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ABSTRACT

We present a comparison between DEVS, Cell-
DEVS and a sequential computer simulation of a
semi-physical fire spread model. Forest fire is a com-
plex phenomenon, which requires analyzing model
evolution and requires high computing capabilities.
Hence, we discuss about different environment lan-
guage implementations (C, Java and C++) for time
improvement looking at trade-off between model
evolutivity and simulation time provided by the dif-
ferent approaches. Finally, we show how Cell-DEVS
allows developing safe and cost-effective simula-
tions, reducing significantly the development times
for cellular models.

1. INTRODUCTION

At present, concerns for environment engender in-
creasing interest in monitoring and predicting eco-
system changes.

The complex behavior of the phenomena studied,
and the volume of data that ecological models have
to grasp makes computer simulation a good choice to
solve the problem.

Diffusion processes (oil spills, fire spread, insect
infestation, etc.) are usually represented as partial
differential equations (PDEs) that have to be discre-
tized in the form of finite differences or finite ele-
ments (FDM or FEM). Starting with a PDE with
derivatives in time and space dimension, time and
space are discretized. Finally, a localized neighbor-
hood computation is obtained, which can easily be
modeled with cellular automata (CA). Therefore,

these complex systems can be modeled by a field of
cells executing the same instructions synchronously
and simultaneously [Wol86].

Nevertheless, cellular automata are limited in
terms of spatial and behavioral modularity, as well as
temporal and spatial dynamics. The two basic organ-
ising principles in ecology are hierarchy and taxon-
omy. If we add modularity aspect to allow evolution
of the models, we infer that an object-oriented ap-
proach fit very well to these three principles. Tempo-
ral and spatial dynamics have to be provided. Hence,
we have chosen to base our modeling and simulation
approach on DEVS formalism.

The numerous extensions of this formalism can
be very helpful. One extension, the Cell-DEVS for-
malism [Wai00], is a good choice to solve this prob-
lem. This technique considers each cell of a CA as a
discrete event model, hierarchical and modular. In
this way, complex models can be defined, using a
continuous time base.

2. MODELING FIRE SPREAD

Over the last fifty years, several efforts were carried
out in the field of modeling forest fire spread. The
problem consists of calculating the fire spread rate,
flame front position and temperature distribution in a
fuel complex.

The main constraint in solving this problem is
that we must deal with large databases representing
complex phenomena. These sources of data must be
used to implement the physical model. The simula-
tions we are developing must be able to describe the
spread of a forest fire in order to help fire fighters. To



this end, it must be characterised by a very small
calculation time as respected to real propagation in
order to predict the fire position more quickly than it
propagates. This requires a simple computer and
physical model capable of predicting the key features
of a fire.

2.1 Physical solution

At present, real-time simulators are based on a sta-
tionary model defined by Rothermel [Rot72].  This is
a one-dimensional semi-empirical model, in which a
second dimension can be obtained using propagation
algorithms integrating empirically wind and slope. In
the last years, researchers at the University of Corsica
have planed adding a physical dimension to the semi-
empirical models, in order to increase their precision.
They will be integrated in a more robust manner the
wind and slope effects. This model is a non-
stationary two-dimensional semi-physical model
[Bal98].

2.2 Computer solution

The literature presents other approaches based on
discrete event simulators. Most of these simulators
[Bar98, Vas95, Ame01] are using DEVS formalism
and the Rothermel model.

Our semi-physical model was first implemented
in C. Despite the good results, the developed code
proved to be complex, and showed some problems
related to the evolution of the fire spread model
(wind influence, non-homogenous vegetation, slope
influence). To circumvent those difficulties, we have
used DEVS [Zei00], based on an independent and
automatic simulator generation of a given model.

This application is a good solution for the model
evolution [Muz01] but simulation time is rather long
to have an effective real-time simulator. Thus, we
decided to use the Cell-DEVS approach [Wai00] to
save substantial simulation time and have to make
easy the definitions of the model.

