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ABSTRAcT

This article proposes hierarchal scheduling schemes for grid systems: A self-discovery scheme 
for the resource discovery stage and an adaptive child scheduling method for the resource selec-
tion stage. In addition, we propose three rescheduling algorithms: (1) The butterfly algorithm, 
which reschedules jobs when better resources become available, (2) the fallback algorithm, which 
reschedules jobs that had their resources taken away from the grid, before the actual resource 
allocation, and (3) the load-balance algorithm, which balances the load among resources. We 
also propose a hybrid system to combine the proposed hierarchal schemes with the well-known 
peer-to-peer (P2P) principle. We compare the performance of the proposed schemes against the 
P2P-based grid systems through simulation with respect to a set of predefined metrics.

Keywords:  grid computing; grid environment; grid systems; hierarchal scheduling; P2P 
systems; cluster computing; parallel scheduling; high-performance computing; 
parallel processing

InTRODUcTIOn
The current status of computation is 

equivalent in some respects to the status of 
electricity circa 1910s (Foster & Kessel-
man, 2004). At that time, electrical power 
was generated by generators for specific 
individuals or organizational needs. Truly, 
the real influence of electricity in our lives 
was born with the creation of the electric 
power grid, which was provided via sharing 
generators. The “grid computing” term was 
adopted from the electricity grid to amplify 

computational power via sharing computa-
tional resources, since both grids are similar 
with respect to their infrastructure and 
purpose. The term “the grid” started in the 
mid-1990s (Foster, 2001; Foster & Kessel-
man, 2004) to portray the infrastructure of 
both scientific and commercial computing 
communities and has been gaining popular-
ity ever since. The “grid” can be defined 
as a parallel and distributed system that 
enables a large collection of geographi-
cally distributed heterogeneous systems 
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that usually span several organizations to 
share a variety of resources dynamically, 
depending on their availability, capabil-
ity, user’s requirements, and any other 
predefined rules set by local systems and 
resources owners. The type of sharing in 
the grid gives the impression of a power-
ful self-managing virtual computer. The 
Internet is an ideal choice to link thousands 
or millions of computers, since it already 
connects the whole world—if a node’s IP 
address is known, it can then receive data 
from another node. Benefits of grids can 
be extensive. They include: (1) expanding 
computing power, since grids unleash the 
hidden computing power that is not being 
used most of the time (e.g., most machines 
in a typical organization are busy less than 
5% of the time (Berstis, 2002)), (2) improv-
ing productivity and collaboration among 
organizations (i.e., wider audience) in a 
dynamic and geographically distributed 
manner to form one powerful computing 
system, and (3) solving complex problems 
that were previously unsolvable.

The rest of the article is organized as 
follows. In the next section, grid scheduling 
stages and some of the grid challenges are 
described. Then, the self-discovery method 
is presented. It is used in the resource dis-
covery stage and the adaptive hierarchical 
scheduling (AHS) method, which is used in 
scheduling jobs on selected resources. Note 
that the AHS method is based on the AHS 
method for parallel and cluster systems 
presented in Dandamudi (2003). In addi-
tion, we present three rescheduling dynamic 
algorithms: the butterfly, the fallback, and 
the load-balance. Next the simulation model 
and samples of the results are given.Refer to 
Al-Zoubi (2006) for more a more in-depth 
discussion of the presented schemes and 
the complete set of results. The results are 
followed by conclusions. 

GRID ScHEDULInG STAGES
Grid characteristics must be taken 

into account in order to perform efficient 
scheduling. Grid schedulers must make 
scheduling decisions in a very challenging 
environment that includes: (1) no control 
over the resources, since they don’t own 
them; (2) distributed resources; (3) a dy-
namic existence of resources (i.e., resources 
may be added or removed from the grid at 
any time); (4) a dynamic information col-
lection; (5) heterogeneous resources (jobs 
must match appropriate resources in order to 
be executed as requested by the users); and 
(6) tentative scheduling until the allocation 
of actual resources (i.e., resources may be 
taken from the grid before a job actually 
uses them).

