

Abstract—Wireless sensor nodes are highly resource
constrained in terms of memory, processing, battery power
and communication. Due to these limitations, sophisticated
security features are not cost effective in most wireless
sensor network (WSN) applications. Hence WSNs are
often targeted by viruses and malware, interrupting or
completely terminating their desired functionalities. In this
work, we investigate malware propagation patterns in
WSNs and examine the abilities of different Media Access
Control (MAC) rules and techniques to limit malware
propagation. Effectiveness of security patching is also
analyzed by implementing self-propagating patches. We
have modeled and simulated wireless communication in
WSN using parallel Cell-DEVS and investigated malware
propagation by implementing basic characteristics of two
commonly used WSN MAC protocols.

Keywords— Parallel Cell-DEVS, Simulation, Sensor
Networks, Malware Propagation, MAC protocols;

I. INTRODUCTION

Wireless Sensor Networks (WSNs) are regarded as one of
the dominant technology trends of this decade that has
potential usage in monitoring applications in number of fields
including defense, health care, environment science, and
chemical industries. Malware and virus attacks on wireless
computer networks and wireless telecommunication networks
have been widely investigated and hold a strong literature.
However, WSNs differ from traditional computer networks
and wireless telecommunication networks in various aspects:
First, wireless sensor networks are highly distributed system
and consist of a great number of distributed nodes (sensor
nodes) with the ability to monitor its surroundings.

Second, sensor nodes are limited in power, computational
capacities, and memory. Finally, self-organization is a
fundamental feature of wireless sensor networks, allowing
normal operation with minimal human interaction. Security
mechanisms employed on traditional wireless computer
networks or wireless telecommunication networks could not
be applied directly to wireless sensor networks. Several
research works has recently given attention to study malware
propagation in WSN and proposed number of techniques to
minimize effects and limit propagation. Some of these
techniques involve application of signal processing technique
to model space-time propagation dynamics of topologically-

aware malware in a sensor network with uniformly distributed
nodes [1]. Some of these authors make use of epidemic
theoretic model for evaluating malware propagation and
broadcast protocols in wireless sensor networks. On the other
hand, substantial amount of work available in the literature,
that uses Cellular Automata to simulate their proposed
approaches. Considering the inherent characteristics of WSN,
existing models for epidemiology cannot be directly applied to
study malware propagation of wireless sensor network [2].

Cellular automata (CA) models complex natural systems,
containing large numbers of simple identical components with
local interactions. It defines an infinite regular n-dimensional
lattice in which each cell can take a finite value. There is a
substantial literature [3, 4] on the mathematical model based
on cellular automata which simulates behaviors of natural
systems. These models based on cellular automata focus on
the local characteristics of single component that influence the
global behavior of the system.

Cell-DEVS can be identified as an advanced version of CA
which uses DEVS formalism to enhance capabilities of
conventional CA. It allows interactions with external entities
and components, explicit timing delays, when computing
individual cell states. Hence events that trigger local cell state
computation can be fired by entities that are external to the
cellular neighborhood. Also more resent versions have
allowed convenient behavioral modeling using multiple states
and multiple input and ports that define cells characteristics.

We have focused on the inherent characteristics of WSN
and the dynamic process of malware propagation in WSN by
modeling it employing Cell-DEVS modeling technique. We
have validated the proposed malware propagation models
using CD++ [5-7], a simulation engine, which was designed
specifically to simulate Cell-DEVS models. Simulation study
revealed that MAC mechanisms of wireless sensor networks
has the ability greatly slow down the speed of malware
propagation and reduces the risk of large-scale malware
prevalence in WSN. Moreover, we show that use of self-
propagating security patches can significantly reduce adverse
effects of malware attacks. The developed WSN model can be
used to describe accurately the dynamic behavior of malware
propagation on WSN, and can be used for developing robust
and efficient defense system on WSN.

In this work we talk about three WSN models. First, we
have developed our initial model to simulate in general CD++.
Second, we have re-created the model to use multiple ports

Effectiveness’s of MAC Techniques and
Security patches on Restricting Malware
Propagation in Wireless Sensor Networks

Term paper prepared by

H. Amarasinghe (6152735), University of Ottawa

Sysc 5104: Methodologies for Discrete Event Modeling and Simulation (fall 2012), Carleton University

 2

and simulate in parallel CD++. Finally, we have re-engineered
the simulation model to resemble more realistic WSN, and
compare effectiveness of different MAC protocols and self-
propagating patching, in malware spread controlling. In order
to avoid confusion, we name these three models as initial
version, converted version and extended version respectively
in following sections.

The rest of this term-paper is organized as follows. Section
2 provides detailed background information, introducing Cell-
DEVS approach towards modeling cellular space. Section 3
describes conceptual modeling and Cell-DEVS formalism of
initial version and extended version. We do not talk about
converted version in this section since its modeling approach
is similar to initial model. In section 4, simulation
methodology of the initial version is illustrated with brief
description of obtained simulation results. The extended
version is simulated using multi-port parallel CD++ and this
simulation procedure is discussed in section 5. In section 6,
performance of initial version is compared with converted
version. Moreover, effectiveness of different MAC protocols
and self-propagating patching is analyzed using simulation
results obtained from extended version. Brief conclusion is
given in section 7, discussing potential future research
directions.

II. BACKGROUND

This section focuses on providing brief introduction to
closely related and employed technologies such as cellular
automata, DEVS, Cell-DEVS and several MAC techniques
specifically designed for WSN.

A. Cellular Automata (CA)

Cellular Automata is a discrete dynamical system formed
by a finite number of identical objects called cells which are
arranged uniformly in a two-dimensional cellular space. Each
cell is endowed with a state (from a finite state set S), that
changes at every step of time accordingly to a local transition
rule.

In this sense, the state of a particular cell at time t depends
on the states of a set of cells, called its neighborhood, at the
previous time step t-1. More precisely, a CA is defined by;

CA = < S, n, C, η, N, T, τ

>

Where C is the cell’s set of state variables and S is the
finite alphabet to represent each cell’s state. η represents the
dimensional space while N defines set of neighboring cells or
in other words, cells neighborhood. T global transition
function and τ is the local computing function of each cell in
the cell space.

As shown in Figure 1, all the cells in the cell space have
the same neighborhood and state of each cell is computed by
using their neighborhood cell states. There are two basic
neighborhoods. Von Neumann’s neighborhood has the cells to
up, down, left and right while Moor’s neighborhood has all
eight cells around a cell in 2-dimensional cell space as shown
in Figure 2.

