
Discrete Event Modeling and Simulation of
Wireless Sensor Network performance

T. Antoine-Santoni1, J.F. Santucci1, E. De Gentili1, B. Costa1

1University of Corsica - UMR CNRS 6134 Quartier Grossetti, BP 52 - 20250 Corte - FRANCE

{antoine-santoni, santucci, gentili, bcosta}@univ-corse.fr

Abstract : The wireless distributed microsensor networks
profit of recent technological advances and it seems es-
sential to understand precisely these systems. Modeling
and simulation appear like an essential aspect to predict
the Wireless Sensor Network specific behavior under
different conditions. We want to provide a new approach of
modeling, simulation and visualization of Wireless Sensor
Network using a discrete event approach. Described by
Zeigler in the 70 ’s, the Discrete Event system Specification
is ideal to describe the asynchronous nature of the events
occuring in WSN. We try to provide a basis model to
analyze WSN performance, as routing management, en-
ergy cunsumption or relative CPU activity. Our approach
use a detailled definition of node oriented components and
it wants to bring some ways to visualize the network at
different level of abstraction.

Index Terms— Modeling, Simulation, Visualization, DEVS,
WSN, performance.

I. INTRODUCTION

Advances in hardware technology and engineering design
have led to reductions in size, power consumption, and cost.
This has enabled compact, autonomous nodes, each containing
one or more sensors, computation and communication capa-
bilities, and a power supply. Networks of wireless sensors are
the result of rapid convergence of three key technologies [1]:

• Computing/Internet : computing power is becoming small
and inexpensive enough to add to almost any object.
networks of computers facilate collaboration trough in-
formation and resoure sharing

• Sensor : miniaturization, micromachining and low cost
leads to smaller sizes, low power, lower costs. Alows to
monitor with higher granularity. many types of sensors
and more on the way

• Wireless/ Antennas : Spans a host ot technologies includ-
ing Bluetooth and WiFi networks, cellular and satellite
communications.

These recent tehcnologial advances have led to the definition
and use of Wireless Sensor Network (WSN). The sensor nodes
are usually scattered in a sensor field [2] as shown in Figure 1.
Each of these scattered sensor nodes has the capabilities to
collect data and route data back to the sink. Data are routed
back to the sink by a multihop infrastructureless architecture

through the sink. The sink may communicate with the task
manager node via Internet or satellite. The design of the
sensor network as described by Figure 1 is influenced by many
factors, including fault tolerance, scalability, production costs,
operating environment, sensor network topology, hardware
constraints, transmission media, and power consumption.

Figure 1. Sensor nodes in a sensor field

A sensor node combines the abilities to compute, to com-
municate and to sense [3]. In a sensor network, different
functionalities can be associated with the sensor nodes [4]. In
earlier works, all sensor nodes are assumed to be homogenous,
having equal capacity in terms of computation, communication
and power. However, depending on the application a node can
be dedicated to a particular special function such as relaying,
aggregation.

The goal of sensor is to send collected data, usually via radio
transmitter, to a command center (sink or Base Station) either
directly or through a data concentration center (a gateway)

Based of node description in [5] [2], the main components
of sensor consist of a sensing unit, a processing unit, a
transceiver, and a power unit as shown in Figure 2.

In order the user to understand the behaviour of Wireless
Sensor Network we have to point out the following five
information :



Figure 2. Components of a sensor node

1) The communication tool is represented by the antenna
and its role is to send some information on the channel;

2) Memory is the unit for storage action of information
evolving in the node. Information have two sources :
information coming from an other node and information
coming from sensoboard in environmental monitoring
case. In these both conditions, information are treated
by processor ;

3) Processor treats all information in the node. CPU man-
ages activity in the mote and reacts according to instruc-
tion type.

4) Battery defines lifetime of a node. Each component
according to realized action consumes some energy.
Energy consumption exists also in sleep state.

5) Sensor board regroups monitoring activities. It can
transmit some information collected by sensor but also
transmits message alert if some critics thresholds are
reached.

Modeling and simulation appear to be an essential aspect
to understand the behavior of Wireless Sensor Network under
specific conditions. The network simulation for sensors is a
challenging problem as it has faithfully to model the con-
straints hardware and energy, which is typical with sensor
nodes and also have to model various aspects exclusive to
sensor networks. The hierarchical nature of DEVS makes it
perfect for describing a system like sensor mote. The discrete-
event nature improves the execution performance of a model
like this due to the asynchronous nature of the events occurring
in WSN. Some works exist for the modelling of Wireless ad-
hoc networks using DEVS. In [6], the authors describe how
to use the Cell-DEVS formalism in order to model routing
protocol Ad hoc On Demand Distance Vector (AODV). In
this paper, DEVS is used to formally specify discrete events
systems using modular description. This strategy allows the
reuse of tested models, improving the safety of the simulations
and allowing reducing of development time. As it is discrete
event formalism, it uses a continuous time base, which allows
accurate timing representation, and reduces CPU time require-
ments. This very interesting work leans on the DEVS formal-
ism in order to study the routing in wireless adhoc networks.
In [7], a coupling between the NS-2 simulator (Ns [8], also
popularly called ns-2, in reference to its current generation, is
a discrete event network simulator) and the DEVS formalism

is clearly presented. This paper describes how the behavior of
a sensor node’s application and its environmental behaviors
such as battle fields have been defined using DEVS modeling.
Furthemore the authors point out the roles of networking
protocol behaviors which are assigned to NS-2 since NS-2
has well-designed network protocol libraries. However there
is no modular aspects concerning the components involved in
the sensor’s behavior and thus its seems difficult to implement
specific environmental scenario. According to these previous
remarks we choose to define all components of Wireless
Sensor Network using DEVS formalism.

