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Abstract. Robotic systems are usually built as independent agents that collaborate to 
accomplish a specific task. Analysis of robot path planning consists of route plan-
ning and path generation. We will show how to apply the Cell-DEVS formalism and 
the CD++ toolkit for these tasks. We present a Cell-DEVS model for route planning, 
which, based on the obstacles, finds different paths available and creates a Voronoi 
diagram. Then, we show route planning using the Voronoi diagram to determines an 
optimal path free of collision. Finally, we introduce a Cell-DEVS model that can be 
applied to the routing of self-reconfigurable robots. 

1. Introduction 

The analysis of robot path planning in general include a multirobot system in cooperative 
environments (all mobile agents interact, trying to achieve a common goal). In most cases, 
the environment under study consists of a physical environment, a number of robots, ob-
jects in the environment, a set of predefined tasks, a task distribution scheme (specifying 
what to do at every moment), and intercommunication mechanisms. Path planning typi-
cally refers to the design of specifications of the positions and orientations of robots in the 
presence of obstacles. Path planning can be static or dynamic, depending on the mode in 
which the obstacle information is available. In order to follow the movement of robots in 
the work area, we need a spatial planner which must find a path free of obstacles to follow 
a predefined trajectory. In general, this consists of two phases:  
• Route planning: a route is defined as a sequence of sub-goals that must be reached by 

the robots before reaching the final goal.  
• Path generation: once the plan has been created, different heuristics (for instance, the 

shortest path) could be used to reach the predefined goal. 
Cellular models provide an advantage to carry out these tasks. Route planning using 

Voronoi diagrams can be easily constructed using simple 2D cellular models (without 
needing to compute distance or intersections, sorting distances, and or explicit modeling 
of objects). Since cellular models only use local rules, any proposed algorithm can be ap-
plied to objects of arbitrary size/shape. Cell-DEVS [1] allows defining cell spaces using 
the DEVS (Discrete Events systems Specification) formalism [2] to define a cell space.  



We present a Cell-DEVS model for route planning, which, based on the obstacles, 
finds different paths available and creates a Voronoi diagram. Then, we provide an algo-
rithm for route planning, and we present an algorithm that takes the Voronoi diagram and 
determines an optimal path free of collision (considering the size of the robot). We apply 
this heuristics to create a Cell-DEVS model able to solve the route planning phase. Fi-
nally, we introduce an advanced Cell-DEVS model that can be applied to the routing of 
self-reconfigurable robots. 

2. Background 

Cell-DEVS improves execution performance of cellular models by using a discrete-event 
approach. It also enhances the cell’s timing definition by making it more expressive. Each 
cell, defined as TDC=< X, Y, S, N, delay, d, δINT, δEXT, τ, λ, D >, uses N inputs to compute 
its next state. These inputs, which are received through the model's interface (X, Y), acti-
vate the local computing function (τ). State (s) changes can be transmitted to other mod-
els, but only after the consumption of a delay (d). Once the cell behavior is defined, a 
coupled Cell-DEVS is created by putting together a number of cells interconnected by a 
neighborhood relationship. A coupled Cell-DEVS is composed of an array of t1x…xtn 
atomic cells, defined as GCC=< Xlist, Ylist, X, Y, n, {t1,...,tn}, N, C, B, Z >. Each cell is 
connected to its neighborhood (N) through DEVS ports. Border cells (B) can have a dif-
ferent behavior or be “wrapped”. Finally, the model’s external couplings can be defined in 
the Xlist and Ylist. Each cell in a Cell-DEVS is a DEVS atomic model, and the cell space 
is a DEVS coupled model. DEVS is a formalism based on generic dynamic systems, in-
cluding well defined coupling of components and hierarchical modular construction. A 
DEVS model is described as a composite of submodels, each of them being behavioral 
(atomic) or structural (coupled). Each atomic model, defined by AM=< X, Y, S, δext, δint, 
λ, ta>, has an interface (X, Y) to communicate with other models. Every state (S) is asso-
ciated to a time advance (ta) function, which determines its duration. Once this time is 
consumed, the model generates results by activating an output function (λ), and the inter-
nal transition function (δint) is fired. Input external events activate the external transition 
function (δext). Coupled models are defined as a set of basic components (atomic or cou-
pled), which are interconnected through the model's interfaces.  

