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ABSTRACT

We introduce DesignDEVS, a simulation model develop-
ment, debugging, and experimentation environment based on
the Discrete Event System Specification (DEVS) formalism.
DesignDEVS aims to promote understanding and apprecia-
tion of model-simulator separation, delayed binding of mod-
els, and other key principles of a systems engineering ap-
proach. To minimize installation and learning time, we em-
bed a lightweight scripting language called Lua as the pri-
mary programming language for model development. Lua is
extended via environment tables and metatables to enforce
a number of modeling constraints implied by DEVS theory,
imposing restrictions on state changes and data references.
While not all theoretical principles are strictly enforced, we
include a discussion of best practices which account for prac-
tical considerations such as modeler convenience and compu-
tational efficiency. DesignDEVS has been used for complex
modeling tasks in architectural and building science research.
Its unique features may aid in the teaching of DEVS.
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1 INTRODUCTION

Computer simulations are actively developed across a wide
range of scientific and engineering domains. A variety of pro-
gramming techniques are employed in these efforts, includ-
ing acausal modeling as popularized by Modelica [7], block-
diagram editing as realized by Simulink [17] and Ptolemy II
[19], and traditional imperative programming as supported
by C, C++, Java, Python, MATLAB, and even Fortran in
many cases. An overarching goal of the field of modeling
and simulation is to steer simulation developers—from all
disciplines—to build communities of practice using scalable
methods that will ultimately give rise to collaboratively au-
thored predictive models of the most complex natural and/or
artificial systems that humans encounter and/or design.

Yet a practitioner’s time is limited. He/she is often inclined
to stick with familiar programming techniques, instead of ex-
ploring alternatives that may or may not prove beneficial once

TMS/DEVS 2016 April 3-6 Pasadena, CA, USA
(© 2016 Society for Modeling & Simulation International (SCS)

all practical considerations are taken into account. Unfortu-
nately, the result is that systems engineering principles are
rarely followed by the communities that have the most to gain
from them. Ad-hoc simulators are typically embedded within
model-specific code, causing redundancy and conflict when
two or more models must be integrated. Also, models often
refer explicitly to one another, creating dependencies that dis-
courage the testing of new combinations of models.

It is in this context that a formalism known as the Discrete
Event System Specification (DEVS) [27] holds great promise.
First, DEVS is among the most general of modeling for-
malisms. It has been shown that a multitude of other types of
models can be formally mapped into DEVS models, though
the reverse is not necessarily true [26]. Second, DEVS lends
itself well to the imperative style of programming familiar to
virtually all scientists and engineers. Thus even when graph-
ical features are incorporated into a DEVS-based simulation
environment, the textual programming tasks that remain tend
to build upon a user’s preexisting knowledge. Overall, DEVS
can be viewed as a means of delivering widespread benefit
with moderate learning demands, while exposing practition-
ers to helpful principles such as model-simulator separation
and delayed binding of models.

Numerous simulation development environments are avail-
able which provide both textual and graphical features for
developing, debugging, and experimenting with simulation
models. Among the simulation environments most dedicated
to DEVS theory are those listed in Table 1: PowerDEVS [1],
DEVS-Suite [28], CoSMoS [21], CD++ Builder [2], SimStu-
dio [24], and VLE [20] (see [6] for a more comprehensive
list). As indicated in the table, each tool is based on either
the original 1970s version of the theory, Classic DEVS, or a
1990s variant called Parallel DEVS [4], though various ex-
tensions may be supported as well. Each environment han-
dles atomic models implemented in a textual programming
language—usually C++ or Java—while some of the tools fea-
ture state-diagram-like editors that provide an alternative to
imperative code. All of these tools offer a node-link diagram
editor for defining coupled models that combine other mod-
els in a hierarchical fashion. What distinguishes each simula-
tion environment is a set of priorities and associated features,
which we summarize with brief “Objective” statements in Ta-
ble 1. Each tool will teach or reinforce the concepts it most
emphasizes, such as the quantization of state in the case of
PowerDEVS, the management of models in the case of CoS-
MoS, or the integration of different types of graphical models
in the case of CD++ Builder.