B. Discrete Event system Specification (DEVS)

DEVS is a system that allows modeling real system
experimental frames in to a module hierarchy [6]. As shown in
Figure 3, a real system modeled using DEVS can be
represented as a set of atomic or coupled sub-models. The
atomic DEVS model is defined as:

M =< X, S, Y, dint , dext , l, ta >

where X is the input events set, S is the state set, Y is the
output events set, dint is the internal transition function, dext is
the external transition function, l is the output function, and ta
is the time advance function.

Figure 2 Neighborhood of a cell

(a) (b)

Figure 1 Neighborhood types; (a) Moor’s
neighborhood (b) Von-Neumann’s neighborhood

Figure 3 DEVS Atomic Model

 3

The atomic model can be considered as the base element in
which we define dynamics of any system, while the coupled
structural model consists of one or more atomic and/or
coupled models. Coupled models are defined as a set of basic
components (atomic or coupled).The coupled model can be
defined as:

CM =< X, Y, D, {Md ∣ d ∈ D}, EIC, EOC, IC, select >

where X is the input events set, Y is the output events set,
D is the set of component names, Md is a DEVS basic
model(i.e., atomic or coupled), EIC is the set of external input
couplings, EOC is the set of external output couplings, IC is
the set of internal coupling, and select is the tie-breaker
function. The coupled model explains how to convert the
outputs of a model into inputs for the other models, and how
to handle inputs/ outputs to and from external models.

C. Cell-DEVS

Cell-DEVS [8] has extended the DEVS formalism,
allowing us to implement cellular models with timing delays.
Once the behavior of a cell is defined, a coupled Cell-DEVS
can be created by interconnecting a number of cells with their
neighbors. Each cell is defined as a DEVS atomic model, as
shown in Figure 4.

Each cell uses N inputs to compute its next state. These
inputs, which are received through the model’s interface,
activate a local computing function τ. A delay d can be
associated with each cell. A coupled Cell-DEVS model is the
resulting array of cells (atomic models) with given
dimensions, borders, and zones.

D. WSN MAC protocols

In order to evaluate and compare malware propagation
patterns in WSN, we have simulated basic characteristics of
following MAC protocols.

Sensor S-MAC [9] a contention based MAC protocol is
modification of IEEE 802.11 protocol specially designed for
WSN. In this MAC protocol sensor node periodically goes to
the fixed listen/sleep cycle. A time frame in S-MAC is divided
into two parts: one for a listening session and the other for a
sleeping session. Only for a listen period, sensor nodes are

able to communicate with other nodes and send some control
packets such as SYNC, RTS (Request to Send), CTS (Clear to
Send) and ACK (Acknowledgement). By a SYNC packet
exchange all neighboring nodes can synchronize together and
using RTS/CTS exchange the two nodes can communicate
with each other. A lot of energy is still wasted in this protocol
during listen period as the sensor will be awake even if there is
no reception/transmission.

In the Optimized MAC protocol [10], the sensors duty cycle is
changed based on the network load. If the traffic is more than
the duty cycle will be more and for low traffic the duty cycle
will be less. The network load is identified based on the
number of messages in the queue pending at a particular
sensor. The control packet overhead is minimized by reducing
the number and size of the control packets as compared to
those used in the S-MAC protocol. This protocol may be
suited for applications in which apart from energy efficiency
there is need for low latency.

III. MODELING MALWARE IN WSN

We have performed simulations on two different versions
of CD++. Initially few basic characteristics of WSN is
modeled and simulated using general CD++ version. After
that, model was further enhanced and simulated in more
powerful, Parallel CD++ [11] version. Parallel CD++ allows
using multiple state variables that define sensor node state, to
be defined and handled in the same plane. Moreover it allows
defining multiple input and output ports for cells. Use of this
extended version of CD++ has significantly reduced the
complexity of the implementation. Hence we were able to
introduce additional functionalities and fine-tune the model to
represent more detailed realistic malware propagation
scenarios in WSN.

In this section, we provide detailed information of our
WSN modeling approach. Conceptual and Cell-DEVS
modeling for the general CD++ is described in first two
subsection followed by enhanced modeling for parallel CD++.

A. Conceptual Modeling of the initial design

We have modeled the wireless sensor network as a 2
dimensional lattice, with each cell may or may not occupied
by a stationary wireless sensor node as shown in Figure 5.

Unoccupied

cells

Cells with

wireless sensor

nodes

Figure 5 WSN lattice

Each node can have one of the states given in Table 1.

Figure 4 A Cell-DEVS atomic model with transport delay

 4

Changes of states and assignment of these state values can
be represented by state transformation diagram as shown in
Figure 6.

Initially all the nodes in the lattice are in the susceptible
state with fixed battery power. If no malware is received, it
assumes sensor nodes perform their normal designed functions
using relatively smaller battery power. Hence un-infected node
will take long time to go to dead state. However if node
receive a malware message, it moves to infected & spreading
state and start broadcasting malware to its neighbors.
Broadcasting consumes significant amount of power, draining
its battery faster and result in moving to dead state quickly.

Wireless media access protocols are used in wireless
sensor networks to transfer data minimizing collisions and
improve battery power usage. In the initial model, we have
considered basic characteristics of media access protocol to
guarantee channel access fairness and minimize collisions.
Table 2 shows media access states of each node used to model
wireless data transfer with minimal collisions. Transformation
of states and assignment of these state values can be
represented by state transformation diagram in Figure 7.

Due to media access (MAC layer) rules, node has to wait
for channel to be free, to start broadcasting. Basic
characteristic of wireless channel access is modeled by

introducing infected & dormant state. Infected & spreading
node wait for random delay before next malware broadcast by
moving to infected & dormant state after each broadcast.

Finally sensor node battery power is modeled by starting
with fixed sized battery power of value 20 and reduced to
minimum of 10 in different rates for each node state.

B. Cell-DEVS modeling of the initial design

The general version of CD++ does not facilitate assigning
multiple state variables or multiple ports in a single plane.
Hence we have modeled the system in Cell-DEVS using three
planes to represent three state variables of a sensor node that
can exist at a particular time instance. These three state
variables are defined, and handled by malware plane, power
plane and access plane as shown in Figure 8.

Malware plane is used to handle malware related states
variable values of wireless sensor nodes. As we discussed
earlier, a cell in the malware plane can be; dead/unoccupied,
susceptible, spreading or dormant. Power plane is used to keep
power state values of the sensor node. This power state can be
any real number between 10 and 20. Initial power value 20
represents battery levels of sensor node is full and value 10
represents completely depleted battery power in the sensor
node. Access defines MAC related states and has state variable
values; channel free, receiving and broadcasting.

Table 3 provides formal Cell-DEVS specifications for each
plane and detailed descriptions of each element are given
below.

