
Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007 1

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

ABSTRAcT

This article proposes hierarchal scheduling schemes for grid systems: A self-discovery scheme
for the resource discovery stage and an adaptive child scheduling method for the resource selec-
tion stage. In addition, we propose three rescheduling algorithms: (1) The butterfly algorithm,
which reschedules jobs when better resources become available, (2) the fallback algorithm, which
reschedules jobs that had their resources taken away from the grid, before the actual resource
allocation, and (3) the load-balance algorithm, which balances the load among resources. We
also propose a hybrid system to combine the proposed hierarchal schemes with the well-known
peer-to-peer (P2P) principle. We compare the performance of the proposed schemes against the
P2P-based grid systems through simulation with respect to a set of predefined metrics.

Keywords: grid computing; grid environment; grid systems; hierarchal scheduling; P2P
systems; cluster computing; parallel scheduling; high-performance computing;
parallel processing

InTRODUcTIOn
The current status of computation is

equivalent in some respects to the status of
electricity circa 1910s (Foster & Kessel-
man, 2004). At that time, electrical power
was generated by generators for specific
individuals or organizational needs. Truly,
the real influence of electricity in our lives
was born with the creation of the electric
power grid, which was provided via sharing
generators. The “grid computing” term was
adopted from the electricity grid to amplify

computational power via sharing computa-
tional resources, since both grids are similar
with respect to their infrastructure and
purpose. The term “the grid” started in the
mid-1990s (Foster, 2001; Foster & Kessel-
man, 2004) to portray the infrastructure of
both scientific and commercial computing
communities and has been gaining popular-
ity ever since. The “grid” can be defined
as a parallel and distributed system that
enables a large collection of geographi-
cally distributed heterogeneous systems

Hierarchical Scheduling in
Heterogeneous Grid Systems

Khaldoon Al-Zoubi, Carleton University, Canada

IDEA GROUP PUBLISHING

This paper appears in the publication, International Journal of Information Technology and Web Engineering, Volume 2, Issue 1
edited by David C. Rine © 2007, Idea Group Inc.

701 E. Chocolate Avenue, Suite 200, Hershey PA 17033-1240, USA
Tel: 717/533-8845; Fax 717/533-8661; URL-http://www.idea-group.com

ITJ3530

2 Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

that usually span several organizations to
share a variety of resources dynamically,
depending on their availability, capabil-
ity, user’s requirements, and any other
predefined rules set by local systems and
resources owners. The type of sharing in
the grid gives the impression of a power-
ful self-managing virtual computer. The
Internet is an ideal choice to link thousands
or millions of computers, since it already
connects the whole world—if a node’s IP
address is known, it can then receive data
from another node. Benefits of grids can
be extensive. They include: (1) expanding
computing power, since grids unleash the
hidden computing power that is not being
used most of the time (e.g., most machines
in a typical organization are busy less than
5% of the time (Berstis, 2002)), (2) improv-
ing productivity and collaboration among
organizations (i.e., wider audience) in a
dynamic and geographically distributed
manner to form one powerful computing
system, and (3) solving complex problems
that were previously unsolvable.

The rest of the article is organized as
follows. In the next section, grid scheduling
stages and some of the grid challenges are
described. Then, the self-discovery method
is presented. It is used in the resource dis-
covery stage and the adaptive hierarchical
scheduling (AHS) method, which is used in
scheduling jobs on selected resources. Note
that the AHS method is based on the AHS
method for parallel and cluster systems
presented in Dandamudi (2003). In addi-
tion, we present three rescheduling dynamic
algorithms: the butterfly, the fallback, and
the load-balance. Next the simulation model
and samples of the results are given.Refer to
Al-Zoubi (2006) for more a more in-depth
discussion of the presented schemes and
the complete set of results. The results are
followed by conclusions.

GRID ScHEDULInG STAGES
Grid characteristics must be taken

into account in order to perform efficient
scheduling. Grid schedulers must make
scheduling decisions in a very challenging
environment that includes: (1) no control
over the resources, since they don’t own
them; (2) distributed resources; (3) a dy-
namic existence of resources (i.e., resources
may be added or removed from the grid at
any time); (4) a dynamic information col-
lection; (5) heterogeneous resources (jobs
must match appropriate resources in order to
be executed as requested by the users); and
(6) tentative scheduling until the allocation
of actual resources (i.e., resources may be
taken from the grid before a job actually
uses them).