Environment DEVS Variant | Language Objective
. Promote DEVS-based quantized integrators to combine continuous and discrete
PowerDEVS | Classic DEVS | C++ models using block-diagram-like compositions similar to Simulink, Ptolemy II.
DEVS-Suite Parallel DEVS | Java Teach a systems ?pprpach to the modehpg of computer nfztworks and other
systems, with animations of the simulation process superimposed on the model.
CoSMoS Parallel DEVS | Java Build upon the DEVS-S.m.te simulator Wl.th new visual modeling 1nt.e.rfaces and
a framework for categorizing and managing models and model families.
CD++ Builder Classic DEVS Cat Reduce barriers for non-developer users with a state-diagram-like editor and
+ Cell-DEVS other graphical modeling tools within an extensible Eclipse-based framework.
SimStudio Classic DEVS | Java E}stabhs.h a multi-layer platform to support web-based collaborative authoring of
simulation models.
Parallel DEVS Support heterogeneous model development and experimentation through a broad
VLE . C++ . X .
+ extensions set of DEVS extensions and environment plug-ins.
DesignDEVS | Classic DEVS | Lua Tegch DEVS principles via modeling constraints enf(.)r.ced during debuggmg,
while exploring best practices that account for scalability and user experience.

Table 1: A list of DEVS-based simulation environments indicating the underlying theory, programming language, and objective.

Some environments use DEVS, but feature it less prominently
than those in Table 1. AToM? [5] exemplifies multi-paradigm
modeling [25], where DEVS is regarded as a means of inte-
grating models developed according to a diverse set of con-
ventions. James II [12] also combines DEVS with other ap-
proaches. MS4 Me [22] is based on DEVS, but purposely
minimizes its users’ perceived exposure to systems theory by
providing alternative modeling options such as sequence dia-
grams and natural language documents. The tool introduced
in this paper, DesignDEVS, has more in common with the
simulation environments in Table 1. As illustrated in Sec-
tion 2, elements of DEVS theory are prominently exhibited in
the user interface. However, as with nearly all DEVS-based
tools, the emphasis on the formalism is not meant to preclude
support for modeling strategies seen as closer to the users’
domains of expertise.

DesignDEVS aids in the teaching of DEVS principles with an
emphasis on practical considerations such as ease of installa-
tion, rapid prototyping of models, and support for debugging,
to name of few. It was found that by embedding Lua into the
environment as the primary programming language exposed
to users, we could achieve the desired level of user conve-
nience while furthering our educational objectives. Lua [14]
is a minimalistic programming language with an interpreter
specifically intended for embedding in software applications.
This allows DesignDEVS to be distributed in a small and self-
contained package, and eliminates the step of generating exe-
cutable code from users’ models. Lua is also a highly exten-
sible language. Section 3 describes how Lua’s environment
tables can be modified to provide modeling-specific functions
without importing large libraries. Furthermore, Lua’s metata-
bles can be exploited to prevent users from performing harm-
ful operations. The rationale for these modeling constraints
is communicated through error messages.

The most unique aspect of DesignDEVS is arguably the con-
straints it imposes on state changes and data references dur-
ing run-time debugging. Consistent with DEVS theory, it is
impossible to alter a state variable in the time advance func-
tion. If the state variable contains a data reference, then the

value that is pointed to cannot change. The tool also fea-
tures a unique solution to the “Insidious Pointer” problem
as described by Nutaro [18]. In DesignDEVS, it is virtu-
ally impossible to communicate a data reference between two
components in such a way that they alter one another’s state
by modifying the shared memory. Yet for the sake of effi-
ciency, it is possible to pass pointers under safe conditions as
explained in Section 4.

It is not practical to enforce all principles via constraints.
Some principles must instead be promoted through best prac-
tices, as discussed in Section 5. An ongoing challenge is to
establish best practices which address not only scalability but
also user experience.

