
This work was partially supported by ANPCYT Project
11-04460 and UBACYT Project JW10.

Specifying Truck Movement in Traffic Models Using Cell-DEVS

Alejandra Davidson Gabriel Wainer

Departamento de Computación
Facultad de Ciencias Exactas y Naturales

Universidad de Buenos Aires
Pabellón I - Ciudad Universitaria

Buenos Aires (1428) – ARGENTINA
{ad3n,gabrielw}@dc.uba.ar

http://www.dc.uba.ar/people/proyinv/celldevs

Abstract

A specification language was defined to outline sections of
cities as cell spaces. The goal is to allow the definition of
complex traffic models in a simple fashion for the modeler.
Once the urban section is outlined, the traffic flow is auto-
matically set up. In this case, the language was expanded
to include the behavior of trucks. The models are formally
specified, avoiding a high number of errors in the devel-
oped application, and the problem solving time can be
reduced.

1. Introduction

Traffic simulations are useful to test traffic policies,
traffic signals, measuring the consequences of collisions or
men at work, controlling pollution, avoiding traffic jams,
etc. Due to the complex characteristics of these systems, a
model reflecting a higher number of features can provide
more accurate results. The represented behavior must be
more detailed, involving the need of higher computing
power.

The basic aspect of transit models is the structure cho-
sen to represent streets, because the structure defines the
kind of movements allowed. Simple models represent
transit flow on one-lane roads. More complex ones allow
bi-directional multi-lane roads with street intersections.
These must include the exchange of vehicles between
lanes and vehicles turning in the corners. Other important
aspects include how to represent of different vehicles,
control signals, deviations, accidents, etc.

Cellular Automata [1] is a formalism well suited to de-
scribe these problems. A model built using this paradigm

is represented as a lattice of cells using discrete variables
for time, space and system states. The cells in the lattice
are updated according with a local rule in a simultaneous
and synchronous way, using a local computing function.
This function considers the state of the present cell and a
finite set of nearby cells (called the neighborhood). Sev-
eral works proposed to use cellular automata for traffic
simulations (see [2]). Nevertheless, most of them are de-
voted to model simple aspects of the traffic flow.

An important constraint is that cellular automata are
synchronous. This fact reduces the timing precision for the
models, and compute time can be wasted when the cells
are quiescent. The Cell-DEVS paradigm [3] solve these
problems by describing cell spaces as discrete event mod-
els using the DEVS formalism [4]. The paradigm allows to
include delay functions to have a simple definition of the
timing of the cell.

This work presents the definition of ATLAS, a specifi-
cation language used to define traffic models [5]. This
high level language is mapped into Cell-DEVS models,
thus improving the model definition and its execution
precision. The work is devoted to present constructions
defining the behavior of trucks, a detailed traffic behavior
not existing in most cellular models.

2. Background

ATLAS is defined as a set of components allowing the
definition of traffic behavior [5]. A city section is speci-
fied by a set of streets connecting two crossings. Each
street is represented as a sequence of segments, repre-
senting a road section of one block of length. Every lane
of each segment has the same traffic direction (one way)

and a maximum allowed speed. Consequently, a two-way
street is built by defining one segment for each direction.

Different sets of rules were defined for segments with
one to five (or more) lanes, because the behavior of the
borders is different in each case. The speed of each vehicle
is represented through a delay function, using a random
variable related with the speed limit allowed.

Input Output crossing
From (0,0) (0, 1) (0, 2) ... (0, k-1) To

Crossing (1,0) (1, 1) (1, 2) ... (1, k-1)
 (2,0) (2, 1) (2, 2) ... (2, k-1)

 (#c-1,0) (#c-1,k-1)

Figure 1. A segment with more than four lanes.

The crossings are represented as a ring of cells where
the vehicles advance or turn to a new segment [6]. A car
into the intersection has higher priority to obtain a new
position in the ring than the cars out of the crossing. In
order to avoid deadlocks, the cars advance continuously.
Each crossing is translated into a unidimensional cellular
model. The inputs and outputs of the model are obtained
by analyzing the segments connected to the crossing and
their direction.

