 30 

Receiving 31 

Broadcasting 32 

Table 2 States in media access plane 
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Malware Plane (Pm) Specifications 

GCCbm = <Im, Xm, Ym, Xlistm, Ylistm, ηm, Nm, {rm, cm}, Cm, Bm, 
Zm, Selectm> 

Xlistm= { 0 }; 

Ylistm= { 0 }. 

ηm= 6x6x3; 

Zm: [malware-propagation-rules] 

rule :  -1   1000  { (0,0,1)<11 } 

rule : 1   1000  { ((0,0,0)=0 and (0,0,2)=31)}  

rule : 2   1000  { (0,0,2)=32}  

rule : 1  5000 { (0,0,0)=2}   

rule : {(0,0,0)}  1000  {t}  

Nm: 

neighbors :  sensor(-1,-1,0) sensor(-1,0,0) sensor(-1,1,0)  

neighbors :  sensor(0,-1,0)  sensor(0,0,0)  sensor(0,1,0) 

neighbors :  sensor(1,-1,0)  sensor(1,0,0)  sensor(1,1,0) 

neighbors : sensor(0,0,1) 

neighbors : sensor(0,0,2) 

Bm= nowrapped; 

Sm: 

-1 : Dead node or Unoccupied by a sensor 

0 : Susceptible node 

1 : Infected & spreading 

2 : Infected & dormant 

d = inertial delay (default 1000) 

 

Power Plane (Pp) Specifications 

GCCbp= <Ip, Xp, Yp, Xlistp, Ylistp, ηp, Np, {rp, cp}, Cp, Bp, Zp, 
Selectp> 

Xlistp= { 0 }; 

Ylistp= { 0 }. 

ηp= 6x6x3; 

Zp: [power-usage-rules] 

rule : 10  1000  { (0,0,-1)=-1}  

rule : 10                1000  { (0,0,0)<=11 }      

rule : {(0,0,0)*.9} 1000  {(0,0,-1)=1}   

rule : {(0,0,0)*1.0} 1000  {(0,0,-1)=0 or (0,0,-1)=2 }   

rule : {(0,0,0)}  1000  {t}    

Np: 

neighbors : sensor(0,0,-1) 

neighbors : sensor(0,0,0) 

Bp= nowrapped; 

Sp: Battery power { ∈               } 

d = inertial delay (default 1000) 

 

Access Plane (Pa) Specifications 

GCCbp= <Ia, Xa, Ya, Xlista, Ylista, ηa, Na, {ra, ca}, Ca, Ba, Za, 
Selecta> 

Xlista= { 0 }; 

Ylista= { 0 }. 

ηa= 6x6x3; 

Za: [media-access-rules] 

rule : 31   1000    { (0,0,0)=30 and 

statecount(32)>0} 

rule : 30  1000   { (0,0,0)=31 and statecount(32)<1} 

rule : 32 {round(uniform(1,10))*100}  { (0,0,-2)=1 and 

statecount(32)<1}  

rule : 30  1000   { (0,0,0)=32} 

rule : {(0,0,0)}  1000   {t}  

Na: 

neighbors :  sensor(-1,-1,0) sensor(-1,0,0) sensor(-1,1,0)  

neighbors :  sensor(0,-1,0)  sensor(0,0,0)  sensor(0,1,0) 

neighbors :  sensor(1,-1,0)  sensor(1,0,0)  sensor(1,1,0) 

neighbors : sensor(0,0,-1) 

neighbors : sensor(0,0,-2) 

Ba= nowrapped; 

Sa: 

30 : channel free 

31 : receiving 

32 : broadcasting 

Plane Name Function Specification 

Malware Plane (Pm) Model malware infection <Im, Xm, Ym, Xlistm, Ylistm, ηm, Nm, {rm, cm}, Cm, Bm, Zm, Selectm> 

Power Plane (Pp) Model battery usage <Ip, Xp, Yp, Xlistp, Ylistp, ηp, Np, {rp, cp}, Cp, Bp, Zp, Selectp> 

Access Plane (Pa) Model media access <Ia, Xa, Ya, Xlista, Ylista, ηa, Na, {ra, ca}, Ca, Ba, Za, Selecta> 

Table 3 Formal Cell-DEVS specifications for three planes 
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d = inertial delay (default 1000) 

 

 

C. Extensions for the initial design 

Initial model was further enhanced by defining more states 
and transition rules to resemble more realistic simulation 
environment, exploiting additional functionalities introduced 
by parallel CD++. For the first phase, we have converted 
model designed for general CD++ directly to parallel CD++, 
in order to analyze and compare simulation performance. We 
have preserved most of the model characteristics and 
simulation rules are generated using multiple input and output 

ports. We discuss these implementation details and compare 
performance of these two models using general and parallel 
CD++ versions in following sections. 

