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ABSTRACT

Performance analysis and verification of Cyber-Physical Systems (CPS) is of utmost importance due to the
cruciality of the decision making in such systems. Therefore, modeling can be beneficial especially for
issues related to the tight coupling between computational and physical parts. In this work, we utilize the
extensive research on the simulation and model-checking for designing computational-physical interactions
in the context of CPS. We also propose an action-level model-driven activity modeling approach based
on DEVS. We employ time intervals (TIs) to govern communication between computational and physical
components at the level of actions. We extend the activities metamodel to instantiate activities suitable for
time-critical cyber-physical systems. We create a DEVS-Suite generic and polymorphic library to simulate
these models conforming to the parallel DEVS formalism. We demonstrate with a smart vehicle intersection
model and discuss some verification capabilities.

Keywords: Behavioral Specifications, Cyber-Physical Systems, Model-Driven Engineering, Parallel
DEVS.

1 INTRODUCTION

In Cyber-Physical Systems (CPS), the system can be recursively built upon smaller parts that are much
simpler to develop, operate, and maintain. This method of incremental construction ultimately is aimed
at achieving correctness through restraining behavioral complexity (Sztipanovits et al. 2011, Derler, Lee,
and Vincentelli 2012). In the literature, concepts and formalisms are extensively discussed to establish
the basis for systems to be designed in such disciplined and accurate manners utilizing modularity. Some
formalisms allow models to be specified separately or collectively based on component and composition
concepts (Zeigler, Praehofer, and Kim 2000, Giese and Burmester 2003, Alur 2015). These definitions, as
well as their other corresponding incarnations, are shown to be key for designing CPSs (for an example see
Mosterman and Zander 2016).

Inherent in any CPS is heavy interaction among decision points in some computational world and their
interacting components in the physical world. The nature of such a relationship is tight, making the flow of
information central in both direction, from computational to physical and the other way around. A direct
implication is that coordinated interactions must satisfy both logical and physical rules. The immersion of
computational consequences on physical environment denotes one direction of the relationship while the
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other direction is denoted by the information observed in the Cyber parts. The relationship, in its broader
sense, is considered from multiple perspectives beside the direction. Multiplicity and containment are two
important examples of relationship properties by which complexity of such systems can be determined.
Within the context of CPS, a specific type of relationship is also considered where one end is the physical
entity. The broader properties can be specialized for this specific type in order to ensure the correctness
especially for critical interactions.

Timing is a crucial aspect in CPS. Major difficulties are caused in CPS due the physical nature of time
(NIST 2016) which is inherent and yet cannot be controlled. Operations of some computational and physical
entities are not inclined to an isolation of uncontrollable phenomena as physical time passes. The impact
of the overall performance of system components can be affected to a larger degree relative to the variety
of conditions that are accompanied with the timing specifications. Any breach of the timing agreement
between the heterogeneous entities of the system may reveal threats to the entire system and therefore pose
further difficulties.

The seclusion of timing in modern software as well as hardware systems has led to a major deficiency for
time-critical CPSs. Much of the processes design is currently performed on the basis of as fast as possible
execution with as much time granularity that can be afforded. Therefore, abstracting out the time aspect
significantly is evident in order to achieve an optimal or even a satisfying result. However, in the critical
stages of system design including validation, some computation may turn out to be not useful and possibly
at the expense of some others. A late execution may not be valid and may even cause a serious damage. The
validity of taking unsanctioned actions may not hold under some timing constraints.

Several concepts have been introduced in the theory of modeling and simulation in order to inherently
account for timing needs. These concepts, such as elapsed time, deadlines and time intervals, are very
beneficial and their importance increases symmetrically relative to the cruciality of the CPS. In this work,
we attempt to work on the assimilation of the system-theory definitions toward better accommodation of
modern system design concepts as manifested by the CPS. An action-level modeling approach is introduced
with an emphasis on actions constrained with time invariant for real-time environment. The conformance of
the developed models is improved through meta-modeling in which the higher concepts are addressed at a
higher level of abstraction when possible. A model-driven approach is then attained for the behavioral speci-
fication for model components at the individual and composite levels. The proposed approach makes a clear
distinction between actions for the logic associated with the computational entities and their interactions
with physical entities.