2 DESIGNDEVS USER INTERFACE

The layout of the DesignDEVS user interface, shown in Fig-
ure 1, reflects a key principle of modeling formalisms in gen-
eral: the separation of model and simulator. The window is
split by a horizontal divider bar into an upper section dedi-
cated to modeling, and a lower section focused on simulation
runs. All DEVS-based simulation environments feature this
separation at a semantic level, but the visual partitioning of
model and simulation elements reinforces the concept.

The modeling section above the horizontal divider is split into
a model list on the left, and a model editor on the right. The
editor is further organized by tabs, where the types of tabs
depend on whether the selected model is atomic or coupled.
If the selected model is coupled, as in Figure 1, there are 5
tabs including the Composition tab which contains the node-
link diagram. If an atomic model is selected, the editor has 8
tabs including the Internal Transition tab shown in Figure 2 with
Lua code for a classic Game of Life model.

The simulation section below the divider has a list of simu-
lations on the left, and tabs for configuring and viewing the
selected simulation on the right. These tabs include Messages,
as shown in Figure 1, where input messages are created prior
to running a simulation. The end time of the simulation is
also configured in this view, on the far right of the timeline.
Because items in the model list (top left of Figure 1) and the
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Figure 1: A screenshot of the DesignDEVS user interface
showing a model list and editor (upper section), and a simula-
tion list and configuration/visualization tools (lower section).

simulation list (bottom left) have a one-to-many relationship,
multiple configurations can be stored for the same model. Af-
ter a simulation is run, both input and output messages are
displayed on the timeline as seen in Figure 3 (output mes-
sages are lower and have upward arrows). Skewed triangular
elements below messages remind users that discrete events
are not necessarily evenly distributed over simulated time,
and that multiple events can be associated with the same time
point. As shown in Figure 2, there is also a Visualization tab
for displaying 2D animations of simulation results.

The principle of delayed binding is emphasized in the node-
link editor for coupled models. DEVS models communicate
via messages without explicitly referring to one another, al-
lowing models with similar interfaces to be interchanged in
the context of an encompassing network. To convey this no-
tion, a node is first drawn, then named, and finally associ-
ated with a particular model. The model can be replaced later
without deleting the node.

To minimize the risk of important features remaining hidden
from users, DesignDEVS places nearly all functionality close
to the context of their use instead of in the menu bar at the top.
The coupled model editor follows this philosophy to an ex-
treme degree. All node-link editing functions are embedded
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Figure 2: A transition function populated with Lua code for
a classic Game of Life model (top), and a 2D visualization of
the results (bottom).

in the diagram, consistent with the human-computer interac-
tion principle of direct manipulation [23]. The functions are
revealed in a tooltip depending on the location of the cursor.
The indicated action is executed simply by clicking; there is
no drag-and-drop interaction and no actions specific to a par-
ticular mouse button.

When the cursor is within the coupled model, regions of the
background are filled with diagonal stripes as shown in Fig-
ures 4 and 5. Clicking on a blue stripe will expand the model
vertically, as in Figure 4 (top), or horizontally, depending on
whether the cursor is closer to a horizontal or vertical grid
line. Similarly, clicking on a red stripe contracts the model.
Some grid cells are solid green, indicating they are suffi-
ciently far from existing boundaries to place a node. Hover-
ing over a green cell shows where a node will be placed upon
clicking, as in Figure 4 (bottom). Once a node is created, red
text indicates that it needs a name and model. To prevent cir-
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Figure 3: Pre-simulation input messages and post-simulation output messages, as appearing in the DesignDEVS timeline.
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Figure 4: Coupled model expansion and node insertion.

cular dependencies, a model can only be assigned to a node if
the model appears above the coupled model in the list shown
at the top left of Figure 1. Nodes can be deleted or moved
by clicking on either the red or blue square that appears at
the top-left or bottom-right corner when hovering. It is never
possible to produce overlapping nodes or even adjacent nodes
that might conceal their surrounding links.