After converting the initial multiple plane design to 
multiple ports design, we further enhanced it by adding new 
functionalities. These new modifications can be highlighted 
as; 

 Cells were modified to compute their states by 
receiving neighbor inputs from three input ports  

 Probabilistic approach was followed to model shared 
wireless media access 

 Characteristics of S-MAC [9] protocol and Optimized 
MAC protocol [10] is modeled introducing fixed and 
variable sleep states. 

 Effectiveness security patching was analyzed by 
introducing self-propagating patching.  

Modification to access multiple input ports has reduced 
complexity of the initial multiple plane model. We have used 
three ports, namely; node, txrx and pwd to interface node state 
changes, data transmission and channel access state changes 
and power changes respectively. Figure 9 illustrates this multi-
port communication and state values handled by these ports 
are shown in Table 4. 

 

Each port name represents input and output ports with the 
same name. Changes of the state of a cell is delivered to 
output port named node and cells neighbors are informed 
about this state change through their input port named node. 
Relationships between states represented by port node are 

Susceptible_Sleep

(0)

Susceptible _Active

(1)

Dead

(-1)

Infected_Dormant

(3)
Infected_Spreading

(2)

Malware 

message 

received

power < 1

Message 

transmitted or 

time-out

Malware broadcast

P(susceptible_active)

Patched _Active

(4)

Patched_Sleep

(5)

1 - P(susceptible_active)

1 

power < 1

power < 1

power < 1

power < 1

power < 1

P(patched_active)

Message 

transmitted or 

timed-out

1 - P(patched_active)

P(infected_spreading)

1 - P(infected_spreading)

 

Figure 10 State changes represented by port: node 

 

 

port value Represented state 

node 

-1 Dead or unoccupied node 

0 Susceptible sleeping node 

1 Susceptible active node 

2 Infection spreading node 

3 Infected but dormant node 

4 Patched active node 

5 Patched sleeping node 

pwd 

25 Battery power vary between  
maximum value 25 and 

minimum value 0 
: 

0 

txrx 

0 No channel access 

1 Normal ad-hoc messages 

2 Malware broadcast 

3 Patch messages 

Table 4 States represented by each port value 

~node

~txrx

~pwr

~node

~txrx

~pwr
Cell A Cell B

 

Figure 9 Multiple input and output ports between cells 

State/Event Power consumption 
per 100ms 

Dead 0 

Susceptible sleeping 0.1 

Susceptible active 0.2 

Infection spreading 0.5 

Infected but dormant 0.2 

Patched active 0.2 

Patched sleeping 0.1 

Broadcast (event) 1.0 

Ad-hoc message (event) 0.25 

Table 5 power consumption at each state and after channel 
access events 
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presented in the state diagram in Figure 10. 

We modeled battery power consumption at each node state 
and after broadcast and normal ad-hoc message transfer event 
using the power usage scheme shown in Table 5.  

Basic characteristics of Optimized MAC protocol and S-
MAC protocols were used to model media access in WSN. 
Optimized mac protocol increase duty cycle based on total 
load in the sensor network. Since we have followed a 
probabilistic approach, this characteristic was modeled by 
maintaining inversely proportional relationship between ad-
hoc message generations and sleeping probabilities. On the 
other hand, S-MAC protocol uses fixed duty cycles regardless 
of the load on the sensor network. Hence we have modeled 
this S-MAC characteristic by keeping fixed sleeping 
probability and observing malware propagation patterns for 
different operation message generation probabilities. 

Beside these characteristics, simple set of rules were 
defined to provide shared access to wireless media, 
minimizing collisions.  Implementation of collision avoidance 
algorithm such as CSMA is out of the focus of this work. 
Hence we simply make nodes wait if it detect channel is used 
by its neighbors and only transfer data if none of the neighbors 
use the channel (i.e. channel is free). However this simple 
approach does not guarantee collision free data transfer. 
Therefore if more than one neighbors of a particular cell 
access the channel at the same time, node assumes a possible 
collision and simply ignores the message. 

IV. SIMULATION OF THE INITIAL MODEL 

In this section, we discuss simulation approach followed to 
analyze basic malware propagation patterns illustrating rules 
used in the initial model. As we discussed before, for the 
simulation of the initial model, we have implemented three 
planes, each has 20X20 lattice containing wireless sensor 
nodes. We have used inertial delay with default delay time 
1000ms. Boarders were not-wrapped and no special rule was 
defined for boarders since boarder cell behavior is similar to 
internal cells. Brief descriptions of the CD++ rules are as 
follows; 

[media-access-rules] 

rule : 31  1000  { (0,0,0)=30 and statecount(32)>0} 

If any of the neighbors are broadcasting=32, set state to 
receive=31 

rule : 30 1000 { (0,0,0)=31 and statecount(32)<1} 

If the the current state is receive and none of the neighbors 
are broadcasting, set state to free=30 

rule : 32 {round(uniform(1,10))*100}  { (0,0,-2)=1 and 
statecount(32)<1}  

If the node is infected=1 and media is free=30, start 
broadcasting=32   

rule : 30 1000 { (0,0,0)=32} 

After broadcasting, set media free=30 

rule : {(0,0,0)} 1000 {t}   

Default rule 

 