Thus, it is important to characterize actions in the CPS to appropriately account for their consequences.
Overall, actions may be performed at any point in time for different purposes subject to acceptable and pos-
sible time granularity. Some of these actions only take place in the computational part of the system, others
in the physical part only. An example for the former can involve any pure computations. The latter can
involve physical operations and responses. Another set of actions includes the interaction between the com-
puting environment and the physical parts. We characterize these actions to be actuating and sensing actions.
This set of actions is crucial in the context of CPS since they deal with coupling between computational and
physical parts as shown in Figure 1.

We begin by presenting some of the necessary background with respect to the underlying formalisms of
this work, that is, brief background is given about P-DEVS, RT-DEVS and ALRT-DEVS, all of which
are targeted for simulation. To support verification, instead of validation, the Finite-Deterministic DEVS
(Hwang and Zeigler 2006) is developed. This is a DEVS variant for model-checking. More recently, the
Constrained DEVS is developed. It targets the underpinning non-deterministic and stochastic aspects of
CPS (Gholami and Sarjoughian 2017). Background is also given for timed automata formalism. We follow
that with a discussion of the existing works with a focus on model-driven DEVS-based methodologies for
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Figure 1: Actions in the CPS are characterized into four types. The types in grey are crucial from a CPS
standpoint since they are akin to the tight coupling between cyber and physical parts. Actuating actions, for
example, can impact the physical environment directly and therefore their consequences are critical.

addressing similar problems that can be applied to CPS. Then, we present the action-level specification
for modeling CPS. Before concluding, we demonstrate the approach by modeling the dynamics of a smart
intersection with a multiple relays and a controller. A discussion on the verification of these models is also
presented.

2 BACKGROUND

There are many extensions of classic DEVS. In every one, the extensions and variants maintain some of
the key concepts and properties while extending or replacing them for certain needs. A prime example
is parallel-DEVS where atomic and coupled models can execute simultaneously as compared with classic
DEVS. Several extensions are conducted with respect to the time advance function to provide capabilities
such as real-time Real-Time DEVS (RT-DEVS) which uses time-window (aka Time Interval (TI)) (Wang
and Cellier 1990) and actions. This work relies on Action-Level Real-Time DEVS which introduces real-
time statecharts for modeling actions. We will describe these briefly as well as other related formalisms in
the following sub-sections.

2.1 Parallel DEVS

The set-theoretic specification of the atomic model is an abstract representation of a system component.
The formal specification can be defined independent of any specific platform, language, and simulator.
The Parallel DEVS (P-DEVS) was proposed by (Chow and Zeigler 1994) to provide both conceptual and
execution benefits for the modelers. The basic formalism of P-DEVS model is an algebraic structure –
atomic model = (X ,Y,S,δext ,δint ,δcon,λ , ta). X is the set of input events. S is the tuple of sequential states
with at least two variables which are sigma (σ ) and phase. Y is the set of output events. δint and δext are
the internal and external transition functions, respectively. δcon is the confluent transition function which
can be specified to handle the collision between external and internal events. λ is the output function which
transforms S into Y at specific time instances. ta is the time advance function which maps the internal state
into a positive real number using elapsed time since last state transition.
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2.2 Real-Time DEVS (RT-DEVS)

This extension is developed to allow for real-time simulation of the RT-DEVS models (Zeigler, Praehofer,
and Kim 2000). The simulator of the parent formalism is extended in such a way to account for the in-
teraction with the real environment (Stankovic 1988). The definition of the atomic model in RT-DEVS is
extended with interval time and activity mapping functions. A set of activities with timing constraints is
defined. In the external transition function, the total state set is defined where the elapsed time is bounded
by 0 and the time interval for the state, ti(s) where s ∈ S, inclusive. Models of this nature need to be prop-
erly created to account for the real-time definitions. The execution time is constrained by lower and upper
bound that are imposed on the activity to map the state into a Cartesian product of two sets of non-negative
real numbers and infinity inclusive, ti : s → R+

0,∞ ×R+
0,∞. It is important to note that the execution time is

non-deterministic due to the limited control imposed by the physical environment. It is also important that
the evaluation of the computational time along with their associated variables has to be proper to insure the
validity of the model.

