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ABSTRACT 

We propose an approach to addressing questions about the 

validity of a simulation model and we develop this 

approach in detail with respect to two specific objectives. 

The first objective is to decide when a successful test 

conducted on a model of a system justifies increased 

confidence in the system. The second objective is to decide 

when a model may be replaced by another model such that 

successful tests on the replacement increase our confidence 

in the system. The basis of our approach is a probabilistic 

interpretation of validation and we give specific definitions 

in terms of the response function of the system and its 

models. Within this approach, we derive conditions under 

which confidence in a model justifies it as a surrogate in 

testing and in similar conditions under which a model may 

be replaced by another. 
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INTRODUCTION 

Extending the work of Zeigler [1,2] in developing a theory 

and framework for modelling and simulation, Traore and 

Muzy [3] formalized experimental frames to describe the 

experimental contexts in which a simulation model is a 

valid representation of some real or imagined system. 

Implicit in this formalization is the idea that we can state 

precisely the experimental frames in which a model is valid. 

Though in principle this description exists, it is more 

common to assert an intended use for the model and take 

this as the basis for deciding what experiments will yield 

valid results. The key difference between experimental 

frames and intended use is that the experimental frame is 

crisply defined: an experimental plan either falls within its 

scope or does not. Intended use is an imprecise statement 

about an incompletely understood set of experimental 

frames that are meant, but have not been conclusively 

proven, to be valid scopes for the use of the model.   

This distinction between experimental frames and intended 

use is immediately relevant to two related problems. The 

first problem is to what extent a successful test performed 

on a model informs us about the likely outcome of the same 

test performed on the real or imagined system. This 

problem emerges routinely in areas of engineering where 

simulation is used to supplant live testing and training: 

examples include simulated testing of nuclear weapons [4] 

and simulators used for training pilots and tank crews [5]. 

The second problem is to what extent one model can be 

replaced with another within a given experimental frame. 

The desire to replace one simulation model for another also 

occurs frequently in simulations of engineered systems. A 

common motivation for replacement is that one model is 

more computationally tractable than another and thereby 

enables more experiments within a fixed budget of time and 

money. Another motivation is software obsolescence, 

which happens when the supplier of a simulation model 

ceases to support an old version of its software and, in 

effect, forces a transition to some newer version.  

Regardless of the motivation, a primary justification for 

using a model or its proposed replacement is the model’s  

intended use. A central question is whether the intended 

uses of the model and its valid uses coincide in the 

experimental frames of interest. The direct answer to this 

question comes from extensive validation. If the model is of 

a real system, then this involves very costly and time 

consuming comparisons of the model’s behavior with that 

of the real system. If the model is of an imagined system, a 

situation that occurs early in an engineering process before 

prototypes have been built, then validation by d irect 

comparison is impossible and we must rely on weaker 

evidence (see, e.g., the discussion by Sargent [6]).  

We propose that questions of a model’s suitability as a 

surrogate for testing and questions about replacing one 

model with another can be cast as probabilistic inquiries. 

One outcome of this approach is that we can determine 
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conditions for which a successful test on a model increases 

our confidence that the same test on the real or imagined 

system will also be successful. Another outcome is 

theoretical support for the intuitively appealing idea of 

validating one simulation model by comparing it with 

another that is known to be valid. In this case, we provide 

conditions for which a successful test with the replacement 

model increases our confidence that the same test on the 

real or imagined system will also be successful. 

The basis for our approach is the response functions of the 

models and system. The response function is sufficient to 

capture the initial conditions of a test, the applied stimulus, 

and the observed behavior. Consequently, it describes the 

essential features of a model and system when asking about 

validity with respect to an experimental frame; that is, 

whether the model is essentially indistinguishable from the 

system (real or imagined) with regards to the input, output, 

and initial states that constitute a set of tests or experiments. 

Within this very simple setting, we interpret validity as a 

probabilistic statement about the intersection of response 

sets within an experimental frame. These probabilistic 

statements are naturally tied to the intended use of a model 

when we interpret probabilities as measures of confidence. 

Our approach could be usefully cast in any number of 

frameworks for statistical inference, though we do not 

attempt to do so here. Nonetheless, a clear link to these can 

be seen in our underlying assumption of fixed space of 

behaviors for the model, system, and experimental frame 

and that limited samples of this space are used to infer the 

likelihood (or, rather, the increase in likelihood) that some 

future sample will fall within an intersection of interest. By 

putting our ideas forward in a rudimentary fashion, we hope 

to make the underlying assumptions transparent and reserve 

for future work applying more powerful methods of 

statistical inference. 

VALIDATION AND INTENDED USE 

We describe a system with a set of initial states 𝑄, a set 𝑋 

of input trajectories, and a set 𝑌 of output trajectories. The 

system’s response function 𝜌(𝑞 , 𝑥) = 𝑦 maps each initial 

state and input trajectory to an output trajectory. Consider 

the special case of a large system < 𝑄, 𝑋, 𝑌, 𝜌 > and a small 

system < 𝑄 ′,𝑋′, 𝑌 ′ , 𝜌′ > such that 𝑄 ′ ⊆ 𝑄, 𝑋′ ⊆ 𝑋, and 

𝑌 ′ ⊆ 𝑌. The small system is embedded in the large system 

if 

𝜌(𝑞′, 𝑥′) = 𝜌′(𝑞′, 𝑥 ′) 

for all 𝑞′ ∈ 𝑄 ′ and 𝑥′ ∈ 𝑋′. (This is a special case of an I/O 

functional homomorphism from the large system onto the 

small system; see [2,7]). 