[power-usage-rules]  

rule : 10 1000  { (0,0,-1)=-1} 

Set power value of all non-occupied cells to 10 

rule : 10          1000  { (0,0,0)<=11 }   

If the power value is less than 11, make it 10 

rule : {(0,0,0)*.9} 1000  {(0,0,-1)=1}  

Power consumption rate of infected cells      

rule : {(0,0,0)*1.0} 1000  {(0,0,-1)=0 or (0,0,-1)=2 }     

Power consumption rate of susceptible and recovered 
nodes     

rule : 10  1000  {t}   

Default rule 

 

[malware-propagation-rules]  

rule : -1  1000  { (0,0,1)<11 } 

If battery power is less than 11, node will die 

rule : 1   1000  { ((0,0,0)=0 and (0,0,2)=31)}  

If susceptible node received malware message, go 
infected_spread=1 

rule : 2    1000  { (0,0,2)=32}  

After doing a broadcast, go infected_dormant=2 

rule : 1   5000 { (0,0,0)=2} 

After staying in infected_dormant=2, go back to 
infected_spread=1  

rule : {(0,0,0)}  1000  {t}  

Default rule 

V. SIMULATION OF THE EXTENDED MODEL 

In this section, we provide implementation details and 
insight to the simulation rules defined for the extended model 
simulated in parallel CD++ lopez version [11]. For the 
simulation of the extended model, we have used three ports in 
single plane as we discussed in section III. A two dimensional 
20X20 lattice containing wireless sensor nodes was used with 
transport delay and default delay time 100ms. Similar to the 
initial model, boarders were not-wrapped and no special rule 
was defined for boarders since boarder cell behavior is similar 
to internal cells. An insight towards the implemented rules in 
the .ma file is given below. 

Initializing port values in the parallel CD++ can be done in 
several ways. In this work we have employed run-time port 
initialization approach. .val file initialize all the variables in a 
particular cell by a given single value. In our model, we were 
required to put malware and patch seeds in the cell space and 
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three ports (i.e. ~node, ~pwr and ~txrx) to be initialized by 
different values. Hence, we have used .val file to pre-initialize 
with values 99, 100 and 101 respectively for susceptible, 
infected and patched nodes and have defined following rules 
for actual initialization. 

 

 Rule 1 and 2 initialize susceptible sensor nodes active in 
0.5 probabilities, keeping rest sleeping. Rule 3 initializes 
infected nodes as infected-spreading (2) and rule 4 initialize 
patched node as patched-active (4). Battery powers of all 
nodes are initialized as 20 power units. Although these four 
rules are discussed before others, to improve execution time, 
we have placed them at the end of the .ma file, just before the 
default (always true) rule assuming sequential execution of 
rules. Thus we can make sure these initialization rules do not 
affect the performance of the simulation significantly. 

Rules that define dead (-1) state appears at the top of the 
rule sequence.  

 

Rule 5 keeps all the dead cells as it is and rule 6 sends any 
node with battery power less than or equal to 1, to dead state 
after making its remaining battery power equal to zero and 
making channel access equal to none (0). Except the dead 
state, all other states and events such broadcasting and ad-hoc 
channel access for normal operational messages consume 
battery power. These battery power consumptions 
corresponding to each state and event are tabulated in Table 5. 

 

Rule 7 and 8 changes state of susceptible-sleep (0) nodes 
to active with a pre-defined probability (in this example, 
probability = 0.4).  

If node is in patched-sleep (5) state, rules 9 and 10 change 
node states to patched-active (4) with the probability given by 
a linear function of number of infected neighbors. This makes 
sure that if any of the patched nodes neighbors are infected-
spreading, patched node move active with higher probability, 

increasing the speed of patching susceptible and infected 
nodes.  

 

If the node is susceptible-active or infected-spreading and 
any of its neighbors are transmitting a patch message, rule 11 
will change the node state to patched-active.  

 

Rule 12 defines spreading of malware to neighbors of an 
infected node. If a node is active and only one neighbor is 
broadcasting malware, while being the only node accessing 
the wireless channel at that time, malware message is 
successfully received and node will move to infected-
spreading state. 

This rule can be considered as one of the important 
improvement over the initial version of malware propagation 
model since it assumes if more than one neighbor is 
broadcasting, it results collision and no legible message is 
received.  

 

Rule 13 make sure that if an infected-spreading node is 
broadcasted malware messages to its neighbors, its remaining 
power has to be reduced by 1 power unit and moved to 
infected-dormant (3) state, changing channel access port value 
to none. This simulates higher power consumptions for 
message broadcasting in WSN. 