 2 1 from
hacia

segment
 3 0
 ... k-1 From segment

To segment To segment

Figure 2. Crossing

These constructions are connected to an experimental
framework, defined as a set of segments allowing inputs
and outputs for the city section analyzed. They are defined
as:

InputSegments = { s / s = (p1, p2, n, a, dir, max) ∧ s
∈ Segments ∧ [(dir = 0 ∧ (O v ∈ N : (p2,v) ∈ Crossings)

) ∨ (dir = 1 ∧ (O v ∈ N : (p1,v) ∈ Crossings))] }

OutputSegments = { s / s = (p1, p2, n, a, dir, max) ∧
s ∈ Segments ∧ [(dir = 0 ∧ (O v ∈ N : (p1,v) ∈

Crossings)) ∨ (dir =1 ∧ (O v ∈ N: (p2,v) ∈ Crossings))] }

For each s ∈ InputSegments, a DEVS model is de-
fined. Its goal is to generate vehicles that are inserted in

the city section to be simulated. These models are defined
by:

Generator (#c) = < I, X, S, Y, δint, δext, λ, D >

Instead, the output segments s ∈ InputSegments define
a DEVS model devoted to consume vehicles and compute
statistics.

Output(#c) = < I, X, S, Y, δint, δext, λ, D >

In both cases, #c represents the number of lanes of the
segment s.

The constructions have been mapped into DEVS and
Cell-DEVS models, with the benefits of using a formal
approach. Errors in the simulation can be detected by
analyzing specifications, and the analysis of the underly-
ing software system can be avoided. A DEVS model is
seen as composed atomic submodels than can be com-
bined into coupled models. A DEVS atomic model is
described as:

M = < I, X, S, Y, δint, δext, λ, D >

Here, I is the model's interface, X is the input events
set, S is the state set, and Y is the output events set. There
are also several functions: δδint manages internal transitions,
δδext external transitions, λλ the outputs, and D the elapsed
time.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} >

Here, I is the model's interface, X is the set of input
events, and Y is the set of output events. D is an index of
components, and for each i ∈ D, Mi is a basic DEVS
model, where Mi = < Ii, Xi, Si, Yi, δinti, δexti, tai >. Ii is

the set of influencees of model i. For each j ∈ Ii, Zij is the i
to j translation function.

When Cell-DEVS is used, each cell is defined as an
atomic DEVS model. Transport and inertial delays allow
to define timing behavior. A transport delay allows us to
model a variable response time for each cell. Instead, in-
ertial delays are preemptive: a scheduled event is executed
only if the delay is consumed. Cell-DEVS atomic models
can be formally specified as:

TDC = < X, Y, I, S, N, delay, d, δint, δext, τ, λ, D >

In this case, X represents the external input events, Y
the external outputs, and I is the interface of the model. S
is the cell state definition, and N is the set of input events.
Delay defines the kind of delay for the cell, and d its du-

ration. Each cell uses the inputs to compute the future state
using the boolean function ττ. The delay allows to defer the
outputs. This behavior is defined by the δδint, δδext, λλ and D
functions.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, N, C, B, Z >

Here, Ylist is the output coupling list, Xlist is the input
coupling list and I represents the interface of the model. X
are the external input events and Y the external outputs.
The n value defines the dimension of the cell space,
{t1,...,tn} is the number of cells in each dimension, and N
is the neighborhood set. C is the cell space, B is the set of
border cells and Z the translation function.

ATLAS includes other complex constructions: traffic
lights, railways, men at work, street holes, transit signals,
parked cars, and so on. Finally, specialized behavior can
been defined for certain vehicles: trucks, vans and high
priority cars (ambulances, police, firefighters). The fol-
lowing sections are devoted to present the behavior of
segments and crossings when truck movement must be
analyzed.