In practice, we are concerned with experiments or tests that 

encompass just some of the possible or desirable behaviors 

of the large system. These tests of interest are the 

experimental frame, which for our purposes is described by 

a subset 𝐸 of 𝑄 × 𝑋 × 𝑌 . The functions 𝜌 and 𝜌′ define sets 

of triples of input, output, and initial state that are realizable 

by the large and small system respectively, and we use 𝜌′ 
and 𝜌 to indicate both the function and the corresponding 

set as the intended interpretation will be clear from the 

context. If tests in 𝐸 are to be feasible for the large system 

then we would require 𝐸 ⊆ 𝜌, and for the small system to 

be useful as a model in these tests we would require 𝐸 ⊆ 𝜌′. 
This definition of the experimental frame can be interpreted 

as the result of applying an experimental frame as described 

by Traore and Muzy [3] to the system; the distinction is not 

material to what follows and so, with some abuse of the 

term, we use experimental frame to refer to the set 𝐸. 

If the experimental frame is a subset of 𝜌′ and the above 

embedding exists then any behavior we observe in the 

model will also be observed in the system, but the reverse 

need not be true. Consequently, if we conduct a test on the 

model by placing it into an initial state, applying an input 

trajectory, and observing the response, then we know that 

the same test conducted on the system will produce the 

same result. This assurance, or belief in this assurance, is 

the basis for using models in tests and for design. With 

complete knowledge of the experimental frame, system, 

and model, the question of validation is reduced to showing 

that the model is embedded in the system for all objects in 

the experimental frame. If it is then tests of the model 

anticipate the outcome of tests of the system. Moreover, we 

could answer the question of a model 𝑀′ being a suitable 

replacement for a model 𝑀: if 𝑀  is embedded in the system 

and 𝑀′ is embedded in 𝑀, then 𝑀′ is also embedded in the 

system and we would conclude that 𝑀′ is a valid 

replacement for 𝑀. 

In practice this is impossible because we do not have a 

precise, accurate, or complete definition of the experimental 

frame, system, and model. We do not know with certainty 

what behaviors can be realized by the models or the system, 

and we are incapable of asserting how either will respond to 

all relevant pairings of input and initial state. Indeed, if we 

knew the answers to these questions then we would have no 

need for the models as engineering tools. Worse still, we 

cannot completely characterize the experimental frame. 

Stimulus to the model is very likely to come from another 

poorly characterized system or model, and it might even be 

a function of output from the model itself, such as when 

two models are connected in a feedback arrangement. 

Intended use 

Faced with these uncertainties, we rely on what a model is 

intended to do rather than what a model is known to do. 

The more we know about a model and system, the greater 

our confidence in the statement of intent, but the intended 

valid uses of the model are almost always a superset of the 

known valid uses. From this perspective, we can interpret 

intended use as the belief that the model is valid for a set of 

experiments. A concrete definition of this belief is a 

conditional probability that the system will exhibit some 

particular behavior given that the model exhibits this 

behavior. To develop this definition, we proceed as follows. 



Let 𝑆 =< 𝑄, 𝑋, 𝑌, 𝜌 > be the real (or imagined) system and 

𝑀 =< 𝑄′, 𝑋′, 𝑌′, 𝜌′ > be another system (e.g., a computer 

program) that we wish to use as a model of 𝑆. By calling 𝑀 

a model of 𝑆 we express a hope that 𝑄 ′ ⊆ 𝑄, 𝑋′ ⊆ 𝑋, 

𝑌 ′ ⊆ 𝑌, and 𝜌′ ⊆ 𝜌 but we do not know that this is the case. 

Moreover, we do not necessarily know what elements 

constitute 𝜌′ and 𝜌; again, if we did then we would have no 

need for models and tests. 

It is possible that there are elements in 𝑄 × 𝑋 × 𝑌 , where 

the system exists, that are not in the set 𝑄 ′ × 𝑋′ × 𝑌 ′, where 

the model exists, and vice versa. Therefore, to examine 

where the model and system intersect it is necessary to 

consider the set (𝑄 × 𝑋 × 𝑌) ∪ (𝑄 ′ × 𝑋′ × 𝑌 ′) of all 

possible behaviours. This is illustrated in Figure 1. Suppose 

we select a test at random from this set. As a technical 

convenience, we will consider the case where all sets under 

consideration are finite. The probability 𝑃(𝑀) that 𝑀 will 

exhibit the selected behavior and pass the test is the 

probability that the test exists in the set 𝜌′, and the 

probability 𝑃(𝑆) that 𝑆 will pass the test is defined in the 

same way. These probabilities are 

𝑃(𝑆) =
|𝜌|

|(𝑄 × 𝑋 × 𝑌) ∪ (𝑄 ′ × 𝑋′ × 𝑌 ′)|
  and  

𝑃(𝑀) =
|𝜌′|

|(𝑄 × 𝑋 × 𝑌) ∪ (𝑄 ′ × 𝑋′ × 𝑌 ′)|
  .  