In general, grid scheduling is per-
formed in three stages (Nabrzyski, Schopf, 
& Weglarz, 2004). First is the resource 
discovery stage, which produces a set of 
matched resources. Schedulers are expected 
to collect static information (e.g., operating 
systems) from local schedulers or general 
information systems (GIS), in order to 
perform job matching. In the next stage, 
resources are selected (i.e., resource selec-
tion stage) from the list obtained during the 
first stage and are expected to meet user’s 
imposed constraints (e.g., deadlines). Then 
schedulers are expected to collect dynamic 
information (e.g., system load) for the third 
stage and transfer jobs to selected resources 
(i.e., job execution stage).

HIERARcHAL ScHEDULInG 
In GRID SYSTEMS

Grid schedulers, in our proposed 
schemes, are structured in a tree form that 
we call a grid tree, as shown in Figure 1, 
where grid schedulers (GS) are placed into 
the tree according to their geographical lo-
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cations. Users submit their jobs, in the form 
of requests to the grid via the grid system 
scheduler (GSS), which is the root node of 
the grid tree. A user’s request describes the 
job in terms of the job minimum require-
ments (JMR) (e.g., operating system) in 
order to be matched to resources and in-
cludes any other constraints imposed by the 
user (e.g., completion deadline). A leaf grid 
scheduler (LGS), which is a node on top of 
local scheduler(s), connects directly with 
the user’s workstation, brings the physi-
cal job to the grid (once a job is about to 
be mapped to the selected resources), and 
serves as middleware between the user’s 
workstation and the allocated resources. 
Note that LGSs may be combined with 
local schedulers in one unit.

Theoretically, a scheduler, in our 
proposed systems, can break grid jobs into 
several subjobs to be executed in paral-
lel and on different children’s partitions. 
However, the art of automatic transforma-
tion into parallelism of an arbitrary job is 
in its infancy stage (Berstis, 2002). In our 
case, we assume whole jobs are submitted 
to resources.

Resource Discovery Stage
In this stage, we propose the self-dis-

covery method. The purpose of this method 
is to produce a set of logical channels to be 
used as paths by jobs (in the next schedul-
ing stage) to get to their physical resources. 
Logical channels serve as a map for jobs so 
that they know how to reach resources that 
can meet their computational requirements. 
The self-discovery method omits irrelevant 
dissimilarities between resources of differ-
ent sites. The principle behind this method 
is that resources are equivalent to each 
other, if they match the same set of jobs. 
For example, one site advertises INTEL ar-
chitectures and another site advertises AMD 

architectures. Now, suppose the grid has a 
set of jobs that can be executed on either 
INTEL or AMD platform. In this case, the 
grid system considers architecture INTEL 
as equivalent to architecture AMD for those 
jobs in the set, since they can be executed 
on either platform. However, suppose now 
another set of jobs only requires architecture 
AMD in order to execute. In this case, the 
grid system considers architecture INTEL 
as nonequivalent to architecture AMD for 
the later set of jobs, since those jobs can 
only be executed on the AMD platform.

LGSs collect and store all static infor-
mation about resources, either directly from 
local schedulers or from a GIS. Thus, infor-
mation about local resources is distributed 
across the grid, which leads to (1) increasing 
system scalability and (2) maintenance of 
up-to-date databases. LGSs also initiate the 
resource discovery stage at system start up 
or when no jobs in the grid tree match their 
advertised resources, by issuing the request 
for job matching (RFJM) message to their 
parents, which in turn forwards the RFJM 
messages to the grandparents, and so on, 
until the RFJM message is received by the 
GSS, enabling it to initiate resource discov-
ery to all of its raw jobs (i.e., new jobs that 
have not previously been through resource 
discovery stage). However, if the GSS has 
no raw jobs, it will then backlog the RFJM 
message until receiving new jobs.

The GSS starts the resource discovery 
stage by: (1) broadcasting a special message 
to all of its children to destroy all channels 
in the system and (2) passing all raw jobs to 
all of its children as one block. The children, 
in turn, pass the raw jobs as one block to the 
grandchildren, and so on, until they reach 
the LGSs at the bottom of the grid tree. 
LGSs match raw job requirements to their 
local resources and insert all raw jobs that 
match resources in their bags. They will 



4   Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

then pass a copy of their bags (along with 
any previous matched jobs) to their parents. 
Note that (1) LGSs save all requests that 
they receive from their parents, whether 
they have matched or not, enabling LGSs 
to perform rematching, if needed, due to 
resources change (i.e., the GSS removes 
all stored requests from all bags once they 
are executed); (2) intermediate schedulers 
(GS) always pass one RFJM message to 
their parents on behalf of their children and 
suppress other RFJMs, preventing the GSS 
from initiating any unnecessary resource 
discovery; and (3) a logical channel is cre-
ated for every unique job bag.

