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Abstract

Model-based systems engineering methodologies such as Simulation, Formal Methods (FM) and
Enactment have been used extensively in recent decades to study, analyze, and forecast the
properties and behaviors of complex systems. The results of these analyses often reveal subtle
knowledge that could enhance deeper understanding of an existing system or provide timely
feedbacks into a design process to avert costly (and catastrophic) errors that may arise in the
system. Questions about different aspects of a system are usually best answered using some
specific analysis methodologies; for instance, system's performance and behavior in some
specified experimental frames can be efficiently studied using appropriate simulation
methodologies. Similarly, verification of properties such as, liveness, safeness and fairness are
better studied with appropriate formal methods while enactment methodologies may be used to
verify assumptions about some time-based and human-in-the-loop activities and behaviors.
Therefore, an exhaustive study of a complex (or even seemingly simple) system often requires
the use of different analysis methodologies to produce complementary answers to likely
questions. There is no gainsaying that a combination of multiple analysis methodologies offers
more powerful capabilities and rigor to test system designs than can be accomplished with any of
the methodologies applied alone. While this exercise will provide (near) complete knowledge of
complex systems and helps analysts to make reliable assumptions and forecasts about their
properties, its practical adoption is not commensurate with the theoretical advancements, and
evolving formalisms and algorithms, resulting from decades of research by practitioners of the
different methodologies. This shortfall has been linked to the prerequisite mathematical skills for
dealing with most formalisms, which is compounded by little portability of models between tools
of different methodologies that makes it mostly necessary to bear the herculean task of creating
and managing several models of same system in different formalisms. Another contributing
factor is that most of existing computational analysis environments are dedicated to specific
analysis methodologies (i.e., simulation or FM or enactment) and are usually difficult to extend
to accommodate other approaches. Thus, one must learn all the formalisms underlining the
various methods to create models and go round to update all of them whenever certain system
variables change. The contribution of this thesis to alleviating the burdens on users of multiple
analysis methodologies for exhaustive study of complex systems can be described as a
framework that uses Model-Driven Engineering (MDE) technologies to federate simulation, FM
and enactment analysis methodologies behind a unified high-level specification language with
support for automated synthesis of artifacts required by the disparate methodologies. This
framework envelops four pieces of contributions: i) a methodology that emulates the Model-
Driven Architecture (MDA) to propose an independent formalism to integrate the different
analysis methodologies. ii) Integration of concepts from the three methodologies to provide a
common metamodel to unite some selected formalisms for simulation, FM and enactment. iii)
Mapping rules for automated synthesis of artifacts for simulation, FM and enactment from a
common reference model of a system and its requirements. iv) A framework for the enactment of



discrete event systems. We use the beverage vending system as a running example throughout
the thesis.

A methodology that emulates the Model-Driven Architecture (MDA) to propose an
independent formalism to integrate the different analysis methodologies: The application of
MDA approach to software development has recorded significant advantages such as reduced
coding time and efforts, automated synthesis of error-free code and increased throughput. To
replicate these advantages in the process of modeling complex systems for complementary
analyses with simulation, FM and enactment, we propose a framework that mirrors the MDA by
generating the models for the different analysis methodologies from a reference model, which is
independent of any of the methodologies. With this approach, the modeler needs only to be
concerned with the correct specification of the reference model while the artifacts required for
each of the analysis methodologies can be (re)generated with little efforts. By this approach, the
domain expert is shielded, largely, from the efforts, time and mathematical rigor required to
specify (and update) models for each of the different methodologies.

Integration of concepts expressed in selected simulation, FM and enactment formalisms to
provide an independent meta-model for the reference models: Language engineering is one
of the cornerstones of MDE. Researchers in this field have proposed techniques to integrate
different languages to form new languages in some suitable circumstances; of particular interest
in this context is the integration of different meta-models to produce a new coherent one. In this
thesis, we use some of these techniques to integrate concepts from some considerably universal
formalisms in system theory and software engineering to define a unified language, which is
expressive enough to be at the kernel of an MDA-mirrored framework that support the
automated generation of artifacts for three analysis methodologies: simulation, FM, and
enactment.

Mapping rules for automated synthesis of artifacts for simulation, FM and enactment from
a common reference model of a system and its requirements: Using MDE techniques,
particularly model transformation techniques, to define separate mappings of the concepts
described in the aforementioned unified language to the underlying formalisms of selected for
simulation, FM and enactment methodologies. i.e., the semantics of the constructs of the unified
language are given by the selected formalisms. Therefore, we take benefit of model
transformation techniques to map the common meta-model to each of the formalism to achieve
the automated synthesis of the artifacts required for each of the disparate methodologies.

A preliminary framework for the enactment of discrete event systems: Unlike simulation
and formal analysis, both of which have well established formalisms and operational/logical
protocols that are accepted by considerably large communities, enactment methodology has yet
to permeate significantly into the systems engineering practice with discrete event systems in
general. The current practices of enactment are mostly based on UML (Unified Modeling
Language), SysML (System Modeling Language) and their profiles. We propose an enactment
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framework for discrete event systems, which adopts truly system-theoretic concepts to express a
system model and the object-oriented observer design pattern to define its enactment semantics.

Keywords: Model-Driven Systems Engineering, SimStudio, HiLLS, Simulation, Formal
Analysis, Enactment, DEVS, Z, Temporal Logic.
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Résumé

Les méthodes d’ingénierie dirigée par modele des systemes, telles que la simulation, 1’analyse
formelle et I’émulation ont été intensivement utilisées ces derni¢res années pour étudier et
prévoir les propriétés et les comportements des systemes complexes. Les résultats de ces
analyses révelent des connaissances qui peuvent améliorer la compréhension d’un systeme
existant ou soutenir un processus de conception de maniere a éviter des erreurs couteuses (et
catastrophiques) qui pourraient se produire dans le systéme. Les réponses a certaines questions
que ’on se pose sur un systeme sont généralement obtenues en utilisant des méthodes d’analyse
spécifiques ; par exemple les performances et les comportements d’un systeéme peuvent étre
¢tudiés de fagon efficace dans certains cadres expérimentaux, en utilisant une méthode
appropriée de simulation. De fagon similaire, la vérification de propriétés telles que la vivacité,
la sécurité et 1’équité sont mieux étudiées en utilisant des méthodes formelles approprices tandis
que les méthodologies d’émulation peuvent é&tre utilisées pour vérifier des hypotheses
temporelles et des activités et comportements impliquant des interactions humaines. Donc, une
¢tude exhaustive d’un systétme complexe (ou méme d’apparence simple) nécessite souvent
’utilisation de plusieurs méthodes d’analyse pour produire des réponses complémentaires aux
probables questions. Nul doute que la combinaison de multiples méthodes d’analyse offre plus
de possibilités et de rigueur pour analyser un systéme que ne peut le faire chacune des méthodes
prise individuellement. Si cet exercice (de combinaison) permet d’aller vers une connaissance
(presque) compléte des systémes complexes, son adoption pratique ne va pas de pair avec les
avancées théoriques en matiere de formalismes et d’algorithmes évolués, qui résultent de
décennies de recherche par les praticiens des différentes méthodes. Ce déficit peut s’expliquer
parles compétences mathématiques requises pour utiliser ces formalismes, en combinaison avec
la faible portabilité des modeles entre les outils des différentes méthodes. Cette dernicre exigence
rend nécessaire la tiche herculéenne de créer et de gérer plusieurs modeles du méme systeme
dans différents formalismes et pour différents types d’analyse. Un autre facteur bloquant est que
la plupart des environnements d’analyse sont dédié¢s a une méthode d’analyse spécifique (i.e.,
simulation, ou analyse formelle, ou émulation) et sont généralement difficiles a étendre pour
réaliser d’autres types d’analyse. Ainsi, une vaste connaissance de formalismes supportant la
multitude de méthodes d’analyse est requise, pour pouvoir créer les différents modéeles
nécessaires, mais surtout un probléme de cohérence se pose lorsqu’il faudra mettre a jour
séparément ces modeles lorsque certaines parties du systéme changent. La contribution de cette
these est d’alléger les charges d’un utilisateur de méthodes d'analyse multiples, dans sa quéte
d’exhaustivité dans I’étude des systémes complexes, grace a un cadre qui utilise les technologies
d’Ingénierie Dirigée par les Modeles (IDM) pour fédérer la simulation, ’analyse formelle et
I’émulation. Ceci est rendu possible grace a la définition d’un langage de spécification unifié¢ de
haut niveau, supporté par des capacités de syntheése automatiques d’artéfacts requis par les
différentes méthodes d’analyse. En fait, ce travail de thése propose quatre contributions
majeures, qui sont : i) un cadre opérationnel qui utilise 1’ Architecture Dirigée par les Modeles

v



(ADM) pour supporter ce formalisme de haut niveau, ii) I’intégration de concepts d’horizons
multiples pour créer un métamodele commun qui unifie la simulation, I’analyse formelle et
I’émulation, et qui définit la syntaxe abstraite de ce formalisme, iii) des régles de transformation
pour la synthése automatique d’artéfacts a destination de la simulation, de 1’analyse formelle et
de I’émulation, a partir de tout modele de systéme accompagné d’un modele de ses exigences, et
iv) un domaine sémantique pour I’émulation des systémes a évenements discrets. Tout au long
de la these, un cas d’école de distribution automatique de boisson est utilis¢ comme exemple.

Un cadre opérationnel qui utilise 1'Architecture Dirigée par les Modéles
(ADM):1'application de I’ADM pour le développement de logiciels a enregistré des avantages
importants tels que la réduction du temps et des efforts de codage, la synthese automatisée de
code sans erreur et l'augmentation des performances. Pour reproduire ces avantages dans le
processus de modélisation multi-analyse des systéemes complexes, nous proposons un cadre qui
reflete ’architecture ADM en générant des modeles pour les différentes méthodes d'analyse a
partir d'un modele de référence, qui est indépendant de ces méthodes. Avec cette approche, le
modélisateur doit seulement se préoccuper de la spécification correcte du modele de référence,
tandis que les artefacts nécessaires pour chacune des méthodes d'analyse peuvent étre générés
avec peu d'efforts. Par cette approche, l'expert du domaine est déchargé, en grande partie, de
l'effort, du temps et de la rigueur mathématique requise pour spécifier (et mettre a jour) des
modeles pour chacune des méthodes.

L'intégration des concepts d’horizons multiples pour créer un méta-modéle unificateur:
I’ingénierie des langages est I'une des pierres angulaires de I’'IDM. Les chercheurs dans ce
domaine ont proposé¢ des techniques pour intégrer différents langages en un nouveau langage, ce
sous certaines circonstances appropriées; l'intégration de différentes méta-modeles pour produire
un nouveau méta-modele cohérent est d'un intérét particulier dans ce contexte. Dans cette thése,
nous utilisons certaines de ces techniques pour intégrer des concepts issus de la théorie des
systemes et du génie logiciel. Le langage unifié résultant est assez expressif pour servir de noyau
a notre cadre opérationnel, et permettre la génération automatique des artefacts destinés
respectivement a la simulation, a I’analyse formelle, et a I’émulation.

Des régles de transformation pour la synthése automatique d’artéfacts: en utilisant les
techniques de I'IDM, particulicrement les techniques de transformation de modéles, nous
définissons les sémantiques du langage unifié construit, en projetant son méta-modele dans des
domaines sémantiques correspondant a des formalismes adéquats respectivement pour la
simulation, 1’analyse formelle et I’émulation. Ce faisant, nous rendons la synthése automatique
des artéfacts requis possibles.

Un domaine sémantique pour DI’émulation des systémes a éveénements discrets :
contrairement a la simulation et a 1’analyse formelle qui bénéficient, toutes les deux, de
formalismes bien définis (syntaxe et s€émantique) et bien acceptés par de large communautés
scientifiques, I’émulation n’a pas un grand niveau de maturité dans 1’ingénierie des systemes a
¢venements discrets. Les pratiques courantes d’émulation sont basées sur UML (Unified
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Modeling Language), SysML (System Modeling Language) et leurs profils. Nous proposons un
cadre sémantique d’émulation pour les systémes a événements discrets, qui adopte vraiment les
concepts de la théorie des systemes pour décrire un systeme, et qui fait usage de patrons de
conception orientée-objet.

Mots clés: Ingénierie Dirigée par les Mode¢les, SimStudio, HiLLS, Simulation, Analyse
Formelle, Emulation, DEVS, Z, Logique Temporelle.
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1 GENERAL INTRODUCTION

1.1 MODEL-DRIVEN SYSTEMS ENGINEERING

Model-Based Systems Engineering (MBSE) is defined by the International Council on Systems
Engineering (INCOSE) as "the formalized application of modeling to support system
requirements, design, analysis, verification, and validation activities beginning in the conceptual
design phase and continuing throughout development and later life cycle"[Est07]. It was
primarily envisioned to address the limitations of the traditional Document-Based Systems
Engineering process that relies on text documents and engineering data in many formats to drive
the design, implementation and maintenance of complex systems. Mittal and Martin [MM13]
first defined Model-Driven Systems Engineering (MDSE) as "a discipline that applies Model-
Driven Engineering (MDE) practices to MBSE paradigm" to automate MBSE processes.
According to Bocciarelli and D’Ambrogio [BD14], MDSE stimulates a radical shift from a
merely contemplative use of models - in MBSE - to a productive and more effective use by the
application of meta-modeling techniques and automated model transformations to the systems
engineering domain, thus boosting the advantages of the MBSE approach.

An efficient design and development of a complex system requires an iterative process of
modeling, performance evaluation, logical analysis for requirement verifications and
implementation (prototype) for run-time testing [HKO06]. This iterative process is necessary to
reveal subtle knowledge about the systems, which are, in most cases, beyond intuition.
Moreover, a violation of requirement(s) or undesired behavior at this stage can be a signal of a
fundamental flaw in the design that must be resolved early to forestall costly errors in the final
system [ZN16]. Hence, the knowledge gained from each of the iterations may serve two
purposes: 1) as a guide for deeper understanding of the system's behavior and the influences it
may have on its environment or which the environment may have on it. 2) as a feedback to revise
the designed model and/or requirements until an acceptable level of satisfaction of critical
requirements is guaranteed before committing time and resources to the implementation of the
system.

Figure 1.1is a schematic illustration of a typical MDSE methodology. The system under study
(SUS) is represented as a model, possibly consisting of interacting components, using an
appropriate formalism. SUS may be a physical system or a non-existent conceptualized system.
Solver refers to the protocols and algorithms for analyzing the system model to generate some
results. The choice of an appropriate formalism to write the system model is determined by a
number of factors such as the properties of SUS to be analyzed, the capabilities of solver



available, the analyst's experience, etc. The solver does the manipulation of the system model
and the results obtained provide some feedback as more knowledge about SUS to the analyst.

Results
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Figure 1.1 MDSE methodology

The information represented in the model and the chosen modeling formalism and solver

all depend on the questions to be answered about the system under study
Depending on the questions to be answered about SUS, MDSE approaches based on theoretically
sound methodologies like simulation, Formal Methods or enactment are employed in the
iteration loops to mine the desired knowledge of the SUS from the model.

This thesis explores the integration of MDSE theories and technologies along three dimensions
of design analysis and verification methodologies: simulation, formal methods and enactment.
The goal is to harness the synergy of diverse tools and experiences for an encompassing
investigation of properties in the design space of complex Discrete Event Systems (DES). The
three methodologies promote reasoning about systems from somewhat divergent viewpoints;
they are, however, often necessarily required in combinations for sound system designs. A
viewpoint can be defined, in the general context of software and systems engineering, as a
description of appropriate machinery consisting of domain, languages, specifications and
methodologies to capture and process one or more related engineering or technical concerns
about a system and the information associated with such concern(s) [FKN+92, KWO07]. The
overall objective of the thesis is to put them together under the umbrella of a unified high-level
viewpoint to make them accessible to non-experienced users as well as ease the tasks of
experienced users.

A typical simulation methodology allows the practitioner to compress time (i.e., use logical time
approximation) and evaluate or analyze a model over a specified period and under scenarios or
environment defined by the experimental frame. In Modeling and Simulation (M&S), an
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Experimental Frame (EF) defines the objective(s), assumptions and constraints of a simulation
study and the context within which a system is observed or the validity of the model is evaluated
[ZPKO00, TMO06]. The results obtained from a simulation study may be used to infer or forecast
system’s behavior and performance, identify problems and their causes, etc. Comprehensive lists
of problems that are suitable for simulation as well as possible uses of simulation results are
provided in [Mar97, Car04].

Formal Methods (FM) are mathematically-based languages, techniques and tools that permit the
specification, verification and development of software and hardware systems in a systematic
manner [Win90, CW+96]. The goal of FM is to unveil and correct subtle and very expensive
errors that may result in occasional mysterious system failures [Lam77, CW+96]. The likelihood
of having such inconspicuous errors in a system design increases as the system grows in scale
and functionality; hence the need for a systematic use of FM at some strategic phases of a
systems development process to enhance the developers' understanding of the system through
early revelations of ambiguities, inconsistencies and violations of specification requirements.
The overall motivation for this will be the eventual construction of complex systems that operate
reliably [CW+96]. Similar to the way an EF defines the objectives and context of a simulation
study of a system, the requirement proposes the premise on which the logical and symbolic
reasoning about a system is based using FM. In essence, the requirement is an abstract
specification of a collection of properties (or evaluation criteria) that need to be satisfied by a
system under study [LamOO0]. It serves as a contract between the client and system developers
[Win90]; and logical analysis of the combined operational model of the system and requirement
helps to verify that the former satisfies the latter. Counterexamples are generated (in some cases)
to illustrate the violations where requirements are not met. An empirical survey of the whys and
wherefores of using FM is presented in [Hal05, Hal07].

Enactment is a system analysis (cum implementation) methodology often used in Business
Process Management (BPM) [VTWO03, JN14] for the execution of a business workflow [KGJ10]
- the (semi-) automation of business processes during which information and work lists are
passed from one participant to another for necessary actions [OF07]. In service engineering and
Human-Computer Interaction, enactment refers to the manifestation of the functionalities
represented by a system's prototype [HEO07]. A system prototype is described as a representation
of the functionality, but not the appearance, of a finished artifact which can be used as a proof
that a certain theory or concept or technology works or otherwise [Hol05]. In a more general
software engineering context, enactment is described as the mechanism for the execution or
interpretation of software process definitions, which may involve live interactions with the
environment and external actors like human-in-the-loop, to provide supports that are consistent
with the process definitions [DF94]. In the context of DES, we describe enactment as the
mechanism for executing an operational model (i.e., one that can be executed in a suitable
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software environment [BA95]) of a system to act out its behavior by using the physical clock
time as the reference for the scheduling and execution of events. An enactment model should
practically stand in for the real system in a physical environment through the manifestation of its
expected characteristics. Enactment is different from mainstream DES simulation in three ways:
1) scheduling and execution of events in the former should be based on physical time as against
logical (compressed or approximated) time in the latter; 2) the former should allow for the
observable manifestation of state activities (operations that do not lead to state changes) as
against instantaneous operations in the latter; and 3) the former should allow for live (runtime)
interaction between operational model and its physical environment (e.g., human- or hardware-
or software-in-the-loop) as against the interaction with virtual environment defined by the EF in
the latter. Results obtained from an enactment process can give further insights into the system's
behavior for verification of timing correctness in real-time systems as well as point out certain
inconsistencies, missing requirements. A preliminary discussion of enactment as applied to DES
can be found in [AMT15].

It is important to point out here that the scope of the work presented in this thesis is within the
confines of Discrete Event Systems (DES). A DES is a dynamic system whose state evolves with
the instantaneous occurrences, at possibly unknown irregular intervals, of events over time
[RW89, CL09]. An event is an instantaneous occurrence that results into a change of state of the
system. For instance, in an elevator, the receipt of a floor request and arrival at a floor are both
events. While the former event may lead to a state in which the system is moving up or down
with its door closed, the latter leads to a state in which the system is stationary with its door
opened. Thus, the reader can safely take term "system" to mean DES henceforth except where it
is stated otherwise.

1.2 PROBLEM STATEMENTS

A salient point to be noted from the previous section is that no single MDSE methodology is
sufficient to study all aspects of a complex system since each one is most suitable to provide
answers to some specific kinds of questions. Thus, an exhaustive study of a complex system
requires a synergy of different analysis methodologies; this synergy can be achieved through a
disciplined combination of the methodologies so that they provide complimentary, rather than
competitive, answers to evolving design questions. Recent publications such as [TH14, BD14,
ZN16, Shull, Tra08] suggest that there are growing interests, both in academia and industry, in
the systematic combinations of disparate MDSE approaches to maximize the synergy between
the different disciplines.

The practical adoption of this collaborative approach to computational analysis of systems is,
however, being constrained directly or indirectly by the same forces inhibiting the wide adoption
of individual analysis methodologies especially by non-expert users. The gap between research

4



outputs in terms of theoretical advancements cum evolving formalisms and their practical
adoptions by domain experts is widely acknowledged by practitioners of both simulation and
formal methods methodologies. A number of reasons have been identified, in the literature, for
this shortfall; chief among them is the lack of requisite logic and mathematical skills to deal with
most formalisms. More details on this so-called chief constraint and two more challenges, which

together form the premises on which the research questions of this thesis are based, are provided

below:

P1.

P2.

P3.

Lack of requisite logic and mathematical skills to deal with most formalisms:
Computational analysis methodologies often rely on some mathematics- and/or logic-
based formalisms for the specification and manipulation of systems and their frames
(experimental frames or requirements). This is necessary to ensure formal reasoning
with models with precise semantics and devoid of ambiguities and inconsistencies.
Domain users, however, seldom have the requisite skills to deal with such formalisms;
they are considered, somewhat, to be some kinds of low level expressions that do not
match with the high level artifacts which domain users are often accustomed to. This
problem has been continuously acknowledged and addressed through the development
of high-level modeling interfaces on top of the formalisms to make them accessible to
non-expert users through automated synthesis of low-level artifacts from the high-level
models by courtesy of MDE techniques. Surveys of some of such interfaces for discrete
event simulation [FBT+14] and FM [KESO03] highlight their features. It is important to
note, however, that the tools vary in their capabilities to express different aspects of
complex systems; hence accessibility to non-expert users is still open to further
research at the time of writing this thesis.

Little chances of portability of models between computational analysis
methodologies: Another source of concern identified in the course of this thesis
[AT15a, AT15b, AT16], and which directly constrains the study of a system using
multiple analysis methodologies, is that there are usually little chances of portability of
models between methodologies. This usually requires manual, or at best semi-
automated, creation and updating of separate models, in different formalisms, of yet the
same system for different kind of analysis. This task can be herculean and error-prone.
Little coexistence of disparate methodologies in the same environment: Arguably as a
consequence of the limited chances of sharing system models among disparate analysis
methodologies, different techniques rarely coexist in the same environment; rather
most existing computational analysis environments dedicated to specific analysis
methodologies and they are usually difficult to extend to accommodate other
approaches. In addition to laborious task of managing and maintaining consistencies
between the different models, having multiple disconnected views of the same system



model in separate MDSE environments has the potential to create miscommunication
among the development teams [BSD+12]. The importance of this problem can be
attributed to, among others, the prospect of enhancing the portability of system models
among analysis methodologies through their co-existence and co-evolution in the same
environments.

Though recent publications (e.g., [TH14, BD14, Shull, ZN16]) suggest that these problems,
especially P2 and P3, are growing in importance, and getting more research attentions, the
breakthroughs have yet to manifest significantly; hence there is need for concerted research
efforts in this direction to consolidate the findings so far and deploy same to enhance the
industrial adoption of the approaches.

1.3 RESEARCH QUESTIONS AND MOTIVATIONS

Sequel to the problem statements in Sectionl.2 above and the extent to which they have been
addressed by the current practices of MDSE, we formulate the main research question of this
thesis as follows:

RQI. s it possible to build an integrative framework that can be continuously populated
with best practices in MDSE for simulation, formal methods and enactment such that
the various components are federated through a seamless sharing of high-level
system model?

The idea is not to reinvent all the MDSE components; rather it is to federate legacy simulation,
formal analysis and enactment tools in a unified framework in such a way that one high-level
system model (that is understood by all stakeholders) can be technically used to drive the MDSE
processes in all the three dimensions.

The motivations for this approach would include:

* The use of a shared model will reduce the task of creating and updating models for the
different analysis purposes.

= Using a unified language to write the shared model can enhance communication among
the stakeholders in the development of a system.

= Possibility to crosscheck that a property verified with one of the analysis methodologies
actually continues to hold in analysis with other methodologies since they are all based
on the same base model.