The rest of the paper is organized as follows : Section
2 introduces briefly the Wireless Sensor Network area. In
Section 3 we present the DEVS formalism. Section 4 present
the DEVS formalism based approach we defined in order
to describe the behaviour of Wireless Sensor nodes. The
implementation and the validation of the proposed approach
through results of simulation examples are detailed in Sec-
tion 4. Finally, in Section 5 we give some conclusions and
directions of future research works.

II. OVERVIEW OF WSN SIMULATION

Nowadays, Wireless Sensor Network research has different
focus and several fields of application: channel access control,
routing protocol definition, network management, QoS, energy
consumption or CPU activity. We can find different simulators
to represent activity and performance of WSN.

SensorSim [9] extends the ns-2 network simulator with
models of sensor channels, accurate battery and power con-
sumption. Each node has a sensor stacks that acts as a sink to
the signals in the sensor channels, accurate battery and power
consumption.

Atemu [10] is a software emulator for AVR processor based
systems. Along with support for the AVR processor, it also
includes support for other peripheral devices on the MICA2
sensor node platform such as the radio. Atemu can be used
to perform high fidelity large scale sensor network emulation
studies in a controlled environment. Though the current release
only includes support for MICA2 hardware, it can be easily
extended to include other sensor node platforms. It allows for
the use of heterogeneous sensor nodes in the same sensor
network. Atemu can’t represent different activities of hardware
components because it uses an high abstraction level.

TOSSIM [11] and PowerTOSSIM [12] are two important
simulators which can describe correctly routing protocol, node
applications or energy consumption but they are strongly
dependents of TinyOS and can’t represent generic framework
for heterogeneous platforms.

In [13], Glonemo can be considered like a close approach
of our work. Indeed, Glonemo bring some solutions as the
MAC layer for description of Wireless sensor node however
certain parameters appear uncertain as CPU activity, general
energy consumption, sensing activity.

SENS [14] is an application-oriented wireless sensor net-
work which models ad-hoc static nodes. It provides models for
a limited set of sensors, actuators, a model for the environment
and a framework for testing applications. SENS appears like



Table I
COMPARAISON OF EXISTING APPROACHS

a suitable WSN simulator however some characteristics like
addition of new models of sensor and modeling arbitrary
ubiquitous computing environments are missing.

It is particularly difficult to find a generic, customizable in
easy way, modular simulator or a model able to represent be-
havior of a node and able to generate particular environmental
scenario. We resume these different aspects for each existing
approach illustarted by the Table I.

The need is to have a simulator able to represent sensor
node at different abstraction level, which be able to describe
components behavior in particular conditions. Modular aspects
of components in sensor model don’t exist clearly. In this paper
we focus on representation capacity of DEVS formalism. This
possibility to distinguish different abstraction level is clearly
essential to allow in the one hand the definition of components
activity of node and on the other hand general behavior in the
network

III. DEVS FORMALISM

Based on systems theory, DEVS formalism was introduced
by Professor B.P. Zeigler in the late 70s. It allows a hierarchi-
cal and modular way to model the discrete event systems.
A system (or model) is called modular if it possesses the
input and output ports permitting interaction with its outside
environment. In DEVS, a model is seen as a “black box” S
which receives and broadcasts messages on its input and output
ports. This section deals with the basic notions of the DEVS
formalism. The Discrete Event System Specification (DEVS)
formalism introduced by Zeigler [15] provides a means of
specifying a mathematical object called a system. Basically, a
system has a time base, inputs, states, outputs, and functions
for determining next states and outputs given current states
and inputs [15]. The DEVS formalism is the simple way in
order to characterizes how discrete event simulation languages
may specify discrete event system parameters. It is more than
just a means of constructing simulation models. It provides
a formal representation of discrete event systems capable
of mathematical manipulation just as differential equations
serve this role. Furthermore by allowing an explicit separation
between the modeling phase and simulation phase, the DEVS
formalism is the best way to perform an efficient simulation
of complex systems using a computer.

In the DEVS formalism, one must specify:
1) basic models from which larger ones are built, and

2) how these models are connected together in hierarchical
fashion.

Basic models (called atomic models) are defined by the
following structure:

AM =< X ,S,Y,δ int,δext,λ , ta >

Where,
X is the set of input values,
S: is the set of sequential states,
Y: is the set of output values,
δ int is the internal transition function dictating state transitions
due to internal events,
δext the external transition function dictating state transitions
due to external input events,
λ is the output function generating external events at the
output,
and ta is the time-advance function which allows to associate
a life time to a given state.

Figure 3. DEVS atomic model

Figure 3 represents an AM atomic model with its output
data Y calculated according to input data X . The AM atomic
model has a state variable S that can be reached during the
simulation. The functions δext , λ , δint and ta respectively allow
the model’s change of state when an external event occurs on
one of those outputs (external transition function), the disposal
of the output Y (output function), the model’s change of state
after having given an output (internal transition function) and
finally the determination of the duration of the model’s state
(time advance function).