Once a scheduler receives a bag (from 
one of its children) that is similar to another 
bag of an existing channel, it will then: (1) 
create a new branch from its existing chan-
nel and bind it with the child’s channel; (2) 
recalculate its channel’s processing power 
based on the new created branch; (3) inform 
the child of its channel’s port number; and 
(4) update the parent, if needed, with the new 
processing power of its channel. However, if 
the received bag is distinctive, the scheduler 

will then: (1) create a new channel with a 
new port number; (2) create a new branch 
from its new channel and bind it with the 
child’s channel; (3) initialize the channel 
processing power, based on the newly cre-
ated branch; (3) inform the child with the 
channel’s port number; and (4) update the 
parent, if needed, with the new bag and the 
channel’s port number.

Now consider, as an example, the grid 
tree shown in Figure 1. Suppose the GSS 
pass six raw jobs, J1 through J6, as one 
block to all of its children. Suppose further 
that J4, J5, and J6 do not match resources at 
GS10. In this case, the GSS ends up with 
two channels (via GS1), where all jobs may 
use the first channel. On the other hand, J1, 
J2,and J3 are the jobs that can only use the 
second channel.

Resource Selection Stage
The grid AHS scheduling method, in 

this stage, uses self-scheduling by explor-
ing the parent-child relationship. When 
a nonroot GS wants some work to do, 
it initiates self-scheduling by sending a 

Figure 1. A grid tree with two channels
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request for computation (RFC) message 
to its parent (via a channel), requesting 
computation from it. If the parent GS does 
not have computations that can be pushed 
to that child’s channel at the time of re-
ceiving the RFC, it, in turn, generates its 
own RFC and sends it to its parent on the 
next level of the grid tree. This process is 
recursively followed until either the RFC 
reaches the GSS or a GS with computa-
tions is encountered along the path. Note 
that intermediate schedulers send one RFC 
message per channel to their parents but 
still mark all branches from which they 
have received RFCs. Upon receiving an 
RFC message from a channel’s branch of 
a child, a scheduler uses a space-sharing 
policy to distribute computations among 
channels as follows:

 NBB rateshare ×= ,  (1)

where Bshare is the branch’s share of all jobs 
within the scheduler’s subtree; Brate is the 
branch’s transfer rate; and N is the number 
of jobs within a scheduler’s subtree. Brate is 
calculated as follows:

∑
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where Bpwr is the branch’s processing power; 
Cpwr is the channel’s processing power 
(i.e., total processing power for all of its 
branches); and M is the number of channels 
in a scheduler. Note that, in our case, the 
channel’s processing power is the number 
of central processing units (CPUs) that 
reside under that channel; since we assume 
that our computational resources are paral-

lel computers (see the Simulation Model 
and Results section). However, in reality, 
we expect processing power to consider 
more factors, such as RAMs, bandwidth, 
and so forth.

Now, once a scheduler determines the 
number of jobs that will be pushed onto a 
channel’s branch, it builds a list of those 
jobs as one block and pushes them onto that 
branch. Suppose, as an example, that GS1, 
in Figure 1, has nine jobs, upon receiving 
an RFC message from the first branch of the 
first channel (i.e., via GS3). Suppose further 
that the three branches that connect GS1 with 
its two children have equivalent processing 
power. In this case, GS1 may then push up 
to three jobs onto that branch.

Schedulers perform the following steps 
to collect the jobs (in order to be pushed 
onto a channel’s branch): (1) they invoke 
the butterfly algorithm; (2) they collect 
jobs from the unassigned (i.e., unpushed) 
jobs; and (3) they invoke the load-balance 
algorithm. Note that we expect schedul-
ers, in practice, to collect more dynamic 
information related to performance (e.g., 
load) or economics (e.g., prices).