= Possibility to check the effects (if any) of model changes initiated by one of the three
methodologies on the properties being verified using other methodologies. For instance,
if a simulation practitioner modifies some system variables in the shared model in order
to satisfy some properties, the formal analysis practitioner can immediately check
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whether or not the new changes in the model lead to the violation of already proven
requirements and vice versa.

= There is likelihood of discovering some useful research directions towards enhancing the
co-evolution of the different MDSE methodologies.

These motivations could lead us to subject the research question itself to more queries like:
RQ2.  Which formalism should we adopt to write the shared unified model?

RQ3. How can the disparate concerns of the different methodologies be captured in the so-
called unified model

RQ4. In what order should the process of the different methodologies be executed?

This thesis proposes answers to these research questions in subsequent chapters; the next section
presents an overview of the answers as a summary of the thesis' contribution while detailed
discussions will be provided in later chapters.

1.4 THESIS CONTRIBUTIONS

We believe that the abstract global answer to RQ1 above is in the affirmative; of course, the
creation of liaisons between the disparate approaches will require intensive efforts since they are
independent bodies of knowledge developed by different research communities and, largely, for
different purposes. Interestingly, MDE is an open and integrative approach that emphasizes
building bridges between technological spaces [KBAO02, FNOS]. This statement gives impetus to
the overall contribution of this thesis to answering the research questions since the technological
spaces are themselves bodies of knowledge originating from different research communities.
Hence, we can take advantage of the openness of the MDE approach to explore the possibility of
replacing technological spaces in MDE with the simulation, formal analysis and enactment
methodologies towards developing an integrative framework to harness the synergy between the
disparate analysis methodologies for an exhaustive analysis of DES designs.

Con 1. A multi-layered framework that emulates the Model-Driven Architecture (MDA) by
defining a unified model specification layer on top of the layers containing the
specific analysis methodologies: In answering RQ1, we propose a methodological
framework with a multi-level architecture similar to the MDA as described in Figure 1.2.
Unlike the conventional MDA that primarily targets software development; the
framework depicted in Figure 1.2has MDSE components at the different layers. The
topmost layer of the framework supports the high-level specification of unified system
and requirement models which are decoupled from the three MDSE methodologies but
expressive enough to drive each of them. The modeling layer sits on top of a layer



Con 2.

containing the underlying formalisms for the three methodologies so that a model in the
former can be used to drive the automated synthesis of models required in the latter.

Generic System and Requirement Model a_'.\Ietlmldolugy—mdependent
modeling laver
Simulation Model | >y 1™ 2nd Requirement |\ b ent Model
Specifications
Methodology-specific
Layers of Layers of “analysis layers
simulation-based Layers of logic-based enactment-based
analysis analysis mechanisms analysis
mechanisms mechanisms
Simulation Form:lal Analysis Enactment
methodology methodology methodology

Figure 1.2 An MDA-like integrative MDSE framework

This approach provides a global framework to address the three problems identified
previously in Section 1.2. It consolidates on existing solutions to problem P1through a
high level modeling interface that shields the user, to a large extent, from the requisite
mathematical skills to deal with the underlying formalisms of the different analysis
methodologies, especially simulation and FM. It also addresses problems P2 and
P3through the automated generation of artifacts for the three methodologies from the
same unified model thereby fostering their co-evolution through sharing of models; in
this way, the task of creating and updating models for the three methodologies will be
greatly reduced since the users have to deal manually with only one model - the unified
model. Lastly, the idea is not to override existing solutions for the different MDSE
methodologies; we envision the support for plugging legacy frameworks for each
methodology into the layer below the modeling layer of our framework as long we can
formally map the concepts captured in the unified model to those of the underlying
formalisms of the plugged-in frameworks.

The architecture of the proposed framework is accompanied by a process model, as an
answer to RQ4, which describes the workflow to be followed as a guide to using the
framework.

A high level language whose syntax uniformly combines the DES concepts for
simulation, FM and enactment to support the specification of unified models for the
three methodologies: This contribution directly answers the research question RQ2 and
technically provides the answers toRQ3. Since none of the three MDSE methodologies
federated in the framework proposed in above is based on a formalism that subsumes all
the concepts expressed in others, we have considered defining a new language, High
Level Language for System Specification (HiLLS), that methodically combines the
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Con 3.

Con 4.

general concepts underlying the three methodologies to specify the unified model
described in the framework. HiLLS' abstract syntax is built from the integration of
general DES concepts from DEVS (Discrete Event System Specification) [ZPKO00],
Object-Z [Smil2] and UML (Unified Modeling Language) [RJB04] using metamodel
integration techniques proposed by Emerson, and Sztipanovits [ES06].HiLLS adopts
symbols similar to those of UML class diagram and (resp.state charts [Har87]) for
graphical presentation of system's structure (resp.behavior). It is important to note,
however, that HiLLS is not an extension of neither UML nor state chart, it only reuses
parts of their notations for communicability.

HiLLS' abstract syntax is mapped to three semantics domains for simulation, formal
analysis and enactment. Hence HiLLS is, in fact, at the kernel of the framework we
propose, serving as the seam that holds the disparate analysis methodologies together in
the framework.

A preliminary framework for the enactment of DES: Enactment methodology has yet
to permeate significantly into the MDSE practice with DES unlike simulation and formal
analysis which both have well established formalisms and operational/logical protocols
that are accepted by considerably large communities. The current practices of enactment
for DES are mostly based on UML and SysML (System Modeling Language) [FMS14]
and their profiles. We propose in this thesis, a "preliminary” framework for the
enactment of DES which uses some object-oriented design patterns [GHJ+95] to express
DEVS concepts for the scheduling and execution of events based on physical clock time.
Formal mappings of HiLLS concepts to simulation, FM and enactment semantics
domains: To consolidate the answers provided inCon 1, RQ2 and RQ3 above to the
research questions, we define the mappings of HiLLS concepts to DEVS (resp. Z[Spi88]
and Temporal Logic [Pnu77, CES86])for discrete event simulation (resp. logical analysis
by exhaustive state explorations) and a mapping to the enactment framework mentioned
in Con 3 above for an operational execution of a software prototype of the system under
study. Given a software environment for editing HiLLS models, these mappings can be
followed to implement the model transformations to automated synthesis of the different
artifacts from a given HiLLS model.

Prior to writing this thesis, some of the outputs obtained in the course of the work have been
discussed in journal and conference publications as contributions to the literature: abstract
descriptions of the framework in Con land preliminary research directions were presented in
[AT15a, AT15b]; these were extended with details and a simple application example discussed
in [AT16]. The preliminary description of the concept of enactment in the context of the work
and the enactment framework mentioned in Con 3was presented in [AMT15] while early results



leading to Con 2 and a part of Con 4 were discussed in [MAT15, AMTI16]. In all cases, this
thesis gives a definitive account of the different components of, and the entire work.

1.5 THESIS OUTLINE

In Chapter 2, we will present the state of the art in combining multiple MDSE approaches for
system design and analysis and highlight the extent to which they have attempted to solve the
problems addressed in this thesis as identified in Section 1.2.

Chapter 3 provides backgrounds on the theories, formalisms, techniques, technologies and tools
to be used in subsequent chapters for detailed presentations of the contributions of this thesis.
This chapter also introduces the synopsis of the beverage vending system, which is used as a
running example throughout the thesis to illustrate the contributions.

We will present, in Chapter 4, a detailed discussion of the framework proposed in Con 1. Recall
that Con 1 specifically provides an answer to the research question RQI1; RQI1 itself gets
inspirations from a decade-long research initiative [Tra08] which envisioned a multi-faceted
MDSE project; a previous Doctoral thesis [Toul2] has explored a branch of this project.
Therefore, we will first present an introduction of the research initiative and the aspect studied in
[Toul2]. This will be followed by an abstract presentation of the methodology of the present
thesis, the architecture of the proposed framework and the process model that describes the
workflow to be used as a guide to use it.

The preliminary framework for the enactment of DES described under Con 3 will be presented in
details in Chapter 5.

Chapter 6 will provide detailed accounts of Con 2. We will present in this chapter how the
abstract syntax of HiLLS was built by methodical integration of concepts from system-theoretic
and software engineering formalisms to define a language that supports the specification of
unified models for disparate MDSE approaches. This will be followed by a presentation of the
concrete notations used by the modeler to render the language's concepts in models.

In Chapter7, we will elaborate on Con 4, which is the mapping of HiLLS concepts to the three
semantics domains.

Finally, we will conclude the thesis in Chapter 8with a summary of the thesis, highlights of
problems addressed and the proposed solutions, and plans for future work.
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2 LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter, we present the state of the art in MDSE practices vis-a-vis the challenges which
this thesis seeks to address. We classify the approaches in the literature into two categories based
on whether they are targeted at facilitating specific analysis methodologies or at integrating
multiple methodologies; these are:

=  Methodology-specific approaches
= Pair wise integrations of methodology-specific models

The next two sections of this chapter elaborate on the two categories. In each category, we
present the fundamental principles of some selected approaches and highlight the extents to
which they have addressed the problems - P1, P2 and P3 - identified in Chapter 1, Section
1.2.Though there are numerous formalisms underlying the approaches and MDSE environments
in each of the two categories, we give preference to DEVS (Discrete Event System
Specification) as simulation formalism, Z language and its extensions as formalisms to specify
systems for formal analysis and Temporal Logic (Logic) as formalism for defining required
properties for formal verifications. We will provide, in details, the premises upon which our
preferences are based in later chapters; one general consideration, which is applicable to all of
the three formalisms, is that they are considerably universal in their respective domains. If
necessary, we invite the reader to have a glance at Section 3.2 for introductory discussions of
these formalisms.

The chapter concludes with a comparative discussion of the selected approaches, and highlight of
the lessons learned from the state of the art and the persistent issues that necessitate the work
reported in this thesis.

2.2 METHODOLOGY-SPECIFIC APPROACHES

This arguably comprises most of the prominent approaches to the practice of MDSE. It involves
the development of a model-driven environment to provide tooling supports for a specific
formalism and targeted at a particular analysis methodology, i.e., simulation, formal analysis or
enactment. Essentially, such environments offer high-level notations, which are graphical in
most cases, for creating and editing system models, which are used to start the systematic and
progressive synthesis of low-level artifacts until executable codes are obtained for the required
execution platform or environment.

The fundamental objective, which is shared by most approaches in this category, is usually to
alleviate the complexity and rigor of direct system specification with the underlying formalism

11



through high level modeling interfaces. It is particularly meant to address the problem identified
in Pl - Lack of requisite logic and mathematical skills to deal with most formalisms - in the
previous chapter (see Sectionl.2).Moreover, these approaches are generally motivated, inter alia,
by the possibility of making the underlying formalisms and their capabilities accessible to wider
communities including non-expert users, ease of communication among stakeholders and (semi-)
automated synthesis of executable analysis codes from the high-level models.

Generally, MDSE environments under this category are often focused on specific analysis
methodologies and largely isolated from others. This general characteristic is depicted in
Figure2.1 with each of the three methodologies considered in this thesis - simulation, formal
methods and enactment - residing in isolation in one of the three orthogonal planes of the three-
dimensional (3D) coordinate. i.e., simulation, formal methods and enactment processes reside in
isolation in the X-Y, Y-Z and X-Z planes respectively. The criteria for choosing formalism(s)
within the plane of interest may include the nature of the system under study, the kind of
property to be studied and the experience of the analyst among others.

Y
N
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: F
DEVS, DESS, Petri Nets, ... 2 Voorma!M
Mg U‘Ethc’ds
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Software system for enactment
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Figure2.1 Schematic illustration of isolated MDSE practices

The X-Y, Y-Z and X-Z planes of the 3D coordinates depict isolated MDSE frameworks

based on specific formalisms for simulation, formal methods and enactment respectively.
One significant benefit of this approach is the separation of concerns. i.e., the modeler in each
plane of Figure2.1 creates a formal specification of the system under study from the point of
view of the plane while abstracting away from the peculiarities of the methodologies in the other
two planes thereby leading to a considerably simplified and focused model in each plane.

Unfortunately, however, since a comprehensive study of a system often requires combinations of
multiple analysis methodologies, one would likely need to create separate models of the same
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system in each of the three orthogonal planes. The implication of this is that disparate models of
the same system independent MDSE environments would be needed; this phenomenon of
dealing with multiple disconnected views of the system in the different planes can be susceptible
to miscommunication among domain experts [BSD+12]. Moreover, the creation, and more
importantly, the repeated update of the different models during the iterations of analysis
processes can be herculean since any change in the system variable may require that all models
in the different planes be manually updated. In other words, the approach ignores problems P2
and P3 identified in the previous chapter.

Usually, the development of the modeling interfaces for MDSE environments in this category
follow one of two prevalent styles:

* Domain-Specific Language (DSL) style
= UML/SysML profile style

The UML or SysML profile-based modeling style rely on the universality of UML for software
systems modeling, its wide acceptability in the industry and availability of supporting tools to
leverage the complexities of abstract formalisms and make them accessible to wider
communities of users. Another advantage is that it minimizes the cost and risk of adoption by
integrating with existing methods and tools [SB06]. Modeling interfaces in this category often
use some restricted stereotypes of the different kinds of formalisms in the UML or SysML
families of diagrams to describe system's structures and behaviors. Particularly they use UML
class and component diagrams (resp. SysML block diagrams) to describe systems' structures
where hierarchical constructions of composite system models are realized with UML sub-
components (resp. SysML’s Block Definition Diagram) and formalisms like the activity,
sequence and state diagrams to model systems' behaviors.

The DSL style promotes the creation of a DSL specifically based on an existing formalism. The
DSL's abstract syntax is specified to capture the concepts described in the underlying formalism;
the concrete syntax is developed with high-level cognitive notations to shield the DSL's users
from the complexity of the underlying formalism. Intuitively, the operational/execution/logical
framework of the underlying formalism provides semantics domain for the DSL. Proponents of
the dedicated DSL style argue that it allows the language engineer to create more suitable
notations to effectively and concisely represent the concepts of the underlying formalism rather
than relying on notations of some universal language that have been defined originally for some
other purposes [SK10, TB11].

There is a plethora of methodology-specific MDSE environments and we cannot possibly give
an exhaustive list of existing ones; we would rather limit our references to those that are most
relevant to the work in this thesis. Examples of DSL-based environments for discrete event
simulation include PowerDEVS [KLP03], DUNIP [MM13], CD++ [WCDO01, Wai02, BWC13],
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DDML [Tra09, IMT12, MIT12], MS4Me [ZS13, SZC+13], DEVS Diagram [SK10] and
DEVSML 2.0 [MD12]. UML/SysML-based environments for discrete event simulation include
euDEVS [RIM+09] and a host of others including[Zin05, NDKO07, NDM+08, HRMO7]; light
surveys of some of these environments comparing their relative strengths in expressing different
aspects of systems for DEVS-based simulation can be found in[FBT+14, AMT16].Prominent
DSL-based MDSE environments for formal methods include UPAAL [BDLO04]and CZT [MUOS5,
MFM+05]; there are also a host of UML/SysML-based environments such as UML-B [SB06],
ModelicaML [PAF07,Sch09, SFP+09], SysML4Modelica [RPC+12], TURTLE-P [ASKO06],
TEPE [KASI11], etc.

While many of the methodology-specific MDSE environments are built to be compatible with
unique implementations of the operational semantics of their underlying formalisms, some adopt
an integrative approach with considerably generic modeling notations to harness the synergy of
intra-disciplinary tools towards boosting the utilities of research outputs in their respective
methodologies; examples of such frameworks include the DEVS Unified Process (DUNIP)
[MM13a, MM13b, Mit07], Community Z Tools (CZT)[MUO05, MFM+05] for simulation and
formal methods respectively. The rest of this subsection elaborates on these integrative
frameworks.

2.2.1 DEVS Unified Process (DUNIP)

DEVS Unified Process (DUNIP) was first proposed by Mittal in his Doctoral thesis [Mit07],
then revised and further developed by Mittal and Martin [MM13a, MM13b] to explore the
integration of various concepts that had been developed through decades of research in DEVS-
based simulation methodology and apply same to the design and analysis of systems of systems
in a full systems engineering life cycle. The overall objective of the framework is to harness the
benefit of automated transformations in MDE to bind different phases of a rigorous MBSE
process backed by the DEVS theory for a transparent simulation of systems of systems in a net-
centric M&S setup.

The fundamental visions of, and MDSE processes in DUNIP are comprehensively captures in the
DEVSML 2.0 stack [MM13a], which is a multi-layered architecture with infrastructures at the
different layers that work together to realize the modeling and simulation-based verification of
DES on a stand-alone or net-centric simulation platform. The top layer of DEVSML 2.0 stack
contains the DEVS Modeling Language version 2.0 (DEVSML 2.0) [MD12], a textual DSL for
expressing systems' structure and behavior based on DEVS theory. A Model written in
DEVSML 2.0 is persisted in XML and considered as a Platform-Independent Model (PIM) to
make it compatible with DEVS-based simulators implemented in multiple platforms. The PIMs
in the DEVSML 2.0 layer is transmitted through some DEVS-compliant middleware and APIs
(in the lower layers) to a net-centric infrastructure that generate and deploy platform-specific
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simulation codes on a distributed multi-platform federation of simulation engines based on Java,
C++, etc. at the bottom of the stack. DEVSML 2.0 also serves as the interface to integrate
DUNIP with DSLs and languages such as Business Process Modeling Notations (BPMN)
[Whi04], UML, SysML so that domain experts can create system models in the problem domains
and transform them (semi-)automatically to DEVSML 2.0-compatible format.

In essence, DUNIP fosters the federation of diverse DEVS-based simulation engines to provide a
transparent simulation support for DSLs via a net-centric virtual machine. Hence, it addresses
problem P1 identified in this thesis by shielding the modeler from the rigor of direct system
specification with raw DEVS constructs through high-level concrete syntax for DEVSML 2.0
and the possibility of transforming DSMs (domain-specific models) into the XML format of
DEVSML 2.0 for onward transformation to DEVS-based simulation codes. DUNIP partially
addresses the problem of interoperability and co-existence of tools identified in P3, albeit only
within the realm of simulation. The model portability and tool interoperability we referred to in
P2 and P3is not limited to intra-disciplinary scope as provided in DUNIP, it is, in fact, more of
inter-disciplinary between disparate analysis methodologies like simulation, formal analysis and
enactment.

2.2.2 Community Z Tools (CZT)

The Community Z Tools (CZT) [MUO05, MFM+05] is an open-source integrated framework for
building formal methods tools for standard Z and Z dialects/extensions with the aim of providing
a comprehensive development environment for formal specifications written in Z and its
extensions such as Object-Z and Circus from typesetting to verification. CZT promotes the
integration of existing and new Z tools via the Z Markup Language (ZML) [UTS+03], a standard
XML interchange format for Z.

Z [Spi88] is a formal specification language suitable to precisely specify state-based systems,
and analyze them via proof, animation, test generation, etc. Z is widely used by FM practitioners
in the domain of state-based systems and it has been approved as an ISO standard in the year
2002 [ISO02]. However, few of existing tools for editing, parsing, type checking, analyzing and
animating formal specifications in Z and its extensions conform to the Z ISO standard; they are
based on diverse variants of the formalism thereby making it difficult for them to interoperate.
CZT proposed to solve this problem with the ZML XML schema at the core of the framework,
which serves as the interchange format that can be used to transmit parsed and type-checked
specifications between the various tools federated in the framework.

CZT is implemented in jEdit and Eclipse, both of which are open-source integrated development
environments that provide convenient platforms for progressive development and integration of
tools for general and specific purposes. The Eclipse CZT offers graphical Z editor plug-ins for
authoring Z specifications with the Unicode symbols based on the Z ISO standard and plug-ins
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for tools offering the various operations and analyses on the specification. It also allows for
integration with the Eclipse plug-in for theorem proverbs like Z/EVES [MS97, Saa03] and CadiZ
[TMO5], refinement formalisms like Circus [WCO01] and possible transformation of the Z
specifications into B specifications for formal analysis capabilities that are specifically possible
with the B method [Lan12].

By the integration of disparate Z tools in the same framework through the sharing of a unified
specification, CZT proffers a partial solution to problems P2 and P3 identified in the previous
chapter. It is a partial solution because the tools and methodologies integrated in the framework
only help the user to explore system's properties using different FM approaches. i.e., it does not
provide support for simulation and enactment. Though CZT offer the interface for system
specification, the user needs the skills and rigor to deal with raw Z specifications in order to use
the symbols provided in ZML for system specification; hence problem P1 is not addressed in
CZT.

2.3 PAIR WISE INTEGRATIONS OF METHODOLOGY-SPECIFIC
APPROACHES

This approach involves the pair wise integration of system models and MDSE processes in the
different planes of Figure2.labove, mostly by model transformations. This is usually done by
identifying correspondences between elements of chosen formalisms in the different planes in
order to define the mapping rules between them so that a model in one plane may be used to
drive the (semi-) automated synthesis of models in other planes to take benefit of the different
analysis capabilities in the different planes. Examples of such combined use of simulation and
formal analysis include [KCS03, Tra05, TraO6a, Tra06b, TFH09, TSF09, YHF14]. Similarly,
several proposals have been made to bridge the gap between software and enactment models
with FM [LCA04, LP99, SAB09, LSM+10, Men16, BMC+12,KNT+14] while some efforts to
achieve pair wise transformation between simulation formalisms and software and enactment
methodologies are reported in [NDA10, RMZ07, SFP+09,SFP+09, SV11, Houl2].

Through building of bridges between disparate formalisms, this approach addresses some of the
shortcomings of the isolated use of different methodologies presented in the previous section.
Particularly, it promotes model reusability and helps to reduce the task of creating and updating
models during analysis cycles through (semi-)automated model transformation, which is also a
way to hide the complexities of system specifications with the target formalisms. Unfortunately,
we cannot always guarantee a surjective mapping between the source and target formalisms of
the transformations; that is, there is no guarantee that every element of the target formalism has
corresponding element(s) from which it can be derived in the source formalism. For instance, the
authors of [ZN16] noted that formalisms that are oriented to verification tend to lack many
functions that exist in simulation formalisms. Hence the synthesis of the target models are, in
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many cases, semi-automatic thereby making it a necessity to still introduce some manual
processes of completing the update of some models during the analysis cycles.

The rest of this subsection presents some pair wise combinations of simulation, FM and
enactment in the literature.

2.3.1 Z-DEVS

Z-DEVS was defined by Traoré in a series of publications [Tra05, Tra06a, TraO6b] as an
approach to integrate FM with the DEVS simulation framework towards making DEVS
simulation models amenable to formal analysis and symbolic reasoning. Traoré was motivated
by the benefits of rigorous proofs of properties of simulation models with respect to their design
and use requirements, and the likelihood of better understanding of concepts such as verification,
validation, reuse and composability, which are important issues in M&S practice. He proposed
the Z-DEVS to extend the DEVS paradigm with a logical framework that permits the use of
suitable tools for the exploration of properties for early detection and resolution of conflicts
between requirements and missing assumptions.

The formulation of the Z-DEVS approach was inspired by Paige's meta-method for FM
integration [Pai97], which postulates the full translation of the concepts of formalism to FM in
order to take benefit of all possible kinds of analyses available through the target FM. Hence, Z-
DEVS provides formal semantics for the DEVS paradigm through the expression of the concepts
described in DEVS model and simulator as modular and hierarchical Z schemas. This offers the
grand benefit of using all relevant Z tools and techniques to analyze the simulation model and
simulation protocols. According to Traoré, the Z-DEVS approach also opens an additional
prospect of methodically investigating the suitability of a given experimental frame for a given
simulation model.

The Z-DEVS approach was illustrated with a case study, which presents the Z equivalent
(specified with the Z/EVES editor) of a given DEVS specification and its simulator for some
logical analysis. This makes Z-DEVS unique in that similar approaches only deal with the
logical analysis of system model but not its simulator.

In the context of this thesis, the Z-DEVS approach proffers a partial solution to our thesis
problem P2since it proposes the integration of simulation and FM but not enactment.
Unfortunately, it does not address P1; apparently, it remains focused on its prime objective - to
provide a formal framework for the DEVS paradigm - with little attention to the ease of dealing
with the combined formalisms. In fact, the user of the approach will have to contend with the
rigor of both DEVS and Z formalisms. An automated synthesis of the target Z schemas from a
high level DEVS specification will likely alleviate this constraint.
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2.3.2 DEVS Compiler

The DEVS Compiler was recently proposed by Trojet and Berradia [TB15] to improve the
quality of DEVS simulation models through integration with FM; the idea is to subject the
simulation models to formal verification for early detection and resolution of eventual errors
before the commencement of simulation processes.