 

Rule 14 defines how an infected-spreading sensor node 
makes the malware broadcast decision. These broadcasts are 
bounded by channel access rules. Hence broadcast cannot be 
initiated if any other node is accessing the channel for ad-hoc 
message transmission. More strict media access rule can be 
defined by taking other broadcasts also in to account by 
modifying the above rule as follows;  

 

However we have noticed during simulations that if such 
media access condition was implemented, malware 
propagation speed is significantly reduced and simulation time 
is considerably increased. We discuss these media access rules 
in detail in performance evaluation section.  

 

1. rule : { ~node := 1; ~pwr := 20; ~txrx := 0; } 100 { (0,0)~node = 99 
and ( (0,0)~pwr = 99 and round(uniform(1,10)) > 5 ) } 

2. rule : { ~node := 0; ~pwr := 20; ~txrx := 0; } 100 { (0,0)~node = 99 
and (0,0)~pwr = 99} 

3. rule : { ~node := 2;~pwr := 20; ~txrx := 2; } 100 { (0,0)~node = 100 
and (0,0)~pwr = 100 } 

4. rule : { ~node := 4; ~pwr := 20; ~txrx := 3; } 100 { (0,0)~node = 101 
and (0,0)~pwr = 101 } 

5. rule : { } 100 { (0,0)~node = -1 } 

6. rule : { ~node := -1; ~pwr := 0; ~txrx := 0; } 100 { (0,0)~pwr <= 1 } 

7. rule : { ~node := 1; ~pwr := (0,0)~pwr - 0.1; } 100 { (0,0)~node = 0 
and round(uniform(1,10)) > 6 }  

8. rule : { ~pwr := (0,0)~pwr - 0.1; } 100 { (0,0)~node = 0 } 

9. rule : { ~node := 4; ~pwr := (0,0)~pwr - 0.1; } 100 { (0,0)~node = 
5 and round(uniform(1,10)) <= (statecount(2, ~node)*3 + 4 ) } 

10. rule : { ~pwr := (0,0)~pwr - 0.1; } 100 { (0,0)~node = 5 } 

11. rule : { ~node := 4; ~pwr := (0,0)~pwr - 0.2; } 100 { statecount(3, 
~txrx) > 0 and ( (0,0)~node = 1 or (0,0)~node = 2 ) } 

12. rule : { ~node := 2; ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 
1 and ( statecount(2, ~txrx) = 1 and statecount(1, ~txrx) = 0 ) } 

13. rule : { ~txrx := 0; ~node := 3; ~pwr := (0,0)~pwr - 1; } 100 { 
(0,0)~node = 2 and (0,0)~txrx = 2 } 

14. rule : { ~txrx := 2; ~pwr := (0,0)~pwr - 0.5; } 100 { (0,0)~node = 2 
and statecount(1, ~txrx ) = 0} 

rule : { ~txrx := 2; ~pwr := (0,0)~pwr - 0.5; } 100 { (0,0)~node = 2 
and ( statecount(1, ~txrx ) = 0 and statecount(2, ~txrx) = 0 } 

15. rule : { ~pwr := (0,0)~pwr - 0.5; } 100 { (0,0)~node = 2 } 
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Rule 15 address the case where if an infected spreading 
node could not access the channel because its used by another 
node. Infected-spreading node simply wait for the next round, 
staying in the infected-spreading state, until the channel is free 
or move to dead state due to low battery power  

 

If the sensor node is infected-dormant (3), rule 16 and 17 
will allow it to move back to infected-spreading state with the 
probability decreased by a linear function of number of 
infected-spreading nodes in the neighbourhood. These rules 
model a smart malware that does not waste battery power due 
to unnecessary movements to infected-spreading state.   

 

Rule 18 determine that if the node is patched-active (4) and 
patch message or normal ad-hoc message has been 
transmitted, node will move to patched-sleep (5) state.  

 

According to the rule 19, if the node is patched-active (4), 
patch message will be transmitted with a probability increased 
by a linear function based on number of infected-spreading 
neighbors in the neighborhood. Hence if number of infected-
spreading nodes is high in the neighborhood, there is a higher 
probability to transmit patch messages to its neighbors.  

We can call this kind of approach as an intelligent self-
propagating malware patching since patching overhead is 
minimized while maintaining effectiveness of patching by 
employing a function to change patching probability. 
Moreover, we have noticed in the simulations output that if 
patch is properly seeded close to infected nodes, damage from 
the malware can be greatly reduced.  

 

If the node is susceptible-active or patched-active, there is a 
probability of going back to susceptible-sleep or patched-sleep 
respectively, without accessing the channel at all. Rules 20 
and 21 models realistic cases such as, message to be 
transmitted is timed out and events that make sensor nodes 
active but does not require data transmission. 

 

Rule 22 defines if the node is susceptible-active and has 
already transmitted ad-hoc messages in the previous time step, 
state will be changed to susceptible-sleep after setting channel 
access to none. 