                 

Fig. 1. Informal definition of Cell-DEVS, and shift mapping to the square lattice. 



CD++ [3, 4] was developed following the definitions of the Cell-DEVS formalism. 
Cell-DEVS are described using a built-in specification language, which provides a set of 
primitives to define the diferent parameters of the model. The behavior of a cell 
(τ function) is defined using a set of rules of the form: RESULT DELAY CONDITION. 
When an external event is received, the rule evaluation process is triggered to calculate 
the new cell value. The CONDITION is evaluated; if satisfied, the new cell state is ob-
tained by evaluating the RESULT expression. The cell will transmit these changes after a 
DELAY. A Lattice Translator allows using different topologies, which are translated into 
square CD++ rules, using the mechanism depicted in Fig. 1. 

The algorithms here presented are based on Voronoi diagrams, which use the idea of 
proximity to a finite set of points in the plane P={p1…pn} (n =2). The diagram associates 
every point pj to their closest points pi (i ≠j), conforming covering sets [5, 6]. Points equi-
distant to two elements in P define the border of a region. The resulting sets define a tes-
sellation of the plane (exhaustive, as every point belongs to a set, and they are mutually 
exclusive). Voronoi diagrams can be used to study the movement of a robot of a given 
size, describing paths surrounding the obstacles (and indicating the distance to them). 
These indicators allow a robot to determine if the path is feasible to pass through the path. 

 

Fig. 2. Voronoi Diagram 

We are also interested in models of self-reconfiguring robots. These systems are versa-
tile in both their structure and the tasks they perform [7]. These robots are composed of a 
number of modules that can reshape according to the task to be carried out. Each robot is 
independent of the rest, and they act as parallel entities. The ability of reconfiguration 
leads to flow-based locomotion algorithms (allowing the robots to conform to the terrain 
on which they have to travel), which can be nicely modeled as cellular models. 

3.  Route Planning Models 

Our path-planning model is based on [5] where CA are used to process a “top down” 
bitmap of a diamond-shaped area including a robot of arbitrary shape. The algorithm pro-
duces a Voronoi diagram that can be used to determine a path equidistant from obstacles 
in the space. Paths are calculated by marking the intersections of expanding “wavefronts” 
propagated by cellular expansion from given starting points. The input is an array of cells 
with values 1 (obstacle) or 0. The model executes in two stages: 



1. Object boundary detection: cells and their neighborhoods are examined and 
compared to a set of 12 “edge code” templates. Each cell matching a configura-
tion in the template uses the corresponding code (1-12) for the second stage. 

2. Cells with edge codes are expanded in free space. Where expansions intersect, 
the cell of the intersection is given a timestamp and considered part of the final 
Voronoi diagram. The final state contains the Voronoi diagram. 

             

Fig. 3. (a) Input bitmap; (b) 3D neighborhood. 

The following state variables are required for every cell: the original encoding of de-
tected obstacles (0 or 1); the calculated edge code for the cell (1-12); a flag value used 
during the “wavefront expansion”, and the point on the Voronoi diagram representing this 
cell’s position. We put each state variable on a separated plane in a 3D Cell-DEVS. Plane 
0 (x, y, 0) contains the original bitmap representing the space, Plane 1 (x,y,1) contains the 
edge codes, Plane 2 (x,y,2) includes the propagation of edge codes over time, and Plane 3 
(x,y,3) stores  the final Voronoi diagram. The 3D neighborhood is shown in Figure 3.b).  

Fig. 4 describes the model definition in CD++. The model specification defines a 
10x10x4 Cell-DEVS (a surface grid of size 10x10 and the four data planes). Four sets of 
rules which are used on each plane. The 3D cell model is effectively divided into four 2D 
models by using separate zones consisting of plane regions. The rule sets are: 
− nothing-rule: used by the original data plane to keep the values from being changed. 
− bound-rule: coding of edge directions. Patterns of cell values in each cell and its 

neighborhood are classified as one of 12 edge codes. The rules in this section perform 
the classification if the cells in the data plane correspond to one of 12 templates.   

− plane2-rule: Cells with edge codes from 1-4 must be discarded. Cells with edge codes 
5-12 are copied into a new grid and given a flag value for propagation in the third 
stage. The rules in this section carry over the values from the second plane which sat-
isfy the criteria (4 < edge_code < 13).   