In general, grid scheduling is per-
formed in three stages (Nabrzyski, Schopf,
& Weglarz, 2004). First is the resource
discovery stage, which produces a set of
matched resources. Schedulers are expected
to collect static information (e.g., operating
systems) from local schedulers or general
information systems (GIS), in order to
perform job matching. In the next stage,
resources are selected (i.e., resource selec-
tion stage) from the list obtained during the
first stage and are expected to meet user’s
imposed constraints (e.g., deadlines). Then
schedulers are expected to collect dynamic
information (e.g., system load) for the third
stage and transfer jobs to selected resources
(i.e., job execution stage).

HIERARcHAL ScHEDULInG
In GRID SYSTEMS

Grid schedulers, in our proposed
schemes, are structured in a tree form that
we call a grid tree, as shown in Figure 1,
where grid schedulers (GS) are placed into
the tree according to their geographical lo-

Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007 3

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

cations. Users submit their jobs, in the form
of requests to the grid via the grid system
scheduler (GSS), which is the root node of
the grid tree. A user’s request describes the
job in terms of the job minimum require-
ments (JMR) (e.g., operating system) in
order to be matched to resources and in-
cludes any other constraints imposed by the
user (e.g., completion deadline). A leaf grid
scheduler (LGS), which is a node on top of
local scheduler(s), connects directly with
the user’s workstation, brings the physi-
cal job to the grid (once a job is about to
be mapped to the selected resources), and
serves as middleware between the user’s
workstation and the allocated resources.
Note that LGSs may be combined with
local schedulers in one unit.

Theoretically, a scheduler, in our
proposed systems, can break grid jobs into
several subjobs to be executed in paral-
lel and on different children’s partitions.
However, the art of automatic transforma-
tion into parallelism of an arbitrary job is
in its infancy stage (Berstis, 2002). In our
case, we assume whole jobs are submitted
to resources.

Resource Discovery Stage
In this stage, we propose the self-dis-

covery method. The purpose of this method
is to produce a set of logical channels to be
used as paths by jobs (in the next schedul-
ing stage) to get to their physical resources.
Logical channels serve as a map for jobs so
that they know how to reach resources that
can meet their computational requirements.
The self-discovery method omits irrelevant
dissimilarities between resources of differ-
ent sites. The principle behind this method
is that resources are equivalent to each
other, if they match the same set of jobs.
For example, one site advertises INTEL ar-
chitectures and another site advertises AMD

architectures. Now, suppose the grid has a
set of jobs that can be executed on either
INTEL or AMD platform. In this case, the
grid system considers architecture INTEL
as equivalent to architecture AMD for those
jobs in the set, since they can be executed
on either platform. However, suppose now
another set of jobs only requires architecture
AMD in order to execute. In this case, the
grid system considers architecture INTEL
as nonequivalent to architecture AMD for
the later set of jobs, since those jobs can
only be executed on the AMD platform.

LGSs collect and store all static infor-
mation about resources, either directly from
local schedulers or from a GIS. Thus, infor-
mation about local resources is distributed
across the grid, which leads to (1) increasing
system scalability and (2) maintenance of
up-to-date databases. LGSs also initiate the
resource discovery stage at system start up
or when no jobs in the grid tree match their
advertised resources, by issuing the request
for job matching (RFJM) message to their
parents, which in turn forwards the RFJM
messages to the grandparents, and so on,
until the RFJM message is received by the
GSS, enabling it to initiate resource discov-
ery to all of its raw jobs (i.e., new jobs that
have not previously been through resource
discovery stage). However, if the GSS has
no raw jobs, it will then backlog the RFJM
message until receiving new jobs.

The GSS starts the resource discovery
stage by: (1) broadcasting a special message
to all of its children to destroy all channels
in the system and (2) passing all raw jobs to
all of its children as one block. The children,
in turn, pass the raw jobs as one block to the
grandchildren, and so on, until they reach
the LGSs at the bottom of the grid tree.
LGSs match raw job requirements to their
local resources and insert all raw jobs that
match resources in their bags. They will

4 Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

then pass a copy of their bags (along with
any previous matched jobs) to their parents.
Note that (1) LGSs save all requests that
they receive from their parents, whether
they have matched or not, enabling LGSs
to perform rematching, if needed, due to
resources change (i.e., the GSS removes
all stored requests from all bags once they
are executed); (2) intermediate schedulers
(GS) always pass one RFJM message to
their parents on behalf of their children and
suppress other RFJMs, preventing the GSS
from initiating any unnecessary resource
discovery; and (3) a logical channel is cre-
ated for every unique job bag.

Once a scheduler receives a bag (from
one of its children) that is similar to another
bag of an existing channel, it will then: (1)
create a new branch from its existing chan-
nel and bind it with the child’s channel; (2)
recalculate its channel’s processing power
based on the new created branch; (3) inform
the child of its channel’s port number; and
(4) update the parent, if needed, with the new
processing power of its channel. However, if
the received bag is distinctive, the scheduler

will then: (1) create a new channel with a
new port number; (2) create a new branch
from its new channel and bind it with the
child’s channel; (3) initialize the channel
processing power, based on the newly cre-
ated branch; (3) inform the child with the
channel’s port number; and (4) update the
parent, if needed, with the new bag and the
channel’s port number.