 

Rule 23 defines MAC rule for susceptible-active and patched-
active nodes. If the node is susceptible-active or patched-
active and none of the neighbors are using the channel, it will 
be accessed by the node for ad-hoc messages.  

 

According to rule 24, if the node is susceptible-active or 
patched-active and if any of the neighbors are access the 
channel, node has to wait for the channel to be free.  

 

Finally, we have modified the default rule, making it possible 
to verify the accuracy of other rules. 

VI. PERFORMANCE EVALUATION 

In this section, we analyze the outputs of both initial and 
extended model simulations and compare performance of 
initial and converted versions. Effectiveness of MAC 
techniques and patching in controlling malware propagation is 
evaluated using the extended version. We have compared two 
MAC protocols which are uniquely designed for sensor 
networks. Optimized MAC protocol aims to optimize sensor 
battery usage by changing duty cycle based on sensor load. 
But S-MAC protocol keeps fixed duty cycle. We compare 
these two MAC protocols in terms of how they react to a self-
propagating virus such as malware. Moreover in the latter part 
of this section, we introduce a self-propagating, malware 
parching which dynamically change its patch message 
emission speed, linearly with the number of infected nodes. 

A. Output analysis of initial model 

In this sub section we discuss simulation outputs at observed 
at different simulation times. 

 

16. rule : { ~node := 2; ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 
3 and round(uniform(1,10)) > (statecount(2, ~node)*2 + 2 ) } 

17. rule : { ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 3 } 

18. rule : { ~txrx := 0; ~node := 5; ~pwr := (0,0)~pwr - 0.2; } 100 { 
(0,0)~node = 4 and ( (0,0)~txrx = 3 or (0,0)~txrx = 1 ) } 

19. rule : { ~txrx := 3; ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 4 
and round(uniform(1,10)) <= (statecount(2, ~node)*4 + 2 ) } 

20. rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 { 
(0,0)~node = 1 and round(uniform(1,10)) > 6 }  

21. rule : { ~txrx := 0; ~node := 5; ~pwr := (0,0)~pwr - 0.2; } 100 { 
(0,0)~node = 4 and round(uniform(1,10)) <= (statecount(2, 
~node)*6 + 4 ) } 

22. rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 { 
(0,0)~node = 1 and (0,0)~txrx = 1 } 

23. rule : { ~txrx := 1; ~pwr := (0,0)~pwr - 0.2; } 100 { ( (0,0)~node = 
1 or (0,0)~node = 4 ) and ( statecount(1, ~txrx) = 0 and 
statecount(2, ~txrx) = 0 ) } 

24. rule : { ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 1 or 
(0,0)~node = 4 } 

25. rule rule : { ~node := 50; ~pwr := 50; ~txrx := 50; }  100  { t } 

Malware-Plane   Power-Plane    Access-Plane 

 

Figure 11 Initial values 
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Cells in three planes of the initial model are initialized using a 
.val file. Output .log file is visualized using Drawlog tool and 
CD++ Modeler tool in the simulator. In this section, we have 
analyzed CD++ Modeler outputs of few important steps of the 
simulation execution. Figure 11 shows CD++ Modeler output 
at simulation time 0 ms. Hence it shows just after assigning 
initial values to cells in malware plane, power plane and 
access plane. 

 

 

It can be seen that in the malware plane, all the nodes are 
in susceptible state (value 0) except the node (0, 0, 0). We 
have initialized this node as an infection spreading node (state 
value 1), to observe the malware propagation behavior. We 
have set the initial battery power level of every node to its 
maximum value, i.e. 20. The access plane is initialized to 
show that the wireless media is free (state value 30) and none 
of the nodes are broadcasting (state value 31) or receiving 
(state value 32). 

According to rules, infected node will start broadcasting 
after random countdown time. Output depicted in Figure 12 is 
observed in simulation time, 600ms and it can be noticed that 
node (0,0,0) started broadcasting from the value 32 appeared 
in access plane which represent malware broadcast. In the next 
time step, node (0,0,0) has moved to infected & dormant state 
while its battery power has been reduced to 18 as shown in the 
Figure 13. In the meantime, three neighbors of the infected 
cell has received the malware message (not shown in the 
figure) and moved to infection spreading state.  

In the next time step, three infected neighboring nodes of 
(0,0,0) will state broadcasting following media access rules, 
which are defined to minimize collisions by not allowing 
neighbors broadcast simultaneously. However, we have 
noticed that occasionally, neighboring cell broadcast 
simultaneously and in this initial version, we did not attempt 
to address this issue.   

An intermediary state taken at simulation time 14000ms is 
shown in Figure 14. In this figure we can see behavior of self-
propagating malware. From the access plane shows broadcast 
(value 32) message initiation and broadcast receiving (value 
31). This gives a good example of minimal simultaneous 
multiple broadcasts in same neighborhood. From the power 
plane, we can see that malware infected nodes consume more 
battery power for broadcasting and hence resulting dead nodes 
due to faster battery drain-out.. 