Node States Value

Dead or unoccupied -1

Susceptible 0

Infected & spreading node 1

Infected & dormant node 2

Table 1 Sensor node states

Free

Broadcasting Receiving
Neighbor

broadcasts

 = false

= true

Broadcasted

Received

Node =
 infection

spreading

Neighbor broadcasts

and

Figure 6 States transformation diagram for access plane (initial
model)

Power Plane = Pp

[Battery Power]

Malware Plane = Pm

[Malware Infection]

Access Plane = Pa

[Media Access]

Figure 7 Three planes used to assign three state variables in
general CD++

Susceptible

Infected &

Spreading

Infected &

Dormant

Dead

Battery level< min

After pre-

defined time

Malware message

received

Battery level< min

Battery level< min

Figure 8 States transformation diagram for malware plane
(initial model)

MAC layer node state value

Free 30

Receiving 31

Broadcasting 32

Table 2 States in media access plane

 5

Malware Plane (Pm) Specifications

GCCbm = <Im, Xm, Ym, Xlistm, Ylistm, ηm, Nm, {rm, cm}, Cm, Bm,
Zm, Selectm>

Xlistm= { 0 };

Ylistm= { 0 }.

ηm= 6x6x3;

Zm: [malware-propagation-rules]

rule : -1 1000 { (0,0,1)<11 }

rule : 1 1000 { ((0,0,0)=0 and (0,0,2)=31)}

rule : 2 1000 { (0,0,2)=32}

rule : 1 5000 { (0,0,0)=2}

rule : {(0,0,0)} 1000 {t}

Nm:

neighbors : sensor(-1,-1,0) sensor(-1,0,0) sensor(-1,1,0)

neighbors : sensor(0,-1,0) sensor(0,0,0) sensor(0,1,0)

neighbors : sensor(1,-1,0) sensor(1,0,0) sensor(1,1,0)

neighbors : sensor(0,0,1)

neighbors : sensor(0,0,2)

Bm= nowrapped;

Sm:

-1 : Dead node or Unoccupied by a sensor

0 : Susceptible node

1 : Infected & spreading

2 : Infected & dormant

d = inertial delay (default 1000)

Power Plane (Pp) Specifications

GCCbp= <Ip, Xp, Yp, Xlistp, Ylistp, ηp, Np, {rp, cp}, Cp, Bp, Zp,
Selectp>

Xlistp= { 0 };

Ylistp= { 0 }.

ηp= 6x6x3;

Zp: [power-usage-rules]

rule : 10 1000 { (0,0,-1)=-1}

rule : 10 1000 { (0,0,0)<=11 }

rule : {(0,0,0)*.9} 1000 {(0,0,-1)=1}

rule : {(0,0,0)*1.0} 1000 {(0,0,-1)=0 or (0,0,-1)=2 }

rule : {(0,0,0)} 1000 {t}

Np:

neighbors : sensor(0,0,-1)

neighbors : sensor(0,0,0)

Bp= nowrapped;

Sp: Battery power { ∈ }

d = inertial delay (default 1000)

Access Plane (Pa) Specifications

GCCbp= <Ia, Xa, Ya, Xlista, Ylista, ηa, Na, {ra, ca}, Ca, Ba, Za,
Selecta>

Xlista= { 0 };

Ylista= { 0 }.

ηa= 6x6x3;

Za: [media-access-rules]

rule : 31 1000 { (0,0,0)=30 and

statecount(32)>0}

rule : 30 1000 { (0,0,0)=31 and statecount(32)<1}

rule : 32 {round(uniform(1,10))*100} { (0,0,-2)=1 and

statecount(32)<1}

rule : 30 1000 { (0,0,0)=32}

rule : {(0,0,0)} 1000 {t}

Na:

neighbors : sensor(-1,-1,0) sensor(-1,0,0) sensor(-1,1,0)

neighbors : sensor(0,-1,0) sensor(0,0,0) sensor(0,1,0)

neighbors : sensor(1,-1,0) sensor(1,0,0) sensor(1,1,0)

neighbors : sensor(0,0,-1)

neighbors : sensor(0,0,-2)

Ba= nowrapped;

Sa:

30 : channel free

31 : receiving

32 : broadcasting

Plane Name Function Specification

Malware Plane (Pm) Model malware infection <Im, Xm, Ym, Xlistm, Ylistm, ηm, Nm, {rm, cm}, Cm, Bm, Zm, Selectm>

Power Plane (Pp) Model battery usage <Ip, Xp, Yp, Xlistp, Ylistp, ηp, Np, {rp, cp}, Cp, Bp, Zp, Selectp>

Access Plane (Pa) Model media access <Ia, Xa, Ya, Xlista, Ylista, ηa, Na, {ra, ca}, Ca, Ba, Za, Selecta>

Table 3 Formal Cell-DEVS specifications for three planes

 6

d = inertial delay (default 1000)

C. Extensions for the initial design

Initial model was further enhanced by defining more states
and transition rules to resemble more realistic simulation
environment, exploiting additional functionalities introduced
by parallel CD++. For the first phase, we have converted
model designed for general CD++ directly to parallel CD++,
in order to analyze and compare simulation performance. We
have preserved most of the model characteristics and
simulation rules are generated using multiple input and output

ports. We discuss these implementation details and compare
performance of these two models using general and parallel
CD++ versions in following sections.

After converting the initial multiple plane design to
multiple ports design, we further enhanced it by adding new
functionalities. These new modifications can be highlighted
as;

 Cells were modified to compute their states by
receiving neighbor inputs from three input ports

 Probabilistic approach was followed to model shared
wireless media access

 Characteristics of S-MAC [9] protocol and Optimized
MAC protocol [10] is modeled introducing fixed and
variable sleep states.

 Effectiveness security patching was analyzed by
introducing self-propagating patching.

Modification to access multiple input ports has reduced
complexity of the initial multiple plane model. We have used
three ports, namely; node, txrx and pwd to interface node state
changes, data transmission and channel access state changes
and power changes respectively. Figure 9 illustrates this multi-
port communication and state values handled by these ports
are shown in Table 4.

Each port name represents input and output ports with the
same name. Changes of the state of a cell is delivered to
output port named node and cells neighbors are informed
about this state change through their input port named node.
Relationships between states represented by port node are

Susceptible_Sleep

(0)

Susceptible _Active

(1)

Dead

(-1)

Infected_Dormant

(3)
Infected_Spreading

(2)

Malware

message

received

power < 1

Message

transmitted or

time-out

Malware broadcast

P(susceptible_active)

Patched _Active

(4)

Patched_Sleep

(5)

1 - P(susceptible_active)

1

power < 1

power < 1

power < 1

power < 1

power < 1

P(patched_active)

Message

transmitted or

timed-out

1 - P(patched_active)

P(infected_spreading)

1 - P(infected_spreading)

Figure 10 State changes represented by port: node

port value Represented state

node

-1 Dead or unoccupied node

0 Susceptible sleeping node

1 Susceptible active node

2 Infection spreading node

3 Infected but dormant node

4 Patched active node

5 Patched sleeping node

pwd

25 Battery power vary between
maximum value 25 and

minimum value 0
:

0

txrx

0 No channel access

1 Normal ad-hoc messages

2 Malware broadcast

3 Patch messages

Table 4 States represented by each port value

~node

~txrx

~pwr

~node

~txrx

~pwr
Cell A Cell B

Figure 9 Multiple input and output ports between cells

State/Event Power consumption
per 100ms

Dead 0

Susceptible sleeping 0.1

Susceptible active 0.2

Infection spreading 0.5

Infected but dormant 0.2

Patched active 0.2

Patched sleeping 0.1

Broadcast (event) 1.0

Ad-hoc message (event) 0.25

Table 5 power consumption at each state and after channel
access events

 7

presented in the state diagram in Figure 10.