2.3 Action-Level Real-Time DEVS (ALRT-DEVS)

This extension has been proposed by (Sarjoughian and Gholami 2015) to support defining real-time con-
straints at the action level from both modeling and simulation point of views and supported with the concept
of locations defined for real-time statecharts. That is, the modeler will be able to develop a real-time model
and, under certain conformance condition, this model will be simulatable by the provided real-time simula-
tor in which the abstract simulator has been extended for real-time software system. It fundamentally lies
on the basis of the parallel and real-time DEVS as well as real-time statecharts.

The notion of time in ALRT-DEVS is defined based on both theoretical and pragmatic perspectives. A
unified concept with formalized specification for logical-time, real-time and physical-time underlie ALRT-
DEVS formalism. The time in models as well as their simulators is concertized according to a physical
clock where the distinction between physical-time, real-time, and logical-time, is well-established. The
physical time denotes the time in the actual (physical) environment in which infinite accuracy and precision
is encountered. All other timing schemes include a physical signal (NIST 2016). Therefore, real-time is an
approximation of physical-time but not equal to it due to uncontrollable factors in computing platforms. The
logical-time is an abstract computable quantity to provide the basis by which the software logical clock can
proceed in an increasing manner. It only ideally has the properties of the physical clock.

First, state variables are characterized to be primary and secondary variables. The primary state variables
are the phase and the sigma σ by which the next state is determined in P-DEVS models generally. The
secondary state variables are defined as needed to denote for specific system dynamics. The notion of
location is therefore defined to enable different kind of transition on the basis to the state change whether
it is associated with primary or secondary state variable, or possibly both. Transitioning between different
locations is usually associated with which guards are specified in terms of secondary state variable. Actions,
which are the fundamental units in the scope of the current work, can be then specified for a location.

2.4 Timed Automata

The theory of timed automata (Alur 1999) explicitly admits the notion of time by which it becomes suitable
for the modeling and analysis of real-time systems as opposed to basic logical model checking. The behavior
of such systems can be modeled in state-transition formal notations. The notation is then annotated with
timing constraints using clock variables. Further restrictions can be therefore imposed on the state space in
order to allow for the verification of some system properties under the given timing constraints. A transition
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system is defined by a set of states, a set of initial states, a set of labels or events, and a set of transitions.
The timing constraints are then introduced with a finite set of real valued clocks for finite graph where the
vertices are called locations and the edges are called switches. The locations are associated with some time
invariant to constrain the elapsing of time in that location. The switches are instantaneous.

3 MODEL-DRIVEN DEVS-BASED METHODOLOGIES FOR CPS

There have been several DEVS-based approaches that are suitable for use in CPS. In (Sarjoughian, Gho-
lami, and Jackson 2013), a new model for interacting an ALRT-DEVS with a physical system is proposed.
The simulation is composed with a computational-physical system. This kind of systems can be considered
a cyber-physical system if it offers the designated capabilities for CPS. The DEVS-Suite simulator is ex-
tended to support the capability of communication between the computational and the physical parts of the
system. The experiment is devised with a tight coupling connection to ensure the validity of the proposed
model under hard real-time constraints. The connection between a controller and multiple relay phidget is
thoroughly conducted under different setting to examine the turnaround time for the switching actions. The
role of examining such a hard constraint is complementary to the logical-time constraints. And therefore,
together they form a stronger basis for carrying out different experiments about the CPS under study.

There are many other works that do not directly address CPS, however, they can be utilized toward that
direction since the problems, in which they try to address, are akin to their counterparts within CPS context.
In (Risco-Martín et al. 2016), although the work is not directly targeting CPS, the authors proposes a model-
driven hardware-in-the-loop method to incrementally obtain embedded hardware starting with their software
representations. The methodology is based on the DEVS formalism. Instead of extending the simulator, as
proposed in (Hong et al. 1997), the hard real-time constraints are specified in the parent formalism through
star models. Star models are an interface for atomic models to allow for building an abstract models for the
concrete hardware ones based on the concept of transparent simulation environment. The elevator circuit
real-time model (Zeigler, Praehofer, and Kim 2000) is designed and implemented with the adder as an HIL
component.