Now consider, as an example, the grid
tree shown in Figure 1. Suppose the GSS
pass six raw jobs, J1 through J6, as one
block to all of its children. Suppose further
that J4, J5, and J6 do not match resources at
GS10. In this case, the GSS ends up with
two channels (via GS1), where all jobs may
use the first channel. On the other hand, J1,
J2,and J3 are the jobs that can only use the
second channel.

Resource Selection Stage
The grid AHS scheduling method, in

this stage, uses self-scheduling by explor-
ing the parent-child relationship. When
a nonroot GS wants some work to do,
it initiates self-scheduling by sending a

Figure 1. A grid tree with two channels

 GSS

GS1

GS3 GS4

GS7 GS8 GS9 GS10

2nd chan

1st chan

Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007 5

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

request for computation (RFC) message
to its parent (via a channel), requesting
computation from it. If the parent GS does
not have computations that can be pushed
to that child’s channel at the time of re-
ceiving the RFC, it, in turn, generates its
own RFC and sends it to its parent on the
next level of the grid tree. This process is
recursively followed until either the RFC
reaches the GSS or a GS with computa-
tions is encountered along the path. Note
that intermediate schedulers send one RFC
message per channel to their parents but
still mark all branches from which they
have received RFCs. Upon receiving an
RFC message from a channel’s branch of
a child, a scheduler uses a space-sharing
policy to distribute computations among
channels as follows:

 NBB rateshare ×= , (1)

where Bshare is the branch’s share of all jobs
within the scheduler’s subtree; Brate is the
branch’s transfer rate; and N is the number
of jobs within a scheduler’s subtree. Brate is
calculated as follows:

∑
=

= M

i
ipwr

pwr
rate

C

B
B

1
)(

,
 (2)

where Bpwr is the branch’s processing power;
Cpwr is the channel’s processing power
(i.e., total processing power for all of its
branches); and M is the number of channels
in a scheduler. Note that, in our case, the
channel’s processing power is the number
of central processing units (CPUs) that
reside under that channel; since we assume
that our computational resources are paral-

lel computers (see the Simulation Model
and Results section). However, in reality,
we expect processing power to consider
more factors, such as RAMs, bandwidth,
and so forth.

Now, once a scheduler determines the
number of jobs that will be pushed onto a
channel’s branch, it builds a list of those
jobs as one block and pushes them onto that
branch. Suppose, as an example, that GS1,
in Figure 1, has nine jobs, upon receiving
an RFC message from the first branch of the
first channel (i.e., via GS3). Suppose further
that the three branches that connect GS1 with
its two children have equivalent processing
power. In this case, GS1 may then push up
to three jobs onto that branch.

Schedulers perform the following steps
to collect the jobs (in order to be pushed
onto a channel’s branch): (1) they invoke
the butterfly algorithm; (2) they collect
jobs from the unassigned (i.e., unpushed)
jobs; and (3) they invoke the load-balance
algorithm. Note that we expect schedul-
ers, in practice, to collect more dynamic
information related to performance (e.g.,
load) or economics (e.g., prices).

Butterfly Algorithm
The principle behind this scheme is

to reschedule jobs to better resources (with
respect to predefined metrics), when they
become available. Note that this algorithm
can be extended to any soft conditions
imposed by a user, where soft conditions
are the ones that the user is willing to live
without until they become available (or if
they ever become available). In our case,
we consider the geographic closeness of
resources with respect to work stations as
our metric (we use IP addresses to deter-
mine location nearness). Interestingly, a job
may keep jumping (like a butterfly) among
children’s partitions, until it settles on the

6 Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

closest resources. In this algorithm, after a
scheduler receives an RFC message from
a child, the scheduler will then (1) cancel
any assigned jobs from other children (if
the new child is closer to those jobs’ work
stations) and (2) push them into the new
available child’s partition.

Fallback Algorithm
The fallback algorithm is intended

to reschedule jobs that become incomput-
able because of the grid losing its required
resources on its scheduled partitions.
When an LGS detects resource change,
it performs rematching for all saved
requests. Now, if an LGS ends up with
the same job bag, this resource change is
then irrelevant. However, if it produces
a different bag, it will then pass it on to
its parent.