The probability 𝑃(𝑀𝑆) that both 𝑀 and 𝑆 will pass the test 

is 

𝑃(𝑀𝑆) =
|𝜌′ ∩ 𝜌|

|(𝑄 × 𝑋 × 𝑌) ∪ (𝑄 ′ × 𝑋′ × 𝑌 ′)|
  

and the conditional probability 𝑃(𝑆|𝑀) that 𝑆 passes given 

𝑀 passes is  

𝑃(𝑆|𝑀) =
𝑃(𝑀𝑆)

𝑃(𝑀)
=

|𝜌′ ∩ 𝜌|

|𝜌′|
 . 

The probability 𝑃(𝑆|𝑀) is the fraction of the total set of 

possible tests for which there is an embedding of 𝑀 in 𝑆 

(admitting the possibility that this space may be empty), 

and this is naturally interpreted as the likelihood that a 

successful test conducted on the model is representative of 

a successful test conducted on the system. Indeed, if 𝑀 is 

contained in 𝑆 then 𝜌′ ⊆ 𝜌 and 

𝑃(𝑆|𝑀) =
|𝜌′ ∩ 𝜌|

|𝜌′|
=

|𝜌′|

|𝜌′|
= 1 . 

In practice we cannot determine 𝑃(𝑆|𝑀) with certainty. 

Hence, our estimate of this probability is a statement about 

our confidence in the validity of the model with respect to 

the system in a given experimental frame. Stated another 

way, our estimate of 𝑃(𝑆|𝑀) is a quantification of our 

confidence in the model’s intended use. 

Conditions for valid use 

Using this probabilistic interpretation of validity, we cast 

our two primary questions as ones of revising conditional 

probabilities based on the outcome of an experiment. To 

recall, the first of these questions concerns using tests on a 

model as a substitute for tests on the system: if we perform 

a successful test on the model, under what conditions does 

this increase our confidence that the same test on the system 

will be successful? The second question concerns 

replacement: if we replace one model with another, under 

what conditions do successful tests with the replacement 

increase our confidence of a successful test with the 

system? 

As a prelude to the first question, we may consider the 

experimental frame 𝐸 ⊆ 𝑄 × 𝑋 × 𝑌 to be a specification of 

desired behaviors (e.g., a set of requirements) and the 

system 𝑆 to be a model of the desired behavior. For 

example, 𝑆 could be a design concept or prototype built to 

satisfy a set of requirements. We then ask what is the 

probability that 𝑆 exhibits some particular behavior given 

that behavior is in 𝐸. The design or prototype is valid (e.g., 

it satisfies its requirements) if 𝑃(𝑆|𝐸) = 1, which means 

that 𝐸 ⊆ 𝑆 any test of the system for a behavior in 𝐸 will be 

successful. If 𝑃(𝑆|𝐸) < 1, then there are some tests that the 

design or prototype will fail; that is, there are behaviors in 

𝐸 that are not realized by 𝑆. 

 
𝜌 𝜌′ 

𝑄′ × 𝑋′ × 𝑌′ 𝑄 × 𝑋 × 𝑌  

    

Figure 1. Unions and intersections of the set of possible behaviours of the system (thick dashed 
line), actual behaviours of the system (thin dashed line), possible behaviours of the model (thick 

solid line), and actual behaviours of the model (thin solid line). 



A simulation model 𝑀 of 𝑆 may be used for a test that is 

impractical to conduct on 𝑆. The conditional probability 

𝑃(𝑀|𝐸) is the probability that 𝑀 will pass the test and 

𝑃(𝑆|𝑀) is the probability that 𝑆 will pass given that its 

model passed. Prior to the test on 𝑀, we have an estimate 

𝑃(𝑆|𝐸) of how likely the system is to pass the test. Then we 

conduct the test on 𝑀 and obtain a positive result. Should 

our estimate of 𝑃(𝑆|𝐸) be increased?  

To describe conditions under which this is true, we first 

define a positive outcome of a test in terms of how it revises 

our estimates of probability. A successful test that a 

behavior in 𝐸 is also in 𝑀 increases our estimate of 𝑃(𝑀|𝐸) 

by some 𝑘 > 0 and, because 𝑃(𝑀|𝐸) = 1 − 𝑃(𝑀|𝐸), it 

reduces our estimate of 𝑃(𝑀|𝐸) by the same amount. The 

test does not give any information about behaviours that are 

not in 𝐸, and so our estimates of conditional probabilities 

dependent on 𝐸̅ are unchanged by the test. Similarly, the 

test gives us no new information about the relationship 

between the model and system, and so our estimates of 

𝑃(𝑆|𝑀), 𝑃(𝑀|𝑆), and so forth are unchanged.  

An example will help to clarify this model of a test. 

Suppose the set of all possible behaviors (our domain of 

discourse) is {𝑏1,𝑏2 , 𝑏3,𝑏4
}, 𝑀 = {𝑏2, 𝑏3

}, 𝐸 = {𝑏2,𝑏3, 𝑏4}, 

and our initial estimate of 𝑃(𝑀|𝐸) = 0. That is, we assume 

𝑀 and 𝐸 do not intersect. Now we select 𝑏4 from 𝐸 and 

perform a test for its inclusion in 𝑀. Of course, this test is 

negative and so our estimate of 𝑃(𝑀|𝐸) is unchanged. Next 

we select 𝑏3 from 𝐸 and perform a test for its inclusion in 

𝑀. This test is positive, indicating that 𝑀𝐸 ⊇ {𝑏3} and so 

we revise our estimate upward to 1/3. Lastly, we select 𝑏2 

from 𝐸 and perform a test for its inclusion in 𝑀. Again, the 

test is positive and (because this is the last element in 𝐸) we 

know that 𝑀𝐸 = {𝑏2, 𝑏3
} and that 𝑃(𝑀|𝐸) = 2/3. For the 

sake of technical simplicity, we assume that such a process 

of upward revision always converges to the actual 

conditional probability. 