3. Segments with trucks

The constructions presented in the previous section
were redefined to allow the representation of trucks. Two
different constructions are available according to the kind
of traffic allowed in the street. The standard models are
used in streets where heavy traffic is not allowed. Other-
wise, the models presented in these sections are applied. A
segment including trucks is defined by:

TruckSegments = { (p1, p2, n, a, dir, max) / p1, p2 ∈
City ∧ n, max ∈ N ∧ a, dir ∈ {0, 1} }

Here, p1 and p2 represent the boundaries of the seg-
ment, defined as points in City = { (x,y) / x, y ∈ Z }; n ∈
N, is used to define the number of lanes in the segment;

dir ∈ {0,1}, represents the vehicle direction (dir = 1 for
vehicles moving towards p2; and 0 otherwise); a ∈ {0, 1},
defines the shape of the segment (0 for a straight line, 1 for
a curve), and max ∈ N, is the maximum speed allowed in
the segment. Each segment will be translated into a Cell-
DEVS with transport delays, defined as:

Cij = < I, X, S, Y, N, δint, δext, delay, d, τ, λ, D >

X = Y = N;

delay = transport; d = truck_sp(max);

S:
 1 if there is a car in the cell;

s =  0 if the cell is empty; and
 k = r mod 10 ∧ r ∈ [2,5] if here is a truck.

D, λ λ, δδint and δδext are defined by the Cell-DEVS for-
malism to achieve the transport delay behavior.

ττ will be presented later;

N = {(3,0), (2,-5), (2,-4), (2,-3), (2,-2), (2,-1), (2,0),
(2,1), (1,-5), (1,-4), (1,-3), (1,-2), (1,-1), (1,0), (1,1), (1,2),
(0,-5), (0,-4), (0,-3), (0,-2), (0,-1), (0,0), (0,1), (0,2), (-1,-
5), (-1,-4), (-1,-3), (-1,-2), (-1,-1), (-1,0), (-1,1), (-1,2), (-
2,-5), (-2,-4), (-2,-3), (-2,-2), (-2,-1), (-2,0), (-2,1) }

 (0,0)

Figure 3. Cell's neighborhood.

A truck is defined by { s / s ∈ N ∧ s > 1 ∧ r = s mod 10
∧ r ∈ [2,5] }. Each s represents an identifier for a truck
with length r. The length is used to define the space
needed to change between lanes. Each truck has a unique
identifier (the s parameter) that can be used to recognize it.
Truck_sp() is a random function returning a delay repre-
senting the speed. The value returned depends on the
maximum speed allowed in the street.

c c 0 c c c c *
0 0 0 0 0

(a) (b)

0 0 0 0 0
0 0 0 0 0
0 c c c c *
* * * * *

(c)
Figure 4. Truck movements (a) Straight; (b)

Change to the right lane; (c) Change to the left.

The cell behavior defined by the τ function is divided
in two groups. The first one is related with the truck's
movement, and the second is related with car's advance.
When a truck moves, several cells should change together.
The first cell is in charge to choose the next movement,
checking if there is space to move all the truck. The re-
maining cells will follow the first one.

There are three valid movements. The first one move-
ment consists in advancing one cell in the same lane. If
there is no space, it tries to move to the right (reflecting
that the trucks should use the right lanes). Otherwise, it
tries to go to the left.

As the segments contain trucks or cars, a policy ruling
the movement of both must be defined. Any vehicle ad-
vancing straight will have a higher priority than the ones
coming from the other lanes. Therefore, to make a straight
movement we only need to check if there is a place in the
previous cell. A truck trying to move to the right must
check if there is enough place to do it. These trucks will
have a higher priority than the cars trying to make the
same movements. Instead, when moving to the left, the
trucks should check that no vehicles are trying to occupy
those cells. The neighborhood defined in the Figure 3
allows to check these movements by using the following
rules:

τ(N) N
(0,-1) (0,0) = 0 and Truck(0,-1) and IsHead(0,-1)
(0,-1) (0,0) = 0 and Truck(0,-1) and (0,1) = (0,-1)

Here, we represent the arrival of a truck to the origin
cell from the cell in the back. Truck(i,j) is a macro used to
verify that the position contains a part of a truck, that is,
Truck(i,j) ≡ remainder((i,j),10) ∈ [2,5]. IsHead(i,j) is a
macro that checks if the position (i,j) is the head of the
truck. To do so, it verifies that the previous positions do
not include part of the same truck.

The following rules represent a truck leaving the cell.
In the first case, the truck leaves the cell using a straight
movement. In the second one, the truck moves to the right.