 

This simulation process continue until the end of experimental 
time interval or all sensor nodes move to dead state due to 
complete battery drain-out. 

B. Performance comparison with converted model 

Simulation performance compression of initial version 
simulated in general CD++ with directly converted version in 
parallel CD++ is discussed in this sub-section. As we have 
discussed before, same rules used for initial version has been 
used in the converted version with slight modifications to 
make use of multiple input/output ports, instead of multiple 
planes. 

We have simulated both versions in parallel CD++ using 
RESTful Interoperability Simulation Environment (RISE) 
[12]. Both simulations were executed by changing size of 
lattice dimensions from 20X20 to 5X5 in four steps. Execution 
times of each simulation run for both models were tabulated in 
tables 6 and 7. 

 

Malware-Plane   Power-Plane    Access-Plane 

 

Figure 12 Starting broadcast 

Malware-Plane   Power-Plane    Access-Plane 

 

Figure 14 Intermediary output of the simulation 

 

simulation 

run 

lattice size 

5x5 10x10 15x15 20x20 

1st run 0.708 4.716 10.624 25.426 

2nd run 0.778 4.668 10.595 25.404 

3rd run 0.796 4.699 10.605 25.468 

4th run 0.771 4.694 10.601 25.422 

5th run 0.706 4.713 10.634 25.362 

average 0.7518 4.698 10.6118 25.4164 

Table 6 Execution times of initial model 

 

Malware-Plane   Power-Plane    Access-Plane 

 

Figure 13  Malware propagation to neighbors 
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Average execution times with respect to lattice dimension 
sizes were plotted and shown in Figure 15. 

 

According to plotted execution times shown in Figure 15, 
we can see that the performance of the converted model is 
better than the initial version in terms of execution times. We 
can assume that, this performance improvement is due to 
reduced simulation complexity in the converted model, which 
uses multiple ports instead of multiple planes. 

C. Effects of MAC protocols on malware propagation 

Extended model introduced in Section V was also 
simulated using the RISE version of parallel CD++ using a 
25X25 2-dimensional lattice. Initially we have observed 
malware propagation patterns with different media access 
rules. 

As we have discussed previously, Optimized MAC 
protocol increases duty cycle based on total load in the sensor 
network. This characteristic was modeled by maintaining 
inversely proportional relationship between ad-hoc message 
generations and sleeping probabilities. S-MAC protocol on the 
other hand, maintains fixed sleep/active cycles regardless of 
the load. In order to compare these protocols, we have 
obtained number of infected sensor nodes after 2000ms 
simulation time, for different combinations of ad-hoc message 

generation and sleep probabilities. We have made some 
modifications to few existing rules discussed in Section V, as 
follows; 

 

Original rule 20 was introduced to model message time-
outs and active nodes that move to sleep state without 
transmitting any message. We have used this moving-to-sleep 
rule to change sleeping probability in different simulation 
runs. Hence as shown on the modified rule 20, Sp which stand 
for sleeping probability was changed in each simulation run to 
obtain results shown in table 8.  

 

Original rule 22 was used to send nodes from active state 
to sleep after an ad-hoc message transmission. We have 
modified this rule by removing its post-condition, move-to-
sleep, to make sure that moving to sleep is only controlled by 
modified rule 20. Hence from modified rule 22, we only 
expect to change channel access state back to no-channel-
access, after transmitting a message. 

 

Original media access control rule of susceptible and 
patched nodes was modified by adding a probability condition 
and removing channel lock constraints by neighbors from pre-
condition. In the modified rule 24, load probability can be 
changed by changing Lp.  

Figure 16 shows CD++ Modeler outputs at 2000ms, 
obtained by keeping Sp constant at 0.6 and changing from Lp 
0.2 to 0.8 in 0.2 steps.  

simulation 

run 

lattice size 

5x5 10x10 15x15 20x20 

1st run 0.068 1.204 3.727 7.749 

2nd run 0.066 1.198 3.802 7.773 

3rd run 0.072 1.118 3.759 7.693 

4th run 0.064 1.144 3.784 7.725 

5th run 0.068 1.16 3.765 7.762 

average 0.0676 1.1648 3.7674 7.7404 

Table 7 Execution times of converted model 

 

 

Figure 15 Average execution times vs. lattice dimensions 
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converted

initial

%ORIGINAL RULE 20 

rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 { 
(0,0)~node = 1 and round(uniform(1,10)) > 6 } 

%MODIFIED  RULE 20 

rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 { 
(0,0)~node = 1 and round(uniform(1,10)) <= [Sp ] } 

%ORIGINAL RULE 22 

rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 { 
(0,0)~node = 1 and (0,0)~txrx = 1 } 

%MODIFIED RULE 22 

rule : { ~txrx := 0;  ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 1 
and  (0,0)~txrx = 1  } 