− plane3-rule: the Voronoi diagram. In the previous plane, cells receive data values from 
their immediate neighbors and propagate the data out from any given starting point 
(points where these data wavefronts collide are those farthest away and equidistant 
from the starting obstacles; these are the points of interest when plotting a path for a 
robot). This plane examines the values in the plane below. If more than has its flag is 
set (and they do not contain the same values), the cell belongs to the Voronoi diagram. 
The Voronoi diagram is given the iteration number at which the cell was added to the 
diagram. 



[Path-Finding] 
dim : (10, 10, 4)  delay : transport localtransition : nothing-rule 
neighbors:(-1,0,0)(0,-1,0)(0,0,0)(0,1,0)(1,0,0)(0,-1,-1) ... (0,1,-1) 
zones : bound-rule { (0,0,1)..(9,9,1) } plane2-rule { (0,0,2)..(9,9,2) }  
     plane3-rule { (0,0,3)..(9,9,3) } 
[nothing-rule] 
rule: { (0,0,0) } 10 { t } 
[bound-rule] 
rule: 1 10 { (0,0,-1)=1 and (0,-1,-1)=1 and (-1,0,-1)=1 and (0,1,-1)=1 
and (1,0,-1)=1 }  
... 
rule: 12 10 { (0,0,-1)=1 and (0,-1,-1)=1 and (-1,0,-1)=0 and (0,1,-1)=0 
and (1,0,-1)=1 }  
[plane2-rule] 
rule: {(0,0,-1)+0.1} 10 { (0,0,-1) >4 and (0,0,-1)<13 } 
... 
rule: {(0,1,0)} 10 { fr((0,1,0))=0.1 and isint((0,-1,0)) and isint((-
1,0,0)) and isint((1,0,0)) } 
[plane3-rule] 
rule: {(time)} 10 { (0,0,0)=0 and %check and (-1,0,-1)!=(0,1,-1) } 
... 
rule: {(time)} 10 { (0,0,0)=0 and %check and (0,-1,-1)!=(0,1,-1) } 

Fig. 4. Cell-DEVS model definition in CD++ 

The first example here presented shows the execution of the model using a partial 
boundary and two obstacles.  

    +----------+    +----------+    +----------+    +----------+ 
   0|1111111111|   0|         |    0|          |   0|          | 
   1|111       |   1| 57       |   1|          |   1|          | 
   2|          |   2|   222222 |   2|          |   2|          | 
   3|          |   3| 22222222 |   3|          |   3|          | 
   4|          |   4| 222   22 |   4|          |   4|          | 
   5|    111   |   5| 22 192 2 |   5|          |   5|          | 
   6|    111   |   6| 22 857 2 |   6|          |   6|          | 
   7|          |   7| 222   22 |   7|          |   7|          | 
   8|          |   8|          |   8|          |   8|          | 
   9|1111111111|   9|          |   9|          |   9|          | 
    +----------+    +----------+    +----------+    +----------+ 
... 
    +----------+    +----------+    +----------+    +----------+ 
   0|1111111111|   0|          |   0|          |   0|          | 
   1|111       |   1| 57       |   1| 57777    |   1| 33  55   | 
   2|          |   2|   222222 |   2| 57  92   |   2| 33 455   | 
   3|          |   3| 22222222 |   3| 57 1922  |   3| 444444   | 
   4|          |   4| 222   22 |   4| 5  192 2 |   4| 54 333   | 
   5|    111   |   5| 22 192 2 |   5| 11119222 |   5| 54322234 | 
   6|    111   |   6| 22 857 2 |   6| 88885777 |   6| 54322234 | 
   7|          |   7| 222   22 |   7|  8 857 7 |   7|    333   | 
   8|          |   8|          |   8|   88577  |   8|    444   | 
   9|1111111111|   9|          |   9|          |   9|          | 
    +----------+    +----------+    +----------+    +----------+ 

Fig. 5. Partial boundary and two obstacles 



The inputs describe a boundary on the upper and lower horizontal edges of the 10x10 
space, as well as two small obstacles inside the space. The input values in the first plane 
remain unchanged, and the edge codes in the second plane are generated after one itera-
tion. The third plane is initially populated with edge codes >4, and these values are suc-
cessively propagated across their neighborhoods (note the are “holes” where cells were 
out of reach of their neighbors). Propagation stops when cells have no more non-flagged 
neighbors. The final plane is the Voronoi diagram, where “for a diamond shape of diago-
nal size d, the path planning process selects those Voronoi edges that consist of points 
with labels of value l ≥d+½”. Since the first values on the diagram are 2’s, one should add 
that offset to find the desired values. In this case, for a robot of diagonal size 2, the points 
on the graph of value 4 or 5 represent viable travel paths which can be used by a robot of 
diagonal size 2 to travel avoiding the two obstacles.   

