
PERFORMANCE ANALYSIS OF DEVS ENVIRONMENTS

Ezequiel Glinsky

Departamento de Computación
FCEN – Universidad de Buenos Aires

Planta Baja. Pabellón I.
Ciudad Universitaria (1428)

Buenos Aires. Argentina.

Gabriel Wainer

Dept. of Systems and Computer Engineering
Carleton University

4456 Mackenzie Building
1125 Colonel By Drive

Ottawa, ON. K1S 5B6. Canada.

ABSTRACT

The CD++ toolkit was developed in order to implement
the theoretical concepts specified by the DEVS
formalism. CD++ has been enhanced lately to support
both parallel and real-time simulation. The abstract
simulation algorithms associated with the hierarchical
modelling techniques have a cost in terms of processing
time overhead. Besides this, using the tool for real-time
modelling involve task models that usually do not take
overhead into account. Our goal is to characterize the
overhead of stand-alone, parallel and real-time simulators
available in the toolkit. To do so, we used a synthetic
benchmarking tool that can be applied to DEVS
environments. Different types of models are tested
automatically, making the performance analysis easy. The
results here presented show that we are able to develop
DEVS models paying a small cost in terms of processing
overhead.

1 INTRODUCTION

The DEVS (Discrete EVents Systems specifications)
formalism [ZPK00] provides a framework for the
construction of hierarchical models in a modular fashion,
allowing model reuse, and reducing development and
testing time. DEVS models can be executed using abstract
simulation mechanisms independent of the model itself.
Models are built using a set of basic models called
atomic, which can be combined to form coupled ones. A
DEVS atomic model is described as:

M = < X, S, Y, δint, δext, λ, D >

Here, X is the input events set, S is the state set, and
Y is the output events set. There are also several functions:
δδint manages internal transitions, δδext external transitions,
λλ the outputs, and D  the elapsed time.

A DEVS coupled model is defined as:

CM = < I, X, Y, D, {Mi}, {Ii}, {Zij} >

Here, X is the set of input events, and Y is the set of
output events. D is an index of components, and for each i
∈ D, Mi is a basic DEVS model, where Mi = < Xi, Si, Yi,
δinti, δexti, tai >. Ii is the set of influencees of model i.
For each j ∈ Ii, Zij is the i to j translation function.

The CD++ toolkit [RW99, WCD01] implements
DEVS theory. A specification language allows the
creation of coupled models, the initial configuration for
the atomic models, and the creation of external events to
be used during the simulation. Lately the CD++ tool has
been enhanced to support both parallel [TW01] and real-
time simulation [GW02].

DEVS provides the advantages of a discrete event
approach in terms of execution performance. Discrete
event models evolve in continuous time. Events are
instantaneous and can occur asynchronously at
unpredictable times. DEVS simulators can be seen as
hierarchical schedulers of events that activate the
corresponding submodels. The schedules allow skipping
periods of inactivity in the simulation. Nevertheless,
explicit synchronization of the components is required,
which involves a certain amount of overhead to be paid.
We want to study the overhead involved in models of
different complexity, as a first step towards execution in
Real-Time environments.

Real-time scheduling techniques try to guarantee the
timely execution of a set of subtasks. Most existing
schedulers are based in theoretical task models, which
usually avoid analyzing the overhead of the algorithm
implementations. Our goal here was to be able to analyze
the overhead of DEVS tools in each of these cases. To
improve the performance testing, we generated a synthetic
experimental frame, which can run different types of
models automatically. These models have been used for
testing the different simulation techniques available,
which include stand-alone, parallel and real-time
simulators. The tool can be easily applied to any DEVS
environment, in order to analyze their overhead.



2 A SYNTHETIC DEVS MODEL GENERATOR

In order to be able to study system overheads in detail, the
synthetic model generator can produce a variety of
models. The produced models try to mimic the structure
of those used in real applications. The shape and behavior
of these models can be defined using the following
parameters:

1. model_type: the amount of messages involved in the
simulation is related to the number and type of links
between the components. Therefore, this parameter
allows us to choose among different predefined
interconnections between the components of the
model.

2. depth: determines the number of levels of the
modeling hierarchy.

3. width: determines the number of children of each
intermediate coupled component. Along with depth,
it lets us establish the size of the model.

4. #intdhrystones: indicates the execution time to be
consumed in the internal transition function, which
allows us to simulate code to be executed.

5. #extdhrystones: indicates the execution time to be
consumed in the external transition function, which
allows us to simulate code to be executed.