Butterfly Algorithm
The principle behind this scheme is 

to reschedule jobs to better resources (with 
respect to predefined metrics), when they 
become available. Note that this algorithm 
can be extended to any soft conditions 
imposed by a user, where soft conditions 
are the ones that the user is willing to live 
without until they become available (or if 
they ever become available). In our case, 
we consider the geographic closeness of 
resources with respect to work stations as 
our metric (we use IP addresses to deter-
mine location nearness). Interestingly, a job 
may keep jumping (like a butterfly) among 
children’s partitions, until it settles on the 
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closest resources. In this algorithm, after a 
scheduler receives an RFC message from 
a child, the scheduler will then (1) cancel 
any assigned jobs from other children (if 
the new child is closer to those jobs’ work 
stations) and (2) push them into the new 
available child’s partition.

Fallback Algorithm
The fallback algorithm is intended 

to reschedule jobs that become incomput-
able because of the grid losing its required 
resources on its scheduled partitions. 
When an LGS detects resource change, 
it performs rematching for all saved 
requests. Now, if an LGS ends up with 
the same job bag, this resource change is 
then irrelevant. However, if it produces 
a different bag, it will then pass it on to 
its parent.

Schedulers handle received bags in 
this stage as previously described in the 
resource discovery stage. Additionally, 
schedulers mainly have to carry out the 
following (of course, parents will also be 
updated): (1) remove any jobs that become 
incomputable; (2) recalculate modified 
channels processing power; and (3) de-
lete any broken channels. For example in 
Figure 1, assume GS10 changes resources 
and produces a bag similar to GS9’s bag. 
In this case, GS4 will then connect GS10 
to the first channel and inform its parent 
(GS1) of two things: (1) the first channel 
with new updated processing power and 
(2) the broken second channel. Now if GS4 
has jobs that become incomputable, it will 
then remove them and update GS1. Note 
that GS1 reschedules those returned jobs 
(if they still computable on its partition) 
with a priority (in our case, the lesser the 
sequence number, the higher the priority). 
For instance, GS1 may swap some of those 
returned jobs with assigned jobs in GS3’s 

partition, in order to execute jobs in the 
same order of their arrival to the grid.

Load-Balance Algorithm
As stated earlier, schedulers determine 

the number of jobs (that will be pushed 
into a channel’s branch) by considering 
all jobs within their subtrees. They will 
then collect those jobs by invoking the 
butterfly algorithm and from queued unas-
signed jobs. Schedulers will then balance 
the load among the channels by canceling 
already assigned jobs and then reschedule 
them on the channel’s branch that just re-
quested more work. Schedulers are always 
responsible for balancing all assigned jobs 
among their children’s channels within their 
subtrees, since a parent may cause a child’s 
subtree to get imbalanced (i.e., of course, 
parents do not know how assigned jobs are 
distributed within their children’s subtrees). 
For example, assume that each of GS7 and 
GS8 in Figure 1 has four queued jobs (of 
course, GS1 assumes that all eight jobs are 
still queued at GS3). Suppose now that GS1 
decides to cancel four jobs to reschedule 
them on a GS4’s channel, in order to bal-
ance its subtree. Now, if GS1 cancels the 
four jobs queued at GS8, it imbalances the 
GS3’s subtree. In this case, GS3 will bal-
ance its subtree upon receiving an RFC 
message from GS8 (or will forward the 
RFC message to GS1, if the RFC message 
is received from GS7).

Hybrid System
The hierarchal system (one grid tree) 

has major drawbacks: (1) All requests are 
submitted to the GSS, which may become 
overwhelmed with too many requests; (2) 
it is difficult to bring in many organizations 
and have them agree on things, such as 
constructing the grid tree, controlling GSS 
policies (e.g., security) and dealing with 



Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007   7

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

new joined organizations; and (3) it is dif-
ficult to convince companies to replace their 
peer-to-peer (P2P) based grid systems.

The hybrid system, which is several 
grid trees that act also as peers to each 
other, as shown in Figure 2, does not only 
overcome the above drawbacks but does 
provide organizations with more efficient 
ways to manage their own resources, such 
as stamping foreign requests with low pri-
ority, isolating their resources swiftly from 
the entire grid without pumping out their 
pending requests of using their resources, 
and so forth.