τ(N) N
0 Truck(0,0) and (0,1) = 0 and IsHead(0,0)
0 Truck(0,0) and (0,1) = 0 and (0,2) = (0,0)

In the next case, the head and the rest of the truck are
also distinguished. Only the head checks if there is enough
space to move (Free_Right_Truck(0,0)), and the rest just
follow it.

τ(N) N

0 Truck(0,0) and Free_Right_Truck(0,0) and
IsHead(0,0)

0 Truck(0,0) and (-1,1) = (0,0)

Here, Free_Right_Truck(i,j) verifies if the right lane of
the cell (i,j) is free, that is, Free_Right_Truck(i,j) ≡ ∀ k ∈
[0, remainder((i,j),10)] ⇒ (i-1,j-k) = 0.

The following rule represents a truck arriving to the
origin cell from the left. The head should check that the
chosen movement is to the right ((1,1) != 0), and there is
space to do it (Free_Right_Truck(1,0)).

τ(N) N
(1,0) (0,0) = 0 and Truck(1,0) and (1,1) != 0 and

IsHead(1,0) and Free_Right_Truck(1,0)
(1,0) (0,0) = 0 and Truck(1,0) and (0,1) = (1,0)

A truck leaving the origin cell and moving to the left is
represented following. The truck's head checks if there is
enough place to move to the left (2LeftLanesFree(0,0)).
Two lanes are necessary because other trucks or cars try-
ing to move have higher priority to do it.

τ(N) N
0 Truck(0,0) and 2LeftLanesFree(0,0) and Is-

Head(0,0)
0 Truck(0,0) and (1,1) = (0,0)

Following, we represent a truck arriving to the origin
cell from the right. If it is the truck's head, the movement
should be checked by seeing that the truck cannot advance
((1,1) != 0) or turn right (!(Free_Right_Truck(-1,0))). It
also should have enough place to do the movement
(2LeftLanesFree(-1,0)).

τ(N) N
(-1,0) (0,0) = 0 and Truck(-1,0) and (-1,1) != 0 and

IsHead(-1,0) and !(Free_Right_Truck(-1,0))
and 2LeftLanesFree(-1,0)

(-1,0) (0,0) = 0 and Truck(-1,0) and (0,1) = (-1,0)

The car movements also must be defined. The first rule
following represents the arrival of a car to the cell. The
second one represents a car abandoning a cell, and moving
forward. In these cases, the delay function is d =
speed(max), where speed returns a delay proportional to
the car speed depending on the speed limit.

τ(N) N
1 (0,0) = 0 and (0,-1) = 1
0 (0,0) = 1 and (0,1) = 0

The next rule represents a car leaving a cell to the left.
It checks that enough place is available ((1,0) = 0 and
(1,1) = 0) and no trucks with higher priority are trying to
move to the same cell (!(Truck(2,1))).

τ(N) N
0 (0,0) = 1 and (1,0) = 0 and (1,1) = 0 and

!(Truck(2,1))

The following rule represents a car arriving to the ori-
gin cell from the right. The car should not be able to move
forward ((-1,0) != 0), it should have enough space to move
((0,-1) = 0 and (0,0) = 0), and a truck should not be able
to arrive to the same position (!(Truck(1,0))).

τ(N) N
1 (0,0) = and (-1,-1)=1 and (-1,0) !=0 and (0,-1) =0

and !(Truck(1,0))

When a car moves to the right, we must check that
enough space to move is available. In addition, no trucks
(with higher priority) or cars must be trying to reach same
position ((-2,0) = 0 or (-2,1) = 0).

τ(N) N
0 (0,0) = 1 and (-1,0) = 0 and (-1,1) = 0 and

!(Truck(0,1)) and ((-2,0) = 0 or (-2,1) = 0)

Finally, a car can arrive from the left. We must check
there is no space to advance, the car cannot stay in its own
lane, and it cannot move to the left. Besides, it checks if
there is a truck moving to the origin cell.