Nonetheless major problem still persists in modeling CPS notwithstanding the ongoing efforts in languages,
notations, and tools (Derler, Lee, and Vincentelli 2012). The CPS sensitivity to timing poses challenges.
Time-accurate approaches are significant in the modeling of CPS. Regardless of the usefulness of modeling
languages such as (OMG 2012, OMG 2016), the missing semantics and the weaker notion of time are two
major causes for not using them in time-critical system design.

4 ACTION-LEVEL DEVS SPECIFICATION USING ACTIVITY MODELING

In a previous work (Alshareef and Sarjoughian 2017), we proposed establishing a DEVS foundation for the
activity modeling and simulation. However, the time notion was limited to support a basic simulation step
to somehow correspond to the debugging step. We extend this notion of time to be supported at the action
level. That is, the action can be defined with time constraints to elevate the activity modeling further toward
time-accurate activities.

4.1 CPS Activities Metamodel

The metamodel of the UML activities (OMG 2012, Eclipse Foundation 2016) is circumscribed and then
extended with the basic necessary definitions to elevate the support for the concept of state by providing
a basis for their conformance to the DEVS formalism at a higher level. The metamodel consists of three
major elements. The first element is the action in its broader sense to support modeling at the action level.
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The second major element is the control node to support defining control logic. The last but not least is
the activity edges where they can also be specialized to be control and object flows. Their mapping to
DEVS has been discussed thoroughly in the previous work (Alshareef and Sarjoughian 2017). It should
be noted that the performed process is not merely transformation from one form to another, but rather, we
advocate grounding activity modeling with the rigorous formal specification where we argue that the DEVS
formalism is suitable candidate for this purpose. On the one hand, the definition of state with the strong
notion of time can be considered as a fundamental basis for the proposed modeling approach. On the other
hand, the modeler can also benefit from the behavioral modeling constructs that are provided within the
activity metamodel. Therefore, the action is considered as an abstraction of its corresponding atomic model.

The action is specialized from activity node which also defines the super-type for the control nodes. The
control and object flows are both specialized from the activity edge. The edges are instantaneous. For
the action, we define time boundaries based on DEVS temporal structure. The ongoing action can have
an elapsed time. Therefore, it can be interrupted at any point of time upon receiving some external input
event. The elapsed time also indicates the completion of the action. These boundaries are defined in terms
of the time advance function. Their corresponding values at the time base may differ without violating
their time invariant. This is crucial especially in the modeling of CPS since actions may not be always
completed and therefore further considerations should be taken during the modeling process. With the
existing DEVS metamodel (i.e., Sarjoughian and Markid 2012), we can incorporate these definitions with
the DEVS metamodel at the higher level (see Figure 2).

Atomic Model

Action

CPS Action Cyber Action Physical Action

State

δconf

δext

δint

λ

Time Advance

Coupled Model Activity

Control Node

Activity Node

* *

*

1

11

1

Actuating Action Sensing Action

SigmaPhase

P-DEVS Activities for CPS

Figure 2: The activities metamodel is circumscribed and extended with CPS action. The DEVS metamodel
is also linked with the activities metamodel at a high level to establish the grounding for the P-DEVS
modeling and simulation of the CPS activity. Some cardinalities are visually hidden for simplicity. The
elements with italic are abstract super-type elements.