%ORIGINAL RULE 23 

rule : { ~txrx := 1; ~pwr := (0,0)~pwr - 0.2; } 100 { ( (0,0)~node = 1 or 
(0,0)~node = 4 ) and ( statecount(1, ~txrx) = 0 and statecount(2, 
~txrx) = 0 ) } 

%MODIFIED RULE 23 

rule : { ~txrx := 1; ~pwr := (0,0)~pwr - 0.2; } 100 { ( (0,0)~node = 1 or 
(0,0)~node = 4 ) and round(uniform(1,10)) > [Lp] } 
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According to the outputs shown in Figure 16, It can be 
seen that when node load in terms of messages to be 
transmitted is increased, malware spreading speed is 
decreased. This is because different node loads make WSN 
channel access highly competitive and broadcast collisions 
prevent faster spreading.  

On the other hand, if we keep node load Lp constant and 
sleeping probability Sp increased, increased malware 
propagation speeds can be observed as shown in the CD++ 
modeller outputs in Figure 17.    

By changing workloads Lp and sleep probabilities Sp, in 
sensor nodes, number of infected nodes in the network after 
2000ms simulation time is obtained and tabulated in Table 8. 

 

 

For this work, each simulation was executed only once and 
hence we recognize that the error percentage can be relatively 
high. We expect to perform more sophisticated simulations in 
our future work to obtain more accurate results. 

We have plotted number of infected nodes at 2000ms by 
changing Lp and Sp. Figure 18 shows the number of infected 
nodes plotted against Sp. 

 

Message Generation 

Probability [Lp] 

Sleeping Probability [Sp] 

0.2 0.4 0.6 0.8 

0.2 80 77 123 128 

0.4 20 31 64 92 

0.6 14 17 57 90 

0.8 8 15 43 78 

1 7 10 16 56 

Table 8 Number of infected nodes after 2000ms, for different 
Sp and Lp values 

 

Lp = 0.6 and Sp = 0.2    Lp = 0.6 and Sp = 0.4 

  

Lp = 0.6 and Sp = 0.6    Lp = 0.6 and Sp = 0.8 

  

 

Figure 17 Malware spreading patterns for constant node load and 
different sleep probabilities 

 

Lp = 0.2 and Sp = 0.6    Lp = 0.4 and Sp = 0.6 

  

Lp = 0.6 and Sp = 0.6    Lp = 0.8 and Sp = 0.6 

  

 

Figure 16 Malware spreading patterns for constant sleep and 
increasing load probabilities 

 

 

 

Figure 18 Number of infected nodes at 2000ms vs. sleeping 
probability of sensor nodes 
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From the graph in Figure 18, we can see that when 
sleeping probabilities are increased, numbers of infected nodes 
are increased.   

 

Figure 19, shows infected node variation with respect to 
sensor node load probabilities Lp from this graph, we can 
observe that, when the communication load over sensor nodes 
due to normal operational messages are increased, malware 
propagation speeds are decreased.  

Based on these two observations, we can compare 
effectiveness of considered Optimized-MAC and S-MAC 
protocols, in controlling malware propagation speeds. We 
have previously discussed that Optimized-MAC protocol 
changes the duty cycle based on sensor node load and S-MAC 
protocol keeps fixed duty cycles irrespective if the load. Hence 
we can build an argument that, if we change load probabilities 
keeping sleep probabilities constant, it resembles operation of 
S-MAC protocol. Furthermore, if we reduce sleep probability 
inversely proportional to load probability, it resembles 
operation of Optimized-MAC protocol. Extraction of data 
from Table 8 based on this argument is highlighted by two 
dotted rectangles. We have arranged these extracted data in 
Table 9. 

 

We have plotted number of infected nodes for each MAC 
protocol as shown in Figure 20. 

 

From the graph shown in Figure 20, we can observe that 
Optimized-MAC protocol is more effective than the S-MAC 
protocol in controlling malware propagation speeds over 
WSN. 

D. Effectiveness of Patching 

  In this sub-section, we discuss the effectiveness of patching 
in minimizing the harmful effects of malware in WSN. We 
have simulated four scenarios, where single patching seed 
placed far from the malware seeds, two patching seeds placed 
far from malware, single patching seed placed close the 
malware seeds and multiple patching seeds surrounding 
malware seeds. For all simulations, sleeping probability is 
maintained at 0.4 and non-probabilistic channel access rules 
which were defined in section V are used. We have placed five 
malware seeds in Von-Neumann neighborhood instead of one 
seed at the starting of the simulation, to model the realistic 
scenario where malware patching is usually done reactively 
after noticing a malware attack on the WSN. 

First we have carried out a simulation by keeping a single 
patching seed 10 nodes away from the central malware seed. 
CD++ Modeler outputs observed at different simulation times 
are shown in Figure 21. 