DEVS Compiler is yet another integration of DEVS with Z but with focus on verifying two
specific properties of models: determinism and completeness. It proposes to precede the
simulation process with a two-step formal verification procedure: 1) automatically transform a
DEVS model into an equivalent Z specification, and 2) verify the consistency of DEVS model
via the generated Z specification using available Z tools.

The implementation of DEVS Compiler is embedded within the LSIS-DME M&S environment
for DEVS [HZ07]. Essentially, LSIS-DME offers a graphical modeling interface for creating
DEVS models, which are persistent in XML format. With an XML representation of a DEVS
model as source, an XML-based equivalent Z specification is automatically generated upon the
invocation of the DEVS Compiler. The Z specification so generated is fed into the Z/EVES
theorem prover [Saa97, MS97] to prove (or reveal the violation of) the determinism and
completeness properties of the model.

DEVS Compiler proffers a solution to problem P1 of this thesis by taking benefit of the graphical
modeling interface offered by LSIS-DME, its host MDSE environment, and the automated
synthesis of the Z specification to shield the user from the rigor of the underlying formalisms.
Unfortunately, DEVS Compiler's support for formal analysis is very limited in its current state
since only the verifications of completeness and determinism properties are possible; hence, it is
fair to say that the approach proffers only partial solutions to problems P2 and P3.

2.3.3 Constraints-Based DEVS Framework (¢pDEVS)

Trojet, Frydman and Hamri [TFHO09] proposed the Constraints-based DEVS framework
(¢DEVS) to achieve a lightweight introduction of Z to the classic DEVS framework for formal
verification of static functional properties of DEVS models. Essentially, the intent of the
framework is to permit its user to describe the behavior of DESs with DEVS and capture static
constraints with predicate logic so that the combined behavior and constraints specification can
be translated into Z to verify whether the behavior will satisfy the constraints at runtime or not.

To achieve this objective, the authors propose the introduction of an additional symbol,¢ into the
mathematical structure of classic DEVS. ¢ represents a set of static constraints, specified with
predicate logic, on the system's state variables and the resulting ¢DEVS is referred to as the
Constraints-based DEVS. According to them, their choice of Z for lightweight extension of the
DEVS framework for formal analysis is premised on the fact that both DEVS and Z are used to
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specify sequential systems with a state/transition approach and both are widely used in their
respective domains of application.

¢DEVS has been implemented as a component called the $DEVS — PROCESSOR in the LSIS-
DME M&S environment [HZ07]. ¢ DEVS — PROCESSOR provides a graphical interface to load
a DEVS model specified with the model editor of the host environment (LSIS DME), specify a
set of static constraints (¢) on its state variables inside the constraints box offered by the
interface and automatically generate a Z equivalent of the resulting ¢DEVS in XML format. The
XML file is used as input to the Z/EVES theorem prover, which does some type checking and
performs the proof obligations to determining whether all the constraints specified in ¢ are
respected by the DEVS model.

By courtesy of its host environment ¢DEVS is able to contribute a solution to problem
Plthrough automated synthesis of the Z specification to shield the user from the rigor of the
underlying formalisms. It is important to note also that ¢DEVS' support for formal analysis is
limited to the verification of static properties of DES; for instance, it does not support the
specification and verification of temporal requirements to check properties like liveness, safety
and fairness.

2.3.4 DEVS and Temporal Logic of Action+ (DEVS-TLA+)

Cristia [Cri07, Cri08] defined the DEVS-TLA+ on the one hand, to project the DEVS formalism
into the FM community so that it may be adopted by FM researchers for the specification and
verification of event-based systems; and on the other hand, to provide the basis for formal
semantics for rigorous logical reasoning with DEVS models. He argued that DEVS and
Temporal Logic of Action+ (TLA+) [Lam02] share a common conceptual foundation and went
ahead to discuss the conceptual equivalences between the elements of the two formalisms.
Sequel to that, he made an initial proposal of a procedure to encode atomic DEVS models in
TLA+ modules in [Cri07]; which was revised and extended with the procedure to encode
coupled DEVS models in TLA+ specifications in [Cri08].

One interesting difference between the DEVS-TLA+ approach and most other combinations of
DEVS with FM is that it supports the specification and verification of temporal properties like
safety, liveness and fairness. According to Cristia, having a TLA+ specification of a DEVS
model allows for formal verification of the model with the tools already available for TLA+
specifications.

Unfortunately, the translation of DEVS model to TLA+ specification is done manually. The
implication of this is that a potential user with limited skills in dealing with the FM notations will
most likely not be able to use the approach. In fact, someone must combine the skills required in

19



dealing with the mathematical rigors of both DEVS and TLA+ to use the approach. Thus, the
DEVS-TLA+ approach preserves the problems P1 and P3 of this thesis but provides a partial
solution to P2.

2.3.5 ProMoBox

ProMoBox (Properties and design Models developed Boxed in concert) [MWB+13, MDL+14,
Meyl6] is an environment that provides high-level formal verification supports for Doman-
Specific Languages (DSLs). Apparently inspired by the architecture of domain-specific model
checker of Visser et al. [VDW12], the authors of ProMoBox argued that the conventional
practice of translating Domain-Specific Models (DSMs) into mathematical formalisms before
specifying the required properties with logic-based formalisms violates the principle of domain-
specific modeling, which promotes the use of domain notations for system modeling. As earlier
suggested by Visser et al., the specification of models of systems, requirements,
environment/input and analysis results should be achievable with high level domain notations
while all low level artifacts should be hidden from the domain expert. Meyers et al. proposed a
solution in the form of ProMoBox to this problem.

ProMoBox is a framework that integrates the definition and verification of temporal properties in
discrete-time behavioral DSMLs, whose semantics can be described as a schedule of graph
rewrite rules. Essentially, ProMoBox seeks to raise the specification of temporal properties and
the interpretation of verification traces (e.g., counterexamples) to the same abstraction level as
the system model in order to make FM techniques readily accessible to domain experts.
Therefore, ProMoBox allows its user to design a DSML for modeling not only the system, but
also its properties, input model, run-time state and output trace. ProMoBox's DSML
development process allows for semi-automated synthesis, from an annotated metamodel, of five
sublanguages, which share a domain-specific syntax while the DSML's operational semantics is
specified as a transformation annotated with input and output information.

In ProMoBox, a system's model and its associated requirement model are translated to Promela,
and the properties are verified with the Spin model checker [Hol97]. The traces of the
verification are transformed into the problem domain as a trace model to animate the
counterexamples if any.

From the standpoint of this thesis, ProMoBox proffers an interesting solution to problem P1,
particularly through the modeling of temporal properties and visualization of verification results
using notations of the problem domain as this will help to shield domain experts from the rigors
of the underlying notations and techniques. However, its primary target user is the language
engineer that develops the DSML. Hence, a domain expert will always require the service of the
language engineer to build a DSML specifically for the problem to be solved; this may be a
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disadvantage if the problem is one that hardly reoccurs to take full benefits of the efforts of
developing the DSML. On the contrary, the context of the problems investigated in this thesis is
to build the MDSE environment based on considerably universal formalisms for FM, simulation
and enactment so that it can be applicable to many problems. ProMoBox has been implemented
in AToMPM (A Tool for Multi-Paradigm Modeling) [SVM+13], framework for designing
domain-specific modeling environments, performing model transformations, manipulating and
managing models. It could be possible to extend a developed DSML with simulation support by
specifying a simulation-based operational semantics for it; this is however, not stated explicitly
by the authors of ProMoBox.

2.3.6 Model-Driven Development for Modeling and Simulation (MDD4MS)

The Model-Driven Development for Modeling and Simulation (MDD4MS) was proposed by
Cetinkaya in her Doctoral thesis [Cetl3]. She argued that though the importance of simulation
conceptual model (CM) to the accurate development of M&S models was widely acknowledged
in the literature, the systematic transformation of CMs, through intermediate models, to
executable simulation models had not been sufficiently studied. She described the CM and two
other models required in an M&S process as follows:

i. A CM, which is non-executable higher-level abstraction of the system under study that
represents the structure of the system and what will be modeled in the future executable
simulation model.

ii. A Platform-Independent Simulation Model (PISM) is a mathematical description of the
processes and activities in the CM so that mathematical or computational analyses can be
manually conducted.

iii. A Platform-Specific Simulation Model (PSSM) is derived from the PISM and the details
of a specific execution platform towards the synthesis of an executable model that can
allow the simulation to be carried out on a machine.

Cetinkaya argued that non-consumption of the CM in any development iteration involving other
models creates a semantics gap between CM and PISM that may lead to lack of model continuity
in all stages of the model development. To address this problem, she proposed the MDD4MS
framework to manage the simulation process that encompasses the three stages of model
development. Fundamentally, MDD4MS mirrors the layered architecture of the OMG's MDA
framework with CM, PISM and PSSM in the place of MDA's CIM, PIM and PSM respectively.

This generic framework was concretized with the CM, PISM and PSSM created based on
BPMN, DEVS and a Java-based DEVS simulation framework known as DEVS Distributed
Simulation Object Library (DEVSDSOL) [SV09] respectively. With transformation rules written
in ATLAS Transformation Language (ATL) [JAB+06], substantial parts of the PISM - which is
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manually refined - can be obtained from the CM through a partial model transformation process;
though not explicitly stated, the transformation is "partial" apparently because the mapping of
BPMN (source formalism) to DEVS (target formalism) is not surjective. The refined PISM is
used in another partial model transformation process to generate a PSSM based on DEVSDSOL.

Though not explicitly stated or claimed by Cetinkaya, the BPMN-based CM can arguably be
independently refined to an enactment model; if it is considered in this sense, then we can
reasonably say that an enactment model is being transformed into a DEVS-based model for
simulation. Consequently, it will be fair to say that MDD4MS proffers a partial solution to
problem P1with the graphical editor for BPMN that is subsequently used to drive the synthesis of
a substantial part of the DEVS simulation model. We could also claim that MDD4MS has the
potential to partial solutions to problems P2if the BPMN-based CM was developed to a full
enactment model and consumed in an enactment process. Furthermore, the framework does not
address any form of formal analysis of the system under study with FM. In fact, it will be very
difficult, if not impossible, to make the models amenable to formal analysis because most system
concepts defined in the metamodels provided are of type String; hence, it will be difficult for any
tool to recognize the true types of the model artifacts since they are all seen as pure strings.

2.3.7 Homomorphic Extension of Formal Analysis Model for Simulation

Zeigler and Nutaro [ZN16] recently proposed a framework to integrate the FM and simulation
methodologies through an incremental model development process, primarily for the verification
and validation of simulation models of System of Systems. They argued "that the combination of
simulation and formal verification gives a much more powerful capability to test designs than
can be achieved with either alone”. To combine the two approaches, Zeigler and Nutaro
hypothesized that: "System morphisms can map a model expressed in a formalism suitable for
analysis (e.g. timed automata or hybrid automata) into the DEVS formalism for the purpose of
simulation. Conversely, it is also possible to go from DEVS to a formalism suitable for analysis
for the purposes of model checking, symbolic extraction of test cases, and reachability, among
other analysis tasks".

The authors proposed that a design process to incorporate FM and simulation methodologies
should start with an abstract verification model, V,, which can be logically analyzed using FM
to obtain absolute answers about a system's behavior under an ideal condition. The failure of V,
to satisfy the required properties at this stage is an indication of fundamental flaws in the system
design that must be identified and corrected. Once it is verified that V,, satisfies the
requirements, it is formally extended into a simulation model, S,,, with operational details to
explore scenarios that are outside the scope of the formal verification. The Vp-to- S;, model
extension or refinement should be done such that the source Vy, is a homomorphic simplification
of the target S,,. The assumption is that S, retains the proven properties of the V,,, through
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system morphisms. i.e., any property proved to hold in V,, would also hold for S, in the same
context and the latter can subsequently be used to verify the operational practicality of the ideal
properties of the former.

The authors, however, acknowledged that the homomorphism between V., and S, might not
necessarily imply the preservation of properties in all cases especially when the experimental
frame of S,, evolves. Thus, we can arguably conclude that more research work is needed to
provide a concrete demonstration of where it would be most convenient to apply this approach.

From the perspective of this thesis, this approach offers a partial solution to problem P2 in that it
allows a formal extension of an abstract verification model into an operational model for
simulation. However, since the verification model lacks many functions that exist in the
simulation formalism as acknowledged by the author, there is little chance of automating the
extension process; this can be more herculean if the modeler has to deal with the raw verification
and simulation formalisms.

2.4 CONCLUSION

In this chapter, we have presented a literature review of the state of the art in MDSE frameworks
and environments with particular focus on DEVS-based simulation and the specifications of
systems (resp. requirement properties) with Z (resp. Temporal Logic) for formal verifications.
We discussed existing approaches under two categories: 1) methodology-specific approaches,
which comprise the approaches that are dedicated to specific analysis methodologies; and 2) pair
wise integration of methodology-specific approaches, which comprise the various approaches to
discipline combinations of two disparate analysis methodologies to get more benefits than could
possibly be obtained with either of the two methodologies in isolation.

A summary of the literature review and comparative view of the studied approaches in relation to
the extent to which they have addressed the challenges identified in this thesis and the overall
visions of the thesis is presented in Table2.1below.
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Table2.1 Comparison of existing MDSE approaches

1: Full support; 7: Partial support; — : No support;v: Yes; X: No

Cat.: Category; Sim.: Simulation; FM: Formal Methods; Ena.: Enactment;
Auto.: Automated model transformation between integrated models

MDSE Thesis
Approaches methodologies| problems Unified
supported solved |Auto./formali
sm
Cat.| Example(s) Objectives Sim.|FM |Ena.|P1 P2 |P3
) To integrate the results of
5‘5 DUNIP[MM13a, DEVS-based researches for a : ; + vl
é’_ MM 13b] full systems engineering life T T
Y cycle.
&
E To integrate legacy and new
s |CaT analysis tools for formal ; fle] o1 2
g [MUO5, FM~+05] |specifications written in Z| o
and Z extensions.
To provide a logical
7-DEVS [Tra05, ?ame\l}vork | for frlgoré)lis
Tra06a, Tra06b] ormal analysis of models O e N N X
g ’ and simulators in the DEVS
‘g paradigm.
on
‘E To integrate DEVS with Z
S for the verification of]
£ IDEVS Compiler |completeness and| ,3 | L4
i [TB15] determinism properties  of] P - e T X
£ the  former  prior to
simulation.
$DEVS [TFH09] To extend th.e DEVS 15 T6 AR ¥ X
framework with the

" DEVSML 2.0 is the unified formalism that facilitates the integration of disparate DEV'S simulators
* ZML serves as the unified formalism for the integration of analysis tools for Z and its extensions

* The host environment, LSIS-DME, provides simulation support

* Supports for verification of consistency and completeness properties only

> The host environment, LSIS-DME, provides simulation support

% Support for specification and verification of static constraints on system's state variables only
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MDSE Thesis

Approaches methodologies| problems Unified
supported solved |Auto./formali
sm
Cat.| Example(s) Objectives Sim.|FM |Ena.|P1 P2|P3

capability to specify and
verify static constraints on
system's state variables.

To project DEVS into the
FM domain in order to
promote its adoption by FM
DEVS-TLA+ |practitioners for the ;
[Cri07, Cri08] |specification and verification N A X
of the behaviors of DES.

To provide a basis for formal
semantics for DEVS.

To integrate verification with
DSMLs for high level

ProMoBox modeling of a system and its
[MWB+13, requirement properties as # ]y £t + X
MDL+14, well as the visualization of]
Mey16] counterexamples using

notations defined for the
problem domain.

To realize model continuity
in M&S processes through

the consumption of]
MDD4MS conceptual models m i |- 71T [$|T]|TF T X
[Cetl3] . .

successive  transformations

for the  synthesis  of]

simulation codes.
Model extensionTo integrate FM  and Pyt ==t |-] - X

7 Specifically focused on verification of temporal properties
¥ Possibility to support simulation through the specification of simulation-based operational semantics for a DSML
in the host environment, AToOMPM [SVM+13]

25



MDSE Thesis

Approaches methodologies| problems Unified
supported solved |Auto./formali
sm
Cat.| Example(s) Objectives Sim.|FM |Ena.|P1 P2|P3
by system|simulation =~ methodologies
morphism through an  incremental
[ZN16] model development process,

for the verification of]
simulation models of System
of Systems.

To build an integrative
framework that can be
continuously populated with
best practices in MDSE for
simulation, formal methods
and enactment such that the
various components  are
federated through a seamless
sharing of high-level system
model.

Visions of this thesis

2.4.1 Lessons Learned

We have learnt from the analysis of the information in Table2.1 that a unified and generic formal
representation of models is essential for the systematic integration of disparate tools; this has
been demonstrated by DUNIP and CZT each of which relies on a generic system representation
to facilitate the portability of models between disparate tools. We have also observed from the
presentations of the fundamental principles of approaches in the pair wise integration category
that whenever a framework integrates FM with any other methodology, formal verification
activities always take the lead in the overall process of the MDSE framework. Obviously, this is
often done to give credence to the models used in subsequent analysis activities since a formally
correct and consistent model is a prerequisite for a reliable simulation result.

2.4.2 Perspectives

We can conclude from our analysis of the state of the art so far that none of the existing MDSE
approaches or environments fully addresses problems P1, P2 and P3 as envisioned in this thesis.
That is, none of them fully supports the complementary application of simulation-, FM-, and
enactment-based analysis methodologies for the study and investigation of the properties of
DESs. In most cases, either the modeling notations lack supports for modeling some of the
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aspects of systems or they are less suitable for the intended users especially when they require
dealing with multiple notations, each of which is considerably complex on its own.

In this thesis, we will demonstrate that a high level modeling of a DES, its context and required
properties in a unified formalism and the systematic derivations of low-level artifacts for
simulation, formal analysis and enactment is realizable within an integrated MDSE framework.
Though this claim may sound too ambitious, as it requires nontrivial research efforts, we will
provide the theoretical foundation for the tasks and set the guidelines for its technological
implementations as well as open the perspectives for further research in the same direction.

We begin by presenting, in the next chapter, some theoretical and technological background to
aid our presentations in subsequent chapters.
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3 BACKGROUND

3.1 INTRODUCTION

This chapter presents the theoretical and technological backgrounds of the contributions of this
thesis, which will be presented in subsequent chapters and a running example that will be used in
the rest of this document. Essentially, the thesis' contributions revolve around the application of
MDE techniques on the one hand to facilitate the use of MDSE formalisms through high level
modeling interfaces, and on the other hand to realize the integration of disparate MDSE
methodologies behind a unified and generic modeling interface for complementary analysis of
static and dynamic properties of systems. These formalisms and MDE techniques are introduced
in this chapter.

In the sequel, we start with background on relevant formalisms in the next section; we also
introduce, in the same section, a beverage vending system as a running example to aid our
discussions of the formalism and to serve as a running example in subsequent chapters of this
document. This is followed by background on MDE in Section 3.3. Section 3.4 presents the
concept of megamodeling, which provides the basis for defining the formal relationships
between the different artifacts in an MDE-based architecture. We then present an overview of the
essential elements of a language engineering process in Section3.5 before concluding the chapter
in Section3.6.

3.2 MDSE FORMALISMS

In this section, we introduce the key underlying modeling formalisms to the contributions of this
thesis in subsequent chapters. We introduce the Discrete Event System Specification (DEVS), a
system-theoretic simulation formalism for DES; Z notations and its Object-Oriented extension
Object-Z, both of which are used to specify state-based systems for formal verification of
properties by symbolic reasoning; and Temporal Logic, a logic-based language for formal
specification dynamic system properties to be verified. We will use the beverage vending system
as a running example throughout this section to illustrate each of the different formalisms.

3.2.1 The Beverage Vending System: A Running Example

This subsection presents the synopsis of a beverage vending system (BVS), which will be used
as a running example in this chapter and subsequent chapters of this document.

As illustrated in Figure 3.1, BVS comprises two sub-systems, Beverage Vending Machine
(BVM) and User (U), interacting with each other via their input and output interfaces to effect
automated transactions. BVM is configured to dispense cocoa, coffee, orange and apple drinks to
U at the cost of €1, 00, € 0, 80, €1,20, and €1,30 respectively.
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Figure 3.1 Schematic illustration of the beverage vending system

BVM has two input slots: a slot for receiving payments with coins and a keypad. The keypad
has five code buttons numbered 1-5 for choosing drinks and canceling ongoing transactions;
buttons 1, 2, 3 and 4 are used to choose cocoa, coffee, orange and apple respectively while
button 5 cancels a transaction in progress. BVM recognizes only the following Euro coins for
payment: € 0,10, € 0,20, € 0,50, € 1,00 and € 2,00; any coin outside this set is treated as "invalid"
and rejected forthwith. BVM has two output slots: a slot for dispensing cups of drinks and a slot
for returning coins to U; it returns coins in the form of balance for completed transactions, refund
for canceled transactions or rejected coins.

U can receive two kinds of inputs from BVM: cups of drinks and coins as balance for completed
transactions, as refund for canceled transactions or as rejected invalid coins. It also has two
outputs: coin as payment for drinks and request to place an order for a drink or to cancel a
transaction in progress.

U starts a transaction on BVM by choosing a drink (i.e., cocoa coffee, orange or apple) with the
keypad; BVM responds to this request by prompting U to repeatedly insert acceptable coins,
which are added to the credit (the cumulated amount of coins inserted for current transaction),
until the price of the selected drink is reached or just exceeded. U takes a period of fifteen (15)
seconds to pick a coin and insert it into the coin slot of BVM.BVM gives a maximum interval of
two (2) minutes between the insertions of coins to fund a transaction; failure of which the
transaction is automatically cancelled and the inserted coins (if any) are returned to U. U may
also choose to cancel the transaction and immediately get a refund of all inserted coins before the
termination of the charging stage.

Once credit is equal or greater than price, the charging stage terminates and the transaction
cannot be canceled any more. This stage will be followed immediately by the dispense stage
during which the requested drink is delivered to U and the inserted coins will be delivered to
BVM's vault. If credit was greater than the price of the selected drink, the dispense stage is
preceded by a return stage in which the balance will also be taken form vault and returned to U
in a moment. BVM lasts for a non-interruptible period of one (1)minute in the dispense stage
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before delivering the requested cup of drink and transiting to the idle stage to wait indefinitely
for the next user actions. U waits for a maximum period of ninety (90) seconds, after completing
the payment, to receive an ordered drink; otherwise it requests to cancel the transaction. It also
waits for the same period to receive the coins after canceling a transaction. After completing or
canceling a transaction on BVM, U goes away for a random period in the range of 0-10 minutes
before it develops the urge to take some drink and then goes back to initiate another transaction
on BVM.

Design requirements for BVM
i.  BVM must not dispense unless enough coins are inserted to pay for the selected drink

ii.  BVM should always refund the balance whenever excess coins are inserted, i.e., when
the amount inserted is greater than the price of the selected drink.

iii.  Once the payment for a drink is complete, the transaction cannot be canceled any
longer

We use this as a running example, in this thesis. It is used first in this chapter to illustrate system
specification with DEVS simulation formalism (Section 3.2.3), Z notations (Section 3.2.4),
Object-Z (Section 3.2.5) and Temporal Logic (Section 3.2.6). We also use it in Chapter 5 and
Chapter 6as a case study for the enactment framework and system specification with HiLLS
respectively.

3.2.2 Discrete Event System Specification (DEVS)

DEVS[Zei76, ZPKO00]is a system-theoretic mathematical formalism for specifying DESs as
abstract mathematical objects for simulation. It supports the specification of a full range of DESs
as other formalisms for systems in this category have been proven to have equivalent DEVS
representations [Van00].It, however, does not provide any concrete syntax to express system
constructs; we can take advantage of this freedom by providing concrete specifications in a DSL
with formal semantics that adopt the DEVS simulation protocol as its operational semantics.

DEVS defines two kinds of models -atomic and coupled models - for modular and hierarchical
construction of system models. While a DEVS atomic model (AM) describes the structure of the
so-called smallest unit of an autonomous DES and its behavior based on states and transition
functions, aDEVS coupled model (CM)is an hierarchical composition of atomic and/or coupled
DEVS models to construct more complex systems as illustrated in Figure 3.2. As shown in the
diagram, the set of components of a CM may comprise only AMs or mixtures of AMs and CMs;
for instance, CM2 has three components, CM1, AM4 and AMS5, while CMI1 itself composes
AM1, AM2 and AM3. Components of a CM treat one another as black boxes with input and/or
output ports through which they influence one another by exchanging events. This exchange of
events between elements of a CM is facilitated by the couplings between their ports.
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A coupling in CM can be one of three kinds: Input Coupling (IC), External Input Coupling (EIC)
and External Output Coupling (EOC). As Figure 3.2 depicts, an IC is a coupling from an output
port of a component to an input port of a peer component of the same CM; an EIC is a coupling
from an input port of a CM to an input port of one of its components and an EOC is a coupling
from an output port of a component of a CM and an output port of the CM itself. It is important
to note, however, that a "self-loop coupling" is not allowed in DEVS; i.e., it is illegal to have a
coupling between the input and output ports of the same system.