Links indicate how messages flow within a coupled model.
To insert a link, one first clicks on a green rectangle on the
boundary of a node or the coupled model itself. With the ori-
gin of the link determined, green rectangles appear through-
out the diagram at every possible link destination. DEVS the-
ory disallows links from a component to itself, so the green
rectangles do not appear around the node of origin. Once a
link is placed, the ports at either end point can be assigned.
Figure 5 illustrates the placement of a link and the final model
as a result of the manipulations in both Figures 4 and 5.

DesignDEVS is developed for Windows and Mac OS using
C++ with graphical user interface components from the Qt
library, though only Lua is exposed to users.

3 LANGUAGE EMBEDDING AND EXTENDING

Lua is a high-performing yet lightweight scripting language
that has achieved popularity within the computer game indus-
try. Among the features that make Lua simple is the fact that
it provides only one data structure: the table. Tables are col-
lections of key-value pairs that are passed by reference and
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Figure 5: Coupled model link insertion.

monitored by a garbage collection algorithm. Whereas most
modern languages have separate data types for sequences (i.e.
arrays or vectors) and records (i.e. tuples or structs), Lua
relies on tables with integer- or string-valued keys, and has
built-in operations dedicated to these types of tables.

In Lua, when a new variable is created with an assignment
statement such as x = 5, the underlying effect is to add the
key-value pair ("x", 5) to a special table called the environ-
ment table (named ENv in Lua 5.2, the version used by De-
signDEVS). DesignDEVS modifies environment tables such
that newly added keys become state variables of the DEVS
model instance. Of course, a variable that is local to a partic-
ular event should not be treated as a state variable, and must
not persist between events. Fortunately, these local variables
are inherently supported by Lua’s built-in 1ocal keyword.

In addition to reinterpreting variable assignments, Design-
DEVS expands environment tables by adding the modeling-
specific functions in Table 2. The duration function creates
a time value from a multipler and a unit (e.g. duration(8,
"minutes")). The value is rounded to the Time Resolution! of

!"The Time Resolution fields might have been labeled Time Precision.
Yet the term “resolution” appropriately encourages the user to spec-
ify the longest time unit that evenly divides all possible time steps.
For example, a model with a 5s time step should be given a reso-
lution of seconds, requiring the simulation to be run in seconds, or
milliseconds, or microseconds, etc, depending on the other models.



Function Description
duration Construct a time duration value
tostring Convert a value (incl. table) to a string
print Print arguments on the console
const Make a table permanently read-only

copy Make a deep copy of a table

runscript Load a .lua file from the project folder
error Abort with an error message

input Input a (port, value) pair

output Output a (port, value) pair

elapsed Get time elapsed since previous event

Get time elapsed since simulation start
Get time remaining until planned event
Get parameter value

Set component parameter value

Get component statistic value

Set statistic value

total_elapsed

remaining

get_parameter

set _parameter

get_statistic

set_statistic

Table 2: Modeling-specific functions.

the overall simulation, which is always as fine or finer than
the Time Resolution of any of its models. An optional third
argument controls the rounding method: "floor", "ceil",
"halfup" (default), "halfdown", "halfeven", Or "halfodd".
With a single string argument, the duration function can pro-
duce a single unit of the simulation precision ("minimum"),
the maximum representable duration ("maximum"), or an infi-
nite duration ("forever"). A duration may appear anywhere
in a DesignDEVS model, but notably in the Time Advance tab
where it serves as the return value. Other key functions in-
clude input, used in the External Transition tab to access re-
ceived values; output used in the Internal Transition tab to send
values; and elapsed, used where needed to obtain the time
elapsed since the previous event. The input and output func-
tions deal with port names as string values. The ports names
are specified in the Main tab.