τ(N) N
1 (0,0) = 0 and (1,-1) = 1 and (1,0) != 0 and

!(Truck(1,0)) and (0,-1) = 0 and ((2,-1) != 0 or
(2,0) != 0 or Truck(3,0))

After defining the individual behavior of each cell in
the model, a Cell-DEVS coupled model should be built for
the segment. In this case, the coupled model is defined by:

SL(k, max, #s) = < Xlist, Ylist, I, X, Y, n, {t1,...,tn}, η,
N, C, B, Z >

Ylist = { (i,0) / i ∈ [0, #s] } U { (i,k-1) / i ∈ [0, #s] }
Xlist = { (i,0) / i ∈ [0, #s] } U { (i,k-1) / i ∈ [0, #s] }

I = <Px, Py>, with Px = {<Xη+1(i,0), N> / i ∈ [0, #s]}

U {<Xη+1(i,k-1), N> / i ∈ [0, #s]} and Py = {<Yη+1(i,0),

N> / i ∈ [0, #s]} U {<Yη+1(i,k-1), N> / i ∈ [0, #s]}.
X = Y = N;
n = 2; t1 = #s; t2 = k;

C = { Cij / i ∈ [0, #s-1] ∧ j ∈ [0, k-1] };
B = { (i,j) / ∈ [0, #s-1] ∧ j ∈ [0, 5] } U { (i,j) / i ∈ [0,

#s-1] ∧ j ∈ [k-2, k-1] }; and
Z is built by following the definition for Cell-DEVS

models.
Here, SL(k, max, #s) represents a segment of #s lanes

of length k each with speed level max. Variable k is com-
puted using Cells-Nr(t), a function that takes the length of
the segment and the size of each cell.

The following input/output ports are used:

Name Comment
x-c-vehicle A vehicle leaves a crossing to a segment.
x-c-room There is enough room in the crossing so a

vehicle can advance from the segment.
y-c-room There is enough room in the segment so a

vehicle can leave the crossing.
y-c-vehicle A vehicle in the segment is trying to cross.

The border cells of the coupled model are connected
with the crossings, therefore, their behavior is different
from the rest of the cell space. The column 0 will be de-
voted to receive trucks from the crossing. The trucks in a
crossing are represented using only one cell. Hence, when
they return to a segment their full length must be recon-
structed. This rule represents a car arriving to the origin
cell from the crossing:

τ(N) N
1 (0,0) = 0 and x-c-vehicle = 1

The following rule represents the arrival of a truck
from the crossing:

τ(N) N
x-c-vehicle (0,0) = 0 and IsTruck(x-c-vehicle)

The following rules will represent that the truck size
expands when it leaves the crossing:

τ(N) N
0 Truck(0,0) and (0,1) = 0 and CompleteTruck(0,0)

send(0,y-c-room)
0 Truck(0,0) and (0,1) = 0 and !CompleteTruck(0,0)

and !IsHead_TC1(0,0))
send((0,0),y-c-room)

(0,1) (0,0) = 0 and Truck(0,1) and !CompleteTruck(0,1)
send((0,1),y-c-room)

0 Truck(0,0) and (0,1) = 0 and IsHead_TC1(0,0)
send((0,0),y-c-room)

Here, IsTruck(k) verifies that a value passed as pa-
rameter represents a truck, that is, IsTruck(k) ≡ remain-

der(k,10) ∈ [2,5]. CompleteTruck(i,j) is used to see if the
truck has been generated completely.

The first rule represents that the truck has been gener-
ated completely. Consequently, the crossing should know
that it is ready to receive another vehicle. This is done
sending a 0 value to the crossing. The second rule repre-
sents that part of the truck advanced to the following cell,
but the truck is still being reconstructed. Therefore, the
cell in the crossing is busy. The third rule represents the
generation of a new part of the truck in the origin cell. The
last rule is equivalent to the second, but considering that
the origin cell contains the truck's head. Therefore, its
output must be delayed (in the other rules, 0 delays are
used).