M2 Legend

G AM: DEVS Atomic Model
1 CM: DEVS Coupled Model
i: Input port
0: Output port
Am4 fl>— ———lInternal Coupling (IC)
0 .
|

====>External Input Coupling (EIC)

9
—..—pExternal Output Coupling (EOC)

Figure 3.2Schematic illustration of hierarchical description of systems with DEVS

Conventionally, DEVS exists in two major forms - classic DEVS (CDEVS) and parallel DEVS
(PDEVS) - the main difference being the support for concurrent state transitions within imminent
components of a CM. CDEVS was defined by Zeigler in the mid-seventies [Zei76]. Note that
every component of a CM is autonomous. i.e., its internal state evolves independently. However,
due to the limitation of computing systems to sequential executions at that time, Zeigler's
definition of CDEVS provides a "tiebreaker" function with which to set the priorities
(sequence)to be followed whenever two or more components of a CM have imminent internal
state transitions since the computing system would not be able to process them concurrently.
With the support for concurrent and parallel computation in modern computing, PDEVS [CZ94,
ZPKO00] has been defined, which supports concurrent state transitions in imminent components
of a CM. We will use the PDEVS throughout this thesis and refer to it simply as DEVS. Next,
we present the mathematical descriptions of AM and CM and then use them to model the
running example as an illustration.

3.2.2.1 DEVS atomic model (AM)

An atomic DEVS model, AM, has a time base and abstract sets of states, transitions, inputs and
outputs to describe system's structure and behaviour. Mathematically, AM is defined as:

AM:<X'Y'S'6int'56xtl6conf'/1!ta> (1)
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X ={(p,v),p € IPort Av € dom(p)} is the set of input events where each event is a port-value
pair (p,v) such that every value vreceived is addressed to a port p in the set IPort of input
ports. A port p is nothing but an abstract variable whose domain dom(p) defines the set of
allowable input values; thus, every input v received on port p must respect the constraint
v € dom(p). Similarly, Y = {(q,v),q € OPort Av € dom(q)} is the set of output events with
OPort as the set of output ports.

S is an abstract set of sequential states. At every instant, AM is in a state s € S.

ta:S — R, is the time advance function which assigns a "time advance" to every state of the
system. Vs € S, the time advance of s (i.e.,ta(s)) is the maximum period for which AM can
remain in state s without external impulse before a scheduled state transition occurs. The time
advance of a state can take real values in the range 0 < ta(s) < +oo. Based on the value of its
time advance, a state is classified into one of three categories according to the following pars:
(transient state, ta(s) = 0), (active state, 0 < ta(s) < +) and (passive state, ta(s) = +o0).

Oint: S — S is the internal state transition function. When the system stays in a state s for a period
equal to ta(s) (the time advance of s) without receiving any external event, the system outputs
the value v = A(s) and changes to state s = 8, (5).

Sope:{(s,€)|s €S,e €[0,ta(s)]} x X> - S is the external state transition function. The pair
(s,e) is called the total state of the system at any instant where 0 < e < ta(s) is the elapsed
time since the last state transition. If an external event x € X’is received while e < ta(s), an
external state transition is triggered which transits the system to a states = 8,y (S, €, X).

Oconf 1S X X b - S is the confluent state transition function, which defines the system's behavior
when the conditions for both internal and external state transitions are satisfied in coincidence.
i.e., when an external event x € X” is received at exactly e = ta(s). In this situation, the system
outputs the value v = A(s) and changes to state s = 8cony (s).The superscript b on X signifies
a bag of input values.

A:S = Y? is the output function that defines the value that may be produced as output when the
system is in specific states. The superscript b on Y signifies a bag of output values. Note that, in
DEVS, outputs are only allowed just before internal or confluent transitions.

3.2.2.2 DEVS coupled model (CM)
Mathematically, CM is defined as:

CM =< X,Y,D,{My}q4ep,EIC,EOC,IC > 2)

X and Y are as defined for AM.
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D is the set of references to the component of CM; Vd € D, M, is the full specification
referenced by d.In Figure 3.2 for instance, for CM1, set Doy = {AM1, AM2, AM3}and for
CM2, D¢y, = {CM1, AM4, AM5}.

EIC = {((CM, ipcy), (d, ipd))| ipcy € IPortscy,d € D,ip, € IPortsd} is the set of External
Input Couplings.

EOC = {((d, opg), (CM, opCM))| opcy € OPortscy,d € D,ipy € OPortsd} is the set of
External Output Couplings.

IC = {((a, opa), (b, ipb)) la,b € D ANa # b,op, € OPorts,,ip, € IPortsb} is theset of

internal couplings.

The essence of the couplings is to allow for interactions between system components. Given an
element ((S,ps), (R,pr)) of any of the relations EIC, EOCand IC; the sender Sinfluences the
receiver R by sending a message (event) through port ps of S to port ppof R. It is importantto
note here that CM defines a logical boundary between all its components and the environment;
therefore, any of the components can only influence (or be influenced by) the environment
through the interfaces of CM, hence the need forEICand EOC. Full details on DEVS and its
operational semantics can be found in [ZPKO00].

3.2.3 DEVS specification of the beverage vending system

In this subsection, we present the DEVS specification of the running example, which has been
introduced in Section 3.2.1, to demonstrate system specification with DEVS. We see from the
illustration in Figure 3.1that the beverage vending system can be studied as consisting of two
subsystems interacting with each other: the beverage vending machine itself and the user. We
can specify this in DEVS as a coupled model, Beverage vending system (BVS), comprising two
atomic model components Beverage vending machine (BVM) and User (U). We will discuss the
specification in a bottom-up fashion by first presenting the atomic models (i.e., BVM and U),
and then their composition in BVS.

3.2.3.1 Beverage vending machine (BVM): a DEV'S atomic model
Following the definition of DEVS atomic model in Section 3.2.2.1, we define BVM as follows:

BVM = < Xgym, Yavm» S, Sine» Gext 5c0nf A ta >
The elements of the mathematical structure are defined as follows:
A. Input interface

Xpym = {(inC, ©), (code, {1,2,3,4,5})}.
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BVM has two input ports as shown where C = {1, 2,5, 10, 20, 50, 100, 200}denotes the set of all
Euro coins (values in cents). Then the input port inC (short hand for input coin) receives a coin,
one at a time, from outside BVM. Input port code describes the keypad; hence, its domain is
modeled by the set {1,2,3,4,5} to receive requests for the different options described earlier. i.e.,
code € {1,2,3,4}to order beverages and code € {5}to cancel an ongoing transaction.

B. Output interface
Yevm = {(cup, {cocoa, cof fee, orange, apple}), (outC, C*)}

Set {cocoa, cof fee,orange, apple} describes the domain of output port cup to indicate the
kinds of drinks dispensed by BVM. Let CP denote a "bag" of coins, then the output port outC
(short hand for output coins) allows BVM to return any number of coins (including identical
coins) to the U.

C. State set

S = {(vault, C*), (escrow, C?), (credit, N), (badC, C), (price, {0,100, 80,120,130}),
(current, {0, 1, 2,3,4,5}), (¢, {idle, charge, dispense, cancel, return,reject})|

( idle, if current = 0 A credit = price = 0 A badC = null A escrow = []
charge, if current € {1,2,3,4} A price > 0 A credit < price A badC = null
dispense, if current € {1,2,3,4} A price > 0 A credit = price A badC = null
Aescrow =[]
return, if current € {1,2,3,4} A price > 0 A credit > price A badC = null
Aescrow =[]
cancel, if current € {5} A credit < price
\ reject, if current € {1,2,3,4} A badC # null

}

<
I

The state set S defines the system's state space. Technically, the system's state at any instant is
determined by the combination of the values of its state variables. Table 3.1 describes the
information held by the state variables defined in S.

Design Assumption: we assume the machine always has unlimited stock of drinks, hence our
model abstracts away from the level of stock, and particularly, a state of being out of stock.

Table 3.1 State variables in DEVS specification of the BVM

State

. Domain Information held
variable

A bag of coins accumulated in the safe of the machine from
vault cP previous transactions. We use "bag" instead of "set" of coins to
allow for the storage of identical coins in the vault.
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A bag of coins temporarily holding the coins accumulated for
a transaction in progress. Escrow is a bag for the same reason

escrow cP as vault. It is emptied into the vault whenever a transaction
runs to completion; if the transaction is cancelled, it will be

emptied into the output port outC.
credit N Cumulative value of coins received for the current transaction.
A temporary holder for an "invalid/non-acceptable" coin
badC C before it is sent out of BVM. Let v = {10, 20,50, 100,200} be

the subset of C that contains the set of valid coins in BVM. Thus, a
coin ¢ is valid if ¢ € v; otherwise, it is invalid.

price

{0,100, 80,120,130}

Price of selected drink (in Euro cents). Recall from Section
3.2.1 that cocoa, coffee, orange and apple drinks cost €1,00,
€0,80, €1,20, and €1,30 respectively. price = 0 when no
transaction is in progress.

current {0,1,2,3,4,5}

Code for selected drink in current transaction. 1, 2, 3, 4
represent cocoa, coffee, orange and apple respectively; current
= 0 is the default value when no transaction is in progress.

{idle,charge,
dispense,return,

cancel,reject}

Identifiers of instantaneous states of the system. ¢ is indeed a
derived variable whose values are pointers to sets of (ranges of
) values of the other state variables. The corresponding
predicates on the state variables for the different values of ¢
are as defined in the predicate part of set S above.

idle =>BVM is idle. charge =>BVM 1is accepting and
cumulating coins for current transaction. dispense =>BVM has
cumulated enough credit for the requested drink and is now
dispensing. return => returning the balance of a transaction
when accumulated credit is greater than the price of the
selected drink. cancel => canceling ongoing transaction to
refund cumulated credit. reject => returning an invalid coin to
the user.

D.

Time advance function
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(+00, if ¢ =idle

2.0, if ¢ =charge
) L0, if ¢ =dispense
ta(¢) = | 0.0, if ¢ =return
0.0, if ¢ = cancel
\ 0.0, if ¢ =reject

The time advance function, ta(¢), defines the maximum periods for which BVM may stay in
state ¢ before firing a scheduled internal transition. Recall from the synopsis of the system in
Section 3.2.13.2.1 above that BVM stays in an idle state indefinitely in waiting for an initiation
of a transaction on the keypad; thereforeta(idle) = +o0. When a drink is selected, it gives the
user a maximum of 2 minutes to insert enough coins to complete the transaction; this is modeled
as the charge state with ta(charge) = 2.0. Once enough credit is received, BVM enters the
dispense state to prepare and deliver a cup of drink in 1 minute; hence ta(dispense) = 1.0.If
the received credit is greater than the price of the requested drink, then BVM enters the transient
state return, prior to entering dispense, to return the balance of the transaction to the user;
ta(return) = 0.0. We consider that the cancelation of transactions and rejection of invalid coins
are instantaneous events; hence, we model their respective states as cancel and reject with
ta(cancel) = ta(reject) = 0.0.

E. Internal state transition function

Before we specify the internal transition functions, let us define two mathematical functions,
bal:N — Nand x:{n:N|n > 0} — C’, which will be used in the specifications. Given a
number m € Nbal(m) = m — pricercturns the excess of m over the instantaneous value of
state variable price. Given a natural number n > 0, function k(n)returns a bag of coins whose
total numerical (in cents) value is n.k generates a bag of coins for its numerical argument
according to the recursive definition below:

( [200] U x(n — 200), if n>200

[100] U k(n— 100),  if 100 <n < 200

[50] U k(n — 50), if 50 <n <100

[20] U k(n — 20), if 20€n <50

k(n:Njn = 0.00) = { [10] U k(n — 10), if 10 <n <20
[5] U k(n —5), if5<n<10

2] U k(n — 2), if2<n<5

11, ifn=1

\[ ], ifn=0

For clarity purpose, since DEVS does not prescribe any definite format for presenting different
elements of a specification, we will be presenting state transition behaviors in the format:
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) (¢source ) = ¢target : <0p1r op2,--, Opn) such that § can be 6int > 5ext or 6con

Gsource and @yqrger are the source and target states respectively.(opy, 0py, .., 0p,) is the finite
sequence of reconfiguration operations on the state variables that result in the transition from the
source state to target state.

The internal state transition function &;,; (¢p)of BVM is defined as:
6int (¢))

( cancel: (current = 5), if ¢ =charge
! idle: {(current = 0,price = 0,credit = 0,escrow = [ [, badC = null ), if ¢ =cancel
charge: (badC = null), if  =reject
l idle: {(current = 0,price = 0, credit = 0), if ¢ = dispense
dispense: (credit — bal(credit), vault \ k o bal(credit)), if ¢ =return

Oint () defines the system's behavior when it has stayed in state¢pfor a period e = ta(¢)
without receiving any external event. The function defines five cases of internal state transition
behaviors for BVM:

Case ¢ = chargespecifies a sequence of reconfiguration of state variable current
(i.e.,{current = 5)) leading to an automatic transition to state¢p = cancel.

Case ¢ = cancelspecifies transition to state ¢p = idlefollowing the reset of all state variables to
their default values in (current = 0, price = 0, credit = 0,escrow = [ ], badC = null ).

Case ¢ = rejectspecifies a reconfiguration of state variable badC (i.e., (badC = 0)) leading to
an automatic transition to state¢p = charge.

Case ¢ = dispense specifies the system's transition behavior at the successful processing of a
request for a drink. The transition to state ¢p = idlefollows the sequence of reconfiguration of
state variables specified in (current = 0, price = 0, credit = 0,escrow = []).

Case ¢ = returnspecifies the system's transition behavior preceding the dispense state when the
accumulated credit is greater than the price of the selected drink. As specified if the sequence of
reconfiguration of state variables,(vault \ k o bal(credit), credit — bal(credit)), the balance
of the transaction is deducted from the accumulated credit and a bag of coins equivalent to the
balance is withdrawn from the vault. The composite operation k o bal(credit) computes the bag
of coins whose total value is equivalent to the excess of credit over price. The delivery of this
bag of coins to the user will be defined later in the A function.

Since ta(idle) = +oo, which will never elapse, there is no internal transition from state
¢ = idle.

F. External state transition function
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Prior to the presentation of the external transition function, let us define a mathematical function
p:CODE — PRICE, which sets the price of a transaction based on the drink code selected on
the keypad. CODE = {1, 2, 3,4} and PRICE = {0,100, 80, 120,130}are the sets of keypad codes
and prices respectively of cocoa, coffee, orange and apple drinks. The function is defined as:

price = 100, if code =1 //cocoa
price = 80, if code =2 [//coffee

price = 120, if code =3 [/orange

price = 130, if code =4 [/apple

p(code € {1,2,3,4}) =

We present the external transitions in the format:

Sext (¢50urce €, (p' ln)) = ¢target : <Op1, opy,.., Opn)

Where e < ta(¢source ) 1 the time elapsed since transition to the source state and the pair (p, in)
is the input event that triggers the transition when input value in is received on input port p.
Thus, in € dom(p) as defined previously in the input set of a DEVS model in Section 3.2.2.1.

The external state transition function of BVM is defined as:

5ext ((;b' e, (p' ln))
charge: (current = in, p(in), credit = 0),if ¢ = idle
Ap =codeNin € {1,2,3,4}
charge:(escrow U [in], credit + in),if ¢ = charge
Ap =inC Ain € v A credit + in < price
dispense: (vault U escrow U [[in], escrow = [ ], credit + in),if ¢ = charge
Ap =inC Ain € v A credit + in = price
return: (vault U escrow U [in], escrow = [ ], credit + in),if ¢ = charge
Ap =inC Ain € v A credit + in > price
reject: (badC = in),if ¢ = charge
Ap=inCANin &v
cancel: (current = in),if ¢ = charge
\ Ap =codeANin =5

The function defines one case (resp. five cases) of external transition behavior from state
¢ = idle (resp. ¢ = charge).

Case ¢ =idle ANp = code Nin € {1,2,3,4} specifies a transition to state ¢p = charge upon
receiving an input in € {1, 2, 3,4} on input port code while the system is in state ¢ = idle. The
operation p(in) sets the value of state variable price, as defined earlier, based on the input value.

Case ¢ = charge Ap = inC ANin € v A credit + in < price specifies a transition back to state
¢ = charge if an "acceptable" coin in € vis received on input port inC while the system is in
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state ¢ = chargesuch that the sum of the value of the received coin and the subsisting value of
credit is less than price.

Case ¢ = charge Ap =inC Ain € v Acredit + in = price is similar to the previous case
except that credit + in = price. This leads to a transition to state ¢ = dispense while the
received coin in and the content of escrow are transferred to the vault.

Case ¢ = charge Ap = inC ANin € v A credit + in > price is also similar to the two previous
cases with the difference being thatcredit + in > price. This is followed by a transition to state
¢ = return in which the balance of the transaction will be returned to the user.

Case ¢ = charge Ap = inC Ain & vdefines the system's behavior when it receives an
"invalid/non-acceptable" coin in € von input port inCwhile in state ¢ = charge. This results
into a transition to state ¢p = reject in which the received coin will be returned, forthwith, to the
user.

Lastly, case ¢p = charge Ap = code Ain = 5 specifies a transition to state ¢ = cancelif an
input in = 5 is received on input port code while the system is in state ¢p = charge.

G. Confluent transition function

The confluent transition behaviors will be specified in the format:

6conf (Dsource » (0, i) = d)target : (0p1, 0Dy, -, 0Py)

All variables are as described previously.

5conf (¢r (p, ln))
(dispense: (credit + in, vault U escrow U [in], escrow = [ ]),if ¢ = charge Ap = inC
Ain € v A credit + in = price
return: (credit + in, vault U escrow U [in], escrow = [ ]),if ¢ = charge Ap = inC
Ain € v A credit + in > price
charge: (credit + in,escrow U [in])),if ¢ = charge Ap = inC
Ain € v Acredit + in < price
cancel: (badC = in,current = 5),if ¢ = charge Ap =inC
\ ANin & v

As specified in the function above, there are four cases of confluent state transition behavior
defined for BVM, each of which defines a state transition that occurs when an input event in is
received on input port p at exactly when the system has been in state ¢ for a period e = ta(¢).
The different cases can be read in the same manner as those explained earlier for external
transitions &,y .

H.  Output function
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Prior to specifying the output function, let us define a mathematical function
Y:{1,2,3,4} — {cocoa, cof fee, orange, apple}, which generates a cup of drink based on the
value of a variable x. Recall that current holds the drink code selected from the set {1, 2, 3, 4} at
the beginning of the transaction. Hence yymaps a code number to a cup of drink as follows:

cocoa, ifx=1
__ ) coffee, ifx=2
lp(x € {1l 21 3)4}) - OT‘ange, fo — 3

apple, if x=4
The output function A is defined as:

( cup = Y(current), ifp = dispense
outC = k o bal(credit), ifp =return
outC = [bad(C], ifp =reject
outC = escrow U [bad(], if¢p = cancel A
(escrow # [ ] V badC # null)
\ {3, otherwise

(@) = 5

The function A(¢)defines five cases of output events that occur just before internal and/or
external state transitions from stateg.

Case ¢ = dispense defines the output event that occurs just before leaving the dispense state. In
this case a cup of the requested drink, ¥ (current), is produced as output on the cup port.

Case ¢ = returndefines the output event that occurs just before leaving the rerurn state. In this
case, the composite operation k o bal(credit) computes the bag of coins whose total value is
equivalent to the excess of credit over price. The bag of coins so generated is produced as output
on port outC.

Case ¢ = rejectstates that before leaving the reject state, the rejected invalid coin, badC, is sent
out on port outC.

Case¢p = cancel A (escrow # [ ]V badC # null)is a composition of three cases associated
with state¢p = cancel:escrow # [ ] A badC = null, escrow = [ ] A badC # nulland
escrow # [ ] AbadC # null. In any of the cases, all coins that may be contained in either
escrow or badC or both are sent out as output on port outC.

3.2.3.2 Beverage vending machine user (U): a DEVS atomic model
The DEVS atomic model of the user, U, is defined as:
U = < X, Y,S,5int,5ext,5wnf,ﬂ, ta >

We describe the elements of the structure in a similar way with BVM
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A. Input interface

Let Beverage be the set of cups of all kinds of beverage drink including cocoa, coffee, orange
and apple.

Xy = {(drink, Beverage), (inC,CP)}.

U has two input ports as shown. Since the set Beverage, the domain of port drink subsumes all
kinds of drinks, U can receive cups of cocoa, coffee, orange, apple and many more. U can also
receive any kind of coin on port inC.

B. Output interface
Yy = {(request,{1,2,3,4,5}), (outC,C)}.

U has two output ports request and outC. The domain of port requestmodels the choices that U
could make during a transaction; while outputs of numbers 1-4 on port request correspond to the
choices of drinks as described previously, an output of 5 signifies the choice to cancel an
ongoing transaction. Port ou#zC models the coins that can be sent out by U.

C. State set

S = {(wallet, C?), (bill,N), (advance,N), (cup, Beverage),
(purse, C), (choice, {0..5}), (¢, {away, inserting,
ordering, canceling, waiting})|

( away, if bill = advance = choice = 0
ordering, if choice € {1,2,3,4} A bill = advance = 0 A cup = null
b= inserting, if choice € {1,2,3,4} A0 < advance < bill A cup = null )
waiting, if (choice € {1,2,3,4} A0 < bill < advance)
V (choice = 0 A advance < bill)
\canceling, if choice € {5}

The purpose of each state variable is briefly explained in Table 3.2below.

Table 3.2 DEVS state variables of beverage vending machine user

State
variable

Domain Information held

The bill (in cents) of the current transaction. Its value is set based
on the chosen drink (i.e., based on the value of variable
choice).Recall from Section 3.2.1 that cocoa, coffee, orange and
bill N apple drinks cost €1,00, €0,80, €1,20, and €1,30 respectively.

Let us define a mathematical function S:{0,1,2,3,4,5} — Rthat
sets the value of bill as:
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100, if choice =1
80, if choice =2
B(choice € {0,1,2,3,4,5}) = 120, if choice =3
130, if choice =4
0, otherwise

Code to choose transaction. 1, 2, 3, 4 represent cocoa, coffee,

choice | {0,1,2,3,4,5} | orange and apple respectively. current = 0 is the default value
when no transaction is in progress.
Cumulative value of the coins expended for a transaction.
advance N ] o . ) ]
Unlike BVM, U does not discriminate against any kind of coin.
b A finite bag of coins from which U makes transaction on BVM
wallet C
and probably elsewhere.
A finite bag of coins to store coins rejected by BVM. Technically,
purse ct these are coins (1 cent, 2 cents, and 5 cents) returned while
payment for an ongoing transaction is in progress.
{cocoa,cofee, | A variable to hold the cups of drinks that may be received at the
cu oranae. avple end of the transactions. The domain of the variable denotes the
p g€, aPPte | \inds of expected drinks. It has a nu// value when no cup has been
null} received.
Identifiers of instantaneous states of the system. ¢ is indeed a
derived variable whose values are pointers to sets of (ranges of)
values of the other state variables. The corresponding predicates
{away, on the state variables for the different values of ¢ are defined in
. the predicate part of set S above. The states may be interpreted as
ordering, i . . ; .
follows: away => no transaction in progress, it leaves this state
[0) inserting, only when it has the urge to take some drink. ordering => U is
. placing an order for a drink on BVM. inserting => U is inserting
waliting, . S . . .
coins into BVM to pay an initiated transaction. waiting => U is
canceling} | waiting to receive an order after completing the payment or to

receive a refund of advance payments for a canceled transaction.
canceling => U is canceling an initiated order before completing
the payment.

D. Time advance function

The time advance function is specified as:
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rand[0.0,100.0], if ¢ =away
0.0, if  =ordering

ta(¢) = 0.25, if ¢ =inserting
1.5, if ¢ =waiting
k 0.0, if ¢ = canceling

Recall that U remains in state¢p = away until it has the urge to take some drink; we consider that
this urge is an internal event for which frequency we cannot precisely define (or at least, it would
be difficult to define the frequency precisely). For the purpose of our discussion in this example,
let us take the frequency to be a random value in the range [0, 100]minutes. Hence, ta(away) =
rand[0.0,100.0]. Placing an order and canceling a transaction in this system are instantaneous
events as they involve just pressing a button, hence ta(ordering) = ta(canceling) = 0.0. It
takes 15 seconds (0.25 minutes) to pick a coin from the wallet and insert it in BVM, so
ta(canceling) = 0.25. Lastly, U waits for a maximum of 90 seconds to take delivery of a drink
or get refund of coins from BVM, hence, ta(waiting) = 1.5.