The behavior of an atomic model is illustrated as follows:
the external transition function describes how the system
changes state in response to an input. When an input is applied
to the system, it is said that an external even has occurred. The
next state s’ is then calculated according to the current state s.
The internal transition function describes the autonomous (or
internal) behavior of the system. When the system changes



state autonomously, an internal event is said to have occurred.
The next state s’ is calculated only according to the current
state s. The output function generates the outputs of the system
when an internal transition occurs. The time advance function
determines the amount of time that must elapse before the next
internal event will occur, assuming that no input arrives in the
interim.

An atomic model allows specifying the behavior of a basic
element of a given system. Connections between different
atomic models can be performed by a coupled model (CM)
[15]:

CM =< X ,Y,D,{Mi},{Ii},{Zi, j} >

Where,
X is the set of input values,
Y is the set of output values, D is the set of model references,
For each i∈D, Mi is an atomic model, Ii is the set of influences
of model Zi, j is the i to j translation function (output function).

A coupled model, tells how to couple (connect) several
component models together to form a new model. This latter
model can itself be employed as a component in a larger
coupled model, thus giving rise to hierarchical construction.

The coupled models are defined by a set of sub-models
(atomic and/or coupled) and express the internal structure
of the system’s sub-parts thanks to the coupling definition
between the sub-models.

Figure 4. DEVS coupled model

Figure 4 shows an example of the hierarchical structure of
coupled model CM0 which has an input port IN and two output
ports OUT0 and OUT1. It contains the atomic sub-models
AM0, AM1 and also the coupled model CM1. The latter can
encapsulate other models such as atomic models AM2, AM3
and AM4. A coupled model is specified through the list of its
components (AM0, AM1, AM2, AM3, AM4 and CM1), the list of
its internal couplings (AM0 →CM1 and AM1 →CM1), the list
of the external input couplings (IN → AM0 and IN → AM1),
the list of the external output couplings (CM1 → OUT0 and
CM1 → OUT1) and the list of the sub-model’s influence
(CM1 = {AM0, AM1} or CM1 and influenced by AM0 and
AM1).

DEVS formalism is mainly used for the description of
discrete event systems. It constitutes a powerful modeling
and simulation tool permitting a system modeling on several
levels of description as well as the definition of the models’
behaviors. One of DEVS formalism’s important properties is
that it automatically provides a simulator for each model.

DEVS establishes a distinction between a system modeling
and a system simulation so as any model can be simulated
without the need for a specific simulator to be implemented.
Each atomic model is associated with a simulator in charge
of managing the component’s behavior and each coupled
model is associated with a coordinator in charge of the time
synchronization of underlying components. A simulator is
associated with the DEVS formalism in order to exercise
coupled model’s instructions to actually generate its behavior.
The architecture of a DEVS simulation system is derived from
the abstract simulator concepts associated with the hierarchical
and modular DEVS formalism.

One of the main interests in DESV formalism is the fact
that it allows an explicit separation between the modeling
and simulation part. This means that we can define the model
representing the behaviour of a given system without having
to consider the simulation phase.

IV. WSN MODELING APPROACH

It seems important to represent the different basics hard-
ware components of the node. We have developed a generic
approach allowing to define out-of-context behaviors of com-
ponents in order to reuse these behaviour in an in-context
manner [16]. A context-out model is an abstraction of a
model. It represents a behaviour allowing it to be store in
a model library. A context-in model is a context-out model
extracted from a library and formatted in order to be directly
reusable in its environment. This generic approach leads us to
define the behaviour of different components. We try to delimit
the different reaction of the node units to move towards the
description of a general behaviour of a sensor using a discrete
event formalism DEVS. The advantages of this formalism for
description of complex system in discrete-event scale appear
clearly in number field of research however definition of
sensor network and in particular sensor node don’t exist.
As sensor networks gain more importance in the research
communities, it’s very crucial to show the advantages of DEVS
formalism and to have a simulator with a modular structure.
The use of this formalism in accordance with its definition
implies for this research area two essential points: a modelling
specification step and consequently a clear interpretation of
simulations results in the real world and a non ambiguous
operational semantic step allowing the introduction of a formal
specification of mechanics of simulation using an abstract
simulator.

In this section we will first deal with the kinds of messages
which are going to be exchanged between models of a WSN
in the sub section IV-A. We will then introduce the different
atomic and coupled models required in order to model the
behaviour of a WSN. These models are derived from the
components of a given node of the WSN as shown in Figure 2.
Sub-section IV-B is dedicated to the description of an atomic
model called AM COM which has been defined in order to
represent the communication involve in a node of the WSN.
The Coupled model, called CM Processor, which is a key com-
ponent in order to deal with routing information is explained
in sub-section IV-C. Then we describes the following atomic



models : atomic model AM Battery in sub-section IV-D, the
atomic model AM Memory in sub-section IV-E, the atomic
model AM SensorBoard and the atomic model AM Env in
sub-section IV-F, allowing to deal with the behaviour of the
battery, the memory and the interaction with the environment
involved in a sensor. Finally the reader will find in sub-section
IV-G the description of a coupled model called SENSOR
which describes the overall behaviour of a sensor own to the
couplings involved in coupled models.