The aim of our computer research team is to pro-
vide an efficient and easy to use environment for fire
spread simulation. We want to help the physical team
in charge of the model development to test the
model, easily modify it and finally develop a real-
time simulator.

3. MODEL DEFINITION

Before modeling fire at a large scale, we must to
verify the influence of the mechanisms involved in
fire spread. In a first stage, a fire spread has been
modeled across a 1 m² pine needles fuel without wind
and slope, thanks to experimental data provided by
the INRA of Avignon. This study uses elementary
cells composed of earth and plant matter. The energy
transferred from the cell to the surrounding air is
considered proportional to the difference between the

temperature of a cell and the ambient temperature.
We assume that heat transferred between a cell an its
neighboring cells can be represented by a single
equivalent diffusion term. To model the combustion
reaction, it is assumed that (1) combustion occurs
above a threshold temperature Tig, (2) above this
threshold, the fuel mass decreases exponentially, and
(3) the quantity of heat generated by the combustion
reaction per unit fuel mass is constant. This can be
represented by the following equations:
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The model parameters are identified from ex-
perimental data of temperature versus time.

Two numerical methods can be used to discretize
the model: the FEM and the FDM. The application of
these two methods is described in [San97]. If the
methods give the same results, the FEM one is more
complex to apply, and produces longer execution
time. Thus, we have chosen the FDM because of its
simplicity and good performance.

The study domain is meshed  uniformly with cells
of 1 cm². The physical model is solved by the finite
differences method, which leads to the following
algebraic equation :
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where Tij is the temperature of a grid node. The coef-
ficients a, b, c and d depend on the considered time
step and mesh size [Bal98]. We use a time step of
0.01s.

4. DEVS FORMALISM

A DEVS model can be composed by atomic sub
models combined into coupled models. A DEVS
atomic model is described as :

M = <X, S, Y, äint, äext, ë, D>

X is the input events set, S is the state set, and Y
is the output events set. There are also several func-
tions: äint manages internal transitions, äext external
transitions, ë the outputs, and D the elapsed time. A
DEVS coupled model is defined as:

CM = < X, Y, D, {Mi}, {Ii}, {Zij} >

Here, X is the set of input events, and Y is the set
of output events. D is an index of components, and
for each i ª  D, Mi is a basic DEVS model, where



Mi=< Xi, Si, Yi, äinti, äexti, tai >. Ii is the set of influ-
ences of model i. For each j ª  Ii, Zij is the i to j
translation function.

The timed Cell-DEVS formalism [Wai00] is a
combination of the DEVS and CA formalisms with
timing delays. Each cell is defined as an atomic
DEVS model, and a procedure to couple cells is
depicted. Timing delays allow defining different
timing behavior. The atomic models (the cells) can
be described as:

TDC = < X, Y, è, N, delay, d, äint, äext, ô, ë, D >

X defines the external inputs, Y the external out-
puts defining the model’s interface. è is the cell state
definition, and N is the set of inputs. Delay defines
the kind of delay for the cell (transportation or iner-
tial), and d its duration. A transport delay can be
associated with each cell, allowing to defer the exe-
cution of the internal transition functions. An input
will be discarded if it is not steady during the inertial
delay of the cell. Finally, there are several functions:
äint for internal transitions, äext for external transi-
tions, ô for local computations (which uses the state
values of the neighborhood to compute the future
value of a cell), ë for outputs and D for the state’s
duration. Each cell takes the set of inputs and com-
putes the cell’s future state using the ô functions. The
modeler only has to focus in defining the local com-
puting function, the kind of delay and its length. The
remaining parameters are defined by the formalism.