E. Internal state transition function

Prior to the external state transition function, let us define two mathematical functions that will
be used in the specification of the transition functions:

First, let o: C’> — R be the function that computes the sum of the numerical values of all the
coins in a given non-empty bag of coins.o is defined as:

i=|C|
g(CecCh) = Z C
i=1

Secondly, let functiont: C° — Cdenote the operation of randomly picking a coinc € C from a
non-empty bag of coins.

The internal state transition function of U is defined as follows:
Oint : ® — PWherepp = {away, inserting, canceling, waiting}

For clarity, we present the internal transition specifications from each of the seven states
separately. The transitions will be presented in the same format as BVM:

Sint (Bsource ) = ¢target : (0p1, 0P, - ., 0Py)

ODsource and @rqrger are the source and target states respectively while (op1,0p3,..,0p,) is the
sequence of reconfiguration operations on the state variables that result in the transition from the
source state to target state.

The internal transitions from the different states are as follows:
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Specification of internal transition from state ¢ = away
Sine (away) = ordering: (choice = rand|[1..4], cup = null)

This specifies an internal transition from state ¢ = away to state ¢ = orderingfollowing the
assignment of a randomly generated natural number in the interval [1..4] to state variable choice
and null to state variable cup.

Specification of internal transition from state ¢ = ordering
Oine (ordering) = inserting: (bill = B(choice))

This specifies an internal transition to state ¢p = inserting from ¢ = ordering following the
assignment of a value to bi/l based on the instantaneous value of choice. Recall that we defined,
in Table 3.2above, the function £, which assigns values to bill based on the price of the drink
corresponding to the subsisting value of choice.

Specification of internal transition from state ¢p = inserting
There are three cases of internal transition from state ¢p = inserting as specified below:

( inserting:(advance + t(wallet)), if wallet #[ 1]
| A advance + t(wallet) < bill
Oine (inserting) = { waiting: (advance + t(wallet)), if wallet #[ ]
| A advance + t(wallet) > bill
k canceling: (choice = 5), if wallet = 1]

We have defined the function T(wallet), which returns a coin picked at random from the wallet.
The explanations of the three transition cases are as follows:

The first case specifies the behavior when wallet is not empty and the sum of the current value of
advance and the numerical value of the coin picked from the wallet is still less than bill. This
implies that the payment for the requested drink is not yet complete; since wallet is not empty, a
transition back to state ¢ = insertingoccurs following the operation specified in the angle
bracket.

The condition of the first case is similar to the first except that the sum of the current value of
advance and the value of the coin picked from wallet is at least equal to bill. Hence, the target of
the transition event is the state ¢p = waiting following the specified variable reconfiguration
operations.

The third case specifies the behavior when wallet becomes empty while in state ¢ = inserting.
The implication of this situation is that there are no sufficient acceptable coins to pay the bill of
the selected drink. Hence a transition to state ¢p = canceling occurs following the assignment
operation choice = 5.
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Specification of internal transition from state ¢p = canceling
We specify two cases of transition behavior from state ¢ = canceling below:

waiting: (choice = 0), ifadvance > 0

8ine (canceling) = {away: (choice = 0, bill = 0), ifadvance = 0

Case advance > 0.00 implies that some coins had already been released before entering the
canceling state; hence, the target of the transition is the state ¢ = waiting to get a refund of the
coins. Case advance = 0.00, however, implies that either no coin had been released so far or all
released coins have been refunded (rejected), hence a transition to state ¢ = away occurs
following the reset of other state variables to their default values.

Specification of internal transition from state ¢ = waiting
Sine (Waiting) = canceling: (choice = 5)

The only possible internal transition from state ¢ = waiting targets state ¢ = canceling
following the assignment operation choice = 5

F. External transition function

Before we discuss the different cases, recall that function odefines the operation of computing
the cumulative numerical value of all the coins in a given bag of coins. Hence a(bag) is the
operation of computing the total value of the coins stored in the hag variable at any instant.

The external transition function is specified as follows:

8ext (d)' e, (p: ln))
( inserting: (purse U in, advance — a(in)), if ¢ =inserting Ap = inC
waiting: (wallet U in, advance — o(in) ), if ¢ =waiting Ap =inC
A advance > 0
away: (wallet U in, bill = 0, choice = 0), if ¢ =waiting Ap =inC
A advance = 0
\away: (cup = in, bill = 0, choice = 0, advance = 0), if ¢ = waiting Ap = drink

The external state transition function specifies the system's behavior when it receives an input
event in(i.e., a trigger) on input port p while having being in state ¢ for a period 0 < e <
ta(¢).Four cases are specified in the external transition function above:

The receipt of a bag of coins on input port inCwhile the system is in state ¢ = insertingtriggers
an external transition back to state ¢p = inserting while the bag of coins received is kept in the
purse and its numerical value is deducted from advance; the coin received in this state is
considered to have been rejected.
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When a bag of coins is received in state¢p = waitingand advance > 0, an external state
transition back to state ¢ = waiting occurs while the coins are returned to the wallet; this is
considered the balance of a successful transaction, hence user returns to waiting to await the
ordered item. However, if advance = 0, a transition to state ¢ = away occurs; it is considered,
in this case, that user is not expecting anything more since advance =0.

If a cup of drink is received on input port drink while the system is in state ¢ = waitinga
transition to state ¢p = away occurs.

G. Confluent transition function

The confluent state transition function specifies the system's behavior when it receives an input
event in (i.e., a trigger) on input port p while having being in state ¢ for a period of exactly
e = ta(¢). Incidentally, this system has identical behaviors for external and confluent transition
events.

H.  Output function.

The output function specifies three cases of output events just before internal and/or confluent
transitions from the states defined by ¢.

request = choice, if ¢ =orderingV ¢ = canceling
A(p) = {outC = t(wallet), if ¢ = inserting A advance < bill Awallet # [ ]
{} otherwise

Case ¢ = ordering V ¢ = canceling is a disjunction of two cases: ¢ = ordering and
¢ = canceling. In each case, the instantaneous value of state variable choice is sent out as
output port request. Recall that clause choice € {1, 2, 3,4} (resp. choice € {5}) is always true
whenever the system is in state ¢ = ordering (resp. ¢ = canceling). Hence, the output in the
first case places an order for a drink while that of the second case requests a cancelation of an
ongoing transaction.

Case ¢ = inserting A advance < bill Awallet # [ Jspecifies that a coin picked at random
from wallet is produced as output on port outC just before an internal or confluent transition
from state ¢p = inserting on the condition that advance (i.e., total amount of "acceptable" coins
released so far for the ongoing transaction) is less than bill (i.e., the price of the order) and wallet
is not empty.

3.2.3.3 Beverage vending system (BVS): a DEVS coupled model
Based on the definition of DEVS coupled model, we describe BVS as:
BVS =< X,Y,D,{My}4ep, EIC,EOC,IC >

The elements of the structure are defined as follows:
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* Input and output interfaces

X={Y=_

In BVS, exchanges of events exist only between its components, BVM and U. Since we do not
consider interactions with anything outside the coupled model, BVS is a close system and thus
has no input or output port.

=  Components

The set of component references of BVS, D = {BVM,U}.vd € D, M; is the complete DEVS
specification referred to by d. i.e., Mgy and My are the DEVS models presented previously in
Section 3.2.3.1 and Section 3.2.3.2 respectively.

=  Couplings
I1C = {((U,request), (BVM, code)), (U, outC), (BVM, inC)), ((BVM, cup), (U, drink)),
((BVM, outC), (U,inC))}; EIC = {}; EOC = {}

Recall that coupling set EIC (resp. EOC) is a relation involving the input (resp. output) ports of a
coupled model. Thus for BVS, EIC = {} and EOC = {}. There are, however, four internal
couplings as specified in the set IC above. Each coupling in the set is a pair of pairs where the
first pair specifies the sending system and the port through which the event is being sent while
the second pair specifies the receiving system and the port through which the event is received.
For instance, coupling ((U, request), (BVM, code)) specifies that the port request of U is
coupled with the port code of BVM so that the former can send events to the latter. Other
couplings in the set can be read similarly.

3.2.4 Z Language

The Z language/notation [Spi88, Spi92],pronounced as "Zed", is a formal specification language
founded on set theory and predicate logic used for specifying software and hardware systems for
logical analysis. Z is widely used by the FM community both in academia and in industry for its
considerable universality in describing state-based systems and amenability to symbolic
manipulations by diverse tools. Z is specially suited to model systems' data and state changes
[SWA+05].

Our discussion of Z will be limited to what is required to follow the work in this thesis; for
detailed presentation of the language, we invite the reader to consult any of its numerous texts
(e.g., [Spi88, Spi92, WD96, Jac97, ISO02]).

One of the fundamental features of Z, which is of particular interest in this thesis, is that every
element of a specification has a unique and precisely defined type. This makes Z specifications
specifically amenable to type-checking and diverse logical reasoning; interestingly, there exist
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diverse tools that practically support such analyses; examples include UPAAL [BDL04], CZT
[MUOS, MFM+05],Z/EVES[MS97, Saa03], CadiZ [TM95], and Circus [WCO01].

Z supports modular and hierarchical specification of complex state-based systems using schema
calculus. A Z schema may be described as a collection of declarations and (optional) constraints
to describe a mathematical object and its properties. It can be used to describe the state space of a
system and the ways in which the state can possibly change, as well as to describe and reason
about some static properties and possible refinements of the system. Essentially, a Z
specification is made up of paragraphs; a Z paragraph can be a basic type definition, a free type
definition, an axiomatic definition, or a schema. The next subsections elaborate a bit on these
kinds of Z paragraphs and schema calculus, the composition of schemas with logical connectives
for hierarchical construction of complex schemas.

3.2.4.1 Basic type definition

As its name implies, a basic type definition introduces one or more basic type(s). A basic type is
a unique name, which has not been used previously for any global declaration in the same
specification, used to name an abstract set without giving details of the objects it contains. It is
specifically used when it does not matter, for the purpose of the specification, what form or
structure is taken by the objects been represented.

The syntax of basic type definitions is as follows:
[IDENTIFIER,,..., IDENTIFIER,]

Each "IDENTIFIER" is a basic unique name representing a basic type and its scope extends
globally from the point of specification to the end of the specification. As an example, imagine
we want to specify system that contains variables such as names of people and towns we may
introduce the basic types [NAME, TOWN] to model the types of names of people and towns
respectively. In this case, we consider the types to be infinite sets of names people and towns
respectively and we are not interested in the forms taken by the names.

3.2.4.2 Free type definition

Free types are sets with explicit structuring information that can be used for the specification of a
variety of data structures such as lists, arrays, or trees of elements drawn from one or more basic
types [WD96].A free type is especially suitable to model enumerated collections, compound
objects, and recursively defined structures.

The format of a free type can be described asFREETYPE ::= consanty|...|constant, or
FREETYPE ::= constant|constructor < source >. The former can be used in particular to
define a finite set of distinguishable elements while the latter is most suitable to define some
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recursive structures [DW96, Spi92]. The scope of a free type starts from the point of its
definition to the end of the specification.

As examples of free type definitions, let us begin the Z specification of our Beverage Vending
Machine (BVM) running example with the introduction of free types COIN, CUP and CODE, to
represent the set of euro coins, set of cups of beverages and set of input codes respectively.

The types are defined as follows:
COIN ::= 1cent| 2cent| 5cent| 10cent| 20cent| 50cent| leuro | 2euro
CUP ::= cocoal|cof fee|lorange | apple
CODE =123 |4

Type COIN defines a set of eight distinguishable kinds of euro coins; any variable declared with
this type henceforth can only take its value from this set. Similarly, types CUP and CODE define
finite sets of distinguishable beverages and input codes respectively. Detailed descriptions, with
examples, of the two formats of free type definition are provided in [DW98, p. 132-145].

3.2.4.3 Axiomatic definition

An axiomatic definition is used in a Z specification to introduce one or more global variable(s),
constant(s) or function(s) possibly accompanied by constraints on their values. Just like a basic
type definition, the variables declared in an axiomatic definition must be unique and their scopes
extend from the points of declaration to the end of the specification. The predicates defining
constraints in an axiomatic definition may define relationships between its variables and/or
between its variables and other variables that have been defined previously in the specification.
Such predicates can be regarded as global properties of the system [Spi92].

Figure 3.3below describes two possible templates for specifying axiomatic definitions. The
format on the left side of the figure shows two segments separated by a horizontal dividing line
(which can be interpreted to mean "such that"); while the upper segment contains a finite number
of declarations of variables or constants, the predicates specifying constraints on them, if any, are
specified in the lower segment. The template on the right depicts that the dividing line and the
lower segment can be absent if no predicate is defined; the predicate in this case is the logical
value true [Spi92].

deciNarne, : declTypeq

declName; : declType;

deciNarmne,, : decl Type,,

declName,, : declType,

‘ [predicatey

predicate,, )

Figure 3.3Templates for Z axiomatic definition
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Figure 3.4presents a sample axiomatic definition from the Z specification of the BVM, which
reuses the free types COIN, CUP and CODE defined previously.v is an injective function which
maps a given euro coin to its numerical value in cents; the value of each coin is precisely defined
in the first two lines on the predicate part of the axiomatic definition. p is also an injective
function that determines the price of a transaction based on the code chosen on the keypad while
Y injectively maps a number from the set {1, 2, 3, 4}, selected on the keypad, to the
corresponding beverage. Function ¢ computes the sum of the numerical values of all coins in a
given bag of coins. Function k is the inverse of a; it specifies the generation of a bag of coins
whose total numerical value is equivalent to a given natural number. More details about each of
the functions are provided in the predicate part of the axiomatic definition.

v: COIN —> {1,2, 5,10, 20, 50, 100, 200}

p: CODE — {100, 80,120, 130, 0}

Wi {1,2,3,4} —s CUP

o: [COIN] —>» N
/N 4> P[COIN]

v:leent — 1L AN v :2cent— 2N v:beent — 5 N v : 10cent — 10 N

v : 20cent — 20 A v : B0cent — 50 A v : leuro — 100 A v : 2euro — 200
Pp:1l—=100ANA p:2—=80Ap:3—=120NAp:4+— 130N p:5+—0

W 11— cocoa N 2 — coffee A 1 3 — orange Ny 14— apple
VO e [COIN]eo(C) =3 = v(c)

Vin,C)e reo(C)=mn

Figure 3.4 A sample axiomatic definition in the BVM specification
3.2.4.4 State schema

The state schema defines the state space of a system by declaring its state variables and the
constraints on their values, if any. These constraints are also called the state invariants as they
are relationships must always remain valid in all states of the system.

StateSchermnaNarne
StateSchemaName

deciNarne, : decllype,
: decINamey : declTypey
declNarme,, : declType,,

[pPredicate,

decIName,, : declType,

predicate,, )

SchemaName = [declName : declTypey; ... declName,, - declType,, | predicatey; ... predicate,

Figure 3.5 Z state schema templates
Both the vertical and horizontal formats describe the same system elements.

Figure 3.5presents three templates for specifying state schemas in Z; the two formats at the top
of the figure are called the vertical format while the one at the bottom is the horizontal format.
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A state schema in Z must have a unique name that has not occurred previously in the
specification. The vertical formats at the top-left and top-right respectively describe state
schemas with and without the predicate part.

We present a sample state schema, BV MState, in Figure 3.6. BVMState describes the state space
of the BVM based on the state variables defined in the DEVS model of BVM in Section 3.2.3.1.
BVM reuses the type COIN and function v defined previously in the basic type definition and
axiomatic definition respectively.

__ BVMState
vault : [COIN]

escrow : [COIN]

badC : P COIN

credit, price, current : PN
A

¢ : {idle, charge, dispense, cancel, return, reject }

v(badC') ¢ {10, 20,50, 100,200}
price € {0,80,100, 120, 130}
current € {0,1,2,3,4,5}
¢ = idle = credit = current = price = 0 A badC = null A escrow = []
¢ = charge = current € {1,2,3,4} A price > 0 A eredit < price A badC = null
¢ = dispense = current € {1,2,3,4} A price > 0 A credit = price A badC' = null A escrow = []
¢ = return = current € {1,2,3,4} A price > 0 A credit > price A badC = null A escrow = ]
¢ = cancel = current = 5 A credit < price
¢ = reject = current € {1,2,3,4} A badC' # null

Figure 3.6 State space of the beverage vending machine

As explained previously, each of state variables vault and escrow is a bag of coins. Variable
badC has type COIN while the first predicate in the schema specifies a constraint that helps to
define, precisely, the subset of the set COIN of all coins to which it belongs; badC specifies the
so-called invalid coin described in the synopsis of BVM in Section 3.2.1. Similarly, variables
credit, price and current are all of type N while the second (resp. third) predicate of the schema
sets a constraint on the subset of Nwithin which legal values of price (resp. current) must be
taken. Variable ¢ is a secondary or derived variable whose values depend on the instantaneous
values of other variables as specified by the remaining predicates in the schema.

The starting (initial) state of the BVM is specified as in Figure below. This schema simply
specifies that BVM will initialize to state ¢p = idlewhen started.
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_ InitB VAL
BVMState

¢ — idle

Figure 3.7 Initial state of BVM
3.2.4.5 Operation schema

An operation schema specifies one or more operations on the state variables defined in the state
schema. Essentially, an operation schema includes the state schema(s) upon which it operates in
its specification by referencing them.

The reference to a state schema from an operation schema specifies whether the referencing is
for read-only or for modification; the former and latter cases are described in the templates
presented on the right and left respectively of Figure 3.8. The symbols A (delta) in the operation
schema StateChangingOperationSchema (see left of Figure 3.8) denotes that the state schema
referred to by the reference StateSchemaRef will be modified after the execution of the present
operation schema. i.e., it will lead to a change of state. In contrast, the symbol = (Xi) on the right
of the figure denotes that the reference to StateSchemaRef is read-only and will not lead to a
change of state. i.e., the values of all variables in the state schema before and after the execution
of the operation schema will remain the same.

__ StateChangingOperationSchema _ StatePreservingOperationSchema

AStateSchemaRef ZEStateSchemallef
[declName : decl Type; [declName, : declTypey
declName,, : declType,] deciName, : declType,]
[tnput Variable,? : varType, [input Variable1? : varTypey
input Variable,? : varType,] input Vartable,? : varType,]
[outpuwt Variabley! : varTypey [eutput Variable,! : varType,
output Variable,! : varType, | output Variable, ! : varType,,|
[precondition, [precondition,
precondition,, ] precondition,,)
[p(J.s'tcand'itionl [postcandz'tionl
posteondition,,] posteondition,, ]

Figure 3.8Templates for Z operation schema

A in the template on the left denotes that StateSchemaRef will be modified by the
operation schema while = on the right indicates that the operation schema only
reads the contents of StateSchemaRef without modifying it.
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As shown in Figure 3.8, an operation schema has a unique name specified on top of the schema
and may declare some local variables. In addition to the local variables, it may also declare input
and/or output variables; input and output variable names end with the question mark '?" and
exclamation '!' symbols respectively. The predicate part allows for the specification of the pre-
and post-conditions of the operation. On the one hand, the preconditions specify the constraints,
on the included state schema, local variables or input variables or any combination of these three,
which must be satisfied before the operation can be executed. The post-conditions, on the other
hand, specify the effects of executing the operation on its local variables, the included state
schema and the output variables if any. Conventionally, the final values of the different
variables, in the post-conditions, are represented by "primed" variable names. i.e., they are
differentiated by appending the prime (") symbol to the variable names.

The operation schema is particularly useful to specify the behavior of a state-based system by
describing the state transition operations. As examples to illustrate the specification of operation
schemas, we will present the Z equivalent of the state transition and output functions of the BVM
as described in its DEVS models in Section 3.2.3.1.

Figure 3.9 (a-e) presents the internal state transition operations of BVM. Each of the operations
includes the state schema, BV MState defined previously with the A reference; this indicates that
each operation has full access to all variables declared in the state schema and that the system's
state is modified whenever the operations is executed. We have chosen to specify the different
cases of internal transition separately because they have disparate pre- and post-conditions.

__cancel2idleTrans;.; — charge2cancelTrans;,; _dispense2idle Trans;,;

A BVMState ABVMState A BVMState
¢ = cancel ¢ = charge ¢ = dispense
vault’ = vault vault’ = vault vault’ = vault
escrow’ = [ escrow’ = escrow escrow’ =[]
credit’ = 0 credit’ = credit credit’ =0
price’ =0 price’ = price price’ =0
badC’ = null badC’ = badC badC’ = badC
current’ = 0 current’ = 5 current’ = 0
@' = didle &' = cancel @' = idle

(a) (b) (©)

__reject2charge Trans,,  return2dispense TrartSi,e

ANBVAMState N BV ANState
@ = reject b — relwrre
vault’ = vault vawlt! — wvawlt \ = credit — price)
escrow’ = escrow escrow’ — escrow
credit’ = credit credit’ — price
price’ = price price’ — price
badC’' = null bad ' — baddc
current’ = current currernt’ — cuwrrernt
@' = charge @' — dispernse

(d) (e)

Figure 3.9 Internal state transition operations of the BVM
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Recall from our previous explanation that the post-conditions are identified in the predicate part
of the schema by the "primed" variable names and they specify the relationships between the
values of the state variables before and after the execution of the operation without necessarily
giving the details of how we arrive at such relationships.

Operation return2dispenseTrans;, has the pre-condition ¢p = return, which implies that all the
constraints imposed by this state must be #rue before the operation can be executed. All other
references to the state variables in this predicate part specify the post-condition of the operation
since they are "primed". Predicate vault = vault\k(credit — price) specifies that the state,
vault', of variable vault after the execution of the operation is the set minus of the bag of coins
returned by k(credit — price) from the state, vault, of the variable before the operation is
executed. From our previous definition of function k, k(credit — price) returns a bag of coins
whose total value is equivalent to the balance, credit-price, of the transaction in progress. State
variables credit and ¢ also take new values (i.e., credit = priceand ¢ = dispense
respectively) while escrow, price, badC and current remain unchanged after executing the
operation. Other operations in the figure can be read in similar manner.

—idleZchargelrans . __charge2charge Transex:

ABVMState ABVMState

code? : CODE inC? : COIN

code? € {1,2,3,4} @ = charge

¢ = idle v(inC?) € {10, 20, 50,100, 200} A credit + v(inC?) < price
vault! — vault vault’ = vault

escrow’ = escrow escrow’ = eserow U [inC'?]
credit’ = 0 credit’ = credit + v(inC'7)
price’ = p(code’?) price’ = price

badC' = badC badC’ = badC

current’ = code? current’ = current

@’ = charge @' = charge

(a) (b)
— charge2rejectTranseyy — _ charge2returnTrans .

A BVMState ABVMState

nC?: COIN inC? : COIN

¢ = charge ¢ = charge

v(inC?) ¢ {10, 20, 50, 100, 200} v(inC?) e {10,20, 50,100, 200} A credit + v(inC?) > price
vault’ = vault vault’ = vault U escrow U [inC?]
escrow’ = escrow escrow’ = []

credit’ = credit credit’ = eredit + v(inC7)
price’ = price price’ = price

badC’ = inC? badC’ = badC

current’ = current current’ = current

@' = reject ¢’ = return

(c) (d)
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__ charge2cancelTrans.,; __charge2dispense Transq,;

ABVMState ABVMState
code? : CODE inC?: COIN
¢ = charge ¢ = charge
code? =5 v(inC?) € {10, 20, 50, 100, 200} A credit + v(inC?) = price
vault’ = vault vault’ = vault J escrow U [inC?]
escrow’ = escrow escrow’ = (]
credit’ = credit credit’ = credit + v(inC'?)
price’ = price price’ = price
badC'’ = badC badC’ = badC
current’ = code? current’ = current
@' = cancel ¢' = dispense
(e ®

Figure 3.10External transition operations of the BVM

Figure 3.10 (a-f) presents another set of operation schemas that specifies the state transition
behaviors of BVM when it receives different kinds of input events while in different states. The
schema in (a) describes the transition behavior when an input value code in the set {1, 2, 3, 4}
while the system is in state ¢ = idle. Schema (b) describes the transition behavior upon the
receipt of a "valid" coin (indicated by v(inC?) € {10,20,50,100,100}) that satisfies the
constraint specified by the second line of predicate while in state ¢p = charge. The transition
specified in schema (c) describes the transition behavior that is triggered by the receipt of an

"invalid" coin (indicated by v(inC?) ¢ {10, 20, 50,

100, 100}) while in state ¢p = charge. The

transition behavior exhibited when the cancel button (code?=35) is pressed while the system is in
state ¢ = charge is described in schema (e). All post-conditions can be read in the same manner

as the schemas for the internal state transitions.