Schedulers handle received bags in
this stage as previously described in the
resource discovery stage. Additionally,
schedulers mainly have to carry out the
following (of course, parents will also be
updated): (1) remove any jobs that become
incomputable; (2) recalculate modified
channels processing power; and (3) de-
lete any broken channels. For example in
Figure 1, assume GS10 changes resources
and produces a bag similar to GS9’s bag.
In this case, GS4 will then connect GS10
to the first channel and inform its parent
(GS1) of two things: (1) the first channel
with new updated processing power and
(2) the broken second channel. Now if GS4
has jobs that become incomputable, it will
then remove them and update GS1. Note
that GS1 reschedules those returned jobs
(if they still computable on its partition)
with a priority (in our case, the lesser the
sequence number, the higher the priority).
For instance, GS1 may swap some of those
returned jobs with assigned jobs in GS3’s

partition, in order to execute jobs in the
same order of their arrival to the grid.

Load-Balance Algorithm
As stated earlier, schedulers determine

the number of jobs (that will be pushed
into a channel’s branch) by considering
all jobs within their subtrees. They will
then collect those jobs by invoking the
butterfly algorithm and from queued unas-
signed jobs. Schedulers will then balance
the load among the channels by canceling
already assigned jobs and then reschedule
them on the channel’s branch that just re-
quested more work. Schedulers are always
responsible for balancing all assigned jobs
among their children’s channels within their
subtrees, since a parent may cause a child’s
subtree to get imbalanced (i.e., of course,
parents do not know how assigned jobs are
distributed within their children’s subtrees).
For example, assume that each of GS7 and
GS8 in Figure 1 has four queued jobs (of
course, GS1 assumes that all eight jobs are
still queued at GS3). Suppose now that GS1
decides to cancel four jobs to reschedule
them on a GS4’s channel, in order to bal-
ance its subtree. Now, if GS1 cancels the
four jobs queued at GS8, it imbalances the
GS3’s subtree. In this case, GS3 will bal-
ance its subtree upon receiving an RFC
message from GS8 (or will forward the
RFC message to GS1, if the RFC message
is received from GS7).

Hybrid System
The hierarchal system (one grid tree)

has major drawbacks: (1) All requests are
submitted to the GSS, which may become
overwhelmed with too many requests; (2)
it is difficult to bring in many organizations
and have them agree on things, such as
constructing the grid tree, controlling GSS
policies (e.g., security) and dealing with

Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007 7

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

new joined organizations; and (3) it is dif-
ficult to convince companies to replace their
peer-to-peer (P2P) based grid systems.

The hybrid system, which is several
grid trees that act also as peers to each
other, as shown in Figure 2, does not only
overcome the above drawbacks but does
provide organizations with more efficient
ways to manage their own resources, such
as stamping foreign requests with low pri-
ority, isolating their resources swiftly from
the entire grid without pumping out their
pending requests of using their resources,
and so forth.

In the hybrid system, a GSS in a grid
tree also acts as a peer GSS (PGSS) that
forwards requests (after decrementing
hop count) to its neighbors. Of course
neighbors can be part of any other system
types (e.g., P2P system). The P2P system
can be viewed as a hybrid system, where
each grid tree has only one scheduler; and
the hierarchal system can be viewed as a
hybrid system with one peer. In our case,
we assume that (1) requests are always
forwarded to neighbors (i.e., a request dies
when hop count reaches 0), hence, grid trees
also serve as backups to each other; and (2)

foreign and home requests are queued in
the same fashion.

SIMULATIOn MODEL AnD
RESULTS

This section presents the simulation
model and samples of the preliminary
results. Readers are encouraged to refer
to Al-Zoubi (2006) for the complete set of
results and a more in-depth discussion.

The grid simulation model is broken
into three submodels—communication,
node, and system models—each of which
is described below.

communication Model
The communication model, which is

used by nodes (i.e., node model) to com-
municate with each other, consists of 2,400
nodes that span across four backbones. Each
backbone (600 nodes) consists of four nets,
where each net consists of 10 networks and
each network consists of 15 nodes. There-
fore, there are four backbones, four nets,
10 networks, and 15 nodes, which add up
to 2,400 nodes in total in the model. The
communication model uses the discrete
event simulation (DEVS) CD++ simulator

Figure 2. Hybrid system example

B A

c

8 Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

(Al-Zoubi, 2006; Wainer, 2002) to simulate
all of the communication aspects among
all nodes.