A. The messages involved in WSN modeling

The messages which are exchanged between the compo-
nents of a WSN involve different kinds of information in order
the simulation to be able to efficiently describe the behaviour
of such a network. A message is going to involve the following
ten fields :

<Origin, Sender, Destination, Ndid, Type, Hop, Link, Data,
Port> where :

• Origin defines the node which is the source of this
message. Parent, this field is one of characteristic of
reliable route protocol. It determines the node nearest to
the basic station, the highest in routing table.

• Sender defines the node which sent this message.
• Destination defines the destination of message which has

been treated by a node ;the destination can be the sink or
an other kind of node.

• Ndid : defines the node which is going to be identified
by a nodeID which correspond at an identifier of a node
group.

• Type defines the action of the different components of
the system.

• Hop defines a parameter of a reliable route protocol.
However it can be used for other routing protocol.

• Link defines an attribute of reliableRoute protocol which
indicates the quality of connectivity between two nodes
and is very important for the definition of the routing
table.

• Data : is composed by the different information carried
by the node as (i)Temp which indicates temperature
parameter coming from Sensor board,(ii)Humidity, (iii)
Pressure, (iv) GPS, (v) Conso defines the last energy value
of Origine node and (vi) Acitivity determines the last CPU
activity of Origine node.

• Port : it defines for each messages the output port for a
message according to the DEVS rules.

Data contains several informations : environnemental data
(Temperature, humidity rate, GPS) , processor activity, energy
cunsumption of the sender node.

In order to model the behaviour of a WSN we have defined
a set of atomic models and coupled models which will be
described in detail in the following sub-sections : the atomic
model AM COM in sub-section IV-B, coupled model CM
Processor involving the atomic model AM Net, the atomic
model AM Flash and the atomic model AM Processor in sub-
section IV-C, the atomic model AM Battery in sub-section
IV-D, the atomic model AM Memory in sub-section IV-E,the

atomic model AM SensorBoard in sub-section IV-F and the
coupled model CM Sensor in sub-section IV-G.

We have also defined different types of message in order
to describe the action which should be performed by the
receiving atomic model. We give the main types of message
we have defined. Even if the following list is not exhaustive
the reader will be able to discover the main defined types
of message and the associated action to be performed by the
receiving atomic model :

• Router Message for AM Net : the associated action
concerns the routing information ;

• BSCollect Message for AM Sensorboard : the associated
action will deal with collect environmental data ;

• MemCollect Message for AM Memory : the associated
action will consists in storing information ;

• ACK Message for AM Net : the associated action will
performed of a received information ;

• WhiteFlag Message for Net :the associated action will
concern the architecture discovery signal and updateof
routing table ;

• DEAD Message for all Models : the associated action
will point out the fact that no energy is present ;

B. Description of the atomic model AM COM

The atomic model AM COM is used an atomic model
for representation of communication in a node. The goal of
this atomic model is to address message towards good nodes
according to the routing table in the coupled model CM
Processor.

Figure 5. Atomic Model COM



In Figure 5, we have only represented a link on input port or
on output port with another sensor node ; however it’s possible
to have more links depending of connected nodes. We have
defined different states in order to describe the behaviour of
such an device :

• Receipt state describing the arrival of a message coming
on Inport1 from a node or Base Station (BS),

• Transmit state describing the arrival of a message coming
out of a sensor node towards an other node or the base
station BS,

• Busy state correspondding to the state of transition when
a message is treated by MC processor,

• Free state describing the fact taht when there is no activity
in node (when node is listening the channel),

• DEAD state describing the fact that there is no battery in
sensor.

C. Description of the coupled model CM Processor

The coupled model CM Processor is shown on Figure 6. It is
one of the key of our approach : all messages coming from an
atomic model AM COM or an atomic model AM Sensorboard
are necessarily taken into account by this model in order
to deal with routing information routing information. The
atomic model AM Processor allows to manage all messages
and all components. It is difficult to represent all action of
processor but we have been able to propose a solution using a
generic approach. The defined coupled model CM Processor
is able to represent the simplest representation of a generic
Operating System. Indeed we make the choice to decompose
the behaviour of the coupled model CM Processor into three
Atomic models: (i) the atomic model AM Process which
allows to represent action management of Operating System
(OS) and Processor, (ii) AM Net which allows to manage the
Network aspect and (iii) the atomic AM Flash which is a space
to store information but also is able to adapt the system at new
parameters, by example a new type of message. These three
atomic models have only three states :

(i) the Busy state allowing to point out that a model is in
action,

(ii) the Free state allowing to point out that a model is in
sleep mode,

(iii) the Dead state when there is not enough energy in the
node.

When a message comes, the atomic model AM Process sends
it to the atomic model AM Net that is a model allowing
to describe routing management. AM Flash is a very simple
atomic model. It can stock some informations like a new node
ID.It can also allows the definition of new types of messages,
unknowed by the system. The management of new types of
messages with the AM Flash allows the user to redefine new
types of applications.

Figure 6. Coupled Model Processor

The atomic AM Process’s behaviour allows to deal all
messages in the model ; we can express relative activity of
a node by counting of each action performed by the atomic
model AM Process.

