
A Flow Injection Model Using Cell-DEVS

Alejandro Troccoli
Javier Ameghino

Departamento de Computación,
Pabellón I. Ciudad Universitaria
(1428). Buenos Aires. Argentina.

Fernando Iñón

INQUIMAE, Universidad de
Buenos Aires. Pabellón II.

Ciudad Universitaria (1428).
Buenos Aires. Argentina.

Gabriel Wainer

Department of Systems and
Computing Engineering, Carle-
ton University. 1125 Colonel By

Drive, K1S 5BE. Ottawa, Canada
e-mail: gwainer@sce.carleton.ca

Abstract

Cell-DEVS is an extension to the DEVS formalism that
allows the definition of cellular models. Complex physical
systems can be defined using simple rules, reducing the
development. We present the definition of a model of flow
injection using Cell-DEVS. The simulation validation
results showed a margin of error within the expected val-
ues for the experiment, showing how to employ the for-
malism in analyzing physical systems.

1. Introduction

Simulation is a powerful tool to understand complex
physical systems. Simulation models of complex physical
systems have been developed for years, generally using
difference equations (see, for instance, [1, 2]). In recent
years, many simulation models of real systems have been
represented as cell spaces [3, 4]. Cellular Automata [5] is a
well-known formalism to describe these systems. Cellular
automata are defined as an infinite n-dimensional lattices
of cells whose values are updated according to a local rule.
This is done simultaneous and synchronously using the
current state of the cell and the state of a finite set of
nearby cells (known as the neighborhood).

Cellular automata usually require large amounts of
compute time, mainly due to its synchronous nature. The
use of a discrete time base is also a constrain to the preci-
sion of the model. Timed Cell-DEVS solves these prob-
lems by using the DEVS (Discrete EVents Systems speci-
fications) formalism [6] to define a cell space where each
cell is defined as a DEVS model [7]. The goal is to build
discrete-event cell spaces, improving their definition by
making the timing specification more expressive. DEVS
formalism was proposed to model discrete events systems.
A DEVS model is built using a set of behavioral models

called Atomic, which can be combined to form Coupled
ones. A DEVS atomic model is defined as:

M = < X, S, Y, δint, δext, λ, ta >`.

Input external events in X are received in input ports.
When an event arrives, the model executes the external
transition function δδext to produce a state change. Each
state has an associated lifetime ta. When this time is con-
sumed the internal transition function δδint is activated to
produce internal state changes. The internal state S can be
used to provide model outputs Y, which are sent through
the output ports. They are sent by the output function λλ,
which executes before the internal transition.

A DEVS coupled model is defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >.

Each coupled model consists of a set of D basic mod-
els Mi connected through input/output ports. The list of
influencees Ii of a given model is used to determine the
models to which outputs must be sent. These sets are used
to build the translation function Zij, in charge of translat-
ing outputs of a model into inputs for the others. An index
of influencees is created for each model (Ii). For every j in
the index, outputs of model Mi are connected to inputs in
model Mj.

In Cell-DEVS, each cell of a cellular model is defined
as an atomic DEVS using transport or inertial delays.

Each cell is seen as having a set of N inputs to compute
its future state. Each input (generally received from the
neighboring cells) is received through the model's inter-
face, and is used to activate the local function. A delay can
be associated with each cell, allowing deferring the trans-
mission of the execution results. A transport delay allows

us to model a variable commuting time for each cell with
anticipatory semantics (every scheduled event is exe-
cuted). Using inertial delays, the semantics is preemptive:
some scheduled events are not executed due to a small
interval between two input events. Therefore, the outputs
of a cell are not transmitted instantaneously, but after the
consumption of the delay. The model advances through
the activation of the internal, external, output and state's
duration functions, as in other DEVS models.

Cell-DEVS atomic models are specified as:

TDC = < X, Y, S, N, delay, d, δint, δext, τ, λ, D >.

Each cell will use the N inputs to compute the future
state S using the function ττ. The new value of the cell is
transmitted to the neighbors after the consumption of the
delay function. Delay defines the kind of delay for the cell,
and d its duration. This behavior is defined by the δδint, δδext,
λλ and D functions.