We modeled battery power consumption at each node state
and after broadcast and normal ad-hoc message transfer event
using the power usage scheme shown in Table 5.

Basic characteristics of Optimized MAC protocol and S-
MAC protocols were used to model media access in WSN.
Optimized mac protocol increase duty cycle based on total
load in the sensor network. Since we have followed a
probabilistic approach, this characteristic was modeled by
maintaining inversely proportional relationship between ad-
hoc message generations and sleeping probabilities. On the
other hand, S-MAC protocol uses fixed duty cycles regardless
of the load on the sensor network. Hence we have modeled
this S-MAC characteristic by keeping fixed sleeping
probability and observing malware propagation patterns for
different operation message generation probabilities.

Beside these characteristics, simple set of rules were
defined to provide shared access to wireless media,
minimizing collisions. Implementation of collision avoidance
algorithm such as CSMA is out of the focus of this work.
Hence we simply make nodes wait if it detect channel is used
by its neighbors and only transfer data if none of the neighbors
use the channel (i.e. channel is free). However this simple
approach does not guarantee collision free data transfer.
Therefore if more than one neighbors of a particular cell
access the channel at the same time, node assumes a possible
collision and simply ignores the message.

IV. SIMULATION OF THE INITIAL MODEL

In this section, we discuss simulation approach followed to
analyze basic malware propagation patterns illustrating rules
used in the initial model. As we discussed before, for the
simulation of the initial model, we have implemented three
planes, each has 20X20 lattice containing wireless sensor
nodes. We have used inertial delay with default delay time
1000ms. Boarders were not-wrapped and no special rule was
defined for boarders since boarder cell behavior is similar to
internal cells. Brief descriptions of the CD++ rules are as
follows;

[media-access-rules]

rule : 31 1000 { (0,0,0)=30 and statecount(32)>0}

If any of the neighbors are broadcasting=32, set state to
receive=31

rule : 30 1000 { (0,0,0)=31 and statecount(32)<1}

If the the current state is receive and none of the neighbors
are broadcasting, set state to free=30

rule : 32 {round(uniform(1,10))*100} { (0,0,-2)=1 and
statecount(32)<1}

If the node is infected=1 and media is free=30, start
broadcasting=32

rule : 30 1000 { (0,0,0)=32}

After broadcasting, set media free=30

rule : {(0,0,0)} 1000 {t}

Default rule

[power-usage-rules]

rule : 10 1000 { (0,0,-1)=-1}

Set power value of all non-occupied cells to 10

rule : 10 1000 { (0,0,0)<=11 }

If the power value is less than 11, make it 10

rule : {(0,0,0)*.9} 1000 {(0,0,-1)=1}

Power consumption rate of infected cells

rule : {(0,0,0)*1.0} 1000 {(0,0,-1)=0 or (0,0,-1)=2 }

Power consumption rate of susceptible and recovered
nodes

rule : 10 1000 {t}

Default rule

[malware-propagation-rules]

rule : -1 1000 { (0,0,1)<11 }

If battery power is less than 11, node will die

rule : 1 1000 { ((0,0,0)=0 and (0,0,2)=31)}

If susceptible node received malware message, go
infected_spread=1

rule : 2 1000 { (0,0,2)=32}

After doing a broadcast, go infected_dormant=2

rule : 1 5000 { (0,0,0)=2}

After staying in infected_dormant=2, go back to
infected_spread=1

rule : {(0,0,0)} 1000 {t}

Default rule

V. SIMULATION OF THE EXTENDED MODEL

In this section, we provide implementation details and
insight to the simulation rules defined for the extended model
simulated in parallel CD++ lopez version [11]. For the
simulation of the extended model, we have used three ports in
single plane as we discussed in section III. A two dimensional
20X20 lattice containing wireless sensor nodes was used with
transport delay and default delay time 100ms. Similar to the
initial model, boarders were not-wrapped and no special rule
was defined for boarders since boarder cell behavior is similar
to internal cells. An insight towards the implemented rules in
the .ma file is given below.

Initializing port values in the parallel CD++ can be done in
several ways. In this work we have employed run-time port
initialization approach. .val file initialize all the variables in a
particular cell by a given single value. In our model, we were
required to put malware and patch seeds in the cell space and

 8

three ports (i.e. ~node, ~pwr and ~txrx) to be initialized by
different values. Hence, we have used .val file to pre-initialize
with values 99, 100 and 101 respectively for susceptible,
infected and patched nodes and have defined following rules
for actual initialization.

 Rule 1 and 2 initialize susceptible sensor nodes active in
0.5 probabilities, keeping rest sleeping. Rule 3 initializes
infected nodes as infected-spreading (2) and rule 4 initialize
patched node as patched-active (4). Battery powers of all
nodes are initialized as 20 power units. Although these four
rules are discussed before others, to improve execution time,
we have placed them at the end of the .ma file, just before the
default (always true) rule assuming sequential execution of
rules. Thus we can make sure these initialization rules do not
affect the performance of the simulation significantly.

Rules that define dead (-1) state appears at the top of the
rule sequence.

Rule 5 keeps all the dead cells as it is and rule 6 sends any
node with battery power less than or equal to 1, to dead state
after making its remaining battery power equal to zero and
making channel access equal to none (0). Except the dead
state, all other states and events such broadcasting and ad-hoc
channel access for normal operational messages consume
battery power. These battery power consumptions
corresponding to each state and event are tabulated in Table 5.

Rule 7 and 8 changes state of susceptible-sleep (0) nodes
to active with a pre-defined probability (in this example,
probability = 0.4).

If node is in patched-sleep (5) state, rules 9 and 10 change
node states to patched-active (4) with the probability given by
a linear function of number of infected neighbors. This makes
sure that if any of the patched nodes neighbors are infected-
spreading, patched node move active with higher probability,

increasing the speed of patching susceptible and infected
nodes.