The manner in which environment tables are modified allows
models to be developed with virtually no boilerplate code
and no explicit importing of DEVS-specific libraries (though
domain-specific libraries can be imported as needed with the
runscript function). The result is that DEVS models can be
rapidly prototyped using minimal code. For example, Table 3

lists the source code for three basic models implemented in a
mere 2, 4, or 18 lines. To help users learn DesignDEVS, these
models and several others are included—along with step-by-
step instructions contained in the model Description fields—in
a Generator Processor Tutorial project packaged with the soft-
ware. Also provided is the Game of Life model of Figure 2,
and the more complicated example illustrated in Figures 4
and 5.

4 MODEL DEBUGGING AND CONSTRAINT CHECKING
DEVS has a number of theoretical constraints by virtue of be-
ing a mathematical formalism. For example, a state s is never
modified, but rather replaced by a different state s’. Also,
an input = or output y is never changed but rather succeeded
by other inputs or outputs. But DEVS implementations dif-
fer in how constraints are enforced. SC-DEVS [16], one of
the many non-graphical DEVS-based simulation libraries, is
particularly loyal to the theory in that the current state (of
C++ type const States) is immutable and the new state is a
distinct object. If the state requires a considerable amount of
memory, the more object-oriented approach of VLE and sev-
eral other DEVS-based simulators seems more computation-
ally efficient. In VLE, state variables can be directly mod-
ified by state transition member functions of model-specific
C++ classes. Member functions corresponding to the DEVS
formalism’s time advance and output functions are declared
const to prevent state changes, consistent with the theory.
Despite these conventions, few DEVS-based simulators fully
protect the user from theoretical inconsistencies caused by the
use of data references, also known as pointers.

As Nutaro [18] writes, an “insidious problem [our emphasis]
with exchanging pointers is that the output object is shared by
its producer and all of its recipients. [...] In effect, the shared
object becomes a hidden channel for communication, and its
effects can be unpredictable, and generally undesirable, as the
root cause can be difficult to pin down.” Based on Nutaro’s
description, we call this the Insidious Pointer Problem. The
problem is acknowledged in the testing framework of Li et al.
[15], who investigate two simulators and find that both fail at
least one related test case.

DesignDEVS promotes consistency with DEVS theory in
large part through the detection of a broad range of errors
during the debugging phase. A simple example of such an

Model State Initialization Time Advance External Transition Internal Transition
Greeting
Generator return duration(8, "minutes") output ("out", "Hello")
(2 lines)
Counting . .
Generator n=1 return duration(8, "minutes") :JEPEti iut + n)
(4 lines) -
local port, wvalue = input ()
local dt.r = if port == "in" then
Ideal item = nil duration ("forever") item = value output ("out", item)
Processor inputCount = 0 if not (item == nil) then inputCount = inputCount + 1 | item = nil
A _ dt_r = duration (0) else outputCount =
(18 lines) outputCount = 0 end error ("no port named ’'" + outputCount + 1
return dt_r port + "’'")
end

Table 3: Complete source code for three simple DesignDEVS models. The line counts treat multi-line instructions as one line.



error is the invocation of a function in Table 2 in an inappro-
priate context. For example, if input () appears in the Internal
Transition tab, the error "attempt to call ’input’ outside
of External Transition" is produced. Clicking the error
message in the Console selects the relevant tab and highlights
the offending line of code. To detect the error, input is im-
plemented as a closure (as in functional programming), that
captures an instance-specific table, which in turn keeps track
of what code is being executed. Other errors are detected
through the use of metatables, described below.

Lua differs from C++ in that, instead of declaring variables
and member functions const, one can dynamically control
whether a table is constant or mutable. More generally, one
can attach or modify metatables to customize the language
in a number of ways, including but not limited to controlling
“constness”.

Let us first focus on errors detected by metatables attached to
environment tables. These metatables are modified according
to which part of the model is being executed. For example, if
a state variable is modified in the External Transition or Internal
Transition tab, there is no error; but if one attempts to change
the variable in the Time Advance tab, the metatable triggers
the error "attempt to reassign a state variable in
Time Advance (state changes occur in External and
Internal Transitions)".