ABVMState
nC?: COIN

& = charge
v(inC?) #£ 0 A credit + v(inC?) = price
vault’ = vault U escrow U [inC'?]
escrow’ = [
credit’ = credit + v(inC'?7)
price’ = price
badC’ = badC
current’ = current
@' = dispense

— charge2dispenseTranscony —

charge2returnTrans ons

ABVMState

inC?: COIN

¢ = charge

v(inC7?) # 0 A credit + v(inC7) > price
vault’ = vault U escrow U [inC7?]
escrow’ =[]

credit’ = credit + v(inC'?)

price’ = price

badC’ = badC

current’ = current

&' = return

(@)
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charge2cancel2Trans.ony —

charge2cancell Trans o, s

ABVMState ABVMState
nC'? : COIN tnC'? - COTN
¢ = charge ¢ = charge
v(inC?) # 0 A eredit + v(inC?7) < price v(inC?) = 0
vauwlt’ = vault varwlt’ — wvawlt
escrow’ = escrow U [inC'7] escrow’ — escrowuw
credit’ = credit + v(inC'7) credit’ — credit
price’ = price price’ — price
badC’ = badC badC’ — inC'?
current’ = current’ = 5
@' = cancel &' = cancel

(c) (d)

Figure 3.11 Confluent transition operations of BVM

The last in the series of sets of state transition schemas of BVM is that of the confluent state
transitions shown in Figure 3.11. All schemas in the set can be read same way as the previous
ones as well.

We present the specification of the output operations of BVM in Figure3.12. Unlike the state
transition schemas which all have full access to the variables declared in the included state
schema, BVMOQOutput includes state schema BV MState as read-only as denoted by the preceding
symbol E. This implies that all state variables remain unchanged by the execution of the
operations specified in this schema.

Another feature that differentiates this schema from the previous ones is the declaration of output
variables - cup! and outC!. This schema actually combines four distinct output operations with
the pre-condition of each as specified in the predicate part of the schema. For instance, predicate
¢ = dispense = cup! = Y(current) AoutC! =[] specifies that if the pre-condition ¢ =
dispense is true, then the post-condition will be that the value returned by y(current) will be
placed on output variable cup! while output variable outC! will be an empty bag of coins.

Note that the post-execution value of an output variable is not primed; being an output variable
already connotes that it will only be assigned a value at the end of the execution. Other output
operations in the schema can be read in similar manner.
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— BVMOutput
=BVMState
cup! : CUP
outC'! : [COIN]

o = dispense = cup! = ¥ (current) A outC! = []

o = return = cup! = null A outC! = k(credit — price)

o = reject = cup! = null A outC! = [badC]

o = cancel A (escrow # [] V badC # null) = cup! = null A\ outC! = escrow U [badC]
b # dispense A ¢ # return A ¢ # reject A

= (¢ = cancel A (escrow # [] V badC # null)) = cup! = null A outC! =[]

Figure3.120utput operations of BVM
3.2.4.6 Z schema calculus

Schema calculus involves the building of schema expressions for hierarchical construction of
complex schemas using logical connectives to combine schemas with type-compatible
signatures. Two signatures are said to be type-compatible if each variable common to the two has
the same type in both of them [Spi92].Hence, two type-compatible signatures can be combined
into a larger signature containing the union of the sets of variables in the two. Using this as a
premise, when two schemas, A and B, are combined to form a bigger schema C, the declaration
part (signature) of C contains all the variables declared in A and B while the combination of the
constraints in its predicate part will depend on the logical connective involved.

Logical connectives such as AV, =or& may be used to combine two type-compatible schemas;
it is, however, preferable to call them schema connectives in this context as they have more
complicated semantics than in conventional logic. In each case, the resulting schema is one
whose signature is a merge of the signatures of the two arguments while the predicate part is the
result of joining the predicate parts of the two arguments with the chosen schema connective.
The unary operator — may also be used to express the negation of a schema; in this case,
schemas S and —S have identical signatures but the properties (constraints in the predicate part
of the schema) of the latter are the exact negations of the properties of the former.

Next, we will present a series of examples of the use of schema calculus in the specification of
our BVM. Firstly, the five schemas presented previously in Figure 3.9 (a-e) are different cases of
internal state transition behavior of the BVM and only one of the cases can be executed at any
time. Hence, we can combine them into one big schema using the schemaV connective as
follows:

BVMInternalTransition 2 chargeZ2cancelTrans;,; V cancel2idleTrans;,; V
reject2chargeTrans;,; V reject2dispenseTrans;,, V cancel2idleTrans;,;
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As described previously, an internal transition may be accompanied by an output operation,
which will occur just before the transition to the next state. An output event may occur at the
end of a state just before a transition to the next state; we have specified the possible cases of
output operations in schema BVMOutput (see Figure3.12). We can use the A connective to
combine the output and internal transition operations as follows:

BVMInternalTransitionEvent & BVMOutput A BVMInternalTransition

Similarly, we combine the six cases of external state transitions presented in Figure 3.10 into one
big schema as follows:

BVMExternalTransitionEvent £ idle2chargeTrans,,; V charge2chargeTrans,,; V
chargeZdispenseTrans,,; V charge2returnTrans,,; V chargeZreturnTrans,,; V
charge2cancelTrans,,;

No output operation accompanies an external state transition, hence we will not combine the
BVMExternalTransitionEvent with BVMOutput.

Using the same techniques, we combine the cases of confluent transition operations presented in
Figure 3.11 under one schema as follows:

BVMConfluentTransitionEvent 2 BVMOutput A (chargeZdispenseTransc,,s V
charge2returnTransc,,; V charge2cancellTrans.,,r V chargeZcancel2Trans g,y )

The combined confluent transition schema also contains the output schema because there is
possibility of an output operation accompanying a confluent transition.

Finally, only one out of the three kinds of state transitions can occur at time; hence, we combine
the all transition operations under one bigger schema as:

BVMStateTransitionEvent
2 BVMInternalTransitionEvent V BVMExternalTransitionEvent
V BVMConfluentTransitionEvent

3.2.5 Object-Z

Object-Z [Smi92, Smil2] is an Object-Oriented extension of Z. It adopts the concept of class
from Object Orientation (OO) to add structure, modularity and clarity to Z specifications. The
fundamental difference between Z and Object-Z is the presence of class schema in the latter.
Object-Z introduces the concept of "class schema", which is defined on top of Z’s notion of
schema; an Object-Z's class schema encloses a single state schema and all the operation schemas
that manipulate and/or use its declared variables. Hence, the basic building block for system
specification in Object-Z is the class schema. In addition to the encapsulation property, the class
schema exhibits other OO properties like inheritance and polymorphism. Another interesting
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component of Object-Z, which is not present in Z, is its integration with temporal logic to specify
some history invariants of systems.

_ ClassName|[Parameter,, ..., Parameter,,]
[ Visibility list]

[Frefrerited class,

Inherited class,,]

[Local definitiora

Local definition, |
[State]

[fnitial state]

[ Operatior,

Operatior, )

[History invariant

History invariart,)]

Figure 3.13Syntactic structure of class schema

Figure 3.13 presents the syntactic structure of the class schema in the form of a general template
for specification, showing its possible elements and the orders in which they may appear. A class
schema has a unique name as an identifier to differentiate it from other classes in the
specification. In addition to the class name, the header may specify some generic parameters.
Since the class schema encapsulates its contents, the visibility list specifies the interface through
which the elements of an object of the class may be accessed i.e., a list of variables and
operations that can be visible outside the class in similitude to public attributes and methods in
00.

An Inherited Class designator provides a reference to an existing Class schema whose definition
is imported for reuse in the current class in similitude to the concept of inheritance in OO.

A Local Definition may be a local type or constant definition (usually specified in an axiomatic
definition) or a reference to another class.

A class schema may have a maximum of one state schema, represented as State in the template,
which defines its state space through the declaration of state variables and invariants (if any).
The state schema in Object-Z is same as in Z except that it does not have a schema name; i.e., a
state schema in Object-Z assumes the name of the class schema that encapsulates it.
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This state schema may be followed by a specification of the initial state schema, simply referred
to as init, which specifies a set of predicates that must be satisfied by the state variables (declared
in the state schema) of every new object of the class before it undergoes any change of state.

__ OperationName
[A(Delta list))
[declNamey : decl Typey

declName,, : declType,,]
[input Variable,? : varType,

input Variable,,? : varType,,|
[output Variable,! : varType;y

output Variable,! : varTypey]

[precondition,

precondition,, |
[postecondition,

postcondition,, |

Figure 3.14Syntactic structure of Object-Z operation

The init schema may be followed by operation schemas, simply referred to as operations in
Object-Z, which use and/or manipulate the other elements of the class schema. Unlike Z
operation schemas, which explicitly declare the state schemas they operate on, an Object-Z
operation inherently has full access to all variables declared in the only state schema
encapsulated in the same class schema with it. This is premised on the understanding that in OO,
an operation has implicit access to all attributes declared in its class. An Object-Z operation,
however, declares an optional Delta list, preceded by the A symbol, which indicates the state
variables that will be modified when the operation is executed (see the first line in Figure 3.14).
An empty or absent delta list implies that the operation does not cause any change of state.

Finally, a class schema in Object-Z (Figure 3.13) may contain an optional set of Temporal
Logic-based history invariants, which may contain liveness properties that must be satisfied by
the operations of the class schema. The history invariants are specified below a dividing line that
separates them from other features of the class schema. Conceptually, the dividing line serves a
similar purpose as the dividing line of any Z schema: the same way predicates below the dividing
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line of a schema constrains the declarations above the line, history invariants in class schema
specify constraints on the set of derivable histories from the state and operations of a class
schema [Smi92]. At this point, we will defer further discussions on Temporal Logic and related
requirement properties until Section 3.2.6.

As an example of system specification with Object-Z, we present, Figure 3.15, the Object-Z
specification of the BVM. Intuitively, this is a variant of the Z-specification of the BVM, which
we discussed in Section 3.2.4.

The BVM class schema starts with local definitions consisting of the free type definitions COIN,
CUP and CODE as well as the axiomatic definition, all of which are as described previously in
the Z specification. This is followed by the state schema, which is same as that in the Z
specification except that it has no name. Following the state schema is the /nit schema that
specifies the system's initial state. The series of operations in the class schema are variants of the
respective operation schemas presented in the Z specification. As we have pointed out earlier,
there are mainly two differences between each of the operations and its corresponding operation
schema in Z:

= Unlike the explicit inclusion of the state schema in the latter, the former is considered to
have implicit access to all the declarations in the state schema of its class.

» The former declares a delta list, which indicates the variables (declared in the state
schema) that will be modified by the operation; thus, the "after-execution" values of only
the variables mentioned in the delta list are specified while others are considered to be
unchanged. The operations are followed by a series of schema compositions, using
schema calculus, which separately combine the internal state transition operations,
external state transition operations and confluent state transition operations as specified
previously in the Z specification of the system.
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__BVM
COIN ::=1cent | 2eent | Seent | 10eent | 20cent | S0cent | 1euro | 2euro
CUP ::= cocon | coffee | orange | apple

CODE :=1|2|3[4

o COIN — {1,2,5,10,20,50,100,200}; v : {1,2,3,4} — CUP

o : [COIN] — N; & : N = P[COIN]

v:leent = 1A v 2eend — 2 A v Seent = 3 A v Weent — 100 A
v eent — 20 A v S0cent — 50 A v Tewro — 100 A v : 2ewro — 200
prle=e0Ap:2=800p: 3= 1200 p:d=130Ap: 510
L= cocoa Ay 2 coffee Ay 3 = orange Ay d — apple
VO [COIN] e o(C) =Y ey,
Yin C)ekea(C)=n

raull, escrow : I{'f(}h"l."]; badC' . P COIN: eredil, price, current - PI

¢+ {idle, charge, dispense, cancel, return, reject }

v badC') & {10,20, 50,100,200} A
price € {'l]._ 80, 100, 120, 13{]} A eurrend € {ﬂhl._ 2 3.4, 5}
¢ = idle = credit = current = price = 0 A badC' = null A escrow = []
& = charge = current € {1,2,3,4} A price > 0 A evedit < price A badC = null
¢ = dispense = current € {1,2, 3,4} A price = 0 A eredit = price A badC = null
MAeserow = I]
dr = return = current € {l. 2.3, -1} Moprice = 0 A eredit = price A badC = null
M EsCTOW = I]
¢ = cancel = current =5 A credit < price

¢ = reject = current € {1,2,3,4} A badC # null

Ivir

i = idle
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_ charge2cancel Trans;,

Al current, ¢)

i ! !
¢ = charge A current’ =5 A ¢' = cancel

_cancel2idle Trans;,;

Al escrow, credit, price, badC', curent, )

0 = cancel A
escrow’ =[] A credit’ = 0 A price’ = 0 A badC" = null A current’ = 0 A @' = idle

_ reject 2eharge Trans,

Al badC, )

d = reject A badC' = wull A ¢ = charge

_ return2dispense Trans,
Alvault, ¢)

I 1 1 [ ]
d = return A vault’ = vault \ g{eredit — price) A & = dispense

_ dispense2idle Trans;,

Al escrow, credit, price, current, )

¢ = dispense A eserow’ =[] A eredit’ = 0 A price’ =0 A current’ = 0 A ¢ = idle

_wdle2charge Transeg

Al eredit, price, current, o)

code’ - CODE

¢ = idle A code? € {1,2,3,4} A
credit = 0 A price’ = pleode?) A current’ = code? A ¢ = charge

_ charge2charge Trans,

Al escrow, credit, o)

inC'?: COIN

¢ = charge A v(inC?) € {10,20,50,100,200} A credit + v(inC?) < price A
escrow’ = escrow U [inC?] A eredit’ = eredit + v(imC?) A ¢ = charge
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_ charge2dispense Trans .
Alvault, eserow, eredit, ¢)
(! COIN

¢ = charge A v(inC7) € {10,20,50,100,200} A eredit + v(inC7) = price A
vadt’ = vault U escrow U [inC?] A eserow’ =[] A credit’ = eredit + v(inC?) A

W dienanc
0 = dispense

_ charge2return Transqq
Alvault, eserow, eredit, ¢)
7 COIN

¢ = charge A v(inC7) € {10,20,50,100,200} A eredit + v(inC?) > price A
vault’ = vault U eserow U [inC7] A eserow’ =[] A credit’ = eredit + v(inC?) A

o
i = relurn

_ charge2reject Trans
AlbadC, ¢)
inC'?: COIN

¢ = charge A v(inC7) & {10,20,50,100,200} A badC" = inC? A ¢ = reject

_ charge2eancel Trans.;
Alcurrent, ¢)
code” : CODE

i L . f 4 o F
& = charge A code? = 5 A current” = code”? A = cancel

_ charge2dispense Trans
Alvault, escrow, eredil, ¢)
(" COIN

¢ = charge A v(inC7) € {10,20,50,100,200} A eredit + v(inC?) = price A
vaudt’ = vault U escrow U [inC] A eserow’ =[] A eredit’ = eredit + v(inC'?)

T TR,
¢ = dispense
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_ charge2returnTransens
Alvault, escrotw, credit, d)
inC7: COIN

¢ = charge A o(inC7) € {10,20,50,100,200} A credit + v(inC'7) > price A
vault” = vault U escrow U [inC7] A escrow” =[] A eredit’ = eredit + v(inC?) A

T
@ = refurn

_ charge2eancell Transgong

Aleserow, eredit, current, ¢)

i€ COIN

¢ = charge A o(inC?) € {10,20,50,100,200} A credit + v(inC'?) < price A
escrow’ = escrow U [inC?] A eredit’ = eredit + v(inC?) A current’ =5 7
¢ = cancel

— charge2eancel2 Trans o,
AlbadC, current, &)
inC'"?: COIN

¢ = charge A v(inC7) € {10,20,50,100, 200} badC" = inC? A current’ =5 A

o
& = cancel

_ BVMOutput

Af)

cup! . CUP
oulC!: [COIN]

¢ = dispense = cup! = ¢ current) A outC! =]

d = return = cup! = null A oulC! = k(eredit — price)

¢ = reject = cup! = null A oulC! = [had (]

o = cancel A (escrow # [ V badC # null) = eup! = null A oulC! = escrow U [had (]
O # dispense A ¢ # vefurn A ¢ # reject A

= (¢ = cancel A (eserow # [V badC # null)) = cup! = null A oulC! =]
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InternalTransition = charge2ecancel Trans;, V cancel2idle Trans;,; V
reject2charge Trans,, V' reject2dispense Trans;, V dispense2idle Trans,,,

BVMInternal Transition Event = BVMOutput A Infernal Transition

BVMEzternal TransitionEvent = idle2charge Trans., v charge2charge Trans,q V
charge2dispense Trans,,, V charge2returnTrans,,, V charge2reject Trans,
v charge2cancelTrans,

et

Confluent Transition = charge2dispense Trans,,,; V' charge2returnTrans ¢ V

MLk

charge2cancell Trans, oo V charge2cancel2 Trans, o

BVMConfluent TransitionEvent = BVMCOutput A Confluent Transition

Figure 3.15 Object-Z specification of the BYM
3.2.6 Temporal Logic

Temporal Logic (TL) is a general term used to describe the logical frameworks for representing
and reasoning about time and temporal information; it is used in Computer Science as a
formalism for the specification and verification of properties of the executions of computer
programs and systems [Lam83, Lam94, GGI15]. According to Lamport [Lam94], TL is
particularly designed for reasoning about algorithms by reasoning about the sequences of states
produced, due to changes in the values of one or more variables, when the algorithm is executed.
He considered that the execution of an algorithm could be described by the resulting sequence of
states; hence, the semantics of the algorithm can be obtained from a collection of all its possible
executions (sequences of states). The specification, and reasoning about, such collections of
possible executions is what he described as the "province" of TL.

In the context of a systems engineering, the sequence of states visited during execution, in fact,
describes the behavior of a system. Hence, we can as well claim that TL can be used for the
specification of, and reasoning with, the behavior of an ideal system. This behavior of the ideal
system can serve as the metamodel that specifies the required behavioral properties of the real
system. Therefore, with the help of verification techniques such as model checking [BKLOS,
CGP99], we can verify whether or not a given model of the real system satisfies the required
properties.

Temporal properties are classified into three broad categories [Lam77]: safety property, liveness
property and fairness property. A safety property states that an undesirable event should not
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happen. i.e., the system should never be in a specified state. A liveness property specifies that an
event must occur. i.e., the system must eventually be in a particular state.

As formalisms, TLs extend predicate logic with operators for describing temporal or time-
dependent concepts to specify predicates on the sequences of states representing the evolutions
of system's states over time [Smi92]. It must be noted, however, that though TLs allow for the
specification of relative orders of events or states, they do not refer to the precise or exact timing
of such events/states [BLKOS]; that is, the concept of time in TL is logical rather than physical.

Based on whether the underlying nature of time is linear or branching, TL is classified into two
categories [BLKOS]: Linear Temporal Logic and Computation Tree Logic.

3.2.6.1 Linear Temporal Logic

The Linear Temporal Logic (LTL) [Pnu77] is based on a linear, description of time; it describes
the behavior of a system as an infinite sequence of states. The qualitative notion of time in LTL
is path-based, and it is considered to be linear because at every time instant, the system has only
one possible successor state; hence it can be said that every time instant has a unique future
[BLKOS]. Therefore, LTL describes the semantics of a system's behavior as an infinite sequence
of states.

Table 3.3 Temporal operators in LTL

p, and g and are specific properties usually defined by predicates on system's state
variables.¢ is an arbitrary property, which may include the specific property of interest,
or not. In each case of the illustrations, we take the first state in the sequence of states as
"now" or the state of interest while subsequence states are successors of the previous.

Temporal Symbols Meanings Illustrations
operators
At some point(s) in the - r
Eventually| ¢ |gure point(s) Op —p. ’—P. ;.p y = @ ;ﬁ_};...
Alwavs 5 Now and forever in the 5 P P P p p
Y future 7| @—@—@ ' H@—@>"
-7 B
Next @ Next state/event op _3_,%_,
From now until a gA=D qA=D qA=D P $A-g
Until U specified state or event|gUp . !. ,. N ,. 3. oo
occurs in the future
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Properties are specified in LTL as formulae consisting of atomic propositions, logical
connectives (e.g., =7, A,V, =) and temporal operators. A proposition is an assertion about the
values of the system's variables. Temporal operators include eventually, always, next, and until;
they are described in Table 3.3.

As shown in Table 3.3above, the temporal operators can be described as follows:

Eventually (0) operator: The eventually operator, O, is used to specify a property that must be
satisfied at some time in the future of a given moment, which serves as the starting point for the
search. As the example in Table 3.3 illustrates, starting from the first state in the sequence, Op
specifies that property p must hold at least once in the future. i.e., there exists a state in the future
in which p holds; once one of such states is found, it is immaterial whether p holds subsequently
or not.

Always (O) operator: The always operator, 0O, is used to specify an invariant property; a property
that must hold at the moment of observation and continuously in the future. The example, op, in
Table 3.3 specifies that property p must hold now and forever.

Next (o) operator: The next operator,o, specifies a property that must hold in the successor state
of the state of interest. It does not matter whether it continues to hold afterwards or not. We
illustrate with an example, in Table 3.3, where op specifies that property p does not hold in the
state at which observation starts but must hold in the successor state.

Until (U) operator: The until operator, U, operator takes two properties as arguments and
specifies that the property on the lhs (left-hand side) must a/ways hold until the time when the
property on the rhs (right-hand side) will hold. In Table 3.3, gUp illustrates that property g will

continue to hold, while p does not, until the moment when property p eventually holds. From this
moment onward, ¢ must not hold any more.

The temporal operators described above may be combined to specify complex properties. For
instance, 00p may be read as "property p should always eventually hold" or "property p should
hold infinitely often". i.e., at any moment, it should be the case that p will eventually hold in the
future. In other words, it states that p should hold "continually". Similarly, the combination ¢op
specifies that "property p will eventually hold forever". i.e., there is a time in the future from
which p should hold "continuously".

The statement that a property p is holds in a state s is written mathematically as s = p. The
semantics of this in LTL is that all computations originating from state s must satisfy p. This is,
in fact, the basis for the path-based description in LTL which postulates that every state of a
system has a unique successor during execution. This, however, amounts to a restriction of a
system's behavior to a single path of execution, which may not necessarily be true in all cases.
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This Computation Tree Logic, an extension of LTL which is presented in the next sub
subsection, has addressed this challenge.

3.2.6.2 Computation Tree Logic

The Computation Tree Logic (CTL) [CES86], also known as branching temporal logic
[BLKOS], extends the LTL with a branching notion of time which postulates that every moment
of time, may have more than one possible future. i.e., a state of a system may have many
possible successor states; this is, in fact, inherent in the behavior of a discrete event system. In
this case, every possible future of a given moment marks the beginning of a path. Therefore,
CTL describes a system's behavior as an infinite tree of states; starting from the root of the tree,
there are possibly multiple paths to be followed from every inner node visited.

In addition to the logical and temporal operators used in LTL, CTL supports the use of the
existential path quantifierd (resp. universal path quantifier¥) for the specification of properties
that must be satisfied by some (resp. all) computations starting in a state of interest. We describe
the application of existential path quantifiers in CTL with illustrations in Table 3.4 and universal
path quantifier in Table 3.5. We invite the reader to consult some of the numerous textbooks on
TL for further details and applications of the formalism.

Table 3.4 Existential path quantifier/ ""some' branching operator (3) in CTL
p and ¢ are specific propositional predicates on the system variables. ¢ is an arbitrary
propositional predicate, which may include p or ¢ unless otherwise stated.

In each example, the root of the tree presented is considered the state of interest.

Examples Meanings Sample Computation Trees

This requires that Op holds in some paths of]
executions starting from the state of interest.

We present a sample computation tree
30p showing three paths of execution in which the
property holds; traversing the tree through the
left branch from the root shows a path while|
two more paths can be found through the|”
middle branch
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do—p

This specifies that o—p must hold in some paths
of computation starting from the state of]
interest.

In the sample computation tree, starting from
the root node, four paths of execution satisfy
the requirement; one each through the left and
middle branches and two through the right
branch.

dop

A specification that op should hold in some paths
of execution starting from the state of interest.