D. Description of atomic model AM Battery
The atomic model AM Battery as illustrated on Figure 7

is an atomic model connected to all models representing the
components of the sensor. Each time there is an action using
some energy, the atomic model AM COM, the coupled model
CM Processor and the atomic model AM Sensorboard send a
message to the atomic model AM Battery.

For representation of enrgy consumption, we use for these
first experiments a linear mode based on [17]. In linear
model, the battery is treated as linear storage of current. The
maximum capacity of the battery is achieved regardless of
what the discharge rate is. The simple battery models allow
user to see the efficiency of the user’s application by providing
how much capacity is consumed by the user. The remaining
capacity C after operation duration of time td can be expressed
by the following equation :

C = C′−
∫ t0+td

t=t0
I(t)dt , Eq.(1)

where C’ is the previous capacity and I(t) is the instanta-
neous current consumed by the circuit at time t. The linear
model assumes that I(t) will stay the same for the duration td ,
if the operation node of the circuit does not change for the
duration td .

When a special value called size reached 0, a Dead message
is sent to all components and therefore all models enter the
DEAD phase. All input ports are blocked and it is impossible
for all models to change their state. Let us precise that all
models have a common important state called DEAD phase.
When a sensor model enters in this special phase, it cannot
act any more in the network. This particularity is essential for
networking management.



Figure 7. Atomic Model Battery

For the energy cunsumption of each component, we use the
Table II.

Table II
ENERGY CONSUMPTION FOR EACH COMPONENTS [18]

This energy conusption depends of the duty cycle. The Duty
cycle is the proportion of time during which a component,
device, or system is operated. Suppose a node processor
operates for 1 second, then is shut off for 99 seconds, then is
run for 1 second again, and so on. It runs for one out of 100
seconds, or 1/100 of the time, and its duty cycle is therefore
1/100, or 1 percent. In a periodic phenomenon, the ratio of the
duration of the phenomenon in a given period to the period.

D = τ
T

where :
D is the so-called duty cycle;
τ is the duration that the function is non-zero;
T is the period of the function.
In this considiration, the defined system uses the following

Duty Cyle to calculate energy consumption, illsutrated by the
Table III.

Table III
DUTY CYCLE FOR EACH COMPONENTS

E. Description of atomic model AM Memory

The atomic model AM Memory is a simple atomic model as
shown on Figure 9, that allows storage of environmental data
by CM Processor. However, a coupled model CM Processor
can have different kind of actions on atomic model AM
Memory according to the type of message.We may point
two messges (MemCollect and StoreData) in sub-section IV.1
which are enough explicit and which are used in order to
represent actions of the processor.

F. Description of the atomic model AM SensorBoard

The goal of the atomic model AM Sensorboard is to
represent interactions between environment and sensors. It is
an important point of our approach. The atomic model AM
Sensorboard is connected with a special atomic model AM
Env where the atomic model AM Sensorboard can collect data
of environment . The atomic model AM Env is an external
model as shown on Figure 8 using environmental message to
communicate with sensorboard. This interconnection between
these two models represents sensing action of nodes in an
environment or a specific phenomenon (wildfire). The atomic
model AM Env contains different values for each environe-
mental parameters. The atomic model AM Env allows to
define an environemental scenarion for the global network,
or for several groups of sensors or for each nodes of the
WSN. To represent variation of environmental parameters, we
have implemented a simple scenario with an increasing of the
temperature on each sensor. The atomic model AM Sensor
board has five states:

(i) the Busy state allowing to point out that a model is in
action ;

(ii) the Free state allowing to point out that a model is in
sleep mode ;

(iii) the Wait state when the model collect informations in
the atomic model AM Env ;

(iv) the GO state when the model send a message to the
coupled model Process if the message doesn’t contain a value
superior at a fixed threshold ;

(v) the Dead state when the model send a Dead message
to the coupled model Process if the message contains a value
superior at a fixed threshold.



Figure 8. Atomic Model SensorBoard

G. Description of the coupled model CM Sensor : definition
of coupling

The model illustrated by Figure 9 represents fcoupling of
the DEVS Coupled model of sensor we have defined. This
definition is essential because it determines the connectivity
between the model but also architecture characteristics of the
future Wireless Sensor Network. This model requires two input
ports In1 and In2 and two output ports Out1 and Out2. In1 and
Ou1 represent connectivity with a node. Let us note that the
coupled model CM Sensor allows to have several connections
with several nodes and consequently the outports and the
inports increase. In2 and Out2 represent the connectivity with
the environment. We have pointed out in Figure 9 appears the
central role of the coupled model MC Process.

Figure 9. Coupled Model Sensor

When dealing with the coupled model CM Processor, and
more precisely Atomic Model Net, we work with two specific
protocol, called Gradient Based Routing protocol [19] and
reliable route protocol or Xmesh protocol [20].

Gradient-Based Routing (GBR) is a variant of directed
diffusion. The key idea in GBR is to memorize the number of
hops when amessage is diffused through the whole network.
As such, each node can calculate a parameter called the height
of the node, which is the minimum number of hops to reach
the BS. When multiple paths pass through a node, which acts
as a relay node, that relay node may combine data according
to a certain function. GBR uses mainly a stochastic scheme,
where a node picks one gradient at random when there are
two or more next hops that have the same gradient.