 
    +----------+    +----------+    +----------+    +----------+ 
   0|1111    11|   0|          |   0|          |   0|          | 
   1|1111    11|   1|          |   1|          |   1|          | 
   2|111    111|   2|          |   2|          |   2|          | 
   3|111    111|   3|          |   3|          |   3|          | 
   4|111    111|   4|          |   4|          |   4|          | 
   5|111    111|   5|          |   5|          |   5|          | 
   6|111    111|   6|          |   6|          |   6|          | 
   7|111    111|   7|          |   7|          |   7|          | 
   8|11    1111|   8|          |   8|          |   8|          | 
   9|11    1111|   9|          |   9|          |   9|          | 
    +----------+    +----------+    +----------+    +----------+ 
. . .  
    +----------+    +----------+    +----------+    +----------+ 
   0|1111    11|   0|          |   0|          |   0|          | 
   1|1111    11|   1| 117 22 0 |   1| 6 7771 0 |   1|  2  442  | 
   2|111    111|   2| 16 22 11 |   2| 66 7111  |   2|   244332 | 
   3|111    111|   3| 16 22 01 |   3| 66660000 |   3|    4432  | 
   4|111    111|   4| 16 22 01 |   4| 66660000 |   4|    44    | 
   5|111    111|   5| 16 22 01 |   5| 66660000 |   5|    44    | 
   6|111    111|   6| 16 22 01 |   6| 66660000 |   6|  2344    | 
   7|111    111|   7| 17 22 01 |   7|  7771 00 |   7| 233442   | 
   8|11    1111|   8| 6 22 111 |   8| 6 7111 0 |   8|  244  2  | 
   9|11    1111|   9|          |   9|          |   9|          | 
    +----------+    +----------+    +----------+    +----------+ 

Fig. 6. Two large obstacles 

Once we find the Voronoi diagram, we obtain a number of possible paths. We can find the 
shortest path based using a flooding technique like in [6]. We built a Cell-DEVS model to 
generate the shortest path: a cell is considered to be part of a valid path if its value is lar-
ger or equal to the robot size (valid cells). A cell with more than 2 valid neighbors is 
called a node. An output node is a cell where the robot is located before moving, and an 
end node is the destination. The shortest path to the end node is based on the Manhattan 
distance. The algorithm consists of two phases: flooding and selection. The flooding algo-



rithm explores all possible paths starting on the output node in parallel, choosing only 
valid cells. When a node is found, the path is divided in parallel. If during the exploration 
two paths are crossed, only the one with the best value continues. Selection starts when we 
get to the end node; we backtrack, looking for the minimum cost according to the chosen 
criteria. In this way, we can find a minimal path, as seen in the following figure. 

       

Fig. 7. (a) Initial Voronoi Diagram; (b-c) Flooding; (d) Selection 

Our Cell-DEVS implementation encodes the distance to the objects at the beginning of 
the process (obtained by the Voronoi diagram selection presented in previous section). 
The following figure shows two examples of execution based on the original Voronoi dia-
grams. On Fig. 8.b), we see a modification, in which we have added an extra connection 
in the bottom-left part of the diagram (which affects the shortest path found). 