We present a sample computation tree in which
the property holds in the execution paths that

node.

follow the left and middle branches from the root| -

3qUp

This requires that the property ¢gUp holds in some
paths of execution starting from the state of]
interest.

Taking the root node as the state of interest in the
computation tree in the next cell, the requirement

branch of the tree.

will be satisfied when traversing through the left| """

Table 3.5 Universal path quantifier/ "all" branching operator (V) in CTL

p and ¢ are specific propositional predicates on the system variables. ¢ is an arbitrary
propositional predicate, which may include p or ¢ unless otherwise stated.

In each example, the root of the tree presented is considered the state of interest

Examples

Meanings

Sample Computation Trees

VOop

This requires that Op holds in all paths of]
executions starting from the state of interest.

As illustrated in the sample computation tree,

irrespective of the path of traversing the tree, we

eventually arrive at a node (state) where p holds.
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This specifies that o—p must hold in a// paths of]
computation starting from the state of interest.

VO™p |In the sample computation tree, starting from
the root node, all paths traversing the tree|
satisfy the requirement. '

A specification that op should hold in all paths of]
execution starting from the state of interest.

Vop |The sample computation tree presented illustrates
that the property must hold in all branches starting
from the node (state) of interest.

The property gUp must hold in all paths of]
execution starting from the state of interest.

VgUp |We illustrate this with the computation tree in the
next cell; irrespective of the path followed in
traversing the tree from the root node, the property| -**
should hold.

3.2.6.3 Property patterns in TL

There exist tools, such as NuSMV [CCG+99, CCG+00], NuSMV2 [CCG+02], TSMV [MS04],
SPIN [Hol97],TLAPS[CDL+10, CDL+12], and TaLiRo [FP0O8, ALF+11, FSU+12]to automate
the rigorous verification of temporal properties of systems such that the user does not necessarily
need to have the knowledge of the internal mechanism of the tools. The user needs, however, to
be able to specify, correctly, the properties to be verified in the specification formalism
supported by the chosen verification tool; one of such formalisms is the TL, which we have just
introduced. It is a common knowledge that dealing with such formalism is usually non-trivial; it
takes some level of expertise in handling the idioms of logic and discrete mathematics to
correctly read and/or write complex requirement properties. Lack of this expertise has been
widely acknowledged by FM researchers as one of the main inhibitors to the wide adoption of
formal verification tools, and as a consequent, challenging the translation of research outputs in
FM into practice.

In an effort to proffer a solution to this problem, Dwyer, Avrunin and Corbett [DAC98, DAC99]
hypothesized that the experience base of experts in specification formalisms could be captured in
parameterized patterns in formalism-independent formats to allow for systematic mapping to
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equivalent representations in some known specification formalism. They argued that this could
be an easy way to transfer the experiences of experts in the domain to emerging practitioners and
potential users.

Dwyer et al. were inspired by the successes that had been recorded with the use of design
patterns to provide guidance on the best ways to language features to solve recurring problems
by documenting tested solutions to such problems in patterns that can be easily reused to solve
similar problems. With this they envisioned the success of a pattern-based approach to formal
specification of properties of finite state systems for verification. The output of their research
was the recognition of some commonly occurring requirement property patterns from a
collection of over five hundred property specifications they collected about thirty-five sources
comprising academia and industry. Based on their findings, Dwyer et al. proposed parameterized
templates for the recognized property patterns in five property specification formalisms: LTL,
CTL, QRE (Quantified Regular Expression) [DC94], GIL (Graphical Interval Logic) [Mel88]and
INCA queries [CA95]. Some other researchers have later reproduced the templates in Action
CTL (ACTL) [Fer94] and pu-calculus [Koz83] while the patterns are gaining popularity among

FM practitioners.
PROPERTY - eete
PATTERMNS sEleE s

| |
| | | |
Ococurrence Order

Patterns Patterns — Globally
— Absence —Precedence | Before C
~|Universalit~f —{ Response — After Qo

Exist Chain | | Between
| ristence T |Precedence CQand R
| | Bounded || | Chain | | AfterQ

Existence Response until R

Figure3.16 Temporal property specification patterns [DAC98, DAC98]

Q and R are parameters representing some temporal locations in the trace of a system.
Figure3.16 presents the patterns of temporal property specification (on the left) due to Dwyer et
al. and the possible scopes (on the right) of such patterns in execution of a system. The
satisfaction or otherwise of the property specified with any of the pattern is checked within the
specified scope. "Globally" scope, as the name implies, specifies that a property should hold
throughout the execution. "Before Q" (resp. "After Q") scope specifies that a given property
must hold before (resp. after) the occurrence of a specified state/event Q. "Between Q and R"
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implies that a given property must hold after the occurrence of state/event Q and before R where
it is certain that R will eventually occur. "After Q until R" has a similar implication with
"Between Q and R" except that, in the former, it is not certain whether R will occur or not.

The property patterns (see left of Figure3.16) are classified into two categories: occurrence and
order to describe properties on the occurrences or non-occurrence of states/events and relative
order of states/events respectively within the segment of execution defined by the associated
scopes.Table 3.6 presents brief descriptions of the intents of the different patterns.

Table 3.6 Intents of the temporal property patterns of Dwyer et al

Pattern o
Pattern Description
category
It specifies states or events that must never occur within the specified
Absence
» scope
£
5
£ . .| It specifies states or events that must continuously occur within the
s Universality .
3 specified scope
9
£ . .
o . It specifies states or events that must eventually occur (i.e., at least
= Existence o )
5 once) within the specified scope
|2
© Bounded | It specifies the maximum possible number of occurrences of certain
existence | states or events within the specified scope
It specifies a cause and effect relationship between two states or
Precedence | events such that the occurrence of one must always have been
preceded by the occurrence of the other within the specified scope
4 It specifies a stimulus and response relationship between two states
B
1] Response | or events such that the occurrence of one must always eventually be
g followed by the occurrence of the other within the specified scope
B
-qé Chain It specifies a variant of the precedence pattern with m-cause to n-
o precedence | effect where m,n € N; e.g., 1-cause to 2-effects, 2-cause to 1-effect.
Chain It specifies a variant of the response pattern with m-stimulus to n-
response | response where m,n € N; e.g., 1-stimulust to 2-response, 2-stimulus
p to 1-response.
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Dwyer et al. have provided the templates, based on seven property specification formalisms, for
the property patterns on the project's website”; for the purpose of our discussion in this thesis, we
only the equivalent LTL and CTL formulae or templates for the occurrence and order patterns in
Table 3.7 and Table 3.8respectively.

For each template pattern, variables p, ¢, r, s and ¢ are parameters to be replaced with user-
defined predicates on the system variables when instantiated. Each formula can be matched to a
domain problem by combining the syntax of the property pattern (see first column of each table)
with an appropriate scope pattern (in second column). For instance, the LTL formula for the
absence property "p is false globally"” is o(—p)and the CTL formula for existence property "p
becomes true between q and r" is Yo(gN\—r= Y[—rw ( pA—r)]).

Table 3.7 LTL and CTL templates for occurrence property patterns

QOccurrence Property Patterns
Patterns | Scopes LTL Specifications CTL Specifications
Globally o(—p) Yo(—p)
Before r Or=(pUr) V[ (—pvVa(—r))w r]*°
Ab
SENCC | After q a( g=0o(—p)) Yo (gq= Vo(p))
Syntax:
pis false qu;lvgin a((gA-rn0r) =(—pU ) Vo(gA—r= ¥ [(—pv Vo) wr])
After ¢q
until a(( gh—r) =(—pw r)) Vo(gh—r= VY [pwr])
Existence | Globally Op vOp
Syntax: | Before 1 —rW ( pATT) V[—rw ( pA—r)]
p becomes
true After g a(—q) vO( gAOp)) YV [—~gW (gAVO(p))]

*http://patterns.projects.cs.ksu.edu/documentation/patterns.shtml, last accessed August 23, 2016

"% is the weak until operator which may be related to until, U, operator using any of the following equivalences:

pWq = (op) V (pUg) or pWg = 0(—p) = (p Ug) or pWg =p U (¢ Vop)
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Between

a(gA—r= (—rw ( pA—T)))

Ya(gh—r= V[—rw ( pA—r)])

g and r
After
until :‘] o( ga-r= (U (pa—n)) vo( ga—r= Y[—rU (pA—r)])
=30(—pA Fo( pA IO(—pA To( pA
Globally | (=pw (pw (-pW (pWop)))) (pA3o(pAI0(-pAaIo(p

A0(mpA3o(p))

Or= ((—pA—r) U (rv(( pA—r) U(

—3[—rU (—pA—rAJo( pAE [—rU

Before r pv((=pA=r) U (rv ((pA=r) UCY| (=pA—rA 3o pA 3[rU (mpA—rA To(
Bounded pU M) pAr)DD)]
Existence
Syntax: | After g 0g= (—qU (gA(—pWw (pw (mpW|  —3[~qU ( gA 30(—pA Fo( pA FO(—
(pw op)))) pA3o(pAIO(=pATo(p)))))]
p-states
oot ((gn0r) = (pAr) U (v (| Yo( g=-3[~U (pa-raEo( paa[~+
Z | Between
times'' g and r PAPUV((EpA—r) UGV (C | (—pA—rA Fo(pA 3[—rU (- pa—rA To(
pAr) UGy (=pUn)))))))) pArA 3D
Aft 0(g= ((pA—r) U (rv(( vo( g=—3[~rU (—pA—rA To( pfI[—rU
i | pAmIUEV(EpA) U 0V (| (pamra 3o( paa[rU (= pa-ra 3o
pf=r) U(rv(=pwr) wop)))))))) AN
Globally ap vo(p)
Before Or=( pUr) VY[(pv Va(—r)) wr]
Universality  fier ¢ o( g=0() vo( g= Yo( p))
Syntax:
pis true %}eggern o(( gn=radr) =( pUr)) vo( gar= V[(pv Vo) wr)
ﬁfg{f 0( gA-r= (pwr)) vo( gA-r= V[ pwr])

1
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Table 3.8 LTL and CTL templates for order property patterns

Order Property Patterns

Patterns | Scopes LTL Specifications CTL Specifications
Globally —pWs V[—pws]
Before Or=(—pU(svr)) V[(—pVv VO(—7)) W (svr)]
Precedence
After ¢ 0mgv(qf (TpWws)) V[~qw (gA V[~pWws])]
Syntax:
s precedes p Bemer“ U a((gn —~ra0r) = (—pU(svr)))  |Ya(ga—r= Y[(=pv Yo(—r) W (sv r)])
After g
until a(gA —r= (—pWw (sVvr))) Vo(gh—r= Y[—pWw (svr)])
Globally a(p=90s) Vo(p= VO(s))
Before Or=(p= (—rU (sA —r)) Ur | V[((p= V[1U(sA —7)]) v VO(—r))wr]
Response
After g 0 (g=0 (p=0s) ) V[—~gWw (gAVYo( p= VO( s))]
Syntax:
s responds |Between ¢ | O(( gA—rAOr) = (p= (—rU (sA | Yo(gA —r= Y[((p= V[~rU (sA 7r)])
top and r 1)) Ur) v vo(—r)) wr)
After g a( gA —r= ((p= (—rU (sA Vo( gn —r= V[(p= V[~ rU(sA
until 7 —r))) Wr) —r)hwr])
Globally (O(sn00T)) = ((—s) Up)) —3[—pU (sA— pA To(30(7)))]
Before r Or= ((=(sA(—r) Ao(—rU (!N |=3[(—pA —r) U (sA = pA —rA Fo(3[rU
Precedence —r)) U (rvp)) (tn=r)])]
chain
Syntax: | Afier g (@9) v ((7¢) U (gA((O(sAo91)) —3[~qU (gA I[~pU (sA — pA
= ((s)Up))) 3030
p precedes
S, 1 Between ¢ | O((gAOr) = ((7(sA(r) Ao(—rU | Vo(g= —3[(—pA ) U (SA —pA —rA
and (tn =) (rvp))) o3[V (A —rA30()D)D
After ¢ a(g= (—(sA (—r) Ao(—rU (A Vo(g= —3[(—pA —r) U(SA —pA
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until »

—))) U(rvp) vo(—(sAo02))))

—rA Jo(3[—rU (A —1r)])])

—3[—sUp] A ~3[—pU (sA —pA Jo(F[—U

Globally | Op= (—pU(sA —pAo(— pUr))) oA -D])]
o= (—pU (v (sA —3A[(=sA—r) U (pA —r)] A-3[(—pA 1)
Before r ~pro(=pUn)) U (sA —pA —rA 3 ﬁo(EI[(—'t/\ —) U (pA—IA
)]
Precedence
chain After ¢ (o—q) V (—qU(gA0p= (—pU (sA | ~3[—qU(gA F[~sUp] A I[—pU(sA —pA
Syntax: —pAo(TpUn))) o3[~ (pA —OD)D]
S, t
’ ~ Vo(g= —3[(—sA —r)U(pA—rA 30(r))]
precedes p Be‘;vr\:(eiern 1 D((qi\Or) :: (Ufu A—I[(—pA—U(SA—pA —rA Jo(F[(—tA—
(s pneCrinn) AU(EA~ i~ ra 0D
After ¢ (g= (Op= (=pU (v (sA Vo(g= —3[(—sA —r)U(pA —7r)] A
until —pAo(pUn))) —3[(=pA —r) U (SA —=pA —rA
Jo(3[(—tA—r) U (pA—tA —1)]))])
Globally 0(p=>0(sAo0r)) Vo(p= VO(sA Vo(VO(7))))
Before r Or= (p= (—rU(sA —3[—rU (pA —rA (A[sU ] VI[—rU (sA
—rao(—rUr)))) Ur —rA3o(3[~Ur])D)]
Response —ar— -
chain After ¢ 0(g=0(p= (sA007))) A[~qVU (gA 30( pA(FD(7s) Vv
Syntax: 30(sAFo(Fo(nN)N)]
s, t respond Between ¢ a((gn0r) = (p= (—rU (sA Vo(g= —3[~rU (pA —rA (3[—sUr] v
top and r —rAo(—rUr)))) Ur) A[—rU (sA—rA Fo(F[~Ur])]))])
Aft a(g= (p= (—rU (sA Vo(g = —3[—rU (pA—rA3[—sUr] v
il Ao U (Va(p=  [Bo(sar) v 3 (sA-rA 3o(3[1Ur]
(sA001)))) v oA~
Response Globally O(sA00t=0(0(tA0p))) ~30( sA 30(30( 1A 30(— p))))
Scyl:::;: Before r Or= (sno(— rUt) =o(—rU —3[—rU (sA—rA Fo [~ rU(IA —7rA

(tAOp))) Ur

A[pUrhD)]
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p responds

~ —3[~qU(gA 30( sA
s,z | Afterg | n(g=0(sro0r=0(-U(IA0P)))) 30(30(tA30(p)))))]
Between ¢ a((gAOr) = (sAo(—rUr) Vo(g= —3[~rU (sA—rAJo(3[~ U
and r =o(—rU(tA0p))) Ur) (An—rA 3[—pUrD)])

a(g=(sAo(—rUr) =o(—rU (1A
Op))) U (rvo(sao(—rU £)
=o(7rU (1A0p)))))

Vo(g= —3[~rU (sA —rATo(3[—rU
(tn—rn 3[~pUr] vAo(pA—r)) )]

After g
until »

3.2.6.4 Specification of the BVM's design requirements based on the TL property patterns

We present in this subs-subsection the specification of the required properties of the BVM,
which were stated in the synopsis of our running example in Section 3.2.1.We will reuse the
system variables declared in the Z specification (see Section 3.2.4) to specify the requirement
properties. The variables are vault, escrow, credit, badC, price, current and ¢.

The required properties were stated in natural language as follows:

1.  BVM must not dispense unless enough coins are inserted to pay for the selected drink

We can rephrase this property to match the "precedence chain" property pattern as:

The selection of a drink, and acquisition of sufficient coins always precede the dispense of
selected drink.

This statement matches with the property pattern s, ¢, precede p globally" where:

s = "a drink is selected", ¢ = "sufficient coins have been acquired" and p = "selected drink is
dispensed". From the Z and DEVS specifications of BVM, we know that current € {1, 2, 3,4}
when a drink has been ordered. credit > price when sufficient coins have been cumulated for a
transaction and ¢ = dispense must be true for BVM to deliver a drink to the user. For ¢p =
dispense to be true, predicate (current € {1, 2, 3,4} A price > 0 A credit = price) must hold.
The parameterized LTL template of the pattern is given in Table 3.8 is:

Op= (=pU (sA —pAo(— pUr)))

By substituting current € {1, 2, 3,4} for s, credit = price for ¢t and current € {1,2,3,4} A
price > 0 A credit = price for p, the LTL specification of the property is:

O(current € {1, 2,3,4} Aprice > 0 A credit = price) =(—(current € {1,2,3,4} A price >
0 A credit = price)U (current € {1,2,3,4} A ~(current € {1,2,3,4} Aprice > 0 A
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credit = price) No(—(current € {1, 2,3,4} Aprice > 0 A credit = price)Ucredit >
price)))

1.  BVM should always refund the balance whenever excess coins are inserted, i.e., when
the amount inserted is greater than the price of the selected drink.

We rephrase this requirement to match the response pattern as:
Refund balance responds to excess payments always

This statement matches with the pattern "s responds to p globally" where s = "refund balance
occurs" and p = "excess coins have been inserted".

We know that excess coins have been inserted when credit > price and refund of balance of
transaction has occurred when credit reduces to the value of price, i.e., credit = price. The
LTL and CTL templates for the pattern are o(p= 0Os) and Vo(p= V0(s)) respectively. By
substituting credit > price for p and credit = price for s, the LTL specification for this
property is:

o( credit > price = O credit = price).
And the CTL specification will be:
Vo( credit > price = VO( credit = price))).

III.  Once the payment for a drink is complete, the transaction cannot be canceled any
longer

We can rephrase this property to match with the absence property pattern as follows:

Transaction is canceled is not allowed after sufficient coins have been acquired for the
transaction.

This matches with the occurrence pattern p is false after g with p = "transaction is canceled" and
q = "sufficient coins have been acquired for the transaction".

Using the system variables, we know that transaction is canceled when current = 5 and sufficient
coins have been acquired when credit > price. The LTL and CTL templates for the pattern are
o( g=0o(—p)) and Vo( ¢ = Vo (—p)) respectively. Substituting current = 5 for p and credit >
price for g, we have the LTL specification of the property as:

O(credit = price =o(—(current = 5)))
And the CTL specification is:

Vo(credit = price = Vo (—(current = 5)))
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3.3 MODEL-DRIVEN ENGINEERING

Model-Driven Engineering (MDE) [Ken02, AKO03, Fav04, Béz04, Béz06, Sch06, FRO7] is a
modern Software Engineering approach that promotes the creation of abstract models of software
systems and systematically transform them to concrete implementations. MDE approaches
consider every artifact of software development as a model in similitude to the way everything is
considered an object in Object-Oriented approaches.

The overall goal of MDE is to bridge the wide conceptual gaps between problem and
implementation domains using technologies that support automated transformations of problem-
level abstractions to software implementations to avoid the accidental complexities that often
characterize the manual direct coding of problems [FR0O7]. Therefore, the vision of the MDE
initiative is an ideal world of software engineering in which high-level models can be used, at
different phases, to communicate and understand problems, validate design assumptions, verify
the satisfaction of design requirements, document software architectures and ultimately, to drive
the successive automated synthesis of software artifacts until executable program codes are
obtained.

Empirical evidences from surveys conducted by different researchers over the last decade
[WWO06, MD08, BC10, HWR+11, Sel12, WHR14] suggest that though the adoption of MDE for
software engineering processes is not without some challenges, the success stories far outweigh
the failures. Some of the potential benefits identified are reduced development time and cost,
improved software quality, increased productivity of the development team, and portability of
models between solution platforms, improved communication among stakeholders and within
development teams.

3.3.1 Model-Driven Architecture

Model-Driven Architecture (MDA™) [KWBO03, Mel04, Tru06] is the Object Management
Group (OMG)'s framework and standard for the realization of the MDE initiatives. MDA
proposes a three-layered architectural framework with standards and technologies to model
software from a given conceptual viewpoint with each layer modeling specific concerns of the
viewpoint. Recall that we have previously described a viewpoint as a mechanism comprising a
domain, language, specifications and methodology to capture and process certain software and
systems engineering concern(s) about a system, the information associated with such concern(s)
and their relationships [FKN+92, KW07].

Though the author considers that related concerns of many viewpoints may be mapped to the
abstract description of MDA's architectural layers, the prominent viewpoint in the literature of
MDA is the "abstraction level" of software systems, a modeling technique for focusing on some

80



specific concerns about a system while suppressing all irrelevant detail [Tru06]. In MDA, this
viewpoint is usually used to capture three concerns:

a. System's context and requirements
b. System's structure and operational capabilities
c. Details of execution platforms.

These concerns are addressed in separate layers (abstraction layers) of the three-layered MDA
framework. They are computation-independent layer (CIL) which is concerned with a system's
context and requirements without structural or processing details, platform-independent layer
(PIL) which is concerned with system's operational capabilities and platform-specific layer
(PSL) which is concerned with specific execution platforms in addition to a system's operational
capabilities.

An execution platform or simply platform can be described as the specification of an execution
environment for a set of models [Mel04]. It is a collection of subsystems or frameworks and
technologies that provide a coherent set of functionality through interfaces and usage patterns
that clients can use without having any knowledge of their implementation details
[Tru06].Examples of platforms are middleware solutions like CORBA, J2EE, Microsoft .NET,
operating systems, databases, programming languages like Java, C++, C#, Python, etc.
Therefore, platform-independence as applied in the context of MDA is a measure of the degree
of the separation of a viewpoint's concern from the features of a platform. Based on this
viewpoint, MDA proposes three categories of models:

a. Computational-Independent Model (CIM) is the model of a software system at the CIL. It
is also referred to as domain model as it encourages the use of domain vocabularies,
which the practitioners are accustomed, for system specifications [Est07].

b. Platform-Independent Model (PIM) is the model at the PIL. A PIM describes system
features that are not likely to change from one platform to another [FRO7]. i.e., it exhibits

as much degree of platform independence as to allow its use with one or more platforms
[Tru06, Est07].

c. Platform-Specific Model (PSM) is the model at the PSL. Essentially, a PSM is a
combination of a PIM with the necessary details of a platform, usually referred to as
Platform Description Model (PDM).

Through this viewpoint, MDA approaches enable modelers to separate essential business
concerns from the details of implementation platforms; thereby enhancing efficient solution
designs, increased productivity and reduced development time, portability, interoperability and
reusability. The bedrocks of MDA are the OMG's standards like the Meta-Object Facility (MOF)
[OMGO04], which is a subset of the Unified Modeling Language (UML) for specifying the
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abstract syntax of modeling languages, the UML and model transformation standards and
technologies.

3.3.2 Other MDE initiatives

In addition to MDA, there are other industrial standards for the implementation of the MDE
initiative such the Microsoft Software Factories [GS03, GS04, War(07] and Model-Integrated
Computing (MIC) [SK97, Spr04]. While MDA promotes the use of MOF-based languages as a
general-purpose modeling language to define models, other implementations of MDE are
inclined towards the specification of some domain-specific languages (DSL) [KT08, KT08] to
efficiently model the concepts of some considerably narrow domains based on the vocabularies
of such domains. Proponents of domain-specific modeling (DSM) argue that DSLs are more
efficient than the standard UML in that they allow for further abstraction away from technologies
and work at higher levels. Moreover, the possibility of modeling with original domain
vocabulary that non-experienced users are already accustomed to offer an added advantage.

(Meta) modeling and transformations between models are the most significant concepts in the
MDE paradigm; we present next some backgrounds on these concepts.

3.3.3 (Meta)Modeling
3.3.3.1 Modeling

Several definitions and description of model have been proposed in the literature of software and
systems engineering, each highlighting some significant properties and uses of models. The
author does not intend to add to the plethora of definitions; rather excerpts of a few descriptions
will be considered to explain the context and use of models in this thesis.

According to Seidewitz [Sei03], a model is a set of statements about some system under study
(SUS). A model is considered to be a valid representation of an SUS if all the statements in the
model are true for the SUS. A model is created to be analyzed as a way of reasoning about the
SUS.