In the hybrid system, a GSS in a grid 
tree also acts as a peer GSS (PGSS) that 
forwards requests (after decrementing 
hop count) to its neighbors. Of course 
neighbors can be part of any other system 
types (e.g., P2P system). The P2P system 
can be viewed as a hybrid system, where 
each grid tree has only one scheduler; and 
the hierarchal system can be viewed as a 
hybrid system with one peer. In our case, 
we assume that (1) requests are always 
forwarded to neighbors (i.e., a request dies 
when hop count reaches 0), hence, grid trees 
also serve as backups to each other; and (2) 

foreign and home requests are queued in 
the same fashion. 

SIMULATIOn MODEL AnD 
RESULTS

This section presents the simulation 
model and samples of the preliminary 
results. Readers are encouraged to refer 
to Al-Zoubi (2006) for the complete set of 
results and a more in-depth discussion.

The grid simulation model is broken 
into three submodels—communication, 
node, and system models—each of which 
is described below.

communication Model
The communication model, which is 

used by nodes (i.e., node model) to com-
municate with each other, consists of 2,400 
nodes that span across four backbones. Each 
backbone (600 nodes) consists of four nets, 
where each net consists of 10 networks and 
each network consists of 15 nodes. There-
fore, there are four backbones, four nets, 
10 networks, and 15 nodes, which add up 
to 2,400 nodes in total in the model. The 
communication model uses the discrete 
event simulation (DEVS) CD++ simulator 

Figure 2. Hybrid system example

B A 

c 
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(Al-Zoubi, 2006; Wainer, 2002) to simulate 
all of the communication aspects among 
all nodes.

The model presented numerous of 
challenges that we had to address to bring 
it closer as much as possible to the actual 
communication over the Internet, which is 
almost an impossible job to do, since the 
Internet is a very large unpredictable public 
network. We’ve assumed that 10% of the 
model’s capacity accounts for the external 
Internet load and the routers processing 
time based on the studies in (Al-Zoubi, 
2006; Odlyzko, 2003), which were based 
on actual statistics by the Internet Service 
Providers (ISP). We’ve also assumed 64 
kilobytes TCP window size to control data 
flow (Al-Zoubi, 2006). Backbones in the 
model are connected with 1000 km, 9.6 
Gb/s (e.g. OC-192 link) cables, Nets/sites 
are connected with 50 km, 155 Mb/s 
(e.g. OC3 link) cables (Al-Zoubi, 2006; 
Odlyzko, 2003), and nodes within a site are 
connected with 100 MBytes/s (Al-Zoubi, 
2006) cables.

node Model
A node, in the communication model, 

is simply a computer with an IP address. 
On the other hand, the node component 
contains the implementation of the pro-
posed schemes for the grid systems in this 
article. A node can be configured to operate 
as a peer, local scheduler, intermediate GS, 
LGS, GSS, PGSS, or a work station. Note 
that the node’s configuration determines 
the system model type.

System Model
The grid model can be configured to 

a (P2P, a hierarchal (one grid tree), or a 
hybrid (several grid trees) system model, 
as discussed below. The P2P systems are 
distributed systems and the only ones, to 

our knowledge, that are currently well 
thought-out by researchers (Al-Zoubi, 
2006; Nabrzyski et al., 2004; Shan, Smith, 
Oliker, & Biswas, 2004) to replace the 
centralized systems. As a result, it is a 
reasonable choice to be compared against 
the proposed hierarchal systems in this 
article. 

P2P System
Once a job request is received at a peer 

that meets its requirement, it contacts the 
work station to offer its service and amount 
of time for the work station response (100 
ms, in our case). Work stations may accept 
peer service by responding to it or may re-
fuse peer service by simply not responding 
to it. If a peer cannot accept a work station 
request, it decreases the hop count (1,000 
in our case) in the message and forwards it 
to its neighbors. In our model, peers accept 
requests if they meet their deadline, which 
is three times the estimated execution time 
for that job. To improve P2P performance, 
we would suggest that: (1) if a workstation 
doesn’t get a service offer within two min-
utes, it resubmits the job request to the grid; 
and (2) neighbors are manually configured 
to be geographically close. However, this 
may not be the case in reality.