We used the Dhrystone benchmark [WEI84] to
generate different workload in both internal and external
transition functions. Dhrystone code is a synthetic
benchmark intended to be representative for system
(integer) programming. The #intdhrystones and
#extdhrystones parameters allow us to execute time-
consuming code inside the internal and external transition,
according to a number of milliseconds specified.

2.1 Model type 1

This model type has a small number of interconnections
between components. The structure of this model is
shown with the following example. If we use a width of 3
and a height of 4, the top model generated will have the
structure described in the Figure 1. The arrows indicate
the existing input and output ports in each depicted model.
Boxes denote the different subcomponents. White-solid
boxes represent coupled components and shaded boxes
represent atomic components.

The top model (Coupled Component #0) consists of
one coupled component (#1) and two atomic ones (#1 and
#2) as shown above. Coupled Component #1 has the same
internal structure as the top model (Coupled Component
#0). Therefore, it contains one coupled model (Coupled
Component #2) and two atomic ones (#3 and #4).
Likewise, Coupled Component #2 has the same structure,
and accordingly contains Coupled Component #3 and
Atomic Components #5 and #6.

Figure 1: Top Model (type 1)

Finally, Coupled Component #3 only contains one
atomic child (#7) connected to its output port, regardless
of the specified width. The structure of this model is
shown below.

Figure 2: Bottom Coupled Component (type 1)

Given a specified depth d and width w, we end up
having k coupled components with w-1 atomic compo-
nents inside each model (except for the last coupled
model, which will only include one atomic component).

2.2 Model type 2

Model type 2 has more interconnections between the
components of each coupled model. The inner atomic
components are interconnected; therefore, there is a
greater number of messages interchanged in these kinds of
models and the overhead grows accordingly.

The following example uses depth = 4 and width = 4
(as explained before, we have in this case four
components per level). The top model (Coupled
Component #0) is composed by one coupled model and
three atomic ones.

Coupled Component #1 is also formed by three
atomic components and one coupled model (Coupled
Component #2). The same structure can be found in
Coupled Component #2 that is composed by Coupled
Component #3. Finally, Coupled Component #3 is quite
simple and identical to the model described in Figure 2 as
it is the last coupled component in the produced hierarchy.
This outermost model is shown in the following figure:



Figure 3: Top Model (type 2)

2.3 Model type 3

Model type 3 is comparable to the type 2, but it also
connects the outputs of the inner components to the output
of its parent model, thus generating even more overhead
in the simulation.

Coupled Component #1 is also formed by three
atomic components and one coupled model (Coupled
Component #2). The same structure can be found in
Coupled Component #2 that is composed by Coupled
Component #3. Finally, Coupled Component #3 is quite
simple and identical to the model described in Figure 2 as
it is the last coupled component in the produced hierarchy.

The topmost component of a model with depth = 4
and width = 4 is depicted below:

Figure 4: Top Model (type 3)

The figure shows that even more interconnections are
added in this type of model. Thus, the overhead incurred
due to message passing is increased. The rest of the
components are analogous to those described before, and
will not be detailed here.

3 PERFORMANCE COMPARISONS

This section describes some of the tests we developed to
analyze CD++ performance. Different shapes and sizes of
models have been generated in order to simulate different
model characteristics.

We studied different versions of the tool, which use
different simulation techniques:

• Original CD++ simulator
• Parallel CD++ simulator
• Parallel CD++ simulator with TimeWarp kernel
• Real-time simulator

The parallel version was developed on top of a
middleware layer, which ensures synchronization of the
models being executed. We are currently using Warped
[MMRW97], which provides an API for running parallel
simulations. Two simulation kernels are provided:
TimeWarp and a non-synchronized kernel (NoTime).

We have executed the synthetic benchmark, and
tested performance of the different techniques in a stand-
alone computer. The tool lets the user to choose different
sizes (by varying the parameters width and height) and
different workloads (by varying the parameters
#intdhrystones and #extdhrystones).

The results were compared with the total theoretical
time involved in simulating a model with the same
structure. This value is determined by the number of
atomic components in the model, the amount of
interconnections between them, and the number of
internal and external functions being executed. Once we
know the number of transition functions, we must
multiply these values by the amount of time spent in each
transition function. Theoretical execution time does not
include any overhead at all and it is the sum of the time
spent in transitions. This value is shown in the charts and
compared with the obtained execution times.