Xmesh protocol is more elaborated that GBR and it allows
the node to estimate the quality of the link from the other
nodes passively by collecting statistics on packets it happens
to hear, or by actively probing. Link quality is measured
as the percent as of packets that arrived undamaged on a
link. Link status and routing information are maintained in
a neighborhood table. The goal is to have a neighborhood
management algorithm that will keep a sufficient number of
good neighbors in the table regardless of cell density. To
maintain this routing table, this protocol uses an algorithm
based on a frequency count for each entry in the table. On
insertion , a node is reinforced by incrementing its count. A
new node will be inserted if there is an entry with a count
of zero; otherwise the count of all entries is decremented
by one and the new candidate is dropped. The neighbour
table contains many fields : Group Ids, Parent node Ids,
Chil Ids, reception link quality, link estimator data structures.
To estimate link quality, Shortest Path protocol is used. For
Shortest Path protocol, a node is a neighbor if its link quality
exeeds threshold t. An another parameter is the selection of
parent node. The cost metric is used to guide routing. The cost
of a node is an abstract measure of distance ; it may be number
of hops, expected number of transmissions, or estimate energy
required to reach the sink. A neihgbor is selected as a potential
parent only if its cost is less than the currrent cost of a node.
This protocol is able to detect and avoid cycles, detect failures
of transmision and eliminate node in the tree if link quality
worsens.

V. IMPLEMENTATION AND RESULTS

In order to validate the theoretical approach presented in
[16] we choose to implement the described atomic and coupled
models using the PythonDEVS simulator [21]. The Python-
DEVS Modeling and Simulation package provides an imple-
mentation of the standard classic DEVS formalism described
in section III. The package consists of two files, DEVS.py
and simulator.py. The first one provides class architecture that
allows hierarchical classic DEVS models to be easily defined
by subclassing the AtomicDEVS and CoupledDEVS classes.
The Simulator engine (SE) is implemented in the second file.
Based on the principles of simulation describe in section III,
it allows to perform discrete event simulation. Even if the
PythonDEVS software involves a simulation engine which



offers limited means to terminate a simulation and provides
no easy model-reinitialisation possibilities we have been able
to use it in order to efficiently test our approach. We have been
specially able to introduce the concepts of out-of-context and
in-context models because of the open source quality of the
PythonDEVS package. Furthermore by subclassing both the
atomic model Class and the coupled model class inherent to
the PythonDEVS package we have been able to perform the
simulation algorithm of PythonDEVS by calling the methods
extransition, intransition, etc... of an atomic model class and to
use the model’s composition and connectivity including ports
and sub-models offered by the Coupled Model Class.

Furthermore we implement a Generator atomic model ded-
icated to generate the required events in order to validate
our approach. This generator atomic model has been defined
according to the semantics defined by B.P. Zeigler in [15].

We describe in this section how the proposed approach has
been validated. We choose to implement a benchmark network
composed by eight nodes and a Base Station.

On Figure 10, we represent the eight nodes and the BaseSta-
tion and we can see different relations between the nodes. The-
ses relations represent the connectivity and exprim capacity of
communication between two nodes. If there is no connection
between two nodes, it means that the nodes are too much
distant to exchange some information by example. During the
simulation, all nodes send periodically messages towards the
BaseStation. Figure 10 shows only a predefinition of relations
between nodes. We make the choice of this representation to
work on routing protocol and representation capacity of our
model. During simulation, we want the nodes make a choice
according to routing protocol rules to reach the base station.

Figure 10. Network architecture for simulation

A. Identical parameters betwenn GBR and Xmesh.

The sensing activity and the time of message arrival on the
Base station are the same for the two protocols. This fact is
clearly understandable for the sensing activity because it is
only dependant of the atomic model AM Env however for the
time of latency we must provide some precisions. Based on
the number of hops, GBR and Xmesh have the same time of
arrival of the messages on the base station.

1) Sensing activity: According to our approach, we imple-
mented the atomic model AM Env with a simple temperature
model with a rapid increase of temperature as it can be
observed in wildfire case for instance . On Figure 11, we
analyse environmental data sent periodically by the nodes
and we observe that the simple temperature model is clearly
represented. We observe for each node a rapid increase of
temperature .

Figure 11. Environmental Temperature parameter during simulation

2) Latency Time: On Figure 12, we have highlighted the
time of apparition of each node in the sink table that shows
the difference between a node near the sink and a node more
distant. However this time is not very important because we
can see on Figure 12 that Node7 appears after 80 seconds.
Figure 12 shows a real important shift due to the fact taht
there is no direct relation between nodes and the BaseStation.

Figure 12. First apparition of node message on the sink

The main explanation once again is the routing protocol. As
we already mentioned above a message issued from Node7
needs to go through Node5, Node2, Node1 in order to reach
theBaseStation.



B. Comparison of Network Management

In this part, we compare GBR and Xmesh in using different
parameters.

On Figure 13, we can see architecture of Wireless Sensor
Network. This figure shows priviligied relations ,i.e. the first
neighbor in routing table of each node according to the routing
protocols GBR and Xmesh. On Figure 14, we can see the
evolution of architecture of WSN for Xmesh protocol. We
can observe that the relations between sensors are differents.
Indeed, this evolution means that routing table of Node 6 has
for first neighbor Node2 instead of Node3. This selection of
the first neighbor is made by routing rules of Xmesh according
to a good link quality. GBR uses a stochastic scheme based on
a random selection between the nieghbors with the same hops
number. This selection technique doesn’t allow, in this case of
simulation, a new relation definition between the node.