If the node is susceptible-active or infected-spreading and
any of its neighbors are transmitting a patch message, rule 11
will change the node state to patched-active.

Rule 12 defines spreading of malware to neighbors of an
infected node. If a node is active and only one neighbor is
broadcasting malware, while being the only node accessing
the wireless channel at that time, malware message is
successfully received and node will move to infected-
spreading state.

This rule can be considered as one of the important
improvement over the initial version of malware propagation
model since it assumes if more than one neighbor is
broadcasting, it results collision and no legible message is
received.

Rule 13 make sure that if an infected-spreading node is
broadcasted malware messages to its neighbors, its remaining
power has to be reduced by 1 power unit and moved to
infected-dormant (3) state, changing channel access port value
to none. This simulates higher power consumptions for
message broadcasting in WSN.

Rule 14 defines how an infected-spreading sensor node
makes the malware broadcast decision. These broadcasts are
bounded by channel access rules. Hence broadcast cannot be
initiated if any other node is accessing the channel for ad-hoc
message transmission. More strict media access rule can be
defined by taking other broadcasts also in to account by
modifying the above rule as follows;

However we have noticed during simulations that if such
media access condition was implemented, malware
propagation speed is significantly reduced and simulation time
is considerably increased. We discuss these media access rules
in detail in performance evaluation section.

1. rule : { ~node := 1; ~pwr := 20; ~txrx := 0; } 100 { (0,0)~node = 99
and ((0,0)~pwr = 99 and round(uniform(1,10)) > 5) }

2. rule : { ~node := 0; ~pwr := 20; ~txrx := 0; } 100 { (0,0)~node = 99
and (0,0)~pwr = 99}

3. rule : { ~node := 2;~pwr := 20; ~txrx := 2; } 100 { (0,0)~node = 100
and (0,0)~pwr = 100 }

4. rule : { ~node := 4; ~pwr := 20; ~txrx := 3; } 100 { (0,0)~node = 101
and (0,0)~pwr = 101 }

5. rule : { } 100 { (0,0)~node = -1 }

6. rule : { ~node := -1; ~pwr := 0; ~txrx := 0; } 100 { (0,0)~pwr <= 1 }

7. rule : { ~node := 1; ~pwr := (0,0)~pwr - 0.1; } 100 { (0,0)~node = 0
and round(uniform(1,10)) > 6 }

8. rule : { ~pwr := (0,0)~pwr - 0.1; } 100 { (0,0)~node = 0 }

9. rule : { ~node := 4; ~pwr := (0,0)~pwr - 0.1; } 100 { (0,0)~node =
5 and round(uniform(1,10)) <= (statecount(2, ~node)*3 + 4) }

10. rule : { ~pwr := (0,0)~pwr - 0.1; } 100 { (0,0)~node = 5 }

11. rule : { ~node := 4; ~pwr := (0,0)~pwr - 0.2; } 100 { statecount(3,
~txrx) > 0 and ((0,0)~node = 1 or (0,0)~node = 2) }

12. rule : { ~node := 2; ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node =
1 and (statecount(2, ~txrx) = 1 and statecount(1, ~txrx) = 0) }

13. rule : { ~txrx := 0; ~node := 3; ~pwr := (0,0)~pwr - 1; } 100 {
(0,0)~node = 2 and (0,0)~txrx = 2 }

14. rule : { ~txrx := 2; ~pwr := (0,0)~pwr - 0.5; } 100 { (0,0)~node = 2
and statecount(1, ~txrx) = 0}

rule : { ~txrx := 2; ~pwr := (0,0)~pwr - 0.5; } 100 { (0,0)~node = 2
and (statecount(1, ~txrx) = 0 and statecount(2, ~txrx) = 0 }

15. rule : { ~pwr := (0,0)~pwr - 0.5; } 100 { (0,0)~node = 2 }

 9

Rule 15 address the case where if an infected spreading
node could not access the channel because its used by another
node. Infected-spreading node simply wait for the next round,
staying in the infected-spreading state, until the channel is free
or move to dead state due to low battery power

If the sensor node is infected-dormant (3), rule 16 and 17
will allow it to move back to infected-spreading state with the
probability decreased by a linear function of number of
infected-spreading nodes in the neighbourhood. These rules
model a smart malware that does not waste battery power due
to unnecessary movements to infected-spreading state.

Rule 18 determine that if the node is patched-active (4) and
patch message or normal ad-hoc message has been
transmitted, node will move to patched-sleep (5) state.

According to the rule 19, if the node is patched-active (4),
patch message will be transmitted with a probability increased
by a linear function based on number of infected-spreading
neighbors in the neighborhood. Hence if number of infected-
spreading nodes is high in the neighborhood, there is a higher
probability to transmit patch messages to its neighbors.

We can call this kind of approach as an intelligent self-
propagating malware patching since patching overhead is
minimized while maintaining effectiveness of patching by
employing a function to change patching probability.
Moreover, we have noticed in the simulations output that if
patch is properly seeded close to infected nodes, damage from
the malware can be greatly reduced.

If the node is susceptible-active or patched-active, there is a
probability of going back to susceptible-sleep or patched-sleep
respectively, without accessing the channel at all. Rules 20
and 21 models realistic cases such as, message to be
transmitted is timed out and events that make sensor nodes
active but does not require data transmission.

Rule 22 defines if the node is susceptible-active and has
already transmitted ad-hoc messages in the previous time step,
state will be changed to susceptible-sleep after setting channel
access to none.

Rule 23 defines MAC rule for susceptible-active and patched-
active nodes. If the node is susceptible-active or patched-
active and none of the neighbors are using the channel, it will
be accessed by the node for ad-hoc messages.

According to rule 24, if the node is susceptible-active or
patched-active and if any of the neighbors are access the
channel, node has to wait for the channel to be free.

Finally, we have modified the default rule, making it possible
to verify the accuracy of other rules.

VI. PERFORMANCE EVALUATION

In this section, we analyze the outputs of both initial and
extended model simulations and compare performance of
initial and converted versions. Effectiveness of MAC
techniques and patching in controlling malware propagation is
evaluated using the extended version. We have compared two
MAC protocols which are uniquely designed for sensor
networks. Optimized MAC protocol aims to optimize sensor
battery usage by changing duty cycle based on sensor load.
But S-MAC protocol keeps fixed duty cycle. We compare
these two MAC protocols in terms of how they react to a self-
propagating virus such as malware. Moreover in the latter part
of this section, we introduce a self-propagating, malware
parching which dynamically change its patch message
emission speed, linearly with the number of infected nodes.

A. Output analysis of initial model

In this sub section we discuss simulation outputs at observed
at different simulation times.