The following rules specify the size reduction of a
truck arriving to a crossing:

τ(N) N
(0,-1) (0,0)=0 and Truck(0,-1) and CompleteTruck(0,-1)

send(0,y-c-vehicle)
0 Truck(0,0) and x-c-room = 0

send((0,0),y-c-vehicle)
0 (0,0)=0 and Truck(0,-1) and !CompleteTruck(0,-1)

send(0,y-c-vehicle)

The first rule represents the arrival of a truck to a
crossing when there is enough room to cross. The value
representing the truck's number is transmitted only if the
cell contains the head of the truck. The second rule repre-
sents a truck arrived to the crossing. The third rule repre-
sents the input of the remaining parts of the truck.

Finally, the following rules are related with the inter-
change of cars. The next one is in charge of sending a car
to the crossing:

τ(N) N
0 (0,0) = 1 and x-c-room = 0

send(1,y-c-vehicle)

4. Crossings with trucks

When trucks are allowed in the crossing, the following
construction is used:

TruckXings = { (c, maxc) / maxc ∈ N ∧ ∃ t ,t’ ∈
(TruckSegments U Segments) ∧ t = (p1, p2, n, a, dir,

max) ∧ t’ = (p1’, p2’, n’, a’, dir’, max’) ∧ t ≠ t’ ∧ (p1 = c ∨
p2 = c) ∧ (p1’ = c ∨ p2’ = c) }

This set is defined as points in a bidimensional space,
representing the places where two or more segments are
crossed. It is built using Segments and TruckSegments
sets. These crossings must recognize the segments allowed
to receive trucks. The standard binary crossings are used
for car crossings. Instead, if one of the s segments belongs
to TruckSegments, the crossing is defined as part of
TruckXings.

Each crossing (c, maxc) ∈ TruckXings is defined as a
one-dimensional Cell-DEVS with transport delays:

C0j = < I, X, S, Y, N, δint, δext, delay, d, τ, λ, D >

I = < η, Px, Py>, with η = 3; Px = { (X1, N), (X2, N),

(X3, N) }; Py = { (Y1, N), (Y2, N), (Y3, N) }.
X = Y = N;
S:
  1 if there is a car in the cell;
s =  0 if the cell is empty;
  k = r mod 10 ∧ r∈[2,5] if there is a truck.

N = { (0,-1), (0,0), (0,1) };
delay = transport; d = speed(maxc);
D, λλ, δδint and δδext are defined by the Cell-DEVS for-

malism with transport delays.

The function τ τ will be defined later.

The coupled model corresponding to the crossing (c,
maxc) is defined by:

TruckXings(k, In, Out, Out_Cars,1, maxc) = < Xlist,
Ylist, I, X, Y, n, {t1,...,tn}, η, N, C, B, Z >

Ylist = { (0,i) / i ∈ [0, k]};
Xlist = { (0,i) / i ∈ [0, k] };
I = <Px, Py>, with Px = {<Xη+1(0,i), binary> / i ∈ [0,

k]}, Py = {<Yη+1(0,i), binary> / i ∈ [0, k]}.
X = N;
Y = N;
n = 1;
t1 = k;
C = { C0j / j ∈ [0, k-1] };
B = {∅};
Z is built using the specification of Cell-DEVS; and

This is a crossing of k cells, with a maximum speed of
maxc. The positions of In are the inputs to the crossing,
and Out/Out_cars are the outputs. Here, Out_cars repre-
sents the set of segment that cannot receive trucks. These
sets are obtained by computing

{I, O} = Ports_In_Out((c, maxc), Segments U Truck-
Segments)

The function Ports_In_Out takes the specification of
the segments connected to the crossing and their direction.
The result of the {I, O} sets define which cells are con-
nected with each input/output segment.

The following ports are used:

Name Comment
x-s-vehicle A vehicle is trying to get into the crossing.
x-s-room There is a place to leave the crossing.
y-s-room The crossing has space for a vehicle.

y-s-vehicle A vehicle is leaving the crossing.

Using these definitions, ττ will be specified. A different
behavior should be provided for input and output cells.
Each of them will be explained with detail in the following
sections.