Hierarchal System
The heirarchal system has one grid 

tree. The tree is constructed by connecting 
the GSS to four children, where each child 
holds one backbone. Each backbone’s root 
has four children, where each child holds 
one net. Each net’s root has two children, 
where each child holds five sites. 

Hybrid System
The hybrid system has several grid 

trees acting as peers to each other. We use 
two hybrid systems in our simulation: four 
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grid trees system (Hybrid-4T) and 16 grid 
trees system (Hybrid-16T). In the Hybrid-
4T system, the grid tree of the hierarchal 
system is broken into four grid trees, where 
each backbone has one grid tree. In the 
Hybrid-16T (16 grid trees), each net has 
one grid tree. 

Grid Jobs
A work station submits a job to the grid 

via its grid entry (e.g., GSS) as a request 
that defines the JMR for that job. Jobs are 
assumed to be executed until completion 
of their predefined requirements (operating 
systems, in our case). Gaussian distribution 
is usually used to simulate the required time 
to run a job on a server (Al-Zoubi, 2006; 
Hotovy, 1996; Shan et al., 2004; Takefusa, 
2001) with respect to the input job size and 
the server’s processing power. Therefore, 
we assume job sizes are correlated to the 
amount of work performed by each job, 
where the input data size is expressed by 
Gaussian distribution with the mean µ = b 
* cpus * wall time in seconds, and where b 
= 100 (Shan, 2004). We also assume a job 

produces output data five times the original 
input job size. 

computational Resources
We assume all resources (i.e., serv-

ers) are parallel machines that consist of 
a number of interconnected nodes with a 
number of CPUs within a node as in Al-
Zoubi (2006) and Shan et al. (2004). Table 
1 shows the servers used in the simulation 
experiments, which are originally based on 
real machines (Al-Zoubi, 2006; Hotovy, 
1996; Shan et al., 2004).

Those servers are duplicated in all the 
160 sites in a range of two to six servers per 
site. The type of server and the operating 
system (Windows, UNIX, or LINUX) are 
picked at random. We assume 0.1 local 
loads (i.e., not related to the grid) on all 
computational resources at all times, as the 
typical case in most studies like Hotovy 
(1996). Note that the simulation model 
consists of 520 servers versus about 1,880 
work stations throughout all experiments 
for a ratio of 1:3.6. 

Table 1. Computational resources

Server number
Number of  

Nndes

CPUs per 

node

1 184 16

2 305 4

3 144 8

4 1,024 4

5 64 2

6 512 4

7 128 2
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Workloads
Unfortunately it was difficult to find 

real traces for grid computing. However 
we were able to base our workloads on real 
traces for parallel machines and scientific 
applications (Al-Zoubi, 2006; Feitelson, 
2005; Hotovy, 1996; LTTR, 2000; Shan 
et al., 2004). Jobs in the workloads, that 
are relevant to this article, use input aver-
age sizes of 1GB, 10GB, and 100GB over 
the following number of jobs: 520, 1,040, 
1,560, 3,000, and 10,000 jobs. Refer to 
Al-Zoubi) (2006) for the complete set of 
workloads. We use Poisson distribution to 
generate input data sizes for submitted jobs 
to the grid, where the Poisson mean is set to 
the desired average input size. In this way, 
jobs are generated with different sizes but 
with the desired average input size, which 
is close to the typical case in reality. 

Performance Metrics
We use three performance metrics 

to compare systems: total response time, 
average waiting time, and average response 
time. 

The total response time (TRT) is the 
time from submitting first job request until 
the completion of all jobs in a workload. 
For example, suppose that the first request 
was submitted to the grid at 5 p.m. and the 
last job of a workload was completed at 10 
p.m, the total response time will then be five 
hours. The purpose of this metric is to show 
the degree of parallelism in the grid, since 
we view the grid as a huge virtual parallel 
machine. The total response time (TRT) is 
calculated as follows:

)( FRSLJCTRT −= ,  (3)

where LJC (last job completion time) is the 
time that of the output (i.e., at workstation) 

of the last completed job in the workload is 
received FRS (first request submission) is 
the time of transmission of the first request 
by a work station.