Once each cell is defined, they can be put together to
form a coupled model composed of an array of atomic
cells. Each of them is connected to its neighborhood. As
the cell space is finite, the borders should be provided with
a different behavior than the rest of the space. Otherwise,
the space can be defined as wrapped, meaning that cells in
a border are connected with those in the opposite one.

Figure 1. Informal Definition of Cell-DEVS [8].

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >.

A cell space C defined by this specification is a cou-
pled model composed by an array of atomic cells with size
{t1 x...x tn}. Each cell in the space is connected to the cells
defined by the neighborhood N. The cell space can be
“wrapped”, meaning that cells in a border are connected
with those in the opposite one. Otherwise, the borders B
should have a different behavior than the remaining cells.

The Z function allows one to define the internal and exter-
nal coupling of cells in the model. This function translates
the outputs of output port m in cell Cij into values for the
m input port of cell Ckl. The input/output coupling lists
can be used to interchange data with other models.

The CD++ tool [9] was developed following the formal
definitions of the Cell-DEVS formalism. CD++ is a tool to
simulate both DEVS and Cell-DEVS models. Cell-DEVS
models are described using a built-in specification lan-
guage. The language provides a set of primitives to define
the size of the cell-space, the type of borders, a cell’s inter-
face with other DEVS models and a cell’s behavior. The
behavior of a cell (the τ function of the formal specifica-
tion) is defined using a set of rules of the form:

 VALUE DELAY CONDITION

When an external event is received, the rule evaluation
process is triggered to calculate the new cell value. Starting
with the first listed rule, the CONDITION is evaluated. If it
is satisfied, the new cell state is obtained by evaluating the
VALUE expression. The cell will change to this new state
after a DELAY time, and when it changes, it sends output
messages to all its neighbors. If the condition is not valid,
the next rule is evaluated repeating this process until a rule
is satisfied. If no rule CONDITION statement is satisfied,
the simulation is aborted.

The specification language has a wide range of func-
tions and operators. The most common operators are in-
cluded: boolean (AND, OR, NOT, XOR, IMP and EQV),
comparison (=, !=, <, >, <= and >=), and arithmetic (+, -, *
and /). In addition, different types of functions are avail-
able: trigonometric, roots, power, rounding and truncation,
module, logarithm, absolute value, minimum, maximum,
G.C.D. and L.C.M. Other existing functions allow to check
if a number is integer, even, odd or prime. Also, some
common constants are defined. Cellular models can be
integrated to a standard DEVS hierarchy. Therefore, in-
put/output ports can be defined for the cell space.

In [7, 8], we showed the usefulness of the formalism by
introducing different models of complex physical systems
using Cell-DEVS. In this case we have focused in the
solution of a flow injection analysis problem. The idea was
to depart from the standard discrete Cellular Automata
models, and use an approach based on Cell-DEVS. The
idea is to describe the model behavior in terms of cell
behavior, discrete event interaction and timing delays
related to the model. The following section introduces the
problem to be solved. Then, we show the definition of this
model using Cell-DEVS and the related tools. Finally, we
present simulation results of these experiences.

2. Flow Injection Analysis (FIA)

Flow-injection methods are analytical methods used
for automated sample analysis of liquid samples. In a flow
injection analyzer, a small, fixed volume of a liquid sam-
ple is injected as a discrete zone using an injection device
into a liquid carrier, which flows through a narrow tube.
As a result of convection at the beginning, and later of
axial and radial diffusion, this sample is progressively
dispersed into the carrier as it is transported along the tube.
The addition of reagents at different confluence points
(which mix with the sample as a result of radial disper-
sion) produces reactive or detectable species, which can be
sensed by flow-through detection devices. The following
figure presents a simple flow-injection apparatus.

Figure 2. A FIA manifold. P: pump; A,B: carrier
and reagent lines; L: sample injection; I: injection

valve; R: reactor coil; D: flow through detector;
W: waste line.