To measure the total theoretical time involved in a
complete simulation, we have to take into account the
number of internal and external functions being executed
by atomic components. This value can be computed as
follows. First, we count the number of atomic models as:

1)1(*)1(# +−−= depthwidthlsAtomicMode

The number of atomic components can be used to
count the number of external transition functions to be
executed upon the reception of an external event. We
must multiply these values by the amount of time spent in



each transition function to obtain the theoretical time
needed to process a single incoming event. Lastly, we
multiply this result by the number of incoming events
received, in order to measure the total theoretical time,
thus:

entsNumberOfEvrnalTransTimeInIntelsAtomicMode

rnalTransTimeInExtelsAtomicModeeticalTimeTotalTheor

*)]*(#

)*[(# +=

This number represents the sum of the time spent in
transitions. This value is shown in the charts and
compared with the obtained execution times that include
different execution overheads for each technique. The
experiments have been performed running a cycle of 10
external events per simulation.

Here, we show different results obtained according to
the class of structure employed. We show examples in
different categories, in order to exemplify the results
obtained. Table 1 presents the parameters used in the
simulations and their associated values.

Simulation Depth Width Internal
Transition

External
Transition

A 3 10 50 ms 50 ms
B 10 3 50 ms 50 ms
C 5 5 50 ms 50 ms
D 10 10 50 ms 50 ms

Table 1: Simulation’s parameters

The following graphs show the results obtained after
the execution of these simulations. The first graph shows
the execution times for each technique, as well as the
corresponding theoretical execution time in order to
compare the results.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

A B C D

T
im

e 
(m

s)

Original CD++

Parallel NoTime

Parallel Warped

Theoretical

Figure 5: Execution time for different models

The next graph illustrates the difference between the
given execution times and the theoretical time in each
case.

0

500

1000

1500

2000

2500

3000

A B C D

D
if

fe
re

n
ce

 t
im

e 
(m

s)

Original CD++

Parallel NoTime

Parallel Warped

Figure 6: Difference between experiments and theoretical
execution times

Finally, Figure 7 presents the overhead incurred by
each abstract simulator. The amount of overhead is
obtained by subtracting the theoretical time from the
execution time and dividing that by the execution time
itself, that is:

Overhead (%) = 
imeexecutionT

lTimetheoreticaimeexecutionT )( −

0,00%

0,50%

1,00%

1,50%

2,00%

2,50%

3,00%

3,50%

4,00%

4,50%

5,00%

A B C D

O
ve

rh
ea

d
 (

%
)

Original CD++
Parallel NoTime

Parallel Warped

Figure 7: Overhead incurred by the abstract simulators

As we can see, each technique induces a different
overhead to the simulation. The charts show that the
original CD++ technique is the one that executes with
minimum overhead. When executing the parallel abstract
simulator, the NoTime kernel adds fewer overheads than
the TimeWarp kernel.

4 TESTING REAL-TIME PERFORMANCE

As mentioned earlier, we want to characterize the tool
performance for real-time execution. We developed a
real-time simulator, and we want to be able to guarantee
deadlines considering the overhead of the simulator. The
benchmarking tool generates a set of external events with
fixed frequencies. Each incoming external event has an
associated deadline. The real-time simulator tests have
been performed using coupled models with different sizes
using the tool described in Section 2 within the real-time
simulator.



0

1000

2000

3000

4000

5000

6000

7000

3 6 9 12

Depth

T
im

e 
(m

s)

Theoretical
time

Execution
time

Figure 8: Worst-case execution times in a real-time
simulation using different depths

In this case, we store the worst-case response time
and the number of missed deadlines for further analysis.
For instance, figure 8 shows the theoretical and execution
time for a model of type 1, with fixed width of 12 models
per level, and 50 milliseconds in both the internal and
external transitions. The x-axis represents the different
depths used in each simulation.

The following figures show the difference between
the real and theoretical execution times, and the associated
overheads. This information shows how much time is
spent on carrying out the simulation by the abstract real-
time simulator and the execution of other tasks involved
(such as logging some information on disk, for example).

30

90

150

190

0
20

40
60

80
100

120

140
160

180

200

3 6 9 12

Depth

T
im

e 
(m

s)

Figure 9: Difference between real & theoretical time using
different depths

As long as the model depth increases, the execution
time augments linearly. However, the corresponding
percentage of overhead remains nearly stable as we can
observe in Figure 10.