 

 

Figure 19 Number of infected nodes at 2000ms vs. sensor node 
communication load 

 

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
u

m
b

e
r
 o

f 
in

fe
c
te

d
 n

o
d

e
s 

Message Load Probability [Lp] 

Sp = 0.2
Sp = 0.4
Sp = 0.6
Sp = 0.8

Message Generation 

Probability Lp 

Optimized 

MAC 
S-MAC 

0.2 123 123 

0.4 64 92 

0.6 17 90 

0.8 8 78 

Table 9 infected nodes at 2000ms for different MAC protocols 

 

 

Figure 20  Malware propagation behaviors in Optimized-MAC 
and S-MAC protocols 
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Figure 21 Single patching seed placed far from malware 
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In the second scenario, we have placed two patching seeds 
on the opposite sides of the malware, each with 10 nodes away 
from the central infected node. CD++ Modeler output 
corresponding to this scenario is shown in Figure 22. 

 

In the third scenario, we have observed the effectiveness of 
patching by placing a single patching seed 5 nodes away from 
the central infected node. Observed CD++ Modeler outputs 
are illustrated in Figure 23. 

 

In the fourth scenario, we have observed the reaction of the 
malware to patching by placing two patching seeds 5 nodes 
away from central infected node on opposite sides. Observed 
CD++ Modeler outputs are shown in Figure 23. 

 

From Figure 21-24, each figure shows three simulation 
outputs taken at the simulation time t, written on top of each 
output. Outputs in the left side of each figure shows initial 
seed placement and middle output shows the instances where 
the patched-active nodes first see infected-spreading nodes in 
their neighborhood. Output to the right in Figures 22-24 shows 
the simulation step where all the malware was completely 
removed by self-propagating patching. However in Figure 21, 
it shows an intermediary step that can result in topological 
fragmentation due to dead sensor nodes block patches from 
propagating to other parts of the topology. Patching message 
generation rate of patched-active nodes is increased linearly 
with the number of infected-spreading nodes in their 
neighborhood. Dynamic patching message generation helps 
WSN in two ways. First, it will not impose significant network 
overhead on the uninfected nodes. Secondly it will attack 
malware faster minimizing its harmful effects. 

Outputs shown in figure 21 shows the patch and malware 
behavior when infected and patching seeds placed far away 
from each other. In such a scenario, time taken by patches to 
reach the infected nodes is considerably high and thus 
malware gets enough time to spread over the WSN and do 
higher damage. Damage done by malware can be seen from 
the higher number of dead nodes created by draining battery 
from sensor nodes. Moreover by killing topologically critical 
sensor nodes, malware can block patching in certain parts of 
the network topology.  

By placing multiple patching seeds in different parts of the 
WSN topology as shown in Figure 22, fragmentation of 
topology can be minimized. However, still the malware gets 
enough time to do a significant damage to WSN by draining 
battery power completely from several sensor nodes. In 
figures 23 and 24, we see that that when patching seeds are 
placed close to the malware seeds, effectiveness of the 
patching is maximized and malware can be quickly removed 
from WSN without allowing it to do a significant damage to 
sensor nodes. 

VII. CONCLUSION AND FUTURE WORK 

In this term paper, have followed a simulation based 
approach to study malware propagation patterns, in highly 
resource constrained WSN environments. WSN are highly 
vulnerable to viruses, worms and malicious programs such as 
self-propagating malware. Due to limitations of processing, 
memory and battery power, powerful security features are not 
cost effective for most WSNs. Hence media access controlling 
is widely regarded as an efficient and cost effective method of 
restricting malware propagation in WSNs. In this work, we 
have investigated the ability of two widely used MAC 
protocols; Optimized-MAC and S-MAC in restraining 
malware propagation. 

Furthermore, Patching can be considered as a reactive 
approach towards controlling malware propagation in WSN. 
Efficient placement of self-propagating patching seeds can 
significantly mitigate adverse effects of malware attacks. 
However, if patches are not delivered to sensor nodes in time 
or not placed properly, malware can still damage sensor nodes 
draining battery power or compromising its functions. Hence 

  t = 0ms     t = 1400ms    t = 3700ms 

   

 

Figure 23 Single patching seed placed closed to malware 

 

  t = 0ms      t = 900ms    t = 3500ms 

    

 

Figure 24 Two patching seeds placed close to the malware 

t = 0ms     t = 3000ms    t = 7800ms 

     

 

Figure 22 Two patching seeds placed far from malware 
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use of proper MAC protocols along with efficient patching is 
highly important to ensure secure operation in WSN. 

Due to limitations of time and resources, we have limited 
our study only to two most basic MAC protocols used in 
WSN. As for our future work, we recognize the importance of 
carrying out a more detailed study in this area focusing on 
other popular WSN MAC technologies. Moreover, we are 
planning to integrate topological details in our future 
simulations and develop more powerful patching algorithms 
comparing effectiveness’s of different distributions instead of 
limiting our scope to simple linear functions. 
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