This device (called a FIA manifold) consists of a peri-
staltic pump (P) that adds carrier solution (A) into a valve
(I) that connects to a tube-shaped reactor (R). At the end
of the tube a detector (D) is placed to sense a specific
property of the flowing solution. The valve can be turned
to allow the flow of the sample (B, C) into the reactor. The
sample is held in the loop (L) and when the valve is ro-
tated, its content flows into the reactor, where chemical
activity will usually take place between the sample and the
carrier solution. As a result, a change will be observed in
the signal produced by a detector (D), making it possible
to quantify the sample after comparing the results with
those obtained by known samples.

In a flow injection system, convective transport yields
a parabolic velocity profile with molecules at the tube
walls having speed zero and those at the center having
twice the average velocity. At the same time, the presence
of concentration gradients develops axial and radial diffu-
sion of sample molecules. It has been reported that in
FLOW INJECTION systems of practical interest, axial
molecular diffusion has almost no influence in the overall
dispersion, but radial diffusion is the main contributor. For

a pump proving a net flow of q ml/min in a coil of radius
a, the average flow velocity is given by:

)(60 2a

q
Va ⋅⋅

=
π

 (Equation 1)

At a point at distance r from the center, the flow ve-
locity is described by:









−⋅⋅=

2

2

12)(
a

r
Vrv a (Equation 2)

As mentioned in [12], it is very difficult, if not impos-
sible, to correlate the experimentally obtained response
curve with the actual spatial mass distribution of the sys-
tem. This is a consequence of the selected method of
measurement, which fixes spatially and temporally the
point of detection. Under these circumstances, any event
occurred before the detection point is inferred from the
response curve profile. Therefore, this detection approach
is a powerful tool for predicting response curves, but ig-
nores the processes leading to the generation of such re-
sponse.

In [12] a method for continuously monitoring a flow
injection system was proposed. A flow injection system
using nitric acid as the carrier solution, water as the in-
jected sample and a digital conductimeter with a couple of
wires at both ends of the carrier stream detector was used
to follow the radial mass distribution of the sample zone
(Figure 3).

Figure 3. FIA manifold for continuously moni-
toring. P = pump; l = loop; L = reactor; W = waste;
A, B = detection points. Punctual detection: suit-
able detector in point B; integrated detection: Pt

wires located at points A-B.

While the system is in the position shown in Figure 3,
only the carrier solution flows into the reactor L. The
water sample is injected by sliding the valve V upward,
acting as a blocking disc. At this point, no electric con-
ductance is measured between points A and B. As convec-
tive transport and diffusion gradient forces the water sam-

ple to be released from the walls inside the reactor L, a
reduction of the blocking area is produced. This allows
electric current to flow, enabling measuring conductivity
values different from zero. Figure 4 shows the characteris-
tic conductivity curve obtained by such a system.

Figure 4. Characteristic conductivity curve [12].

The original work used Random Walk simulation to
approximate the differential equations of this system [12].
Using this technique, the initial coordinates of the mole-
cules in the loop are assigned at random. The coordinates
of each molecule are computed using Brownian movement
and longitudinal transport. The loop is divided in cells in
order to compute the concentration, which is used to com-
pute the conductivity. The next position of each particle is
computed using a differential equation and a random vari-
able.

Cell-DEVS is perfectly tailored for this kind of appli-
cation, and can improve the development cycle of this kind
of problems. It also enables making more complex ex-
periments using simple rules. The n-dimensional features
of Cell-DEVS, and the ability of including different delays
for each of the cells can improve the definition of the FIA
system. In the following section we will show how the
FIA model can be implemented using Cell-DEVS.

3. Cell-DEVS model for a FIA system

As mentioned, it is impossible to analyze the detailed
behavior of the changes in the mass distribution profile.
Therefore, we decided to build a Cell-DEVS model de-
scribing the integrated conductivity flow-injection system
(ICM) in detail. In this way, the internal complex behavior
can be analyzed by studying the simulated results. The
ICM system consists of a 0.025 cm radius tube, a 10.75

cm loop and a 9,25 reactor coil. We assumed the total tube
length of the tube to be of 20cm. For this system, a cell
space of 25 rows and 200 columns was defined, each cell
representing a 0.001 x 0.1cm of a half tube section. Row 0
represents the center of the tube and row 24 the section of
the tube touching its walls and the value of each cell will
represent the nitric acid concentration.