4.2 The modeling and Simulation of Smart Intersection

The process of interest is a smart intersection where multiple cars may approach the intersection from
multiple directions. There are many crucial time-sensitive requirements that have to be accounted for in this
model in various modeling environments. From a physical point of view, cars can approach the intersection
from one and only one direction. There are also temporal logic requirements as well where the car has to
approach the intersection before it enters it. Such hard real-time constraints would go beyond the logical
constraints toward the physical environments and the encountered limitations when interacting with physical
aspects such as time latency from dispatching events to a physical relay until getting the acknowledgment
back. Each of these aspects is crucial at the design stage of the CPS.
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We have covered the logical aspects at the activity level in the previous work. We discuss the temporal
aspects to some extent in this work. And we postpone the discussion on a real-time extension of the approach
for the subsequent Section 5.

In Figure 3, we simplify the process of the smart intersection by creating a yet another abstraction of it
at the action-level in the collective activity. The actions are timed in such a way to ensure the safety by
accounting for ramifications. The actions of approaching an intersection can be in some active state in
parallel. However, we assume that the intersection must allow the flow for one direction only. Otherwise,
accident happens and gets reported to the monitoring model thereafter. Parallel entrance to the intersection
can happen only for vehicles approaching from the same direction. These constraints are mere examples
and yet further elaborations can be made by the modelers throughout the model development life cycle. The
goal is to establish the basis for modelers by taking these models and interpreting them by the simulator
to conduct the necessary analysis and verification for the models based on their specification. The state
space of the coupled model consists of all permutations for all the possible states of the actions thereof. We
will discuss some possibilities of verifying such models in Section 6. For the simulation, after parsing the
previous activities, they get interpreted as an activity digraph in the DEVS-Suite simulator (see Listing1).
This code snippet shows reading activity nodes and instantiating the atomic models thereafter.
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Figure 3: The activities for modeling the smart intersection including the intersection, the relay, and the
control.

The external transition function for the atomic model that represents the decision node is shown in Listing
2. The semantics of the decision node has been specified in its general form with respect to the UML.
Therefore, it is a domain-specific abstraction in the P-DEVS which yet generally represents the correspond-
ing semantics of the decision node in handling incoming flows. First, the atomic model is initialized in a
passive state for unbounded time. Then, upon receiving input events, the model reacts to these input based
on the condition associated with the incoming flow which is mapped into a coupling and input port in the
corresponding atomic model. After checking the input and the condition, possibly along with the other state
variable, the next state is determined. The output is sent out thereafter when applicable and then the internal
transition is performed.

This kind of modeling and simulation falls into the realm of methods for analyzing and designing CPS. We
consider the modeling and simulation in (Damodaran and Mittal 2017, Alur 1999) to be relatively part of
this taxonomy. These approaches focus on the logical aspects and the temporal logical ones whether it is
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based on the DEVS formalism as in (Damodaran and Mittal 2017) or on the notion of clock variables with
real values such as in (Alur 1999).

Listing 1: The activity interpretation in DEVS-Suite
f o r ( A c t i v i t y N o d e node : nodes )

i f ( node . ge tType ( ) . e q u a l s ( NodeType . ACTION ) ) {
ViewableAtomic a t om ic = new Act ionAtomic ( node . getName ( ) , s t e p ) ;
a t o m i c s . add ( a to mi c ) ;
map . p u t ( node , a t om ic ) ;

}
e l s e i f ( node . ge tType ( ) . e q u a l s ( NodeType . DECISION ) ) {

ViewableAtomic a t om ic = new Dec i s ionAtomic ( node . getName ( ) , s t e p ) ;
a t o m i c s . add ( a to mi c ) ;
map . p u t ( node , a t om ic ) ;

}

Listing 2: The external transition function for the decision node
p u b l i c vo id d e l t e x t ( double e , message x )
{

C o n t in u e ( e ) ;

i f ( p h a s e I s ( " p a s s i v e " ) )
f o r ( i n t i =0 ; i < x . g e t L e n g t h ( ) ; i ++)

f o r ( S t r i n g i n P o r t : i n P o r t s )
i f ( messageOnPor t ( x , i n P o r t , i ) )
{

j o b = x . g e t V a l O n P o r t ( i n P o r t , i ) ;
i n p u t = i n P o r t ;
h o l d I n ( " e x e c u t i n g " , p r o c e s s i n g _ t i m e ) ;