A Cell-DEVS coupled model is defined by:

GCC = < Xlist, Ylist, X, Y, N, {t1, … , tn}, C, B, Z >

Here, Xlist and Ylist are the input/output coupling
lists, used to define the model interface. X and Y
represent the input/output events. The n value defines
the dimension of the cell space, {t1, … , tn} is the
number of cells in each dimension and N is the
neighborhood set. The cell space is defined by C,
together with B, the set of border cells, and Z the
translation function. For coupled models, the modeler
only has to focus in the neighborhood shape, the size
and dimension of the model, the definition of the
border set, and the coupling lists.

Recently, Quantized DEVS theory has been in-
troduced [Zei98]. The value space is quantized in
equal quantum steps. Quantizers are associated with
each model. They check for boundary crossings.
Whenever a crossing occurs the new value is sent to
the receiver. The problem consists in a trade-off
between reducing message number and error induced
by this reduction. This approach will be discussed in
the conclusion for future works.

5. THE DEVS APPLICATION

We used the JDEVS environment [Fil01], which
implements the DEVS theory in Java. The numerical
resolution of the physical problem needs to mesh the

spread domain. Atomic models (C elements) are
associated to the cells, which constitute the mesh.
Each atomic model is linked to its neighbors, in order
to allow taking into account the thermal exchanges
between the different cells. A coupled model M rep-
resents the different interconnections between the
atomic models.

An ignition atomic model (A element) is linked to
every C element, allowing to initiate the fire spread
by specifying the ignition zone:
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 Figure 1: Fire Spread Object Oriented Model

Following, we depict a simplified temperature
curve of a cell in the domain and its associated
phases:

 t (Ta, ti)

 inactive

 Tf  = 333 K
 Ti  = 573 K

 T (K)

  unburned   burned  burning

Figure 2: Simplified temperature curve of a cell of
the domain

The C element has phases inactive, unburned,
burning and burned, with a corresponding ta of infi-
nite, 1, 1 and infinite. We consider that above a
threshold temperature Ti, the combustion occurs and
under a Tf temperature, the combustion is finished. So
we voluntary neglect the end of the real curve to save
simulation time. At t=0,  we applied a point-ignition
on the plate center thanks to a temperature gradient.
This is represented by an incoming x-message on the
simulator A, with the coordinates and the type of
ignition (line or point). Then, the simulator sends y-
messages to the coordinator, which transforms them
into x-messages and addresses them to the simula-
tors, which are involved by the ignition.

These messages carry out the external transition
functions δext of the C elements associated to the
simulators. δext stores the cell’s temperature and
sends a d-message to the coordinator which trans-
form it into a *-message and address it to the output
function λ.

 The λ function sends four y-messages containing
the cell’s temperature to the four neighbors (which



by turn will send four y-messages to its own neigh-
bors to active the whole domain).

The internal function transition δint assigns the
phase corresponding to the cell’s ignition tempera-
ture.

The algorithm to pass at time t+1 is depicted in
Fig. 3. When the cell receives the fourth temperature
(1), λ calculates the temperature of the cell and sends
an y-message to the Root (4). The δint function is
then carried out. This one assigns the phase corre-
sponding to the cell’s temperature calculated and
sends a d-message to pass at time t+1 (6). Above t=1,
a cell will be activated if at least one of its cardinal
neighbor is greater than Ta.
When a cell is burned it sends its temperature (Ta) to
the Root and then passes in burned phase. When a
neighbour sends it an y_message the burned cell
sends it its temperature.
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Figure 3: Coordinator and simulator message ex-
changes

We obtained a good evolution of the model and
the discrete event time base allowed to activate only
the neighboring cells of the front flame. But the
computer model is too complex to develop for a non-
computer science specialist and the simulation time is
too long to have a real case simulator. Hence, we
decided to apply the Cell-DEVS formalism.

6. THE CELL-DEVS APPLICATION

We used the CD++ environment, which implements
the DEVS and Cell-DEVS theory, to redefine the C
elements using Cell-DEVS specifications. The mod-
eler does not have to manage with message ex-
changes, port names, couplings and execution of the
äint and äext functions. The cell’s behavior is realized
defining simple logical rules : {result} delay {condi-
tion}. After a delay time, the cell takes the value of
result.