Tube wall
Row 24

...
Center Row 0
...

Tube wall

Figure 5. Correspondence between the cell-
space and the actual tube

Figure 5 shows in light gray a tube section representing
a cell. This is a longitudinal cut of the tube. The final aim
is to build a 3 dimensional space representing a cylindrical
section of the tube, but in this case each cell represent a
flat section.

To deal with convective transport and radial diffusion
at the same time, the model reacts in two phases: transport
and diffusion. The local computing function simulates the
transport phase, and all cells are connected to an external
generator sending an event, which triggers the diffusion
phase. The model is built as a coupled DEVS model with
two components: a Cell-DEVS (named fia) representing
the tube, and an atomic model (named generator). The
generator has one output port (out) to send the diffusion
triggering event. This port is mapped to the diffuse input
port of the fia model (line 2). This means all output events
sent through the out port will be received as external
events by the fia model through the diffuse port.

00 [Top]
01 components : fia generator@ConstGenerator
02 link : out@generator diffuse@fia
03
04 [generator]
05 frequency : 00:00:00:014

Figure 6. Components of the DEVS model

The frequency of diffuse events is defined by Equation
3. This equation computes the characteristic distance a
particle of a given solution of diffusion coefficient c will
travel in dt seconds.

dtcds ⋅⋅= 2 (Equation 3)

Solving the equation for c = 3,5 x 10 –5 cm/s and ds =
0.001 cm, we obtain a dt of 14ms. We used for the ds
value the cell height to find out how long it would take for
two cells to diffuse homogeneously. We did not take into
account the cell width because axial diffusion can be ig-
nored.

05 [fia]
06 in : diffuse
07 width : 200
08 height : 25
09 delay : inertial
10 border : nowrapped
11 neighbors : fia(-1,-1) fia(-1,0) fia(-1,1)
12 neighbors : fia(0,-1) fia(0,0) fia(0,1)
13 neighbors : fia(1,-1) fia(1,0) fia(1,1)
14 localtransition : transport

Figure 7. Definition of the FIA coupled cell model

Figure 7 shows the definition of the parameters for the
coupled Cell-DEVS fia. Line 6 defines the diffuse input
port, and lines 7 and 8 define the cell space dimensions.
Line 9 sets the cell delay type to inertial. An inertial delay
cell that has a scheduled future value f will preempt this
value if upon receiving an external event and evaluating
the local transition rules a new future value f1,with f ≠ f1,
is obtained. In this case, f1 will be scheduled as the future
value with a given delay d. Line 10 defines non-wrapped
borders and lines 11 to 13 define a cell’s neighborhood
shape. Finally, line 14 defines the sets the local transition
function rules. The behavior of each cell is defined by this
function, defined in Figure 8.

18 [transport]
19 rule : { (0,-1) } { 0.1 / (22.57878 * (1 -
power(cellPos(0) * 0.001 + 0.0005 , 2)
 / 0.000625)) * 1000 } { cellPos(1) != 0 }
20 rule : { 0.8 } { 0.1 / (22.57878 * (1 -
power(cellPos(0) * 0.001 + 0.0005 , 2) /
 0.000625)) * 1000 } { cellPos(1) = 0 }

Figure 8. Definition of the border cells.

The convective transport has been arbitrarily been de-
fined in the direction of increasing column values, so that
in visual representations the carrier will be seen flowing
from left to right. Being this the case, a local transition
rule for the transport phase should set a cell’s value to the
current value of its (0,-1) neighbor cell. The rate at which
this is done depends on the velocity of the flow at the cell,
which, as mentioned before, has its maximum at the center
of the tube and decreases towards its walls. This is stated
in the first transport rule in line 19. As mentioned in sec-
tion 2, a local transition rule has three components, a
value, a delay and a condition. For this rule, this compo-
nents are:

Value: {(0,-1)} //The cell’s left neighbor

Delay: { 0.1 / (22.57878 * (1 - power(cell-
Pos(0) * 0.001 + 0.0005, 2) / 0.000625)) * 1000 }