                

Fig. 8. (a) Shortest path (b) Shortest path with modified Voronoi diagram 

4. Modeling self-reconfiguring robots 

In this section we will show how to model self-reconfiguring robots, based on the work 
presented in [7]. Self-reconfiguring robots are composed identical modules that can 
autonomously reshape. The problem we will use as our case study is that of robotic loco-
motion in the two-dimensional plane, following a flow-like locomotion pattern. The 
model is capable of: (1) linear motion on plane of modules; (2) convex transitions into a 
different plane; and (3) concave transitions into a different plane [1]. The control algo-
rithm uses local rules and it is constructed as a cellular model. We will show the behavior 
of a self-reconfiguring robot moving in a non-structured space, avoiding the obstacles pre-



sented. Ten different states can be defined for each cell: empty (0), occupied by a non-
moving module (1), occupied by an obstacle, or occupied by a robot moving in N/S/E/W 
direction (3-9). The model uses a modified Moore Neighborhood. The model consists of 
27 rules controlling the full behavior of a cell. Each cell can be in a specific state, from a 
total of 10 states. The basic idea behind the model is that locomotion is produced from a 
two-phase mechanism, in which in the first phase each cell determines if it has to change 
its state, and the new state it will reach. On the second phase, depending on the state of 
each neighbor, a cell might decide to cancel its decision, or to go ahead as planned.  

 

                            
Fig. 9. (a) Neighborhood shape; (b) Model’s rules. 

      The following figure shows some of the execution results obtained when using a 
square topology. Particularly noteworthy is the fact that the robot climb obstacles with a 
relative height of 3 units, and when it climbs down, it follows the shape of the terrain. 

  

   

Fig. 10. Model execution. 

                                 

Fig. 11. (a) Hexagonal Neighborhood definition; (b) Model’s rules. 



The model was extended to a hexagonal topology, resulting is on the same two-phase 
mechanism, but fewer rules (21). The amount of possible states is also reduced (8). The 
following figure shows a graphical representation of the model, showing the local rules. 
The following figure shows the model representation using hexagonal Cell-DEVS in 
CD++ (notation in Fig. 7a) 

 
[reconfig-robot-hexa] 
dim : (15,45)  delay : transport   border : wrapped 
neighbors : (-1,-1)(-1,0)(-1,1)(0,-1)(0,0)(0,1) (1,-2) (1,-1) (1,0) (1,1) 
 
[reconfig] 
rule: 1 100 {[0]=0 and [4]=1 and [5]=3 and ([6]=0 or [6]=2)} 
rule: 1 100 {[0]=3} 
rule: 4 0 {[0]=1 and [1]=0 and [2]=0 and [3]=0 and [4]=1} 
rule: 0 100 {[0]=4 and [1]=0 and [2]=0 and [3]=0 and [4]=1} 
rule: 1 100 {[0]=0 and [1]=0 and [5]=1 and [6]=4} 
rule: 1 100 {[0]=4} 
rule: 5 0 {[0]=1 and [1]=0 and [2]=0 and [3]=0 and [4]=0 and [5]=1} 
rule: 0 100 {[0]=5 and [1]=0 and [2]=0 and [3]=0 and [4]=0 and [5]=1} 
rule: 1 100 {[0]=0 and [1]=5 and [2]=0 and [6]=1} 
rule: 1 100 {[0]=5} 
... 

Fig. 12. (a) Hexagonal Neighborhood definition; (b) Model’s rules. 

The following figure shows the model’s execution. As we can see, the results obtained 
are similar to those presented in Figure 12, using the hexagonal topology. Nevertheless, 
using a square topology required 18.2 seconds to travel across all obstacles, while the sec-
ond robot, modeled with a hexagonal topology required only 15.8 seconds.  

        

Fig. 13. Model execution. 

5.  Conclusion 

We have introduced the use of CD++ for applications of path planning in robotic appli-
cations. We first presented a model that correctly simulates the behavior of path-finding 
algorithms, creating a Voronoi diagram as a result. The map describes paths surrounding 
the obstacles, and indicating the distances between them, allowing determining if a robot 
can pass through the path. After, we presented an algorithm that takes the Voronoi map 



and determines a shortest path between the robot and the destination. The use of hexago-
nal topology, with fewer rules, resulted in faster movement. The cellular models presented 
show the feasibility of this approach in solving complex application using very simple 
rules, permitting observation of emerging behavior. In this way, one can develop algo-
rithms that can execute parallel searches and improve the quality and speed in the deter-
mination of the paths. 

 The use of cellular models is very efficient, as it can operate extremely quickly (in 
just a few cycles of evolution) and every cell is being solved in parallel, in contrast to 
more traditional, mathematical approaches which require more complex calculations of 
distances and angles. The downside is that it does require a full knowledge of the obstacle. 
In addition, the model does not provide a complete solution in the case where there is not 
one distinct solution path.  
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