}
}

5 INTERACTING WITH REACTIVE COMPUTATIONAL-PHYSICAL SYSTEM

One of the major challenges in modeling CPS is the integration of the notion of time with the current frame-
works and tools (Derler, Lee, and Vincentelli 2012). ALRT-DEVS (Sarjoughian and Gholami 2015) uses
the notion of time windows to recognize the uncontrollable factors in which imperfect physical environment
operates. In the following work (Sarjoughian, Gholami, and Jackson 2013), the focus is on the actuat-
ing actions within the context of a CPS action. The experiment was conducted to closely investigate the
turnaround time of the performed action on the physical entity which is a phidget with four relays. The
experiment has been conducted within multiple settings to investigate the property in the real-time. We note
that this taxonomy of modeling is distinct from the previous one since it focuses on dissecting the real-time
properties during the run-time of the simulation with real-time constraints. That is, TIs are introduced at the
action-level of the modeling and enforced thereafter by the extended simulator where the synchronization
between the cyber and physical actions takes place. We consider it to be a cyber-physical modeling and
simulation for CPS which can be suitable for simulation with hardware-in-the-loop. It is not restricted to
computational aspect of CPS. The time constraints are strictly enforced on the actuating and sensing actions.
For example, an actuating action has to take place within a certain time window, otherwise it is considered
to be invalid. Missing the execution of actuating actions, and also the sensing ones, may result in loss of
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the fidelity of the model depending on the critical situation of the system. Some systems may have less or
more tolerance than the others based on the domain and potentially other variables in which the time can
play a critical role. The important aspect from a modeling perspective is that such properties are rigorously
accounted for in a formal specification and well-formed models.

Since we look closely into actions, this taxonomy applies to the CPS actions, that is, the actuating and
sensing actions where interactions between the computational and physical worlds take place. The time
windows are enforced on these actions given some time restrictions (i.e., time invariants are specified for
these actions). We note that a connection can be established with the taxonomy discussed in the previous
section (see 4.2) to enable the actuating and sensing actions to take place in real-time. For example, the
actuating actions can be employed for the intersection to control the relay of the traffic flow or signals
by sending an actuating actions. Also the sensing actions can take place by detecting the moving vehicles
toward the intersection in order to perform the necessary computations and send the corresponding actuating
actions thereafter. Both type of actions can only take place under hard real-time constraints.

6 VERIFICATION OF THE CPS ACTIVITIES MODELS

Verification of CPS activities is achieved to some degree by significantly bounding the state space that
defines a model’s dynamics. A key goal is to sacrifice, as little as possible, both the rigor and expressiveness
of the model as measured. Although this places restrictions on the degree to which a model can be simulated,
this leads to achieving formal verification through model checking (Gholami and Sarjoughian 2017).

In such a simulation-based verification approach, the constructed model can be helpful for ensuring various
temporal properties particularly considering that cyber-physical systems are non-deterministic and stochas-
tic. The goal is to use modeling of activities given a set of a-priori defined atomic models behaving as
expected. It also enables the use of other verification techniques. Many scenarios are drawn to verify the be-
havior of the activity after being interpreted by the DEVS simulator. For example, in the smart intersection
model (see Section 4.2), we can check if the model corresponding to decision node reports a crash when two
cars are injected approaching from the same direction. This means that model is not behaving correctly ac-
cording the problem specification. We also can check if the car gets directed to the correct destination after
passing through the intersection. We can also check if the crash gets reported by simply injecting two cars
into the intersection at the same time. These scenarios are checked, for example, by thorough disciplined
experimentation. The DEVS-Suite simulator uses and expands the notion of experimental frame (Rozenblit
1991) where defined temporal properties can be verified.

6.1 Reasoning about temporal behavior

We aim to build an integrative environment to allow the development of activities as standalone behavioral
models and also enable further reasoning capabilities about them. The reasoning can take different forms.
However, it is quite common to be used in the form of model checking to facilitate various forms of knowl-
edge representation. From this point of view, the knowledge is represented in the form of a DEVS model.
On the other hand, the reasoning capabilities is also used to perform the model checking after imposing
restrictions on the state, timing, ports, and external/internal events.