The model presented numerous of
challenges that we had to address to bring
it closer as much as possible to the actual
communication over the Internet, which is
almost an impossible job to do, since the
Internet is a very large unpredictable public
network. We’ve assumed that 10% of the
model’s capacity accounts for the external
Internet load and the routers processing
time based on the studies in (Al-Zoubi,
2006; Odlyzko, 2003), which were based
on actual statistics by the Internet Service
Providers (ISP). We’ve also assumed 64
kilobytes TCP window size to control data
flow (Al-Zoubi, 2006). Backbones in the
model are connected with 1000 km, 9.6
Gb/s (e.g. OC-192 link) cables, Nets/sites
are connected with 50 km, 155 Mb/s
(e.g. OC3 link) cables (Al-Zoubi, 2006;
Odlyzko, 2003), and nodes within a site are
connected with 100 MBytes/s (Al-Zoubi,
2006) cables.

node Model
A node, in the communication model,

is simply a computer with an IP address.
On the other hand, the node component
contains the implementation of the pro-
posed schemes for the grid systems in this
article. A node can be configured to operate
as a peer, local scheduler, intermediate GS,
LGS, GSS, PGSS, or a work station. Note
that the node’s configuration determines
the system model type.

System Model
The grid model can be configured to

a (P2P, a hierarchal (one grid tree), or a
hybrid (several grid trees) system model,
as discussed below. The P2P systems are
distributed systems and the only ones, to

our knowledge, that are currently well
thought-out by researchers (Al-Zoubi,
2006; Nabrzyski et al., 2004; Shan, Smith,
Oliker, & Biswas, 2004) to replace the
centralized systems. As a result, it is a
reasonable choice to be compared against
the proposed hierarchal systems in this
article.

P2P System
Once a job request is received at a peer

that meets its requirement, it contacts the
work station to offer its service and amount
of time for the work station response (100
ms, in our case). Work stations may accept
peer service by responding to it or may re-
fuse peer service by simply not responding
to it. If a peer cannot accept a work station
request, it decreases the hop count (1,000
in our case) in the message and forwards it
to its neighbors. In our model, peers accept
requests if they meet their deadline, which
is three times the estimated execution time
for that job. To improve P2P performance,
we would suggest that: (1) if a workstation
doesn’t get a service offer within two min-
utes, it resubmits the job request to the grid;
and (2) neighbors are manually configured
to be geographically close. However, this
may not be the case in reality.

Hierarchal System
The heirarchal system has one grid

tree. The tree is constructed by connecting
the GSS to four children, where each child
holds one backbone. Each backbone’s root
has four children, where each child holds
one net. Each net’s root has two children,
where each child holds five sites.

Hybrid System
The hybrid system has several grid

trees acting as peers to each other. We use
two hybrid systems in our simulation: four

Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007 9

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

grid trees system (Hybrid-4T) and 16 grid
trees system (Hybrid-16T). In the Hybrid-
4T system, the grid tree of the hierarchal
system is broken into four grid trees, where
each backbone has one grid tree. In the
Hybrid-16T (16 grid trees), each net has
one grid tree.

Grid Jobs
A work station submits a job to the grid

via its grid entry (e.g., GSS) as a request
that defines the JMR for that job. Jobs are
assumed to be executed until completion
of their predefined requirements (operating
systems, in our case). Gaussian distribution
is usually used to simulate the required time
to run a job on a server (Al-Zoubi, 2006;
Hotovy, 1996; Shan et al., 2004; Takefusa,
2001) with respect to the input job size and
the server’s processing power. Therefore,
we assume job sizes are correlated to the
amount of work performed by each job,
where the input data size is expressed by
Gaussian distribution with the mean µ = b
* cpus * wall time in seconds, and where b
= 100 (Shan, 2004). We also assume a job

produces output data five times the original
input job size.

computational Resources
We assume all resources (i.e., serv-

ers) are parallel machines that consist of
a number of interconnected nodes with a
number of CPUs within a node as in Al-
Zoubi (2006) and Shan et al. (2004). Table
1 shows the servers used in the simulation
experiments, which are originally based on
real machines (Al-Zoubi, 2006; Hotovy,
1996; Shan et al., 2004).

Those servers are duplicated in all the
160 sites in a range of two to six servers per
site. The type of server and the operating
system (Windows, UNIX, or LINUX) are
picked at random. We assume 0.1 local
loads (i.e., not related to the grid) on all
computational resources at all times, as the
typical case in most studies like Hotovy
(1996). Note that the simulation model
consists of 520 servers versus about 1,880
work stations throughout all experiments
for a ratio of 1:3.6.

Table 1. Computational resources

Server number
Number of

Nndes

CPUs per

node

1 184 16

2 305 4

3 144 8

4 1,024 4

5 64 2

6 512 4

7 128 2

10 Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

Workloads
Unfortunately it was difficult to find

real traces for grid computing. However
we were able to base our workloads on real
traces for parallel machines and scientific
applications (Al-Zoubi, 2006; Feitelson,
2005; Hotovy, 1996; LTTR, 2000; Shan
et al., 2004). Jobs in the workloads, that
are relevant to this article, use input aver-
age sizes of 1GB, 10GB, and 100GB over
the following number of jobs: 520, 1,040,
1,560, 3,000, and 10,000 jobs. Refer to
Al-Zoubi) (2006) for the complete set of
workloads. We use Poisson distribution to
generate input data sizes for submitted jobs
to the grid, where the Poisson mean is set to
the desired average input size. In this way,
jobs are generated with different sizes but
with the desired average input size, which
is close to the typical case in reality.