Condition: { cellPos(1) != 0 }

The delay is calculated using equations 1 and 2. For a
pump with a constant flow of 1,33ml/min, the average
speed is 11,29 cm/s. This value can be substituted in
equation 2 and multiplied by 2 to yield the number
22.57878 shown in the delay expression. In addition, for
equation 2 to be solved, we also need to know the distance
to the center of the tube. CD++ provides a built in function
called cellPos that returns a requested coordinate of the
cell whose value is being sought. For a 2 dimensional
model, cellPos(0) returns the cell’s row. Consequently,

cellPos(0) * 0.001 + 0.0005

is the distance of the center of the cell to the center of
the tube and therefore,

(22.57878 * (1 - power(cellPos(0) * 0.001 +
0.0005 , 2) / 0.000625))

is the solution to equation 2, for a = 0.025 cm. Having
the velocity of flow v(r), the delay will be the time in
milliseconds for a particle moving at speed v(r) cm/s to
travel across a 0.1 cm cell. This time is given by the ex-
pression

0.1 / v(r) * 1000

concluding our explanation for the delay component of
the rule.

The generic rule we have just given is only valid for all
cells that have a valid (0,-1) neighbor. The left border cells
(those in column 0) do not satisfy this prerequisite, stated
in the condition component cellPos(1) != 0, and should
therefore have a different rule.

The rule in line 20 is the rule for the left border cells. It
simply states that for these cells the new value should be
0.8, which corresponds to the concentration of the carrier
solution being pumped into the tube.

Table 1 shows the results of applying equation 2 to
calculate the delays for each row. It is important to notice
that some adjacent rows have different delay values, as is
the case of rows 2 and 3. This might lead to the presump-
tion that the convective transport behavior will not be
preserved due to an early preemption a cell’s scheduled
future value. This is not the case, as we will show.

Table 1 – Calculated delays for each row

Row Delay (ms) Row Delay (ms)
0 4 13 6
1 4 14 7
2 4 15 7
3 5 16 8
4 5 17 9
5 5 18 10
6 5 19 11
7 5 20 14
8 5 21 17
9 5 22 23

10 5 23 38
11 6 24 112
12 6

When the simulation starts at time 0, all cells will
evaluate their local transition functions and schedule their
next change. A cell in row 2 will schedule an internal
transition at time t = 4ms and a cell in row three at t =
5ms. So at time t = 4ms, all cells in row 2 will send an
output event to their neighbors. Cells in row 3 will receive
this event and evaluate the local transition function, which
says they should take the value of their left neighbor. But
their left neighbor has not changed yet, so the new value
will be the same as the previous future value. Therefore,
they will keep their scheduled internal transition for t = 5
ms. At this time, all cells in row 2 with a scheduled inter-
nal transition will send their new value to their neighbors.
A cell in row 2 receiving an input from its left neighbor
will again evaluate its local transition function. In this
case, the delay has already expired and there is no future
value scheduled, so the result of this evaluation will be
scheduled as the future value for time t = 10 ms.

Figure 9 shows the radial diffusion rules. For a cell
with valid top and bottom neighbors, the diffusion rule
states that the new cell value will be the average of the
three cells. This is the case of the rule in line 22. A delay
of 1 ms was chosen. The remaining three rules in lines 23
and 24 cover the special case of top and border cells.
These cells do not have both, a valid top and bottom
neighbor so instead of using three cells to obtain the aver-
age, only two are used.

21 [diffusion]
22 rule : { ((-1,0) + (0,0) + (1,0)) / 3 } 1 {
cellPos(0) != 0 AND cellPos(0) != 24 }
23 rule : { ((-1,0) + (0,0)) / 2 } 1 { cellPos(0)
!= 0 AND cellPos(0) = 24 }
24 rule : { ((0,0) + (1,0)) / 2 } 1 { cellPos(0)
= 0 AND cellPos(0) != 24 }

Figure 9. Radial diffusion rules.