The waiting time (WT) for a job is the 
time from submitting the job’s request to the 
grid until the start of the actual job transfer 
to the selected resources. For example, if a 
work station submits a request to the grid 
at 5 p.m. and gets a service offer from a 
resource at 6 p.m., the waiting time for that 
job is one hour. The purpose of this metric 
is to measure the scheduling time (i.e., the 
time it takes until a resource is allocated to 
that job). The average waiting time (AWT) 
is calculated as follows:

,   

1

1 ( )N
jj

AWT SJTT RT
N =

= −∑  
    (4)

where N (job count) is the number of jobs 
in a workload. SJTT (start job transfer-
ring time) is the time when a workstation 
receives a service offer from a resource and 
starts transferring the physical job. RT (re-
quest time) is the time when a workstation 
submits that job request to the grid.

The execution time (ET) is the time 
from submitting the actual job to the grid 
until the job’s output is received at the 
submitter’s work station. For example, a 
work station receives a service offer from 
a resource at 5 p.m. Suppose now that the 
work station receives the output of the job 
at 6 p.m., then the execution time is one 
hour. Although all systems, in our model, 
function the same way when a request is 
mapped to a resource, we still need this 
metric to measure the location of where a 
job was executed. The average execution 
time (AET) is calculated as follows:
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N

j jSJTTJCT
N

AET
1

)(1 ,    

    (5)

where JCT (job completion time) is the 
time when the job’s output is received at 
the work station. 

Simulation Experiments
We present, in this section, a sample 

of the experimental results to compare the 
performance over different scenarios. Refer 
to Al-Zoubi) (2006) for the complete set of 
results. Note that regardless of the config-
ured system or experiment, the following 
assumptions still apply:

1. The computational power in the grid 
is maintained (i.e., 520 servers all the 
times);

2.  a job is submitted by one work sta-
tion and executed by one server. Note 
that a workstation is called active if 
it has a pending request in the grid. 
Otherwise, it is called inactive;

3. a work station that submits jobs ac-
cording to a stochastic rate, only op-
erates at that rate while it is inactive. 
For example, a work station submits 
jobs to the grid with the rate of 12 
hours. Now, when that work station 
becomes inactive, it waits, according 
to that Poisson distribution, with a 
mean of 12 hours before it submits 
another job;

4.  All results are obtained by averaging 
20 different runs. Note that the differ-
ence between the worse and the best 
case runs is in the range of 5-15%. 
Perhaps, this is because of having too 
many nodes in the model.

First Experiment
In this experiment work stations sub-

mit jobs one after another until the entire 
workload is completed. This scenario is 
possible when an organization, for instance, 
executes a number of jobs one after another 
automatically as a set. The workload in this 
experiment is already distributed among 
sites by the submission approach.  For ex-
ample, if site A has three work stations and 
site B has six work stations. Most likely, 
site B will submit twice as many requests  
as site A.

The AWT and the TRT showed a 
substantial improvement against the P2P 
system, regardless of the number of used 
grid trees, workload, or scenario, as shown 
in Figures 3, 4, 6, and 9. Interestingly, the 
AWT starts declining when the hybrid sys-
tem contains too many grid trees. Perhaps, 
this is because it gets closer and closer to 
the P2P system as a result of the increased 
number of trees in the system. The AET 
is almost the same for small jobs (1GB) 
but starts to differ when job size increases 
(100GB), as shown in Figures 5 and 7, which 
makes sense, since the model is built with 
high-performance links.

Second Experiment
In this experiment, work stations oper-

ate at different stochastic submission rates, 
where each work station selects, at random, 
one of the following rates: 10 minutes, 30 
minutes, one hour, five hours, one day, 
or one week. Furthermore, a workload in 
this experiment is not already distributed 
among sites, as in the case of the first ex-
periment. Furthermore, in this scenario, 
sites also have different probabilities when 
generating a job. For example, if site A has 
three workstations and site B has six, it is 
not necessarily true that site B is going to 
submit twice the number of requests that 



12   Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc. 
is prohibited.