0

0,5

1

1,5

2

2,5

3

3,5

3 6 9 12

Depth

O
ve

rh
ea

d
 (

%
)

Figure 10: Associated overhead (percentage) using
different depths

We will now analyze the results when different
widths are used with a fixed depth. The results shown in
these graphs are analogous to the ones that were obtained
in the previous case. When the size increases due to the
increasing width of the models, the difference between the
real and theoretical execution time becomes bigger,
nevertheless the percentage of overhead remains nearly
stable.

0

1000

2000

3000

4000

5000

6000

7000

4 6 8 10 12

Width

T
im

e 
(m

s)

Theoretical
time

Execution
time

Figure 11: Worst-case execution times in a real-time
simulation using different depths

50

100

140

170

210

0

50

100

150

200

250

4 6 8 10 12

Width

T
im

e 
(m

s)

Figure 12: Difference between real & theoretical time
using different widths



0

0,5

1

1,5

2

2,5

3

3,5

4

4 6 8 10 12

Width

O
ve

rh
ea

d
 (

%
)

Figure 13: Associated overhead (percentage) using differ-
ent widths

5 CONCLUSION

The CD++ toolkit enables us to define DEVS models. The
tool now supports parallel and real-time simulation. We
used a synthetic benchmarking tool that can be applied to
DEVS environments. Different types of models were
tested automatically, showing that we can execute models
paying a small cost in terms of processing overhead.

As we could see, each simulation technique has an
associated overhead that depends on the size, shape and
behavior of the simulated model. We found that even with
medium and large-scale models, the simulation can be
carried out properly and the obtained overhead is of a
manageable size and stable. The original CD++ tool exe-
cutes with minimum overhead and therefore it is the ap-
propriate tool when stand-alone execution is adequate.
The NoTime kernel outperforms the TimeWarp kernel
when using the parallel simulator.

The real-time performance tests show that deadlines are
more likely to be missed when the model grows
significantly. Nevertheless, it is important to point out that
overhead remains roughly stable and consequently
simulations can be carried out satisfactorily.

REFERENCES

[GW02] Glinsky, E. ; Wainer, G. "Definition of RT
simulation in the CD++ toolkit". Internal report,
Computer Science Department. Universidad de Buenos
Aires. Submitted for publication. 2002.

[MMRW97] Martin, D.; McBayer, T.; Radhakrishnan, R.;
Wilsey, P. "Time Warp Parallel Discrete Event
Simulator". Technical Report, University of Cincinnati.
1997.

[RW99] Rodriguez, D.; Wainer, G. "New Extensions to
the CD++ tool". In Proceedings of SCS Summer
Computer Simulation Conference, Chicago, IL. 1999.

[TW01] Troccoli, A.; Wainer, G. "CD++, a tool for
simulation Parallel DEVS and Parallel Cell DEVS
models". In Proceedings of SCS Summer Computer
Simulation Conference,  Orlando, FL. 2001.

[WCD01] Wainer, G.; Christen, G.; Dobniewski, A.
"Defining DEVS models with the CD++ toolkit". In
Proceedings of the European Simulation Symposium,
Marseilles, France. 2001.

[WEI84] Weicker, R. "Dhrystone: A synthetic systems
programming benchmark". In Communications of the
ACM, volume 27, pages 1013--1030, 1984.

[ZKP00] Zeigler, B.; Kim, T.; Praehofer, H. "Theory of
Modeling and Simulation: Integrating Discrete Event and
Continuous Complex Dynamic Systems". Academic
Press. 2000.

EZEQUIEL GLINSKY is a M. Sc. student in the Com-
puter Sciences Department of the Universidad de Buenos
Aires, Argentina. He is a Research and Teaching Assistant
in the same department, and a member of the PARDEVS
lab. He worked in the IT industry in Argentina for the past
7 years.Currently, he is a senior developer at Bumeran
International. Part of this work was developed while he
was a visiting research scholar at Carleton University.

GABRIEL WAINER received the M.Sc. (1993) and
Ph.D. degrees (1998, with highest honors) of the Univer-
sidad de Buenos Aires, Argentina, and Université d'Aix-
Marseille III, France. He is Assistant Professor at the
Systems and Computer Engineering, Carleton University
(Ottawa, Canada). He was Assistant Professor at the
Computer Sciences Dept. of the Universidad de Buenos
Aires, Argentina. He has been the PI of several research
projects, and participated in different international re-
search programs. Prof. Wainer is a member of the Board
of Directors of The Society for Computer Simulation In-
ternational (SCS). He is also a Co-associate Director of
the Ottawa Center of The McLeod Institute of Simulation
Sciences.