4.1. Definition of the output cells

The output cells of the crossing will behave according
to the segment to which they are coupled. The output cells
allowing cars or trucks are defined following:

τ(N) N
1 (0,0) = 0 and (0,-1) = 1 and [x-s-room = 1 or

IsTruck(x-s-room) or (x-s-room = 0 and
random < pout)]

send(0,y-s-vehicle)
/* Arrival of a car that will stay in the crossing */

(0,-1) (0,0) = 0 and Truck(0,-1) and [x-s-room = 1 or
IsTruck(x-s-room) or (x-s-room = 0 and

random < pout)]
send(0,y-s-vehicle)

/* Arrival of a truck staying in the crossing */
0 (0,0) = 0 and (0,-1) = 1 and x-s-room = 0 and

random ≥ pout

send(1,y-s-vehicle)
/* Arrival of a car that will leave the crossing */

0 (0,0) = 0 and Truck(0,-1) and x-s-room = 0 and
random ≥ pout

send((0,-1), y-s-vehicle)
/* Arrival of a truck that will leave crossing */

0 (0,0) = 1 and (0,1) = 0
send(0,y-s-vehicle)

0 Truck(0,0) and (0,1) = 0
send(0,y-s-vehicle)

(0,0) TRUE
send(0,y-s-vehicle)

/* Otherwise, the present state is kept */

Here, pout is a constant that represents the probability of
vehicle leaving the crossing. A vehicle can leave the
crossing if there is enough space in the segment and a
random value is higher than pout.

A truck passing through cells connected to segments
not allowing trucks will keep advancing. The behavior for
these cells is defined by:
τ(N) N

1 (0,0) = 0 and (0,-1) = 1 and (x-s-room = 1 or (x-s-
room = 0 and random < pout))

send(0,y-s-vehicle)
/* Arrival of a car that will stay in the crossing */

(0,-1) (0,0) = 0 and Truck(0,-1)
send(0,y-s-vehicle)

/* Arrival of a truck that will stay in the crossing */
0 (0,0) = 0 and (0,-1) = 1 and x-s-room = 0 and

random ≥ pout

send(1,y-s-vehicle)
/* Arrival of a car that will leave the crossing */

0 (0,0) = 1 and (0,1) = 0
send(0,y-s-vehicle)

0 Truck(0,0) and (0,1) = 0
send(0,y-s-vehicle)

(0,0) TRUE
send(0,y-s-vehicle)

/* Otherwise, the present state is kept */

These rules represent that, when there is space in the
segment and a random value is greater than pout, the cars
can leave the crossing. When a truck arrives to these cells,
it just advances to the next cell if it is empty. A truck can-
not it leave the crossing through these cells.

4.2. Definition of the input cells

The local computing function of the input cells is de-
fined by:

τ(N) N
1 (0,0) = 0 and (0,-1) = 1

send(1, y-s-room)
1 (0,0)=0 and x-s-vehicle = 1 and (0,-1)=0

send(1, y-s-room)
(0,-1) (0,0) = 0 and Truck(0,-1) ; send(1, y-s-room)
x-s-
vehi-
cle

 (0,0) = 0 and IsTruck(x-s-vehicle) and (0,-1)=0
send(1, y-s-room)

0 (0,0) = 1 and (0,1) = 0 and (0,-1) = 0
send(0, y-s-room)

/* No vehicle with priority is in the crossing */
0 Truck(0,0) and (0,1) = 0 and (0,-1) = 0

send(0, y-s-room)
/* No vehicle with priority is in the crossing */

0 (0,0) = 1 and (0,1) = 0 and ((0,-1) = 1 or

Truck(0,-1))
send(1, y-s-room)

/* No vehicle with priority is in the crossing */
0 Truck(0,0) and (0,1) = 0 and ((0,-1) = 1 or

Truck(0,-1))
send(1, y-s-room)

/* No vehicle with priority is in the crossing */
(0,0) TRUE /* Otherwise, keep the previous state */

The ports should be updated explicitly, because the
new state for each of the cells is not transmitted. In the
third and fourth rules, the new state represents the exis-
tence of a truck. Then, if the coupled segment is binary, it
will not accept trucks. Therefore, a value of 1, represent-
ing that the cell is busy is sent to the segment. The seg-
ment will wait the cell to be empty, which will be done by
sending a 0 value through the output port. In this way, if
there is a vehicle with priority in the crossing, the cell
sends a 1. In this way, a new arriving vehicle knows that it
must stop before the crossing.