So far we have shown the diffusion rule, but we have
not yet defined that this ruled should be evaluated when an
external event is received through the diffuse input port.
Figure 10 shows the statements that link the fia model
diffuse input port to a cell’s diffuse input port (line 27) and
set the diffusion rule to be evaluated upon the arrival of an
external event through this port (line 28).

[fia]
27 link : diffuse diffuse@fia(x,y)
28 PortInTransition : diffuse@fia(x,y) diffusion

Figure 10. External coupling of the FIA Cell-DEVS
model.

4. Simulation Results

The described model was run for 10s and the state of
the whole cell space was logged every 100ms. Figure 11
shows a graphical representation of five different stages
the FIA model. Only half of the tube is modeled because
we assumed the other half will be symmetrical. In the
figure, the upper cells represent the center of the tube, and
the lower cells represent the part of the solution touching
the walls of the tube. The experiment starts at time 0,
where the sample (white), is injected. At this moment, half
of the tube contains the carrier solution (dark gray). In the
following figures, the convective transport makes the
sample disperse faster at the middle of the tube than near
the walls. The experiment finishes when the whole tube
contains the carrier solution only.

Figure 11. Different execution stages of the FIA
model.

The logged results were also used to draw the conduc-
tivity curve. To obtain the conductivity of the whole sys-
tem, we divided the cell space in axial segments, calcu-
lated the resistance of each, and assumed the whole resis-

tance to be the result of combining all segments in serial
mode. We took each segment to be a column of cells and
calculated its resistance using equation 4.

1
199

0

24

0),(

1
−

= =
∑ ∑ 










=

column row colrowcell
total R

R (Equation 4)

To calculate the resistance, equation 5, which gives the
conductivity of each cell, was used. The resistance of a
cell can be obtained by calculating the inverse of the con-
ductivity. All values are known, being the concentration of
nitric acid the one that varies from cell to cell.

()][
1

3323
HNO

Length

Area
GG

R
G HNO

cell

cell
OHHNO

cell
cell ⋅=+== κ

(Equation 5)

Figure 12 shows the conductivity curve obtained. For
this example the curve is quite similar to the first part of
the measured curve.

Restored conductivity

-0,2

0

0,2

0,4

0,6

0,8

1

1,2

0 2 4 6 8 10 12

Time

Figure 12. Conductivity curve obtained

The results of this experiments are a good starting
point to simulate the whole FIA manifold. The execution
results of the diffusion activities were smoother than the
results obtained using Random Walks. Cell-DEVS also
enables easy definition of diffusion speed in different areas
of the loop using different delay functions. The extension
of this model to a three dimensional version is straightfor-
ward, and would required extensive work with traditional
approaches. Using Cell-DEVS the physical phenomenon
can be described in a more intuitive way, improving the
development times. The discrete-event nature of the for-
malism can also improve execution times of the simula-
tions.

5. Conclusion

Cell–DEVS allows describing physical systems using
an n-dimensional cell-based formalism. Input/output port
definitions allow defining multiple interconnection be-
tween Cell-DEVS or DEVS models. Complex timing
behavior for the cells in the space can be defined using
very simple constructions. The CD++ tool, based on the
formalism entitles the definition of complex cell-shaped
models.

We introduced a Cell-DEVS model to simulate the
mass distribution profile of a flow injection system. Ex-
perimental results using integrated conductimetric detec-
tion have provided valuable information to understand the
system’s behavior. But to provide a greater insight of this
behavior, a small Cell-DEVS model was developed and its
conductivity curve was calculated. The initial curve is
similar to the experimental one, it proving the feasibility
of the approach.

To completely validate the model, a complete FIA
manifold should be simulated. For a system with a loop of
30 cm and a reactor of 100 cm a 1300 by 25 cell space (a
total of 32500 cells) would be needed. This number is
quite big to be handled by a standalone PC workstation.
We are now in the process of running the model using our
parallel version of CD++.

6. References

[1] L. Lapidus and G. F. Pinder, Numerical Solution of Partial
Differential Equations in Science and Engineering, Wiley, New
York, 1982.

[2] G. Weisbuch, Complex Systems Dynamics, Addison-Wesley,
1991.