16. rule : { ~node := 2; ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node =
3 and round(uniform(1,10)) > (statecount(2, ~node)*2 + 2) }

17. rule : { ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 3 }

18. rule : { ~txrx := 0; ~node := 5; ~pwr := (0,0)~pwr - 0.2; } 100 {
(0,0)~node = 4 and ((0,0)~txrx = 3 or (0,0)~txrx = 1) }

19. rule : { ~txrx := 3; ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 4
and round(uniform(1,10)) <= (statecount(2, ~node)*4 + 2) }

20. rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 {
(0,0)~node = 1 and round(uniform(1,10)) > 6 }

21. rule : { ~txrx := 0; ~node := 5; ~pwr := (0,0)~pwr - 0.2; } 100 {
(0,0)~node = 4 and round(uniform(1,10)) <= (statecount(2,
~node)*6 + 4) }

22. rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 {
(0,0)~node = 1 and (0,0)~txrx = 1 }

23. rule : { ~txrx := 1; ~pwr := (0,0)~pwr - 0.2; } 100 { ((0,0)~node =
1 or (0,0)~node = 4) and (statecount(1, ~txrx) = 0 and
statecount(2, ~txrx) = 0) }

24. rule : { ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 1 or
(0,0)~node = 4 }

25. rule rule : { ~node := 50; ~pwr := 50; ~txrx := 50; } 100 { t }

Malware-Plane Power-Plane Access-Plane

Figure 11 Initial values

 10

Cells in three planes of the initial model are initialized using a
.val file. Output .log file is visualized using Drawlog tool and
CD++ Modeler tool in the simulator. In this section, we have
analyzed CD++ Modeler outputs of few important steps of the
simulation execution. Figure 11 shows CD++ Modeler output
at simulation time 0 ms. Hence it shows just after assigning
initial values to cells in malware plane, power plane and
access plane.

It can be seen that in the malware plane, all the nodes are
in susceptible state (value 0) except the node (0, 0, 0). We
have initialized this node as an infection spreading node (state
value 1), to observe the malware propagation behavior. We
have set the initial battery power level of every node to its
maximum value, i.e. 20. The access plane is initialized to
show that the wireless media is free (state value 30) and none
of the nodes are broadcasting (state value 31) or receiving
(state value 32).

According to rules, infected node will start broadcasting
after random countdown time. Output depicted in Figure 12 is
observed in simulation time, 600ms and it can be noticed that
node (0,0,0) started broadcasting from the value 32 appeared
in access plane which represent malware broadcast. In the next
time step, node (0,0,0) has moved to infected & dormant state
while its battery power has been reduced to 18 as shown in the
Figure 13. In the meantime, three neighbors of the infected
cell has received the malware message (not shown in the
figure) and moved to infection spreading state.

In the next time step, three infected neighboring nodes of
(0,0,0) will state broadcasting following media access rules,
which are defined to minimize collisions by not allowing
neighbors broadcast simultaneously. However, we have
noticed that occasionally, neighboring cell broadcast
simultaneously and in this initial version, we did not attempt
to address this issue.

An intermediary state taken at simulation time 14000ms is
shown in Figure 14. In this figure we can see behavior of self-
propagating malware. From the access plane shows broadcast
(value 32) message initiation and broadcast receiving (value
31). This gives a good example of minimal simultaneous
multiple broadcasts in same neighborhood. From the power
plane, we can see that malware infected nodes consume more
battery power for broadcasting and hence resulting dead nodes
due to faster battery drain-out..

This simulation process continue until the end of experimental
time interval or all sensor nodes move to dead state due to
complete battery drain-out.

B. Performance comparison with converted model

Simulation performance compression of initial version
simulated in general CD++ with directly converted version in
parallel CD++ is discussed in this sub-section. As we have
discussed before, same rules used for initial version has been
used in the converted version with slight modifications to
make use of multiple input/output ports, instead of multiple
planes.

We have simulated both versions in parallel CD++ using
RESTful Interoperability Simulation Environment (RISE)
[12]. Both simulations were executed by changing size of
lattice dimensions from 20X20 to 5X5 in four steps. Execution
times of each simulation run for both models were tabulated in
tables 6 and 7.

Malware-Plane Power-Plane Access-Plane

Figure 12 Starting broadcast

Malware-Plane Power-Plane Access-Plane

Figure 14 Intermediary output of the simulation

simulation

run

lattice size

5x5 10x10 15x15 20x20

1st run 0.708 4.716 10.624 25.426

2nd run 0.778 4.668 10.595 25.404

3rd run 0.796 4.699 10.605 25.468

4th run 0.771 4.694 10.601 25.422

5th run 0.706 4.713 10.634 25.362

average 0.7518 4.698 10.6118 25.4164

Table 6 Execution times of initial model

Malware-Plane Power-Plane Access-Plane

Figure 13 Malware propagation to neighbors

 11

Average execution times with respect to lattice dimension
sizes were plotted and shown in Figure 15.

According to plotted execution times shown in Figure 15,
we can see that the performance of the converted model is
better than the initial version in terms of execution times. We
can assume that, this performance improvement is due to
reduced simulation complexity in the converted model, which
uses multiple ports instead of multiple planes.

C. Effects of MAC protocols on malware propagation

Extended model introduced in Section V was also
simulated using the RISE version of parallel CD++ using a
25X25 2-dimensional lattice. Initially we have observed
malware propagation patterns with different media access
rules.

As we have discussed previously, Optimized MAC
protocol increases duty cycle based on total load in the sensor
network. This characteristic was modeled by maintaining
inversely proportional relationship between ad-hoc message
generations and sleeping probabilities. S-MAC protocol on the
other hand, maintains fixed sleep/active cycles regardless of
the load. In order to compare these protocols, we have
obtained number of infected sensor nodes after 2000ms
simulation time, for different combinations of ad-hoc message

generation and sleep probabilities. We have made some
modifications to few existing rules discussed in Section V, as
follows;

Original rule 20 was introduced to model message time-
outs and active nodes that move to sleep state without
transmitting any message. We have used this moving-to-sleep
rule to change sleeping probability in different simulation
runs. Hence as shown on the modified rule 20, Sp which stand
for sleeping probability was changed in each simulation run to
obtain results shown in table 8.

Original rule 22 was used to send nodes from active state
to sleep after an ad-hoc message transmission. We have
modified this rule by removing its post-condition, move-to-
sleep, to make sure that moving to sleep is only controlled by
modified rule 20. Hence from modified rule 22, we only
expect to change channel access state back to no-channel-
access, after transmitting a message.

Original media access control rule of susceptible and
patched nodes was modified by adding a probability condition
and removing channel lock constraints by neighbors from pre-
condition. In the modified rule 24, load probability can be
changed by changing Lp.