The following probabilities are essential to what follows : 

𝑃(𝑆̅|𝐸)  =  1 − 𝑃(𝑆|𝐸), the probability that 𝑆 will fail a 

test, and 

𝑃(𝑀|𝑆̅), the probability that 𝑀  has a behavior that 𝑆 does 

not 

and so is the following lemma. 

Lemma 1: If 𝑃(𝑀|𝑆) > 𝑃(𝑀|𝑆̅)  then 𝑃(𝑆|𝑀) > 𝑃(𝑆|𝑀). 

Proof: From Bayes’ Theorem 

𝑃(𝑆|𝑀) =
𝑃(𝑀|𝑆)𝑃(𝑆)

𝑃(𝑀|𝑆)𝑃(𝑆) + 𝑃(𝑀|𝑆̅)𝑃(𝑆̅)

=
𝑃(𝑆)

𝑃(𝑆) +
𝑃(𝑀|𝑆̅)

𝑃(𝑀|𝑆) 𝑃(𝑆̅)

, and  

𝑃(𝑆|𝑀) =
𝑃(𝑀|𝑆)𝑃(𝑆)

𝑃(𝑀|𝑆)𝑃(𝑆) + 𝑃(𝑀|𝑆̅)𝑃(𝑆̅)

=
𝑃(𝑆)

𝑃(𝑆) +
𝑃(𝑀|𝑆̅)

𝑃(𝑀|𝑆) 𝑃(𝑆̅)

=
𝑃(𝑆)

𝑃(𝑆) +
1 − 𝑃(𝑀|𝑆̅)

1 − 𝑃(𝑀|𝑆) 𝑃(𝑆̅)

 . 

It follows from the hypothesis that 𝑃(𝑀|𝑆̅) 𝑃(𝑀|𝑆)⁄ < 1, 

(1 − 𝑃(𝑀|𝑆̅)) (1 − 𝑃(𝑀|𝑆))⁄ > 1, and so 𝑃(𝑆|𝑀) >
𝑃(𝑆|𝑀), which completes the argument.  

We can now show that our estimate of 𝑃(𝑆|𝐸) is increased 

if 𝑃(𝑀|𝑆̅)  <  𝑃(𝑀|𝑆); that is, if the model is more likely to 

behave like the system than not. This condition is satisfied 

when 𝑀 is embedded in 𝑆 because then 𝑃(𝑀|𝑆̅)  =  0 and 

𝑃(𝑀|𝑆)  =  1. Otherwise, we must resort to subject matter 

experts to justify or refute this assumption.  

Proposition 1: If 𝑃(𝑀|𝑆̅)  <  𝑃(𝑀|𝑆) then the posterior 

probability 𝑃∗ (𝑆|𝐸) that 𝑆 will pass a test given its model 

𝑀 has passed is greater than the prior probability 𝑃(𝑆|𝐸) 

that 𝑆 will pass. 

Proof: The effect of the successful test is to raise our 

estimate of 𝑃(𝑀|𝐸) by 𝑘 to 𝑃∗(𝑀|𝐸) and to lower our 

estimate of 𝑃(𝑀|𝐸) by 𝑘 to 𝑃∗(𝑀|𝐸). Therefore, we may 

write 

𝑃∗ (𝑀|𝐸) = 𝑃(𝑀|𝐸) + 𝑘, and 

𝑃∗ (𝑀|𝐸) = 1 − 𝑃∗ (𝑀|𝐸) = 1 − [𝑃(𝑀|𝐸) + 𝑘] =
𝑃(𝑀|𝐸) − 𝑘. 

By definition 

𝑃(𝑆) = 𝑃(𝑆|𝐸)𝑃(𝐸) + 𝑃(𝑆|𝐸̅)𝑃(𝐸̅) =
𝑃(𝑆|𝑀)𝑃(𝑀) + 𝑃(𝑆|𝑀)𝑃(𝑀), 

𝑃(𝑀) = 𝑃(𝑀|𝐸)𝑃(𝐸) + 𝑃(𝑀|𝐸̅)𝑃(𝐸̅), and 

𝑃(𝑀) = 𝑃(𝑀|𝐸)𝑃(𝐸) + 𝑃(𝑀|𝐸̅)𝑃(𝐸̅). 