[3] M. Sipper. "The emergence of cellular computing". IEEE
Computer. July 1999. Pp. 18-26.

[4] D. Talia. "Cellular processing tools for high-performance
simulation". IEEE Computer. September 2000. Pp. 44 –52.

[5] S. Wolfram. “Theory and applications of cellular automata”.
Vol. 1, Advances Series on Complex Systems. World Scientific,
Singapore, 1986.

[6] B. Zeigler, H. Praehofer, T. Kim. Theory of Modeling and
Simulation: Integrating Discrete Event and Continuous Complex
Dynamic Systems. 2000. Academic Press.

[7] G. Wainer; N. Giambiasi,. "Timed Cell-DEVS: modelling
and simulation of cell spaces". In Discrete Event Modeling &
Simulation: Enabling Future Technologies. 2000. Springer-
Verlag

[8] WAINER, G. “Improved cellular models with parallel Cell-
DEVS”. In Transactions of the SCS. June 2000.

[9] D. Rodríguez, G. Wainer. "New Extensions to the CD++
tool". In Proceedings of SCS Summer Multiconference on Com-
puter Simulation. 1-7. 1999.

[10] J. Ameghino, G. Wainer. “Application of the Cell-DEVS
formalism using N-CD++.” In Proceedings of the 2000 Summer
Computer Simulation Conference. July 2000.

[11] J. Ameghino, A. Troccoli, G. Wainer. "Modelling and
simulation of complex physical systems using Cell-DEVS". In
Proceedings of the 33rd SCS Summer Multiconference on Com-
puter Simulation. Seattle, WA. USA. 2001.

[12] F.J. Andrade, F.A. Iñón, M. B. Tudino, O. E. Troccoli “In-
tegrated conductimetric detection: mass distribution in a dynamic
sample zone inside a flow injection manifold”, Analytica
Chimica Acta 19211, 1998.

ALEJANDRO TROCCOLI has received his M. Sc. in
Computer Sciences (2001) from the Universidad de Bue-
nos Aires, Argentina. He is currently a first year Ph.D.
student at Columbia University, New York, NY, U.S.A.

JAVIER AMEGHINO has received his M. Sc. in Com-
puter Sciences (2000) from the Universidad de Buenos
Aires, Argentina. At present he works at COMPAQ Latin
America Corporation (Buenos Aires), and he is an Adjunct
Lecturer at the Computer Science Dept. of the Universidad
de Buenos Aires. He is the coordinator of the PARDEVS
lab in the same Dept..

FERNANDO IÑON Fernando Iñón has received a Licenti-
ate in Chemistry from the Universidad de Buenos Aires,
Argentina (1995), a M.Sc. in Environmental Analysis at
Imperial College, U.K. (1998), and a Ph.D. in Chemistry
from the Universidad de Buenos Aires, Argentina (2001).
He is currently a teaching assistant at the Universidad de
Buenos Aires, and part of the research staff in the Trace
Analysis lab, where he is conducting further research on
Flow Injection Systems.

GABRIEL WAINER received the M.Sc. (1993) and the
Ph.D. degrees (1998, with highest honours) at the Univer-
sidad de Buenos Aires, Argentina, and DIAM/IUSPIM,
Université d'Aix-Marseille III, France. He is Assistant
Professor at the Systems and Computer Engineering, Car-
leton University (Ottawa, Canada). He was Assistant Pro-
fessor at the Computer Sciences Dept. of the Universidad
de Buenos Aires, Argentina, and a visiting research scho-
lar at the Arizona Center of Integrated Modelling and

Simulation (ACIMS, University of Arizona). He has
published more than 50 articles in the field of operating
systems, real-time systems and Discrete-Event simulation.
He is author of a book on real-time systems and another on
Discrete-Event simulation. He has been the PI of several
research projects, and participated in different internatio-
nal research programs. Prof. Wainer is a member of the
Board of Directors of The Society for Computer Simula-
tion International (SCS). He is the coordinator of a group
on DEVS standardization. He is Associate Editor of the
Transactions of the SCS. He is also a Co-associate Direc-
tor of the Ottawa Center of The McLeod Institute of Si-
mulation Sciences.