4.3. Coupling between Segments and Crossings

A crossing c = (p, maxc) influences the segments s to
which it is connected, that is,

Ic = { Ms / s ∈ (Segments U TruckSegments) ∧ s = (p1,
 p2, n, a, dir, max) ∧ (p1 = p or p2 = p) }

Therefore, a segment s influences to the two crossings
in its border:

Is = {Mc1} U {Mc2}, if s = (p1, p2, n, a, dir, max) and
 (∃ v1, v2 ∈ N : c1, c2 ∈ (Crossings U TruckXings) ∧

c1 = (p1, v1) ∧ c2 = (p2, v2))

These ports are coupled by defining the Z function. To
define the cells in the crossing and the segment that will be
connected to the {I, O} sets computed previously.

As the coupling is done in the first (0) and last (k-1)
cells, for each (s,i) ∈ I, s = (p1, p2, n, a, dir, max) we must
know the number of cells in the segment. These values are
obtained computing the length of the segment (using p1
and p2) and dividing the result by the size of each cell. In
this case, Z is defined by:

Zsc : Yη+1(j, k-1)s → Xη+1(0,i+j)c, ∀ (j ∈ N, j ∈ [0, n-1])

Zct : Yη+1(0,i+j)c → Xη+1(j, k-1)s, ∀ (j ∈ N, j ∈ [0, n-1])
Instead, for each (s,i) ∈ O with s = (p1, p2, n, a, dir,

max), Z is defined by:

Zcs : Yη+1(0,j+i)c → Xη+1(n-1-j, 0)s, ∀ (j ∈ N, j ∈ [0, n-1])

Zsc : Yη+1(n-1-j, 0)s → Xη+1(0,j+i)c, ∀ (j ∈ N, j ∈ [0, n-1])

5. Conclusion

This article was devoted to show part of a specification
language used to define sections of cities as cell spaces.
The work was focused into the definition of truck move-
ments in the cell spaces. Each construction of the specifi-
cation language was translated into Cell-DEVS models.

This approach provides an application oriented specifi-
cation language, which will allow the definition of com-
plex traffic behavior using simple rules. The models are
formally specified, avoiding a high number of errors in the
developed application. The problem solving time is highly
reduced, allowing the analysis complex behavior in the
traffic, and providing new solutions.

The use of Cell-DEVS not only provided a formal ap-
proach but also a discrete events basis, allowing to im-
prove the execution performance. Whenever a cell is not
active (due to lack of vehicles or bottlenecks), it will not
affect the rest of the simulation. Different behavior with
changing complexity can be achieved by using different
kinds of constructions. In this way, non homogeneous
cellular models can be easily constructed, adding com-
plexity only where is needed.

At present, the specification language is being imple-
mented. In addition, a graphical user interface is being
defined, allowing easy definition of the models. Finally,
efficient execution of the models is being considered by
means of parallel execution of the Cell-DEVS models.

References

[1] Wolfram, S. Theory and applications of cellular automata.
Vol. 1, Advanced Series on Complex Systems. World Scientific,
Singapore, 1986.

[2] Davidson, A.; Díaz, A.; Vázquez, V. and Wainer, G. "A
comparative study of cellular automata application for simula-
tion of urban traffic models". Technical Report 99-005, Depar-
tamento de Computación, FCEN/UBA. Submitted to publication.
1999.

[3] Wainer, G. and Giambiasi, N. “Specification, modeling and
simulation of timed Cell-DEVS models”. Technical Report 97-
007, Departamento de Computación, FCEN/UBA. Submitted to
publication. 1998.

[4] Zeigler, B. Multifaceted Modelling and discrete event simu-
lation. Academic Press, 1984.

[5] Davidson, A. and Wainer, G. “Definition of a specification
language for urban traffic simulation using the Cell-DEVS for-
malism” (in Spanish). Technical Report 99-003, Departamento
de Computación, FCEN/UBA. 1999.

[6] Chopard, B.; Dupuis, A.; Luthi, P. “A Cellular Automata
Model for Urban Traffic and its applications to the city of
Genoa”. Proceedings of Traffic and Granular Flow. 1997.