The definition of the fire model is described here:

00 #include(rules.inc)

01 [top]
02 components : ForestFire

03 [ForestFire]
04 type : cell

05 dim : (100,100,2)
06 delay : transport
07 defaultDelayTime : 1
08 border : nowrapped
09 neighbors : ForestFire(-1,0,0)
10 ForestFire(0,-1,0) ForestFire(1,0,0)
11 neighbors : ForestFire(0,1,0)
12 ForestFire(0,0,0)  ForestFire(0,0,-1)
13 ForestFire(0,0,1)
14 initialValue : 300.0
15 initialCellsValue : init.val
16 zone : cst { (0,0,0)..(0,99,0) }
17 zone : cst { (1,99,0)..(99,99,0) }
18 zone : cst { (99,0,0)..(99,98,0) }
19 zone : cst { (1,0,0)..(98,0,0) }
20 localTransition : FireBehavior

21 [cst]
22 %Undefined border cells
23 rule : {(0,0,0)} 1 {undefCount >= 1}

24 [FireBehavior]
%Unburned
26 rule : {#macro(unburned)} 1 {cellpos(2)=0
AND (#macro(unburned)>(0,0,0) OR time<=20)
AND (0,0,0)<573 AND (0,0,0) != 209}

%Burning
27 rule : {#macro(burning)} 1 {cellpos(2)=0
AND (((0,0,0)>#macro(burning) AND (0,0,0)>
333) OR (#macro(burning)>(0,0,0) AND
(0,0,0)>= 573)) AND (0,0,0) !=209}

%Burned
28 rule : {209} 1 {cellpos(2)=0 AND
(0,0,0)>#macro(burning) AND (0,0,0)<=333 AND
(0,0,0) !=209}

%ti
29 rule : {time*0.01} 1 {cellpos(2)=1 AND
(0,0,-1)>=573 AND (0,0,0)=1.0 }

%Stay Burned or constant
30 rule : {(0,0,0)} 1 {t}

Figure 4: Fire spread model specification: Fire.ma 

#BeginMacro(unburned)
((1-4*((0.000031*0.01 )/(0.01*0.01))-0.071
*0.01)*(0,0,0)
+ ((0.000031*0.01)/(0.01*0.01))*(0,-1,0)
+ ((0.000031*0.01)/(0.01 * 0.01))*(0,1,0)
+ ((0.000031*0.01)/(0.01*0.01))*(1,0,0)
+ ((0.000031*0.01)/(0.01*0.01))*(-1,0,0)
+ 0.071*300*0.01)
#EndMacro

#BeginMacro(burning)
((1-4*((0.000031*0.01 )/(0.01*0.01))-0.071
*0.01)*(0,0,0)
+ ((0.000031*0.01)/(0.01*0.01))*(0,-1,0)
+ ((0.000031*0.01)/(0.01 * 0.01))*(0,1,0)
+ ((0.000031*0.01)/(0.01*0.01))*(1,0,0)
+ ((0.000031*0.01)/(0.01*0.01))*(-1,0,0)
+ 0.01*274*exp(-0.19*((time+1)*0.01-
(0,0,1)))
+ 0.071*300*0.01)
#EndMacro

Figure 5: Definition of the macros: rules.inc



We use two planes to model our fire-spread
model. The plane 0 to store the cell temperatures, and
plane 1 stores the ignition time needed by the model.

To simplify the code, CD++ allows to define
macros in separate files (cf. Fig. 5). The file
“rules.inc” contains the rules corresponding to the
temperature calculus when the cell is in phase un-
burned or burning. The file is included in the
“Fire.ma” with the #include directive in line 00.