To detect not just a few clearcut errors such as those above,
but rather the vast majority of operations that contradict
DEVS theory in subtle ways, great attention is paid to the
metatables attached to tables defined by the modeler. Recall
that in Lua, these user-defined tables are passed by reference
and include all sequences and records as well as general col-
lections of key-value pairs. Therefore, careful handling of
these tables addresses essentially every data structure and ev-
ery pointer encountered in a typical DesignDEVS model. The
first step is to assign each table one of following types: raw,
regular, state, external regular, external state, acquired state,
and constant. Tables are converted from one type to another
depending on the context. Certain operations are prohibited
based on the context and the table type.

A raw table is a standard Lua table that permits all operations
supported by the language. But when a DesignDEV S-specific
operation is performed on a raw table, it is converted into a
regular table. The conversion process triggers an error if the
table contains a key value that is another table, a function,
or an object that cannot be printed. More importantly, the
conversion detects circular references, which trigger the
error "attempt to record or transmit a table with
a circular reference (simulation models require
tables that do not reference themselves, not even
indirectly)".

When a regular table is assigned to a state variable or a table
contained within a state variable, that regular table is con-
verted into a state table. Note that if a raw table is assigned in
a similar manner, it is silently converted into a regular table
before becoming a state table. Altering a state table fails
if done in the wrong context (e.g. "attempt to modify a

state variable table in Time Advance)"). Furthermore,
if we regard a model’s entire state as a hierarchy (i.e. state
variables may be tables containing other tables), a state table
may only occur once in that hierarchy. A second reference
triggers an error ("attempt to reference a modifiable
table in multiple state variables or in multiple
places within a single state variable"). If a parent
state table contains a child state table, and the former is
altered such that it no longer contains the latter, the child
table is converted back to a regular table.

Three types of tables occur only in input messages received
during an External Transition. Their collective purpose is to
solve the Insidious Pointer Problem whereby a received
data reference—a Lua table, in our case—creates a “hidden
channel for communication” [18]. When a regular table is
received, it becomes an external regular table which, to avoid
influencing other recipients, cannot be altered ("attempt
to modify a table just received from another model

instance"). However, a regular table can be stored in a
recipient’s state. The table then becomes an acquired state
table, and can be modified in a future External Transition or
Internal Transition. If a state table or acquired state table is
received in a message, it is an external state table which can
be neither altered ("attempt to modify a state variable
owned by another model instance") nor stored ("attempt
to reference a modifiable table in state variables

of multiple model instances").

Any table can be converted to a constant table using the const
function. Once made constant, a table can never be altered
(though it can be copied, and the copy can be modified). Con-
stant tables can be stored in multiple places both within a sin-
gle model instance and among communicating instances.

The above constraints, enforced using metatables specific to
the Lua programming language, circumvent the problematic
effects of pointers and other technological operations that
contradict DEVS principles. Yet for sake of computational ef-
ficiency, a variety of communication patterns involving point-
ers remain possible. If needed, the user can avoid memory
sharing by explicitly copying a table with the copy function.

By providing (a) a self-contained package, (b) an embedded
scripting language interpreter, (¢) a DEVS-inspired user inter-
face, and (d) DEVS-specific error handling, we remove many
of the barriers that novices encounter when first developing
DEVS-based simulations.

5 APPLICATIONS AND BEST PRACTICES

DesignDEVS has served as the development environment
for several simulation projects, including a model combining
cognitive structural elements with motion sensors in buildings
[3], and various explorations of equation-solving and time ad-
vancement strategies in the context of building system control
and heat transfer [9, 11]. Although DesignDEVS can be ap-
plied to a multitude of domains, its name reflects an early
focus on architectural design and building science.

Inevitably, the use of a simulation environment highlights
practical considerations such as modeler convenience and
computational efficiency, which are sometimes at odds with



aspects of the underlying formalism [8]. In light of these con-
siderations, we find that some DEVS principles are appropri-
ate to enforce through constraints such as those in Section 4,
whereas other principles can be encouraged by defining and
communicating a set of best practices. An analogy can be
made with object-oriented programming, where language de-
signers tend to permit the declaration of public member vari-
ables despite recommending such variables be declared pri-
vate. The overarching goal is to promote scalable methods
while prioritizing user experience.