0

5

10

15

20

25

520 1040 1560 3000

Number of Jobs (Size = 10GB)

Ti
m

e 
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

0

50

100

150

200

250

300

350

400

450

520 1040 1560 3000 10000

Number of Jobs (Size = 10GB)

Ti
m

e 
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 3. A sample of AWT in experiment 1

Figure 4. A sample of TRTime in experiment 1

Figure 5. A sample of AET for large-sized jobs in experiment 1
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will be submitted from site A. On the other 
hand, it is quite possible that all requests 
will be submitted from site A.

Observations of the first experiment 
also are supported by this experiment. 
Furthermore, both the butterfly and the 
load-balance algorithms showed a signifi-
cant influence on the performance of the 
hierarchal system, as shown in Figure 8. 
In fact, the more jobs in a workload the 
worse it gets. If the subject algorithms are 
disabled, hence, the more jobs, and the 
more performed rescheduling.

Third Experiment
In this experiment work stations 

submit jobs with the same stochastic rate 
(e.g., a one hour rate for all work stations 
in the grid). A workload in this experiment 
is already distributed among the sites, as in 
the case of the first experiment.  We studied 
the systems with three different rates: one 
hour, one day, and one week. 

Observations of the previous experi-
ments also are supported by this experiment. 
In addition, the AWT tends to decline with 
a big slope in the hierarchal systems, when 
jobs arrive into the grid with a larger mean 
rate. However, it decreases slightly in the 
P2P system, as shown in Figure 9.

Fourth Experiment
In this experiment, resources change 

according to one of the following stochastic 
changing-rates: one day, three days, one 
week, one month, three months, or six 
months. Note that the changing rate also 
is reselected at random, along with the 
advertised resources. For example, a server 
selects a six-month changing rate and re-
selects a three-month changing rate when 
it changes its advertised resources.

Now, when resource change is a pos-
sibility during job scheduling, the AWT 

turns out the same as when when resources 
are constant, as shown in Figure 10. This 
makes sense, since the fallback algorithm 
reschedules jobs, while resources are busy 
executing other jobs.

cOncLUSIOnS
Many studies jump over the resource 

discovery stage into the second schedul-
ing stage by assuming that all jobs can be 
executed anywhere in the grid or by simply 
assuming that resources will be discov-
ered using the P2P approach. However, as 
we have shown, those stages have to be 
dealt with in a sequence because of their 
dependence on each other. The hierarchal 
approach has not only shown substantial 
improvement over the P2P system but 
also the ability to be combined with it in 
one hybrid system. Both the AWT and the 
TRT metrics showed a large improvement 
with the hierarchal approach in contrast to 
the P2P system, regardless of the number 
of grid trees, workload, or scenarios used. 
The AET metric also showed a significant 
improvement when not using the P2P sys-
tem for large-sized jobs, but the numbers 
were almost the same for small-sized jobs. 
This makes sense, since the model is built 
with high-performance links. The three 
rescheduling algorithms showed a big 
contribution in the overall performance 
of the system. The fallback algorithm al-
lowed some jobs to be executed despite 
resource change and maintained the same 
system performance when resources were 
constant. Both the butterfly and load-bal-
ance algorithms prevented the system from 
performing poorly when the number of jobs 
in workloads was increased.

Observably, the P2P approach puts 
the burden of discovering resources on the 
jobs. Peers “blindly” forward requests to 
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Figure 6. A sample of AWT in experiment 2

Figure 7. A sample of AET for small-sized jobs in experiment 2

Figure 8. A sample of algorithms influence on the AWT in experiment 2
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their neighbors with the hope that those jobs 
will find appropriate resources. However, 
as was shown in this article, the hierarchal 
approach gives schedulers more “say” in 
discovering resources for jobs and in dis-
tributing the jobs among resources. This 
is not a trivial issue if we want to gain the 
full benefits of the grid systems. Therefore, 
grid schedulers, in the future, need to break 

grid jobs into subjobs and execute them in 
parallel on multiple resources. Currently, 
we do not see how peers in the P2P-based 
grid system can carry out this task. However, 
in theory, any grid scheduler in a grid tree 
may break a job into subjobs and execute 
that job in parallel among its children’s 
partitions. For a more in-depth discussion, 
see Al-Zoubi (2006).

Figure 9. A sample of AWTime in experiment 3

Figure 10. A sample of AWT in experiment 4
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