Figure 13. WSN priviligied communications after 10 mn of simulation

Figure 14. WSN priviligied communications after 15 mn of simulation

C. Comparison of Energy consumption and CPU activity

Our approach allows to distinguish energy cunsumption
and processor activity. To illustrate this fact, we propose
to compare the Xmesh protocol [16] at the GBR protocol
according these two previous parameters, illustrated by the
Figure 15 and Figure 16 on the next page.

On Figure 15, we represent the events treated by each
node processor model during the time of simulation. In our
approach, the atomic model AM Processor manages all the
components and treated all actions involved in a node.

First, independently of the routing protocol, we can observe
an important activity of Node 1 because it has a central role
in the network and it is the bridge between the other nodes
and the sink. This activity of Node 1 is the direct effect of
the nodes deployment and network architecture chosen for the
test represented on Figure 10.

The Figure 15 a) illustrates the processor activity of “GBR
nodes” and the Figure 15 b) represents the processor activity
of “Xmesh nodes”.



a)

b)

Figure 15. Relative CPU activity in the WSN

a)

b)

Figure 16. Relative energy cunsumption in the WSN



We can observe, in this case of simulation, that Xmesh
protocol allows a more important sharing of the routing stacks
than GBR protocol. Indeed, an important processor activity is
the sign of the important role of the node in the routing. We
can observe with GBR that Node 2 is more often sought than
the Node 3. We can point out that Xmesh reduces this problem
encouraging a better routing tasks sharing.

The Figure 16 a) illustrates the energy consumption of
“GBR nodes” and the Figure 16 b) represents the energy
consumption of “Xmesh nodes”. We can observe that the Node
2 consumption is more important in GBR case than in Xmesh
case. These results confirm that the previous conclusions and
Xmesh seems to provide a more important tasks balance in
the network than GBR. Xmesh is a protocol more complex
based on the number of hop to reach the base station but
also a neighborhood selection more elaborated than GBR, thus
fostering a better routing tasks sharing.

VI. CONCLUSION AND FUTURE WORK

This article provides a modeling and simulation of perfor-
mance of a Wireless Sensor Network. This work is based on
the DEVS formalism for the modelling and the simulation
of complex discrete event system. We have demonstrated the
capacity of our approach to analyze the evolution of Wireless
Sensor Network architecture and analyse certain performance
of a WSN according to two routing protocols, GBR and
Xmesh. We have been able to implement the concepts pre-
sented in the paper using the PythonDEVS package and to
validate this approach by providing results of simulation of
a Wireless Sensor Network with eight nodes. We have high-
lighted the routing parameters, the relative energy cunsumption
and the CPU activity . These results allows to show that this
first approach for modelling WSN using the DEVS formalism
is promising and provides a new level of visualization of
node. Indeed, a DEVS description of components allows us to
visualize the characteristics of each component. These results
confirm both that the proposed approach is fine when dealing
with WSN characteristics and that the DEVS formalism is ef-
ficent in order to model the behaviour of a WSN. The Modular
aspect of DEVS allows to easily change the component model
of a sensor into another one, by example in our example the
atomic model AM Net for the routing protocol test. After the
completion of the main components of the Sensor network an
application to test the model can be created. This application
is based on a DEVS simulator written in Pyhton developped
by [21]. It is divided in four packages : DEVS package,
ComponentsNodes package, SimulationTools package, and
Wireless Sensor Network specification package. A simulation
tool called DEVS-WSN is currently in development phase.
This simulation tool will allow to us to work on a particular
phenomenon : the wildfire. Indeed, the atomic model AM Env
and the capacity to study the routing protocol and the network
topology in easy way will allow to analyze the WSN behavior
in forest fire conditions.

REFERENCES

[1] A. Hac, Wireless Sensor Designs. John Wiley and Sons Ltd, 2003.
[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless

sensor networks: a survey,” Computer Networks, vol. 38, no. 4, pp. 393–
422, 2002.

[3] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar, “Next century
challenges: scalable coordination in sensor networks,” in Proceedings of
the 5th annual ACM/IEEE international conference on Mobile comput-
ing and networking(MobiCom ’99), (Seattle, Washington, United States),
pp. 263–270, ACM Press, 1999.

[4] S. Tilak, N. B. Abu-Ghazaleh, and W. Heinzelman, “A taxonomy of
wireless micro-sensor network models,” SIGMOBILE Mobile Computer
Communication Revue, vol. 6, no. 2, pp. 28–36, 2002.

[5] I. Khemapech, I. Duncan, and A. Miller, “A survey of wireless sensor
networks technology,” in Proceedings of the 6th Annual PostGraduate
Symposium on the Convergence of Telecommunications, Networking and
Broadcasting(PGNET’05), (Liverpool, UK), 2005.

[6] U. Farooq, B. Balya, and G. Wainer, “Modelling routing in wireless
ad-hoc networks using cell-devs,” in Proceedings of 2004 International
Symposium on Performance Evaluation of Computer and Telecommuni-
cation Systems (SPECTS’04), (San Jose, CA, USA), pp. 285–292, 2004.