Performance Metrics
We use three performance metrics

to compare systems: total response time,
average waiting time, and average response
time.

The total response time (TRT) is the
time from submitting first job request until
the completion of all jobs in a workload.
For example, suppose that the first request
was submitted to the grid at 5 p.m. and the
last job of a workload was completed at 10
p.m, the total response time will then be five
hours. The purpose of this metric is to show
the degree of parallelism in the grid, since
we view the grid as a huge virtual parallel
machine. The total response time (TRT) is
calculated as follows:

)(FRSLJCTRT −= , (3)

where LJC (last job completion time) is the
time that of the output (i.e., at workstation)

of the last completed job in the workload is
received FRS (first request submission) is
the time of transmission of the first request
by a work station.

The waiting time (WT) for a job is the
time from submitting the job’s request to the
grid until the start of the actual job transfer
to the selected resources. For example, if a
work station submits a request to the grid
at 5 p.m. and gets a service offer from a
resource at 6 p.m., the waiting time for that
job is one hour. The purpose of this metric
is to measure the scheduling time (i.e., the
time it takes until a resource is allocated to
that job). The average waiting time (AWT)
is calculated as follows:

,

1

1 ()N
jj

AWT SJTT RT
N =

= −∑
 (4)

where N (job count) is the number of jobs
in a workload. SJTT (start job transfer-
ring time) is the time when a workstation
receives a service offer from a resource and
starts transferring the physical job. RT (re-
quest time) is the time when a workstation
submits that job request to the grid.

The execution time (ET) is the time
from submitting the actual job to the grid
until the job’s output is received at the
submitter’s work station. For example, a
work station receives a service offer from
a resource at 5 p.m. Suppose now that the
work station receives the output of the job
at 6 p.m., then the execution time is one
hour. Although all systems, in our model,
function the same way when a request is
mapped to a resource, we still need this
metric to measure the location of where a
job was executed. The average execution
time (AET) is calculated as follows:

Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007 11

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

∑ =
−=

N

j jSJTTJCT
N

AET
1

)(1 ,

 (5)

where JCT (job completion time) is the
time when the job’s output is received at
the work station.

Simulation Experiments
We present, in this section, a sample

of the experimental results to compare the
performance over different scenarios. Refer
to Al-Zoubi) (2006) for the complete set of
results. Note that regardless of the config-
ured system or experiment, the following
assumptions still apply:

1. The computational power in the grid
is maintained (i.e., 520 servers all the
times);

2. a job is submitted by one work sta-
tion and executed by one server. Note
that a workstation is called active if
it has a pending request in the grid.
Otherwise, it is called inactive;

3. a work station that submits jobs ac-
cording to a stochastic rate, only op-
erates at that rate while it is inactive.
For example, a work station submits
jobs to the grid with the rate of 12
hours. Now, when that work station
becomes inactive, it waits, according
to that Poisson distribution, with a
mean of 12 hours before it submits
another job;

4. All results are obtained by averaging
20 different runs. Note that the differ-
ence between the worse and the best
case runs is in the range of 5-15%.
Perhaps, this is because of having too
many nodes in the model.

First Experiment
In this experiment work stations sub-

mit jobs one after another until the entire
workload is completed. This scenario is
possible when an organization, for instance,
executes a number of jobs one after another
automatically as a set. The workload in this
experiment is already distributed among
sites by the submission approach. For ex-
ample, if site A has three work stations and
site B has six work stations. Most likely,
site B will submit twice as many requests
as site A.

The AWT and the TRT showed a
substantial improvement against the P2P
system, regardless of the number of used
grid trees, workload, or scenario, as shown
in Figures 3, 4, 6, and 9. Interestingly, the
AWT starts declining when the hybrid sys-
tem contains too many grid trees. Perhaps,
this is because it gets closer and closer to
the P2P system as a result of the increased
number of trees in the system. The AET
is almost the same for small jobs (1GB)
but starts to differ when job size increases
(100GB), as shown in Figures 5 and 7, which
makes sense, since the model is built with
high-performance links.