By rearrangement and substitution in the above we obtain  

𝑃(𝑆|𝐸)

=
𝑃(𝑆|𝑀)[𝑃(𝑀|𝐸)𝑃(𝐸) + 𝑃(𝑀|𝐸̅)𝑃(𝐸̅)]

𝑃(𝐸)

+
𝑃(𝑆|𝑀)[𝑃(𝑀|𝐸)𝑃(𝐸) + 𝑃(𝑀|𝐸̅)𝑃(𝐸̅)] − 𝑃(𝑆|𝐸̅)𝑃(𝐸̅)

𝑃 (𝐸)
 

 

and recalling our definition of the test our revised belief is  

𝑃∗ (𝑆|𝐸)

=
𝑃(𝑆|𝑀)[𝑃∗ (𝑀|𝐸)𝑃(𝐸) + 𝑃(𝑀|𝐸̅)𝑃(𝐸̅)]

𝑃(𝐸)

+
𝑃(𝑆|𝑀)[𝑃∗(𝑀|𝐸)𝑃(𝐸) + 𝑃(𝑀|𝐸̅)𝑃(𝐸̅)] − 𝑃(𝑆|𝐸̅)𝑃(𝐸̅)

𝑃(𝐸)
 



Subtracting and cancelling terms gives  

𝑃∗(𝑆|𝐸) − 𝑃(𝑆|𝐸)

= 𝑃(𝑆|𝑀)[𝑃∗(𝑀|𝐸) − 𝑃(𝑀|𝐸)]

+ 𝑃(𝑆|𝑀)[𝑃∗ (𝑀|𝐸) − 𝑃(𝑀|𝐸)] 

Substituting 𝑃∗ (𝑀|𝐸) = 𝑃(𝑀|𝐸) + 𝑘 and 𝑃∗ (𝑀|𝐸) =
𝑃(𝑀|𝐸) − 𝑘 gives us 

𝑃∗(𝑆|𝐸) − 𝑃(𝑆|𝐸) = 𝑘[𝑃(𝑆|𝑀) − 𝑃(𝑆|𝑀)] 

Because 𝑘 > 0 it is sufficient for 𝑃(𝑆|𝑀) > 𝑃(𝑆|𝑀) to 

conclude 𝑃∗ (𝑆|𝐸) > 𝑃(𝑆|𝐸). That 𝑃(𝑆|𝑀) > 𝑃(𝑆|𝑀) 

follows from the hypothesis of the Proposition and Lemma 
1.  

The above proposition is about the effect of a test given our 

belief that the model behaves like the system. From the 

proof of this proposition we immediately have the 

following proposition describing the effect of a test given 

our belief that the system behaves like the model. 

Proposition 2: If 𝑃(𝑆|𝑀) < 𝑃(𝑆|𝑀) then the posterior 

probability 𝑃∗ (𝑆|𝐸) that 𝑆 will pass a test given its model 

𝑀 has passed is greater than the prior probability 𝑃(𝑆|𝐸) 

that 𝑆 will pass. 

Now consider the second problem of replacing the model 𝑀 

with the model 𝑀′. Referring to the above proposition, if 

𝑃(𝑀′ |𝑆̅)  <  𝑃(𝑀′ |𝑆) then a successful test conducted on 

𝑀′ increases our confidence in 𝑆. Lacking explicit 

knowledge of how 𝑀′  relates to 𝑆, we can rely on 

information about the relationship between 𝑀 and 𝑆 and 

between 𝑀′ and 𝑀. This leads to Proposition 3 concerning 

the use of 𝑀′ as a substitute for 𝑀. 

Proposition 3: If 𝑃(𝑀′ |𝑀) < 𝑃(𝑀′|𝑀) and 𝑃(𝑀|𝑆̅) <
𝑃(𝑀|𝑆) then the posterior probability 𝑃∗ (𝑆|𝐸) that 𝑆 will 

pass a test given the replacement model 𝑀′  has passed is 

greater than the prior probability 𝑃(𝑆|𝐸) that 𝑆 will pass. 

Proof: It follows from Proposition 1 that a successful test 

of 𝑀′ raises our estimate of 𝑃(𝑀|𝐸) and in this respect is 

indistinguishable from a successful test of 𝑀. Because 

𝑃(𝑀|𝑆̅) < 𝑃(𝑀|𝑆) we also raise our estimate of 𝑃(𝑆|𝐸).  

In the above we have not considered any information about 

the likelihood of obtaining a specific result from the model 

and system. Lacking such information, we focused merely 

on how the sets of realizable behaviors and a set of desired 

tests might intersect. If we do have (or can guess) detailed 

information about the behaviors of model and system then 

it is possible to prove a form of Proposition 2 that considers 

each behavior individually. 

To pursue this, we will restrict the domain of discourse to a 

set containing the single pair 𝑞, 𝑥  of initial state and 

stimulus and the outputs 𝑦1 , … , 𝑦𝑛  such that just the 

response 𝑦1  is considered passing a test. Further suppose 

that there are probabilities 𝑃𝑀 (𝑦) that 𝜌𝑀
(𝑞, 𝑥) = 𝑦,  𝑃𝑆 (𝑦) 

that 𝜌𝑆
(𝑞, 𝑥) = 𝑦, and 𝑃(𝑦𝑗; 𝑦𝑘 ) that 𝜌𝑆

(𝑞, 𝑥) = 𝑦𝑗  given 

that 𝜌𝑀
(𝑞 ,𝑥) = 𝑦𝑘 . A successful test of model raises our 

estimate of 𝑃𝑀 (𝑦1) by 𝑘 and reduces our estimate of  

𝑃𝑀 (𝑦𝑖 ), 𝑖 > 1, by 𝑘𝑖  such that 𝑘2 + ⋯ + 𝑘𝑛 = 𝑘. 

Analogous to Proposition 2 we have the following. 