[7] T. Kim, “Devs-ns2 environment : An integrated tool for efficent network
modeling and simulation,” Master’s thesis, 2006.

[8] NS2, “Available: http://www.isi.edu/nsnam/ns/,” 1995.
[9] S. Park, A. Savvides, and M. B. Srivastava, “Sensorsim: a simulation

framework for sensor networks,” in Proceedings of the 3rd ACM interna-
tional workshop on Modeling, analysis and simulation of wireless and
mobile systems (MSWIM’00), (Boston, Massachusetts, United States),
pp. 104–111, ACM Press, 2000.

[10] J. Polley, D. Blazakis, J. Mcgee, D. Rusk, and J. S. Baras, “Atemu: a fine-
grained sensor network simulator,” in Proceedings of IEEE Conference
on Sensor and Ad Hoc Communications and Networks (SECON’04),
(Santa Clara, CA, USA), pp. 145–152, 2004.

[11] P. Levis, N. Lee, M. Welsh, and D. Culler, “Tossim: accurate and
scalable simulation of entire tinyos applications,” in Proceedings of the
1st international conference on Embedded networked sensor systems
(SenSys’03), (Los Angeles, CA, USA), pp. 126–137, ACM Press, 2003.

[12] V. Shnayder, M. Hempstead, B. R. Chen, G. W. Allen, and M. Welsh,
“Simulating the power consumption of large-scale sensor network
applications,” in Proceedings of the 2nd international conference on
Embedded networked sensor systems (SenSys’04), (Baltimore, MD,
USA), pp. 188–200, ACM Press, 2004.

[13] L. Samper, F. Maraninchi, L. Mounier, and L. Mandel, “Glonemo: global
and accurate formal models for the analysis of ad-hoc sensor networks,”
in Proceedings of the first international conference on Integrated internet
ad hoc and sensor networks(InterSense’06), (Nice, France), p. 3, ACM
Press, 2006.

[14] S. Sundresh, W. Kim, and G. Agha, “Sens: A sensor, environment and
network simulator,” in Proceedings of the 37th annual symposium on
Simulation (ANSS’04), (Washington, DC, USA), p. 221, IEEE Computer
Society, 2004.

[15] B. P. Zeigler, Theory of Modeling and Simulation. Academic Press,
1976.

[16] T. Antoine-Santoni, J. F. Santucci, E. D. Gentili, and B. Costa, “Simula-
tion and visualization method of wireless sensor network performances,”
in Proceedings of International Symposium on Performance Evaluation
of Computer and Telecommunication Systems (SPECTS’07), pp. 476–
483, SCS, IEEE, 2007.

[17] S. Park, A. Savvides, and M. B. Srivastava, “Battery capacity mea-
surement and analysis using lithium coin cell battery,” in Proceedings
of the 2001 international symposium on Low power electronics and
design(ISLPED’01), (New York, NY, USA), pp. 382–387, ACM Press,
2001.

[18] Crossbow-Technology, Wireless Sensor Network Seminar. 2006.
[19] C. Schurgers and M. Srivastava, “Energy efficient routing in wireless

sensor networks,” in MILCOM Proceedings on Communication for
Network-Centric Operations : Creating the Information Force, (McLean,
VA, USA), 2001.

[20] A. Woo, T. Tong, and D. Culler, “Taming the underlying challenges
of reliable multihop routing in sensor networks,” in Proceedings of the
1st international conference on Embedded networked sensor systems
(SenSys03), (Los Angeles, California, USA), pp. 14–27, ACM Press,
2003.

[21] J. S. Bolduc and H. Vangheluwe, “pythonDEVS : A modeling and
simulation package for classical hierarchal DEVS,” tech. rep., 2001.



BIOGRAPHY :

Thierry Antoine-Santoni maintained his doctoral thesis in
2007 at the University of Corsica. His work focuses on
modelling and simulation of complex systems based on the
DEVS formalism developed by BP Zeigler, Wireless Sensor
Network and Bioinformatic. He has been author and co-
author of many papers published in international journals or
conference proceedings.

Jean-François Santucci is Professor in Computer Sciences
at the University of Corsica since 1996. His main research
interests are modeling and simulation of complex systems.
He has been author or co-author of more than 100 papers
published in international journals or conference proceedings.
He has been the scientific manager of several research projects
corresponding to European or industrial contracts. Further-
more he has been the advisor or co-advisor of more than
20 PhD students and since 1998 he has been involved in
the organization of more than 10 international conferences.
He is conducting newly interdisciplinary researches involving
computer sciences, archaeology and anthropology: in the one
hand he is performing researches in the archeaoastronomy field
(investigating various aspects of cultural astronomy throughout
Corsica and Algeria using tools issued from Computer Sci-
ences) and on the other hand he is applying computer sciences
approaches such as GIS (Geographic Information Systems) or
DEVS (Discrete EVent System specification) to anthropology.

Emmanuelle de Gentili maintained her doctoral thesis in
2002, Assistant Professor at the University of Corsica since
2004. His work focuses on modelling and simulation of
complex systems based on the DEVS formalism, fuzzy logic
and dynamic systems.

Bernadette COSTA is Professor in Electronics at the Uni-
versity of Corsica since 1989. His main research interests
are electronics, signal processing and acoustics. She has been
author and co-author of many papers published in international
journals or conference proceedings.