Second Experiment
In this experiment, work stations oper-

ate at different stochastic submission rates,
where each work station selects, at random,
one of the following rates: 10 minutes, 30
minutes, one hour, five hours, one day,
or one week. Furthermore, a workload in
this experiment is not already distributed
among sites, as in the case of the first ex-
periment. Furthermore, in this scenario,
sites also have different probabilities when
generating a job. For example, if site A has
three workstations and site B has six, it is
not necessarily true that site B is going to
submit twice the number of requests that

12 Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

0

5

10

15

20

25

520 1040 1560 3000

Number of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

0

50

100

150

200

250

300

350

400

450

520 1040 1560 3000 10000

Number of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 3. A sample of AWT in experiment 1

Figure 4. A sample of TRTime in experiment 1

Figure 5. A sample of AET for large-sized jobs in experiment 1

40

50

60

70

80

90

100

520 1040 1560 3000 10000

Number of Jobs (Size = 100GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007 13

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

0

5

10

15

20

25

520 1040 1560 3000

Number of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

0

50

100

150

200

250

300

350

400

450

520 1040 1560 3000 10000

Number of Jobs (Size = 10GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

will be submitted from site A. On the other
hand, it is quite possible that all requests
will be submitted from site A.

Observations of the first experiment
also are supported by this experiment.
Furthermore, both the butterfly and the
load-balance algorithms showed a signifi-
cant influence on the performance of the
hierarchal system, as shown in Figure 8.
In fact, the more jobs in a workload the
worse it gets. If the subject algorithms are
disabled, hence, the more jobs, and the
more performed rescheduling.

Third Experiment
In this experiment work stations

submit jobs with the same stochastic rate
(e.g., a one hour rate for all work stations
in the grid). A workload in this experiment
is already distributed among the sites, as in
the case of the first experiment. We studied
the systems with three different rates: one
hour, one day, and one week.

Observations of the previous experi-
ments also are supported by this experiment.
In addition, the AWT tends to decline with
a big slope in the hierarchal systems, when
jobs arrive into the grid with a larger mean
rate. However, it decreases slightly in the
P2P system, as shown in Figure 9.

Fourth Experiment
In this experiment, resources change

according to one of the following stochastic
changing-rates: one day, three days, one
week, one month, three months, or six
months. Note that the changing rate also
is reselected at random, along with the
advertised resources. For example, a server
selects a six-month changing rate and re-
selects a three-month changing rate when
it changes its advertised resources.

Now, when resource change is a pos-
sibility during job scheduling, the AWT

turns out the same as when when resources
are constant, as shown in Figure 10. This
makes sense, since the fallback algorithm
reschedules jobs, while resources are busy
executing other jobs.

cOncLUSIOnS
Many studies jump over the resource

discovery stage into the second schedul-
ing stage by assuming that all jobs can be
executed anywhere in the grid or by simply
assuming that resources will be discov-
ered using the P2P approach. However, as
we have shown, those stages have to be
dealt with in a sequence because of their
dependence on each other. The hierarchal
approach has not only shown substantial
improvement over the P2P system but
also the ability to be combined with it in
one hybrid system. Both the AWT and the
TRT metrics showed a large improvement
with the hierarchal approach in contrast to
the P2P system, regardless of the number
of grid trees, workload, or scenarios used.
The AET metric also showed a significant
improvement when not using the P2P sys-
tem for large-sized jobs, but the numbers
were almost the same for small-sized jobs.
This makes sense, since the model is built
with high-performance links. The three
rescheduling algorithms showed a big
contribution in the overall performance
of the system. The fallback algorithm al-
lowed some jobs to be executed despite
resource change and maintained the same
system performance when resources were
constant. Both the butterfly and load-bal-
ance algorithms prevented the system from
performing poorly when the number of jobs
in workloads was increased.

Observably, the P2P approach puts
the burden of discovering resources on the
jobs. Peers “blindly” forward requests to

40

50

60

70

80

90

100

520 1040 1560 3000 10000

Number of Jobs (Size = 100GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

14 Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

0

20

40

60

80

100

120

140

160

180

200

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment	2	Scenario)

Ti
m

e
in

 H
ou

rs

Disabled Enabled

0

20

40

60

80

100

120

140

520 1040 1560 3000

Number of Jobs (Size = 100G)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

20

25

30

35

40

45

50

55

520 1040 1560 3000

Number of Jobs (Size = 1G)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

Figure 6. A sample of AWT in experiment 2

Figure 7. A sample of AET for small-sized jobs in experiment 2

Figure 8. A sample of algorithms influence on the AWT in experiment 2

Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007 15

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

0

20

40

60

80

100

120

140

160

180

200

520 1040 1560 3000

Number of Jobs (Size = 100GB, Experiment	2	Scenario)

Ti
m

e
in

 H
ou

rs

Disabled Enabled

3

5

7

9

11

13

15

1 Hour 1 Day 1 Week

Arrival Rates (Size=10G, 1560 Jobs)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal

0

20

40

60

80

100

120

520 1040 1560 3000

Number of Jobs (Size = 100GB,	Experiment 1 Scenario)

Ti
m

e
in

 H
ou

rs

Changing Resources Constant Resources

0

20

40

60

80

100

120

140

520 1040 1560 3000

Number of Jobs (Size = 100G)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

20

25

30

35

40

45

50

55

520 1040 1560 3000

Number of Jobs (Size = 1G)

Ti
m

e
in

 M
in

ut
es

P2P Hierarchal Hybrid-4T Hybrid-16T

40

50

60

70

80

90

100

520 1040 1560 3000 10000

Number of Jobs (Size = 100GB)

Ti
m

e
in

 H
ou

rs

P2P Hierarchal Hybrid-4T Hybrid-16T

their neighbors with the hope that those jobs
will find appropriate resources. However,
as was shown in this article, the hierarchal
approach gives schedulers more “say” in
discovering resources for jobs and in dis-
tributing the jobs among resources. This
is not a trivial issue if we want to gain the
full benefits of the grid systems. Therefore,
grid schedulers, in the future, need to break

grid jobs into subjobs and execute them in
parallel on multiple resources. Currently,
we do not see how peers in the P2P-based
grid system can carry out this task. However,
in theory, any grid scheduler in a grid tree
may break a job into subjobs and execute
that job in parallel among its children’s
partitions. For a more in-depth discussion,
see Al-Zoubi (2006).

Figure 9. A sample of AWTime in experiment 3

Figure 10. A sample of AWT in experiment 4

16 Int. J. of Information Technology and Web Engineering, 2(1), 1-16, January-March 2007

Copyright © 2007, Idea Group Inc. Copying or distributing in print or electronic forms without written permission of Idea Group Inc.
is prohibited.

REfEREncES
Al-Zoubi, K. (2006). Hierarchical sched-

uling in grid systems. Unpublished
master’s thesis, Carleton University,
Ottawa, Canada.

Berstis, V. (2002). Fundamentals of grid
computing. Retrieved from http://
www.redbooks.ibm.com/redpapers/
pdfs/redp3613.pdf

Dandamudi, S. (2003). Hierarchical sched-
uling in parallel and cluster systems.
Kluwer Academic Publishers.

Feitelson, D. (2005). Parallel workloads
archive. Available from http://www.
cs.huji.ac.il/labs/parallel/workload/

Foster, I. (2001). The anatomy of the
grid: Enabling scalable virtual
organizations. In Proceedings of
the 1st International Symposium
on Cluster Computing and the
Grid. Retrieved from http://csdl2.
computer.org/comp/proceedings/
ccgrid/2001/1010/00/10100006.
pdfFoster, I., & Kesselman, C.
(2004). The grid: Blueprint for a new
computing infrastructure. Morgan
Kaufmann.

Hotovy, S. (1996). Analysis of the early

workload on the Cornell theory. ACM
SIGMETRICS, 272-273.

LTTR. (2000). Long term technology
review of the science & engineering
base. Available from http://www.
rcuk.ac.uk/lttr/

Nabrzyski, J., Schopf, J., & Weglarz, J.
(2004). Grid resource management:
State of the art and future trends.
Kluwer Academic Publishers.

Odlyzko, A. (2003). Internet traffic
growth: Sources and implications.
Proceedings of the SPIE, 5247, 1-15.
Retrieved from http://www.dtc.umn.
edu/~odlyzko/doc/itcom.internet.
growth.pdf

Shan, H., Smith, W., Oliker, L., & Biswas,
R. (2004). Job scheduling in a het-
erogeneous grid environment. Re-
trieved from http://www-library.lbl.
gov/docs/LBNL/549/06/PDF/LBNL-
54906.pdf

Takefusa, A. (2001). Bricks: A performance
evaluation system for scheduling al-
gorithms on the grids. JWAITS, .

Wainer, G. (2002). CD++: A toolkit to
develop DEVS models. Software:
Practice and Experience, 32(13),
1261-1306.

Khaldoon Al-Zoubi is a senior software system analyst and programmer. He has over 10 years
in the telecommunications industry experience occupying a variety of software engineering
and leadership positions in both the United States and Canada. He gained a wide range of
software development experience in a number of areas including data link communications,
simulation models, protocol stacks, client-server, real-time multi-tasking software, embedded
software and Mobility. He holds a master’ s degree in computer science in software engineer-
ing from Carleton University (Ottawa, Canada, 2006) and a Bachelor of Science in electrical
and computer engineering from the University of Louisiana at Lafayette (Lafayette, Louisiana,
USA, 1995). His school research is mostly focused in the area of job scheduling for parallel,
cluster and grid systems.