Figure 16 shows CD++ Modeler outputs at 2000ms,
obtained by keeping Sp constant at 0.6 and changing from Lp
0.2 to 0.8 in 0.2 steps.

simulation

run

lattice size

5x5 10x10 15x15 20x20

1st run 0.068 1.204 3.727 7.749

2nd run 0.066 1.198 3.802 7.773

3rd run 0.072 1.118 3.759 7.693

4th run 0.064 1.144 3.784 7.725

5th run 0.068 1.16 3.765 7.762

average 0.0676 1.1648 3.7674 7.7404

Table 7 Execution times of converted model

Figure 15 Average execution times vs. lattice dimensions

0

5

10

15

20

25

30

5x5 10x10 15x15 20x20

E
x
ec

u
ti

o
n

 t
im

e
in

 s
ec

o
n

d
s

lattice dimensions

converted

initial

%ORIGINAL RULE 20

rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 {
(0,0)~node = 1 and round(uniform(1,10)) > 6 }

%MODIFIED RULE 20

rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 {
(0,0)~node = 1 and round(uniform(1,10)) <= [Sp] }

%ORIGINAL RULE 22

rule : { ~txrx := 0; ~node := 0; ~pwr := (0,0)~pwr - 0.2; } 100 {
(0,0)~node = 1 and (0,0)~txrx = 1 }

%MODIFIED RULE 22

rule : { ~txrx := 0; ~pwr := (0,0)~pwr - 0.2; } 100 { (0,0)~node = 1
and (0,0)~txrx = 1 }

%ORIGINAL RULE 23

rule : { ~txrx := 1; ~pwr := (0,0)~pwr - 0.2; } 100 { ((0,0)~node = 1 or
(0,0)~node = 4) and (statecount(1, ~txrx) = 0 and statecount(2,
~txrx) = 0) }

%MODIFIED RULE 23

rule : { ~txrx := 1; ~pwr := (0,0)~pwr - 0.2; } 100 { ((0,0)~node = 1 or
(0,0)~node = 4) and round(uniform(1,10)) > [Lp] }

 12

According to the outputs shown in Figure 16, It can be
seen that when node load in terms of messages to be
transmitted is increased, malware spreading speed is
decreased. This is because different node loads make WSN
channel access highly competitive and broadcast collisions
prevent faster spreading.

On the other hand, if we keep node load Lp constant and
sleeping probability Sp increased, increased malware
propagation speeds can be observed as shown in the CD++
modeller outputs in Figure 17.

By changing workloads Lp and sleep probabilities Sp, in
sensor nodes, number of infected nodes in the network after
2000ms simulation time is obtained and tabulated in Table 8.

For this work, each simulation was executed only once and
hence we recognize that the error percentage can be relatively
high. We expect to perform more sophisticated simulations in
our future work to obtain more accurate results.

We have plotted number of infected nodes at 2000ms by
changing Lp and Sp. Figure 18 shows the number of infected
nodes plotted against Sp.

Message Generation

Probability [Lp]

Sleeping Probability [Sp]

0.2 0.4 0.6 0.8

0.2 80 77 123 128

0.4 20 31 64 92

0.6 14 17 57 90

0.8 8 15 43 78

1 7 10 16 56

Table 8 Number of infected nodes after 2000ms, for different
Sp and Lp values

Lp = 0.6 and Sp = 0.2 Lp = 0.6 and Sp = 0.4

Lp = 0.6 and Sp = 0.6 Lp = 0.6 and Sp = 0.8

Figure 17 Malware spreading patterns for constant node load and
different sleep probabilities

Lp = 0.2 and Sp = 0.6 Lp = 0.4 and Sp = 0.6

Lp = 0.6 and Sp = 0.6 Lp = 0.8 and Sp = 0.6

Figure 16 Malware spreading patterns for constant sleep and
increasing load probabilities

Figure 18 Number of infected nodes at 2000ms vs. sleeping
probability of sensor nodes

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

N
u

m
b

e
r
 o

f
In

fe
c
te

d
 n

o
d

e
s

Sleeping Probability [Sp]

Lp = 0.2

Lp = 0.4

Lp = 0.6

Lp = 0.8

 13

From the graph in Figure 18, we can see that when
sleeping probabilities are increased, numbers of infected nodes
are increased.

Figure 19, shows infected node variation with respect to
sensor node load probabilities Lp from this graph, we can
observe that, when the communication load over sensor nodes
due to normal operational messages are increased, malware
propagation speeds are decreased.

Based on these two observations, we can compare
effectiveness of considered Optimized-MAC and S-MAC
protocols, in controlling malware propagation speeds. We
have previously discussed that Optimized-MAC protocol
changes the duty cycle based on sensor node load and S-MAC
protocol keeps fixed duty cycles irrespective if the load. Hence
we can build an argument that, if we change load probabilities
keeping sleep probabilities constant, it resembles operation of
S-MAC protocol. Furthermore, if we reduce sleep probability
inversely proportional to load probability, it resembles
operation of Optimized-MAC protocol. Extraction of data
from Table 8 based on this argument is highlighted by two
dotted rectangles. We have arranged these extracted data in
Table 9.

We have plotted number of infected nodes for each MAC
protocol as shown in Figure 20.

From the graph shown in Figure 20, we can observe that
Optimized-MAC protocol is more effective than the S-MAC
protocol in controlling malware propagation speeds over
WSN.

D. Effectiveness of Patching

 In this sub-section, we discuss the effectiveness of patching
in minimizing the harmful effects of malware in WSN. We
have simulated four scenarios, where single patching seed
placed far from the malware seeds, two patching seeds placed
far from malware, single patching seed placed close the
malware seeds and multiple patching seeds surrounding
malware seeds. For all simulations, sleeping probability is
maintained at 0.4 and non-probabilistic channel access rules
which were defined in section V are used. We have placed five
malware seeds in Von-Neumann neighborhood instead of one
seed at the starting of the simulation, to model the realistic
scenario where malware patching is usually done reactively
after noticing a malware attack on the WSN.

First we have carried out a simulation by keeping a single
patching seed 10 nodes away from the central malware seed.
CD++ Modeler outputs observed at different simulation times
are shown in Figure 21.

Figure 19 Number of infected nodes at 2000ms vs. sensor node
communication load

0

20

40

60

80

100

120

140

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

N
u

m
b

e
r
 o

f
in

fe
c
te

d
 n

o
d

e
s

Message Load Probability [Lp]

Sp = 0.2
Sp = 0.4
Sp = 0.6
Sp = 0.8

Message Generation

Probability Lp

Optimized

MAC
S-MAC

0.2 123 123

0.4 64 92

0.6 17 90

0.8 8 78

Table 9 infected nodes at 2000ms for different MAC protocols

Figure 20 Malware propagation behaviors in Optimized-MAC
and S-MAC protocols

0

20

40

60

80

100

120

140

0 0.2 0.4 0.6 0.8 1

N
u

m
b

e
r
 o

f
In

fe
c
te

d
 N

o
d

e
s

Communication Load over Sensor Nodes [Lp]

Optimized MAC

S-MAC

t = 0ms t = 3600ms t = 8000ms

Figure 21 Single patching seed placed far from malware

 14

In the second scenario, we have placed two patching seeds
on the opposite sides of the malware, each with 10 nodes away
from the central infected node. CD++ Modeler output
corresponding to this scenario is shown in Figure 22.