Proposition 4: If 𝑃(𝑦1 ; 𝑦1
) > ∑ 𝑃(𝑦1; 𝑦𝑖

)
𝑖≠1  then the 

posterior probability 𝑃𝑆
∗(𝑦1) that 𝑆 will pass the test given 

the model 𝑀  has passed is greater than the prior probability 

𝑃𝑆 (𝑦1 )  that 𝑆 will pass. 

Proof: By definition 

𝑃𝑆
(𝑦1

) = 𝑃(𝑦1 ; 𝑦1
)𝑃𝑀

(𝑦1
) + ∑ 𝑃(𝑦1; 𝑦𝑖

)𝑃𝑀
(𝑦𝑖

)

𝑦𝑖≠𝑦1

 

and 

𝑃𝑆
∗(𝑦1

) = 𝑃(𝑦1 ; 𝑦1
)[𝑃𝑀

(𝑦1
) + 𝑘]

+ ∑ 𝑃(𝑦1 ; 𝑦𝑖
)[𝑃𝑀

(𝑦𝑖
) − 𝑘𝑖

]

𝑖 ≠1

 

Taking the difference yields  

𝑃𝑆
∗ (𝑦1

) − 𝑃𝑆
(𝑦1

) = 𝑃(𝑦1 ; 𝑦1
)𝑘 − ∑ 𝑃(𝑦1 ; 𝑦𝑖

)𝑘𝑖

𝑖≠1

≥ 𝑘 [𝑃(𝑦1 ; 𝑦1
) − ∑ 𝑃(𝑦1 ; 𝑦𝑖

)

𝑖 ≠1

] 

If 𝑃(𝑦1 ; 𝑦1
) > ∑ 𝑃(𝑦1 ; 𝑦𝑖

)
𝑖≠1  then this difference is 

positive.  

To illustrate this proposition consider the case of just two 

behaviors. The condition of the proposition is 𝑃(𝑦1; 𝑦1
) >

𝑃(𝑦1 ; 𝑦2
). This implies 𝑃(𝑦1; 𝑦1

) 𝑃(𝑦1; 𝑦2
) > 1⁄ , which is 

true only if 𝑃(𝑦1; 𝑦1
) > 1/2. 

Proposition 4 is closely related to Proposition 1 and 2. 

Because 𝑞, 𝑥  is fixed, it will be convenient to define sets in 

terms of outcomes. The relevant sets appearing in 

Proposition 2 are 𝑆 = {𝑦 | 𝜌𝑆
(𝑞, 𝑥) = 𝑦} and 𝐸 = {𝑦1

}. 

Because 𝐸 has just a single element, our estimate of the 

probability 𝑃(𝑆|𝐸) is simply 𝑃𝑆
(𝑦1

) and similarly 

𝑃∗(𝑆|𝐸) = 𝑃𝑆
∗(𝑦1

). From this and the proofs of 

Propositions 1 and 4 it follows that 

𝑘[𝑃(𝑆|𝑀) − 𝑃(𝑆|𝑀)] = 𝑃(𝑦1 ; 𝑦1
)𝑘 − ∑ 𝑃(𝑦1 ; 𝑦𝑖

)𝑘𝑖

𝑦𝑖 ≠𝑦1

≥ 𝑘 [𝑃(𝑦1; 𝑦1
) − ∑ 𝑃(𝑦1 ; 𝑦𝑖

)

𝑖 ≠1

] 

This proves the following pair of corollaries. 

Corollary 1: If 𝑃(𝑦1 ; 𝑦1
) > ∑ 𝑃(𝑦1 ; 𝑦𝑖

)
𝑦𝑖≠𝑦1

 then 

𝑃(𝑆|𝑀) > 𝑃(𝑆|𝑀). 

Corollary 2: 𝑃(𝑆|𝑀) > 𝑃(𝑆|𝑀) if, and only if, 

𝑃(𝑦1 ; 𝑦1
) > [∑ 𝑃(𝑦1 ; 𝑦𝑖

)𝑘𝑖𝑦𝑖 ≠𝑦1
] 𝑘⁄ . 

Hence, if the condition of Proposition 3 is satisfied, then so 

are the conditions of Proposition 2 and, through Lemma 1, 



Proposition 1. Moreover, the conditions of Propositions 2 

and a slightly stronger condition for Proposition 4 are 

interchangeable: satisfaction of one implies satisfaction of 

the conditions for the other. 

AN ILLUSTRATIVE EXAMPLE 

The model proposed by Davis and Anderson [8] to 

demonstrate a problem of time management in distributed 

simulations provides a nice illustration of these 

propositions. In this model there are two gunfighters: A and 

B. They meet in the street, hand on gun, and wait for an 

arbitrator to say “draw”. Then the gunfighters draw pistols 

and fire. For each there is a delayed reaction between the 

command to draw and taking the shot, another delay as the 

round travels to its target, and then the bullet hits or misses .  

The complete set 𝐶  of possible tests that we could conduct 

on this model is as follows. The gunfighters are always 

alive at the start of an encounter (this is the only initial 

state). We consider two possible delays in the reaction of 

each gunfighter, two possible travel times for each round, 

and each shot can either hit or miss its target. These options 

give 64 sequences of events that we can inject into the 

model. An encounter has four possible outcomes: A dead 

and B alive, A alive and B dead, both dead, or both alive. 

Hence, the total set of possible tests that we could conduct 

has 256 elements.  