Consider the output function A in modeling theory [27]. In
Classic DEVS, it is always invoked immediately before the
internal transition function d;,;, but only the latter function
is permitted to modify the state. Suppose that a large array
that must be computed, output, and stored. Theoretically, the
array must be computed first in A and then again in §;,,;. This
raises an unfortunate conflict between DEVS theory and the
need for computational efficiency. To produce a positive ex-
perience for users, DesignDEVS shields them from this issue
by merging A and 6;,+ into a single Internal Transition tab where
the state is permitted to change. An output function can be
invoked any number of times from within the tab. Although
this convention has theoretical drawbacks [8], there is prece-
dent for the merging of A and d,,,; in a DEVS-based simulator
[13]. If one’s purpose is to teach the DEVS formalism, a best
practice could be established in which output is invoked at
most once, with no preceding alteration of any state variable.

Many simulation environments allows users to directly mod-
ify the parameters of the components of a coupled model. De-
signDEVS takes the opposite approach, enforcing the princi-
ple of encapsulation by giving every coupled model an Initial-
ization tab. The modeler may read the parameters of the cou-
pled model (using get parameter) and produce the param-
eters of the components (using set parameter). With this
mechanism, it is possible to centralize pre-simulation pro-
cessing operations, as well as ensure that two components re-
ceive the same parameter value where needed. Atomic mod-
els are given an extra initialization step in the form of a Con-
stant Initialization tab, where parameters are used to define a set
of constants. These constants are actually mutable within the
tab, but are automatically fixed prior to State Initialization.

DesignDEVS is similar to PowerDEVS in that models have
user-supplied Finalization code. This code may be used to re-
lease access to resources, similar to destructors in C++. In
DesignDEVS, they also accommodate the reporting of simu-
lation results that have been aggregated into statistics. Not all
users require statistics, but those that do benefit from a built-
in reporting mechanism. The inclusion of statistics in mod-
els seems to contradict DEVS theory, which would confine
them to an experimental frame. One can address this principle
by recommending, as a best practice, that only experiment-
specific analysis models be populated with statistics.

The most complex DesignDEVS model to date is the discrete-
space hotel simulation [10], shown in Figure 6. The merging
of A and §;,; is exploited by a submodel representing heat
diffusion. A fine-resolution array of temperature values is
computed once, stored in the submodel’s state, and communi-

Figure 6: A virtual hotel modeled and simulated using De-
signDEVS. The indoor temperature distribution (surface col-
oring) influences the window-opening behavior of occupants
(cylinders), which in turn affects indoor temperature.

cated to another submodel responsible for occupant comfort.
Also, the initialization function of the overall coupled model
centralizes the loading of datasets, which are then distributed
in memory to multiple submodels. Taking advantage of the
tool’s practical features, the entire project—including a novel
path-finding algorithm and 3D animations—was completed
in a reasonably short time frame of 11 weeks.

6 CONCLUSION

DesignDEVS has unique qualities that have not only proven
effective for rapid prototyping, but will likely aid in the teach-
ing of Classic DEVS. First, the simulation environment is dis-
tributed as a lightweight package that is easy to install. Sec-
ond, the built-in scripting language simplifies the syntax of
model code and avoids compilation-related difficulties. Most
importantly, DesignDEVS reinforces its users’ knowledge of
DEVS theory through modeling constraints implemented via
extensions to the Lua programming language, and communi-
cated using formalism-specific error messages. By teaching
the software alongside best practices, a broad range of theo-
retical principles can be covered. DesignDEVS contributes to
the ongoing exploration of how to best incorporate modeling
and simulation theory into practical tools. Future develop-
ments should strive for a “learning-while-doing” approach to
DEVS and other scalable methods. This will encourage prac-
titioners from a multitude of disciplines to discover systems
engineering principles on their own, helping them collaborate
in the modeling of complex systems.
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