Thus, history of the causal effects is computed using an Answer Set Programming (ASP) tool (Bartholomew
and Lee 2014) for a fixed integer m that represent the length of the history. The tool itself is aimed at the
first-order logic; however the introduction of the history makes it possible to deduce about some temporal
properties. The formulation of the ASP program takes into consideration bounded ranges and sends them out
to the model as well as the transducer. An example of that could be the phase state variable of the intersection
and some direction toward it. The rule that describes the causal effects considering the temporal aspect can
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be formulated as i : phase(pre−eastbound) = occupied → i+t : phase(Intersection) = occupied where i is
the timestamp and t is determined time advance for the phase occupied in the pre-eastbound atomic model.
This rule can be examined within some defined finite m under the imposed restrictions on the state space and
specifically the time advance. Other properties can be also checked in a similar manner. Outputs of the ASP
program are generated and fed to the model and then checked against by the transducer for the verification.
The following rules describe the effects approaching from the pre-eastbout (PE) and pre-northbound (PN)
actions and their rules with respect to the intersection node (I):

i : phase(PE) = occupied → i+ t : phase(I) = occupied
i : phase(PN) = occupied → i+ t : phase(I) = occupied
i : location(x) = PE → i+ t : location(x) = I
i : location(x) = PN → i+ t : location(x) = I
i : location(x1) = I ∧ location(x2) = I ∧ x1 ̸= x2 → i+ t : phase(ReportCrash) = active

Based on the previous rules, we can formulate questions about some basic facts such as:[
1 : phase(ReportCrash) = active∧

(
0 :

∨
l

location(x) = n
)]

→ 0 : location(x) = I

The rules and the entailment question can be both represented in the language of F2LP (Lee and Palla 2009).
A future work is considered on providing some action-level verification capabilities for behavioral models
that are specified while recognizing the notion of action.

7 CONCLUSION

Substantial effort is required to bring definitions from the DEVS formalism and its variants along with their
underlying simulators and model-checkers for analyzing and designing cyber-physical systems. We expect
that the process can be advanced further by employing concepts from model-driven approaches where they
have been proven useful in multiple occasions for DEVS modeling within different variants (Cetinkaya,
Verbraeck, and Seck 2011, Moallemi and Wainer 2010). The promising capabilities of the employment
of Model-Driven Engineering (MDE) concepts can be achieved with a proper conformance to the Model
Driven Architecture (MDA) meta-layers and the DEVS formalism. Combination of MDA and DEVS stands
to benefit the process of model development by accounting for some domain-specific knowledge added to the
general-purpose DEVS model abstraction (Sarjoughian, Alshareef, and Lei 2015). In this work, our attempt
can be viewed as a contribution to the effort required to concretize behavioral abstractions. Therefore, further
effort is required to account for activity-based behavioral specification relative to the MDA modeling layers.

We have demonstrated how design of CPS can be approached with the help of activity-based modeling in-
corporated into system-theory and DEVS in particular. The use of the P-DEVS formalism and its underlying
simulators as a platform for CPS is effective due to the inherent timing and modularity enabled by benefiting
UML behavioral activity modeling and grounded with ALRT-DEVS modeling formalism. In contrast, many
existing approaches do not account for the notion of time inherently and therefore leading to possible incon-
sistency and conflicts unless these issues are resolved at the implementation level. Furthermore, modularity
can also serve as a means for the scalability at structural and behavioral of cyber-physical systems that have
strong non-determinism and stochastic traits.

Another major advantage of this work is overcoming the issue of ending with a large fUML model that are
hard to develop. This problem has been realized in the (OMG 2016). It is the reason for not creating the
models of the execution model in activities. Instead, they have been specified in their corresponding Java
code because significant activities quickly become too large to handle. A recent work has been proposed to
address it (Bedini et al. 2017). Richer fUML models tends to become large which may lead to other issues
with respect to scale. As discussed in the smart intersection example, the activity models have been made
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significantly richer to handle complex time-critical dynamics in the smart intersection model with relatively
fewer elements due to the DEVS formal grounding.
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