The gunfight “system” 𝑆 realizes only the subset of these 

that satisfies its logical constraints. For example, suppose 

the possible travel times are 0.05 seconds and 0.06 seconds, 

and the possible reaction delays are 0.14 seconds and 0.2 

seconds. The behaviors that 𝑆 realizes are as follows: 

1. 16 cases where A misses and B misses, and 

these always result in A and B alive; 

2. 16 cases where A hits and B misses, and these 

always results in A alive and B dead; 

3. 16 cases where A misses and B hits, and these 

always results in A dead and B alive; 

4. 4 cases where A and B are both are killed; 

5. 6 cases where A and B would have both hit, 

but B is faster and kills A; and 

6. 6 cases where A and B would have both hit, 

but A is faster and kills B. 

From this enumeration we conclude that 𝑃(𝑆) = 64 256⁄ =
1 4⁄ .  

To illustrate Proposition 1 our first model 𝑀  of 𝑆 will be a 

discrete event simulation that assumes the gunfighters never 

miss. This simulation ignores hit and miss information 

supplied for the gunfighters, always replacing this data with 

hits. All 16 combinations of the total time from “draw” to 

impact are listed in Table 1 along with the outcome of the 

simulated encounter. With this data we calculate 𝑃(𝑀) =
16 256⁄ = 1 16⁄ . The model agrees with (intersects) 𝑆 for 

these 16 cases (i.e., the last three items in the above list), 

hence 𝑃(𝑀𝑆) = 𝑃(𝑀) and 𝑃(𝑀|𝑆) = 1 4⁄ . The set 

𝑆̅ = 𝐶 − 𝑆 has 192 elements, and of these the following 

also occur in 𝑀: 

1. 3 × 4 cases where A, B, or both miss, but A 

and B are both killed; 

2. 6 cases where A hits and B misses, but B is 

faster and kills A; 

3. 6 cases where A misses and B misses, but B is 

faster and kills A; 

4. 6 cases where A misses and B hits, but A is 

faster and kills B; 

5. 6 cases where A misses and B misses, but A is 

faster and kills B. 

With this data we calculate 𝑃(𝑆̅) = 192 256⁄ = 3 4⁄ , 

𝑃(𝑀𝑆̅) = 36 256⁄ = 9 64⁄ , and 𝑃(𝑀|𝑆̅) = 3 16⁄ . 

Proposition 1 shows that the model is a suitable surrogate 

for 𝑆 because 𝑃(𝑀|𝑆) = 0.25 > 0.1875 = 𝑃(𝑀|𝑆̅). 

To illustrate proposition 2 suppose that the discrete event 

simulation is not available to us (e.g., it would be too 

expensive to construct) and instead we reuse existing 

models of the two gunfighters. These are inter-connecting 

such that they exchange data at the end of every 0.025 

second time step. The effect of this strategy is to transform 

the time from “draw” to a round striking its target into just 

three possibilities: 

1. The round arrives at step 
⌈(0.14 + 0.05) 0.025⁄ ⌉ =
⌈(0.14 + 0.06) 0.025⁄ ⌉ = 8; 

2. The round arrives at step 
⌈(0.2 + 0.05) 0.025⁄ ⌉ = 10; 

3. The round arrives at step 
⌈(0.2 + 0.06) 0.025⁄ ⌉ = 11. 

This new model 𝑀′ agrees with 𝑀 in 14 out of the 16 cases 

listed in Table 1, and so 𝑃(𝑀𝑀′ ) = 14 256⁄ = 7 128⁄  and 

𝑃(𝑀′|𝑀) =
𝑃(𝑀𝑀′)

𝑃(𝑀)
=

7

128

16

1
=

7

8
 . 

The set 𝑀 = 𝐶 − 𝑀 has 240 elements and 𝑃(𝑀) =
240 256 = 15 16⁄⁄ . Two elements of  𝑀′ are in 𝑀 so that 

𝑃(𝑀′𝑀) = 1 120⁄  and 

𝑃(𝑀′ |𝑀) =
𝑃(𝑀′𝑀)

𝑃(𝑀)
=

1

120

16

15
=

2

225
 . 

With Proposition 2 we conclude that 𝑀′ is an acceptable 

replacement for 𝑀 because 𝑃(𝑀|𝑆) > 𝑃(𝑀|𝑆̅) and 

𝑃(𝑀′|𝑀) = 0.875 > 0.00889 ≈ 𝑃(𝑀′|𝑀). 

To illustrate a negative result for both propositions we 

consider a model 𝐿 for which the outcome is always that 

both gunfighters live. Like 𝑀 , the model 𝐿 contains 64 

distinct behaviours. The relevant probabilities are 𝑃(𝐿𝑆) =
1 16⁄ , 𝑃(𝐿𝑆̅) = 48 256⁄ = 3 16⁄ , and 𝑃(𝐿|𝑆) = 𝑃(𝐿|𝑆̅) =
1 4⁄ . From Proposition 1 we conclude that 𝐿 is not a 

suitable surrogate for 𝑆. We can also calculate 𝑃(𝐿𝑀) = 0, 

𝑃(𝐿𝑀) = 1 16⁄ , and 𝑃(𝐿|𝑀) = 0 < 𝑃(𝐿|𝑀) = 1 15⁄ . 



From Proposition 2 we conclude that 𝐿 is not a suitable 

replacement for 𝑀 (of course, the prior result of 𝑃(𝐿|𝑆) =

𝑃(𝐿|𝑆̅) was sufficient to draw this conclusion). 