At the line 01 and 02 we defined the components
of the “top” coupled model. Then, we defined the
coupled model parameters (neighborhood, dimen-
sion, type of delay, etc.).

We define a border zone called “cst” where every
cell stays at the ambient temperature (line 21 to 23).

The rules to compute the cell temperature start in
line 24. The first corresponds to the phase unburned.
If the cell belongs to the plane 0, and its temperature
at the next time step is greater than its present one,
the cell will take the value given by the unburned
rule. The same occurs if the simulation time is
smaller than twenty (transient period) and it is neither
burning nor burned. Based on the same principles,
the rules line 27 and 28 correspond to phases burning
and burned.
 The line 29 shows how we store the ignition
times. The condition is if the cell belongs to the plane
1, and the corresponding cell in plane 0 begins to
burn, the cell will take the real time value (simulation
time multiplied by the time step).

7. COMPARISON AND ANALYSIS

We simulated a laboratory experiment under these
conditions :
• Combustion table of 30 cm long and 60 cm

wide;
• Homogenous fuel bed of pine needles;
• Windless and slope less conditions.
 For a line ignition, the prediction of spread rate
(2.96 mm/s) and the propagation are in agreement
with the experimental data for every approach (cf.
Fig. 6). The black lines represent the position of the
experimental isothermal line of 300 Celsius (ignition
interface).

Figure 6: Simulated and experimented temperatures
field representation of a line ignition

In Figure 7, we plot the execution time of the
Cell-DEVS simulation for different square cell do-
mains and a real propagation of 3 s. Cell-DEVS exe-
cution time is definitely better than the JDEVS one
(the simulation of 100x100 cells was not possible).
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Figure 7: Initial and hierarchical comparison
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Figure 8: Message exchanges

Cell-DEVS also allowed us to save modeling and
simulation time thanks to the automated definition of
the model provided by this formal approach.

In the Figure 7, we can see that the initialisation
time grows exponentially. In Figure 8, the number of
messages exchanged is very high too (up to 4,5 . 106

for a grid consisting of 100x100 cells and just 3 s of
real propagation).

Moreover, for a real propagation of 150 s of a
100x100 cell space, the execution time of a sequen-
tial simulation is of 12 min 20 s and we have
21h20min for the Cell-DEVS simulation.

Cell-DEVS and DEVS formalisms allow to
simulate continuous systems by means of events,
which produce an high degree of overhead with the
message intermodule interactions. Hence, the syn-
chronisation of the active cells can overrule the per-
formance improvements of these asynchronous ap-
proaches for synchronous application. The most
important number of messages is the cell communi-
cations. Moreover, to send its temperature to a
neighbor the simulator associated to a cell needs to
send an y-message to the coordinator, which send a
x-message the destination cell.



8. CONCLUSION AND PERSPECTIVES

We presented a numerical method for diffusion proc-
ess. Even if the laboratory case studied can be ex-
tended to a real-case modifying the cell dimensions,
we have seen that this type of processes need conti-
nuity of space and time, and are so fine-grained that
it is very difficult to simulate them with an event
oriented approach in order to make real-time simula-
tions.

This is the problem of an object-oriented ap-
proach with independent objects corresponding to the
cells. Despite the better evolution and understanding
presented before, it produces a high simulation time
cost because of the intermodule communications.

Thereby, we think that DEVS and Cell-DEVS
approaches need to be modified. We project to for-
mally study and apply the Multicomponent formal-
ism [Zei00], to develop the Flat simulation [Wai00]
eliminating the send of messages between the cells
and at the initialisation (execution and initialisation
time gain) and to append variables to the cells to
cancel the second plane.

Once the simulation will be optimized on a single
processor, the parallel simulation seems to be the
only issue to simulate this type of processes on large
scales. Therefore, the use of Quantized DEVS will be
interesting to reduce the message number of the dis-
tributed simulation. A study will be made on the
cost/benefit between reduced traffic and increased
error.
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