In the third scenario, we have observed the effectiveness of
patching by placing a single patching seed 5 nodes away from
the central infected node. Observed CD++ Modeler outputs
are illustrated in Figure 23.

In the fourth scenario, we have observed the reaction of the
malware to patching by placing two patching seeds 5 nodes
away from central infected node on opposite sides. Observed
CD++ Modeler outputs are shown in Figure 23.

From Figure 21-24, each figure shows three simulation
outputs taken at the simulation time t, written on top of each
output. Outputs in the left side of each figure shows initial
seed placement and middle output shows the instances where
the patched-active nodes first see infected-spreading nodes in
their neighborhood. Output to the right in Figures 22-24 shows
the simulation step where all the malware was completely
removed by self-propagating patching. However in Figure 21,
it shows an intermediary step that can result in topological
fragmentation due to dead sensor nodes block patches from
propagating to other parts of the topology. Patching message
generation rate of patched-active nodes is increased linearly
with the number of infected-spreading nodes in their
neighborhood. Dynamic patching message generation helps
WSN in two ways. First, it will not impose significant network
overhead on the uninfected nodes. Secondly it will attack
malware faster minimizing its harmful effects.

Outputs shown in figure 21 shows the patch and malware
behavior when infected and patching seeds placed far away
from each other. In such a scenario, time taken by patches to
reach the infected nodes is considerably high and thus
malware gets enough time to spread over the WSN and do
higher damage. Damage done by malware can be seen from
the higher number of dead nodes created by draining battery
from sensor nodes. Moreover by killing topologically critical
sensor nodes, malware can block patching in certain parts of
the network topology.

By placing multiple patching seeds in different parts of the
WSN topology as shown in Figure 22, fragmentation of
topology can be minimized. However, still the malware gets
enough time to do a significant damage to WSN by draining
battery power completely from several sensor nodes. In
figures 23 and 24, we see that that when patching seeds are
placed close to the malware seeds, effectiveness of the
patching is maximized and malware can be quickly removed
from WSN without allowing it to do a significant damage to
sensor nodes.

VII. CONCLUSION AND FUTURE WORK

In this term paper, have followed a simulation based
approach to study malware propagation patterns, in highly
resource constrained WSN environments. WSN are highly
vulnerable to viruses, worms and malicious programs such as
self-propagating malware. Due to limitations of processing,
memory and battery power, powerful security features are not
cost effective for most WSNs. Hence media access controlling
is widely regarded as an efficient and cost effective method of
restricting malware propagation in WSNs. In this work, we
have investigated the ability of two widely used MAC
protocols; Optimized-MAC and S-MAC in restraining
malware propagation.

Furthermore, Patching can be considered as a reactive
approach towards controlling malware propagation in WSN.
Efficient placement of self-propagating patching seeds can
significantly mitigate adverse effects of malware attacks.
However, if patches are not delivered to sensor nodes in time
or not placed properly, malware can still damage sensor nodes
draining battery power or compromising its functions. Hence

 t = 0ms t = 1400ms t = 3700ms

Figure 23 Single patching seed placed closed to malware

 t = 0ms t = 900ms t = 3500ms

Figure 24 Two patching seeds placed close to the malware

t = 0ms t = 3000ms t = 7800ms

Figure 22 Two patching seeds placed far from malware

 15

use of proper MAC protocols along with efficient patching is
highly important to ensure secure operation in WSN.

Due to limitations of time and resources, we have limited
our study only to two most basic MAC protocols used in
WSN. As for our future work, we recognize the importance of
carrying out a more detailed study in this area focusing on
other popular WSN MAC technologies. Moreover, we are
planning to integrate topological details in our future
simulations and develop more powerful patching algorithms
comparing effectiveness’s of different distributions instead of
limiting our scope to simple linear functions.

REFERENCES

[1] S. A. Khayam and H. Radha, “Using signal processing

techniques to model worm propagation over wireless

sensor networks,” Signal Processing Magazine 23, 164–

169 (2006)

[2] Y. Song and G.P. Jiang, “Modeling malware propagation

in wireless sensor networks using cellular automata,” in

IEEE international conference on Neural Networks and

Signal Processing, Zhenjing, China, June 2008.

[3] I. G. Georgoudas, G.C. Sirakoulis and I. Andreadis,

“Modelling earthquake activity features using cellular

automata,” in Mathematical and Computer Modelling,

vol. 46, pp. 124–137, 2007.

[4] L.H.Encinas, S. H. White, A. M. D. Rey and R. G.

Sanchez, “Modelling forest fire spread using hexagonal

cellular automata,” in Applied mathematical modelling

vol. 31, pp. 1213–1227 2007.

[5] G. Wainer, “CD++: a toolkit to define discrete-event

models,” In Software, Practice and Experience. Wiley.

vol. 32, no.3, pp. 1261-130, 2002.

[6] G. A. Wainer and N. Giambiasi, “Timed Cell-DEVS:

modelling and simulation of cell spaces,” Springer-

Verlag, 2001.

[7] D. A. Rodriguez and G. A. Wainer, “CD++ User’s

Guide,” Departamento de Computación, Universidad de

Buenos Aires, Buenos Aires, Argentina, 1999

[8] G. A. Wainer. “Discrete-Event Modeling and Simulation:

a Practitioner approach,” Taylor and Francis, 2009.

[9] W. Ye, J. Heidemann, D. Estrin, “Medium Access

Control with Coordinated Adaptive Sleeping for

Wireless Sensor Networks,” IEEE/ACM Transactions on

Networking, vol. 12, issue. 3, pp.:493 - 506, June 2004.

[10] R. Yadav, S. Varma and N. Malaviya, “Optimized

Medium Access Control for Wireless Sensor Network,”

in IJCSNS International Journal of Computer Science

and Network Security, vol. 8, no. 2, pp. 334 -338,

February 2008.

[11] A. López and G. Wainer, “Improved Cell-DEVS model

definition in CD++,” P.M.A. Sloot, B. Chopard, and

A.G. Hoekstra (Eds.): ACRI 2004, LNCS 3305.

Springer-Verlag. 2004.

[12] S. Wang and G. A. Wainer, “RISE User’s Guild Manual

(Integrated version),” Dept. of Systems and Computer

Engineering Carleton University, Ottawa, Canada