A 

exact 

A time 

stepped 

B 

exact 

B time 

stepped 

Exact 

outcome 

Time 

stepped 
outcome 

0.19 8 0.19 8 
Both 

killed 

Both 

killed 

0.20 8 0.19 8 B wins 
Both 

killed 

0.25 10 0.19 8 B wins B wins 

0.26 11 0.19 8 B wins B wins 

0.19 8 0.20 8 A wins 
Both 

killed 

0.20 8 0.20 8 
Both 

killed 

Both 

killed 

0.25 10 0.20 8 B wins B wins 

0.26 11 0.20 8 B wins B wins 

0.19 8 0.25 10 A wins A wins 

0.20 8 0.25 10 A wins A wins 

0.25 10 0.25 10 
Both 

killed 

Both 

killed 

0.26 11 0.25 10 B wins B wins 

0.19 8 0.26 11 A wins A wins 

0.20 8 0.26 11 A wins A wins 

0.25 10 0.26 11 A wins A wins 

0.26 11 0.26 11 
Both 

killed 

Both 

killed 

Table 1. Tests and outcomes in the discrete event and discrete 
time simulations of a gunfight. 

In the above examples we had complete knowledge of the 

model and system and could calculate the relevant 

probabilities directly. To see how Proposition 1 applies 

when our information is incomplete, suppose that we only 

have the estimates 𝑃(𝑀|𝑆) ≈ 0.2 > 𝑃(𝑀|𝑆̅) ≈ 0.19 and 

𝑃(𝑀′|𝑀) ≈ 0.9 > 𝑃(𝑀′|𝑀) ≈ 0.01 to relate the models 

and system and that for the set of tests 𝐸 ⊂ 𝐶  in which A 

and B always hit we estimate 𝑃(𝑆|𝐸) ≈ 0.75. We select a 

test in 𝐸 that has not been tried before, apply that test to 𝑀, 

and obtain a positive result, thereby increasing our 

confidence in the model relative to 𝐸 by 𝑘 = 1 |𝐸|⁄ =
1 64⁄ ≈ 0.016. From the proof of Proposition one, we see 

that 𝑃(𝑆|𝐸) increases by [𝑃(𝑆|𝑀) − 𝑃(𝑆|𝑀)] |𝐸|⁄ , which 

could be calculated using Lemma 1 if we had precise 

knowledge of the model and system (i.e., by using the 

probabilities determined in the prior examples). In fact, 

doing this shows us [𝑃(𝑆|𝑀) − 𝑃(𝑆|𝑀)] |𝐸|⁄ ≈ 0.00113. 

An example of Proposition 2 can be constructed in exactly 

the same way. 

CONCLUSION 

We have defined validity through a probabilistic 

interpretation of the modeler’s confidence that a model’s 

intended use and actual scope for valid experimentation 

overlap. With this approach we answer two questions. 

1) Does a successful test on a model justify increased 

confidence that the same test on the system will be 

successful? The answer to this question is yes if our 

confidence in the model is sufficiently great, with 

sufficient being satisfaction of 𝑃(𝑀|𝑆) > 𝑃(𝑀|𝑆̅). 

 

2) If I replace one model with another, does a successful 

test with the replacement justify increased confidence 

in the system? Again, the answer to this question is 

yes if we are confident that model and its replacement 

are sufficiently similar, with sufficient being 

satisfaction of 𝑃(𝑀′|𝑀) > 𝑃(𝑀′ |𝑀). 

The conditions for a positive answer to the first question are 

intuitively appealing because they provide a definition of 

“good enough”, which is what most validation, 

accreditation, and certification activities strive for but have 

difficulty quantifying (see, e.g., the discussion of credibility 

and intended use by Balci et. al. in [9-11]). The conditions 

for a positive answer to the second question provide 

probabilistic justification for the practice of validating a 

new model through tests against another, trusted model 

(see, e.g., the discussion of validation by Sargent [6]).  

The key challenge to applying the proposed propositions is 

obtaining reliable estimates for the necessary probabilities. 

One possible solution to this problem is to include these 

estimates in the model accreditation or certification process, 

which implicitly asserts  that 𝑃(𝑀|𝑆) is high and 𝑃(𝑀|𝑆̅) is 

low. Methods for generating specific probabilities as part of 

accreditation or certification is a promising avenue for 

future research, which might build upon or be incorporated 

into existing processes such as those proposed by Balci [11] 

and Gass [12]. 

Answers to the above questions are important for using 

models in engineering, but they do not encompass all 

problems of practical interest. More generally, we would 

like a quantitative relationship, probabilistic or otherwise, 

between systems and models that allows us to infer i) if one 

system extends another, that some property of the simpler 

system is preserved (the problem of upward preservation, 

see e.g., [13,14]); ii) if the one system simplifies another, 

that some property of the more complex system is 

preserved (the problem of downward preservation, see e.g., 

[15,16]); and iii) that a composition of two systems is 

suitable for some purpose (the problem of model 

composition, see e.g. [8]). In practice, these problems are 



dealt with today by statements about intent, confidence in 

the veracity of a stated intent, and a process of informal 

inference supported by validation and verification. In this 

sense, the more difficult problems (i-iii) are similar to the 

questions addressed here and may also be amenable to a 

probabilistic framing that is useful and precise. 
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