Zeigler and colleagues [ZPKO00] provide two definitions of a model: 1) as a set of instructions,
rules, equations, or constraints for generating input and output behaviors of a system, and 2) as
any physical, mathematical, or logical representation of a system, entity, phenomenon, or
process. In a similar description by Selic [Sel03], a model may be developed as a foundation to
implement a physical system; it may also be derived from an existing system or a system in
development to study its behavior. He noted that the ultimate goal of engineering models is to
reduce risk by facilitating better understanding of both a complex problem and its potential
solutions before undertaking the expenses and effort of a full implementation.
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France and Rumpe [FRO7] describe a model as an abstraction of some aspect of a system to
serve some particular purposes where the system being described may or may not exist at the
time the model is created. The purpose of a model could be, inter alia, to present a human
understandable description of a system or to present information in a form that can be
mechanically analyzed.

In a paper of Bézivin and Gerbé [BGO1], a model is a simplification of a system built with an
intended goal in mind. The model should be able to answer questions in place of the actual
system. Bézivin [Béz05] describes the act of modeling as the cost-effective use of something that
is simpler, safer or cheaper than reality in place of reality for some cognitive purpose. This way,
model presents an abstraction of reality as it cannot represent all aspects of reality, thereby
paving the way for dealing with the world in a simplified manner, avoiding the complexity,
danger and irreversibility of reality.

According to Brown [Bro04], a model provides abstractions of a physical system that allow
engineers to reason about that system by ignoring extraneous details while focusing on the
relevant ones. He noted that models are essential to understand complex real world systems in all
forms of engineering. He identified some possible uses of models, which include predicting
system qualities, reasoning about specific properties when aspects of the system are changed,
and communicating key system characteristics to its various stakeholders.

In a similar account, Kithne [Kiih06] defines a model as an abstraction of a (real or language
based) system allowing predictions or inferences to be made.

Lastly, according to Truyen [Tru06], a model is a formal specification of the function, structure
and behavior of a system within a given context, and from a specific point of view (or reference
point). In this case, a "formal specification" is one that is written in a language which is based on
a well-defined syntax and that has a precise semantic meaning associated with each of its
constructs.

There are some salient features (non-exhaustive) of a model that can be derived from these
definitions:

It is a simplified representation of some aspects of a system, i.e., it abstracts away from details
that are not relevant for the purpose of the model.

It serves to document and communicate a system with relevant stakeholders and development
teams. Hence, a model should adequately capture the concerns of the relevant stakeholders. This
also brings forward the need for the model to be written in a language whose syntax is
comprehensible to all relevant stakeholders.

It can serve as a design to prescribe the blueprint for a to-be system. Thus, the language in which
the model is written should be expressive enough to capture the stakeholders' concerns.
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It has some precise meaning, and hence amenable to manipulation by machine

It is created for a purpose defined by its context; in fact, a correct interpretation of a model is
done with respect to its purpose [KWO07]

It provides answers to some ingenious questions (through some forms of analysis) which will
ordinarily be difficult to answer by intuition
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Figure 3.17Model as an abstract representation of a system for a purpose

Each of the three maps is a model representing the entity in the north-east of the

figure for specific purposes. The model in the north-west represents the division of

the country into 36 administrative units and a central administrative capital; the

model in the south-west represents the vegetation in different parts of the country

while the model in the south-east represents the locations of major rivers, lakes parks

and games reserves.
A complex system may be represented by multiple models serving to answer questions about
different aspects of the system. For instance, the north-east region of Figure 3.17 shows an image
of the landmass of the country Nigeria. The map on the north-west is a model of the country,
which presents the distribution of the landmass into thirty-six independent administrative states
and a central administrative capital and abstracts away from all other details about the country.
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This model may be useful in providing answers to some complex social-political questions about
the country. The map on the south-east region of the figure is a model of the country that
presents the major rivers, lakes, parks and games reserves in the country while excluding all
other details about the country. This model may be useful to study aspects of the country such as
tourist activities, surface water-related activities, etc. Finally, the map in the south-west region of
Figure 3.17 is a model that presents the diversity of vegetation of the country. This model may
be useful for some agricultural and ecological studies. Several models of like these can be
created to study other aspects of the country, e.g., population distribution, locations of mineral
resources, industries, institutions, etc. and answering some intricate questions may require the
combined analysis of two or more of the models. These different models explain the concept of
abstraction in modeling, which is guided by the objective of the model being constructed.

3.3.3.2 Metamodeling

We have described a model in the previous section. Models are written in some modeling
languages and the language elements (modeling concepts) used in expressing models are
described in meta-models. In other words, a meta-model is a model of a modeling language
[BJV04, Fav05a]. One of the core tasks in building modeling tools is the modeling of the
structure and well-formedness rules of the languages in which the models are expressed; such
models are called meta-models [Fav04]. A meta-model defines the kinds of elements that can
possibly be contained in a class of models (written in a language) and the valid ways they are
related to one another [BJV04]. In other words, a meta-model defines the syntax rules of a
language; a model written in that language is considered valid only if it respects these syntax
rules. Therefore relationship between a model M and the meta-model MM that defines the syntax
rules of the language in which M is written is referred to as conformance relation [Fav05a]. In
effect, when we say that M conforms to MM, it implies that M respects the syntax rules and
constraints specified in MM.

Meta-models play a central role in MDE; so they must be precisely defined to ensure the entire
MDE process yields the desired result. In addition to being a prerequisite for performing
automated model transformations [Fav04], a precise meta-model is instrumental to ascertaining
the validity of a model with respect to the domain of the system it represents.

Being a model itself (i.e., a model of a modeling language), a meta-model also must conform to a
meta-meta-model which models the syntax rules of the language in which the meta-model is
written. Intuitively, it can be assumed that this hierarchical model relation, referred to as the
"metaization" [GA09] will likely extend infinitely, there is, however, a general understanding
that in practice, the relation is always "reflexive" at the meta-meta-model level. i.e., the meta-
meta-model specifies the language in which it is written, and hence becomes the meta-model of
its own self. Therefore, "meta-meta-model conforms to itself".
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Figure 3.18Metaization viewpoint

Figure 3.18 presents this metaization phenomenon in a four-level architectural framework
originally defined by the OMG and sometimes referred to as MDA four-level modeling stack
[KBAO2]. The model-reality boundary line divides the architecture into two spaces: the reality
space and the modeling space below and above the boundary line respectively. The two spaces
are linked by the "is a representation of" relation from M; level to My level. The actual (meta-)
modeling activities take place in the modeling space while the My level, in the reality space,
contains the system under study. Kiihne [Kiith06] has provided a formal explanation of the
subscripts (0-3) associated with the four levels of the architecture; he related each metaization
level to the number of time modeling activities could be "hierarchically" associated with it. In
effect, no modeling activity occurs at My level since it only contains the system under study
(SUS) to be modeled. M, level has one associated modeling activity - modeling the SUS. M,
models the language with which to perform the task at M;. Similarly, M3 models the language
that allows the task at M, to be performed.

To put this in the perspective of general software and systems engineering, it would be fair to say
that this metaization levels define another viewpoint in the MDE paradigm similar to the
abstraction level viewpoint discussed previously in the context of MDA. Recall that the
abstraction level viewpoint discussed under MDA captures three engineering concerns: system's
context and requirements, system's structure and operational capabilities, and details of execution
platforms; in a similar standpoint, this metaization viewpoint captures a set of three somewhat
more abstract and generic metaization concerns in the (meta)modeling space:

MC 1. Formal specification of the system under study (SUS)
MC 2. Formal specification of the domain of SUS

MC 3. Formal specification of the language rules/infrastructure for defining system domains
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Such that metaization concerns MC 1, MC 2 and MC 3 are adequately captured and managed at
the M;, M, and M3 levels respectively.

This metaization viewpoint is inherent in any MDE process. In fact, it provides the infrastructure
to precisely define the automated synthesis of some kinds of models from others, the hall mark
of MDE paradigm. For instance, it is technically embedded within, and provides support for
every layer of MDA. This claim can easily be verified by considering that each of CIM, PIM and
PSM is a model of a system, and thus must conform to a meta-model somewhere. i.e., each of
the three models reside in the M; level of metaization viewpoint and would require other levels
to ensure the automated transformations between it and its counterparts in other MDA layers.

Lastly, it is important to also note that this metaization viewpoint is not peculiar to the model
ware technological space (TS); rather it is inherent in other TSs. Kurtev and colleagues [KBA02]
describe a TS as " a working context with a set of associated concepts, body of knowledge, tools,
required skills, possibilities and possibly a given user community with shared know-how".
Examples of TS include modelware, grammarware, dataware etc. While modelware, also known
as MDA TS refers to model-based development artifacts, grammarware comprise grammars and
grammar-dependent software used in the sense of all established grammar formalisms and
grammar notations including context-free grammars, class dictionaries, and XML schemas as
well as some forms of tree and graph grammars [KLV05]. Dataware refers to the elements used
in relational data modeling such as database and database schema.
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Figure 3.19 Metaization viewpoints of technological spaces
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Figure 3.19 presents the metaization viewpoints of four TSs to show the corresponding elements
of each TS at the different levels of metaization. Though the documentware is considered to be
subsumed by the grammarware, we can, at least introduce it as a special case of grammarware
because it will particularly be used in a later chapter of this thesis. The figure is self-explanatory
and it shows a common example of meta-meta-model technology in each TS. One of the goals of
MDE is to build bridges between these TSs [MHO05, WKO0S5, FNO5, KBAO02]; such bridges are
usually defined formally at the M, level of metaization by mapping corresponding elements of
language specifications.

3.3.3.3 Ecore metamodeling language

There are several languages, based on different technologies, for defining metamodels. Examples
include the Ecore, MetaEdit [SLT+91], GME [LMB+01, Dav03], AToM?® [DV02], KM3 [JB06],
etc. We present an overview of the Ecore in this sub-subsection as we will be using it in
subsequent chapters to describe metamodels.
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Figure 3.20 A simplified Ecore kernel

The Ecore is a metamodeling language, based on OMG's Essential Meta-Object Facility
(EMOF)'?, which uses a subset of the UML class concepts to describe metamodels. Ecore is the
underlying metamodeling language for the Eclipse Modeling Framework (EMF) [SBM+08], an

Phttp://www.omg.org/spec/MOF/2.5/
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open-source modeling project and code synthesis facility for developing MDE-based tools within
the Eclipse IDE".

Figure 3.20 shows an excerpt from the Ecore kernel, which is just sufficient to introduce the
essential elements that will be used in this thesis; the reader may want to consult some of the
textbooks (e.g., [KWBO03]) for a detailed description of the language.

ENamedElement is the base class that describes any entity or relationship in a metamodel that
has a unique name. Therefore, every metamodel element that could be identified by a name
inherits a name attribute from this class. EClass describes a class, which models an independent
entity. A class may have some attributes (eAttributes) and/or references (eReferences) describing
its structural features and it may inherit the properties of some other classes by referring to them
as superTypes. The superTypes relation is transitive; i.e., given three classes A, B and C, B is a
superType of A and C is a superTypeof B implies that C is a superType of A. Every attribute has
a type that is defined by a data type or an Enumeration. The minimum and maximum number of
possible occurrences of an eAttribute or eReference in a class is defined by lowerBound and
upperBound respectively; this is known as the cardinality of the attribute or reference.

3.3.3.4 Metamodel composition techniques

In MDE, the syntax of a modeling language is defined by a meta-model. In essence, it defines the
concepts described in a language and the relationships between them. In this sub-subsection, we
give brief descriptions of three techniques, proposed by Emerson and Sztipanovits [ES06], for
integrating meta-models to define new languages: metamodel merge, metamodel interfacing and
class refinement. These techniques are illustrated in Figure 3.21.

Metamodel merge is used to integrate independent metamodels that share some common
abstractions of real world entities - a phenomenon referred to as concept collision. The common
concepts are used as the seam(s) to merge the separate metamodels into a unified whole. It is
similar to the package merge mechanism [ZDDO06] that recursively takes the union of model
elements (in different packages) matched by name and meta-type. Meta-model merge is,
however, different in two ways: 1) it occurs at class level instead of package level, and 2)
common concepts do not necessarily have to match by name in metamodel merge. Once
matching classes are identified, the two classes cease to exist but merge into a new class in the
integrated metamodel; the new class encompasses all attributes and associations of the source
classes.

Phttps://projects.eclipse.org/projects/modeling.emf
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Figure 3.21 Metamodel composition techniques

An illustration of the application of metamodel merge is provided in Figure 3.21(a). Considering
that classes A and P in separate metamodels have been identified to match, then they can be
merged into class AP as described in the figure.

Metamodel interfacing is employed to combine two metamodels describing distinct but related
domains in order to explore the relationships between them. Its implementation requires the
introduction of new classes and relations (that do not necessarily belong to either of the two
source metamodels) which serve as the interface between the distinct meta-models through
associations. The technique is described in Figure 3.21(b) with MM1 and MM2 representing
classes in separate meta-models and MM int representing the interface class, which is
introduced to establish relationships between them.

Class refinement is the technique used to establish relationships between closely related (or in
fact, same concepts) expressed at different levels of refinement in two independent metamodels.
Specifically, a hierarchical containment relationship is created between the two meta-models
fragments (as described in Figure 3.21(c)) with the more abstract fragment as the container(s) of
the more detailed descriptions provided by the other.

3.3.4 Model Transformation

A model transformation is described in [KWBO03] as an automatic generation of a target model
from a source model according to a transformation definition. A transformation definition is a set
of transformation rules that together describe how a model in the source language can be
transformed into a model in the target language and a transformation rule specifies how one or
more constructs in the source language can be transformed into one or more constructs in the
target language.
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In order to capture the special cases of model transformation where there may be multiple source
and/or target models, we extend the definition of [KWBO03] to describe a model transformation,
in the context of this thesis, as an automated synthesis of one or more target model(s) from one
or more source model(s) according to some transformation definitions.

The practice of model transformation in the field of computing is older than MDE. In fact, we
can arguably say that it is as old as computing itself but it had been done under different
nomenclatures. For instance, the compilation of program C/C++ codes to byte codes and
conversion of assembly language to machine codes consist of some chains of model
transformation since all these artifacts involved are also models but at low-levels of abstraction.
The advent of MDE has however stimulated the development of theories and technologies to
perform similar activities at some higher levels of abstraction. Moreover, model transformation
in MDE gives room for user-defined transformations between models in different domain-
specific languages.

Model transformation is one of the cornerstones of MDE; [SKO03] considers it the heart and soul
of MDE. It is instrumental to the widely reported benefits of MDE. For instance, the concept of
separation of concerns between problem and solution domains and the consequent support for
high-level description of problems rely on model transformations to, automatically, synthesize
the solution artifacts. Similarly, the portability of models between multiple platforms and tools
for model reuse, integration of tools and development environment and the building of bridges
between technical spaces (e.g., model ware, grammar ware, document ware, data ware) all rely
on some kinds of model transformations to be realized.

There are several categories of model transformation techniques and technologies in the
literature; this section will discuss only a few classes along on three dimensions: relative levels
of abstraction, technical spaces and languages of the source and target models(s). The reader is
invited to consult [CH03, CH06, MG06, SK03, MGV+06] for extensive classifications of model
transformation approaches and tools based on diverse criteria for guidance on when and how to
use each variant.

Based on the relative levels of abstraction of its source and target models, a model
transformation can be classified as horizontal or vertical [MGO06]. A horizontal model
transformation is one that involves models at the same level of abstraction. For instance, a
transformation within MDA's PIM (or PSM) layer is an horizontal transformation. There may be
cases where models written in different languages are required (by different tools) for some
specific analysis at the same level of abstraction, it may be sufficient in such cases to create one
of the models and use it as the source from which to synthesize the others. A horizontal
transformation may also occur between models written in the same language usually for the
purpose of model or code refactoring [ZLGO0S5, Men06, FCS+03]. Conversely, a vertical model
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transformation is one, which its input and output models are in different levels of abstraction.
Typical examples are PIM-PSM transformation in MDA, code synthesis and refinement.

Considering the technical spaces of the source and target models of a transformation, we can
have model-to-model transformation (M2M), mode-to-text transformation (M2T), and reverse
engineering [CHO03, MG06].An M2M, as the name implies, is one, which both source and target
models belong to the model ware technical space. An M2M may be horizontal or vertical. The
transformation definition of an M2M needs to have knowledge of the meta-models of both
source and target languages; the transformation rules are based on either type or pattern
matching to generate target models from source models. MOF-based transformation tools (e.g.,
ATL [JAB+06]) map instances of meta-classes (i.e., classes, attributes and references) in the
source meta-model(s) to those in the target meta-model(s), graph transformation-based tools (e.g.
GReAT [BNB+07], AToM® [LV02]) recognize instances of some specified structural patterns in
the typed graph representing the source metamodel and write the corresponding target patterns in
the target models. An M2T is a transformation from the model ware technical space to grammar
ware (e.g., program codes) or document technical spaces (e.g., XML documents). Unlike M2T
that requires source and target meta-models, most M2T tools (e.g., XPand [Kla08].

Acceleo [MJL+06]) require only the source meta-model(s); the target documents are generated
based on specified templates that define the structure of the documents [Cle01]. Thus, instances
of types defined in the source meta-model are mapped to corresponding textual artifacts in the
target templates. M2T tools are used extensively for code synthesis in MDE. Reverse
engineering 1s the reverse of M2T; it is the extraction of high-level models from low-level
textual artifacts like program codes.

Lastly, model transformations can be classified, based on whether the languages of the source
and target models are the same or not, into endogenous and exogenous transformations [MGO06].
The former involves source and target models written in the same language while the latter
translates between source and target models written in different languages. M2T (i.e., code
synthesis) and reverse engineering are typical examples of exogenous transformation; an M2M
may be endogenous or exogenous. Model optimization and model refinement are examples of
endogenous transformation.

3.4 Megamodeling

This section provides some backgrounds on the MDE concept of megamodeling towards the
presentation of SimStudio Il megamodel (architecture) in the next Chapter.
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3.4.1 Definition

Megamodeling is the activity of abstract positioning of models of various kinds with respect to
one another to model the linguistic architecture of software systems in terms of the involved
languages, technologies, concepts and artifacts [LZ13]. It is the simplification of an MDE
process with the goal of providing an overall view of the concepts [Fav04]. In [Fav05b], Favre
described megamodeling as modeling in the large and the basic modeling as modeling-in-the-
small; while the latter is the activity that considers the details of models, metamodels, etc; the
former considers the global relationships between these artifacts, without considering their
content. He describes a megamodel as a model that represents the complex structure of models,
metamodels and other artifacts that make up an MDE process such as interpreters, transformation
models, transformation engines, etc. without going into the details of the different artifacts. It
should allow for reasoning about a complex software engineering process without going into the
details of the technological spaces involved [FNO5].

Bézivin and colleagues [BJV04, BJR+05] gave a similar account of megamodeling in
independent works. They described megamodeling (or modeling-in-the-large) as the activity of
establishing and using global relationships and metadata on the basic macroscopic entities of an
MDE process such as models and metamodels while ignoring their internal details. Hence, a
megamodel is considered to be a model of which the elements represent or refer to models,
metamodels, metametamodels, services, tools, etc. and the relationships between them. A survey
of several overlapping definitions of megamodeling, including the ones cited here, is provided in
[HSG12].

3.4.2 Applications/uses of megamodels

This sub-section highlights some of the uses of megamodels by different practitioners extracted
from a compilation of uses provided by Hebig and colleagues [HSG12].

» To define software architectures with design decisions in relations between
heterogeneous models [PBR09].

= To model an MDE process and reason about the relations that can exist in the context of
MDE through exemplary patterns [FNOS, Fav05b]

* To model software evolution through model transformations [FNOS5]

*= To present a global view of models and facilitate traceability between models and their
elements [BFBO7]

= To capture and analyze modeler's intention about how different views of a system are
related to one another [SMEQ9]
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3.4.3 Formal description of megamodeling concepts

The relations between the elements of a megamodel have been defined by Favre [Fav04] from a
mathematical standpoint. He opined that megamodeling is a rudimentary theory for reasoning
about MDE processes and hence must be precisely defined to clarify the valid relationships
between models, languages, metamodels, transformations, and systems under study. Favre
argued that the use of English and informal diagrams to describe an MDE process will most
likely fail to support reasoning about the process when its complexity grows beyond intuition.
He proposed that a better approach is to describe basic megamodeling concepts with simple
regular structures based on set theory and language theory such that the structures can be
incrementally combined to describe a complex MDE architecture.

Based on his argument, Favre described a megamodel as a labeled directed graph with systems
under study, models, languages, metamodels and transformations as nodes and edges with labels
U, € x and O&corresponding to relations representationOf, elementOf, conformsTo, and
decomposedIn respectively. In [FNO5], Favre and NGuyen extended the graph description to
include additional edges and patterns that describe model transformations and evolutions.

(o }—+ Lz ]

Figure 3.22Megamodel elementOf relation

3.4.3.1 ElementOf relation

From formal language theory [Har78, HU79], a language is an infinite set of models that can be
described in the language. For instance, the UML is the set of all possible UML diagrams; C++
is the set of all C++ programs. Hence a model, m, is an element of the language, L, in which it is
created. i.e., m € L. This relation is modeled graphically as the directed edge between nodes m
and L in Figure 3.22above.

3.4.3.2 RepresentationOf relation

One of the prominent properties of a model, m, as provided in the definitions given previously is
that it is a "representation of" a system under study, sus. This relation is modeled in a graph, as
illustrated on the left of Figure 3.23, as a directed edge from node m to node sus.

77} £ SUS mm £ L

Figure 3.23Megamodel representationOf relation

Recall that a language, L, is an infinite set of models; a model, mm, of L is required in order to
formally reason about the latter [Fav04]. In MDE, mm is referred to as the "metamodel" of L. for
instance, the language of even numbers, L = {2,4,6,8, ...} can be represented (modelled) as
L= {neN|nmod 2 =0} in order to formally reason about its elements. Since mm is a
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"model" of L, it follows that the representationOf relation also holds between the duo as
illustrated in the graph on the right of Figure 3.23.

3.4.3.3 ConformsTo relation

The conformsTo relation can be derived formally in two ways. Firstly, it can be derived
mathematically from language and set theory based on model-language-metamodel relations.
Recall the example of the language of even numbers presented previously under the
representationOf relation; every valid element of the language, L, must satisfy (i.e., conform to)
the constraints specified in the model (i.e., metamodel) of the language. In other words, given a
model m written in a language L whose metamodel is mm, m "conformsTo" mm.

Another approach, proposed by Favre [Fav04], to derive the conformance relation is through
graph transformation. To begin with, a superposition of the three graphs in Figure 3.22 and
Figure 3.23 will yield the graph on the left of Figure 3.24; from this left graph, we can deduce a
pattern graph comprising nodes m, L, and mm that forms the left hand side (LHS) of the graph
transformation rule at the middle of Figure 3.24.
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Figure 3.24Megamodel conformsTo relation

The transformation rule translates the source pattern to the graph on the right hand side (RHS),
which comprises nodes m and mm linked by the conformsTo edge. We apply this rule on the
right of Figure 3.24 to obtain the MDE metaization levels presented previously in Section 0. The
LHS of the rule consists of model m written in language L and representing the system under
study sus. The metamodel mm of L is written in metalanguage ML whose metamodel (i.e.,
metametamodel wrt. m) is mmm. Applying the rule to the LHS produces the cascaded
conformsTo relations on the RHS.

3.4.3.4 Decomposedln relation

This describes the relation between a composite model or MDE artifact and its components. It
simply implies that the whole decomposes into the various components hierarchically.
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Mathematically, this relation can be described as a tree structure having a composite model as
the root, composite components as inner nodes and the smallest units as the leaves of the tree.
We illustrate this relation with an example in Figure 3.25. Imagine we have a car model that has
five component models: engine, ignition system, suspension and steering system, transmission
system and braking system coupled to make a whole; each component can be linked to the
composite model with the decomposedin (§) relation in a megamodel as shown in the diagram.

Susperisiorn
and steering
sSvstem

S

A
Trarnsmission
sVvstemn

Figure 3.25Megamodel decomposedIn relation

3.4.3.5 Transformation relations

The graph structure Figure 3.26 illustrates a megamodel pattern for describing the participants in
a model transformation process and their relationships to one another. The graph pattern is built
from node and edge types already discussed: model, language, and metamodel nodes and u, €, y
edges with an introduction of two seemingly new node types and four new edge (relation) types.
The newly introduced edges (relations) are dd, rr, ss, and tt corresponding to domain, range,
source and target respectively. Nodes transformation instance, Ti,stance » and transformation
specification, Tg,e. are apparently new in this discussion; we will see, however, in further
discussion that they are some forms of system under study and model respectively.

mm .
transformdion transformdion
X
L mm._ T
domain domain spec
7.
T
instance targer

Figure 3.26Megamodel pattern for model transformation

Starting from the bottom of the graph, node mg,,,c 1s the source (or input) model that is
transformed to thetarget (or output) model m4.4.; by the operation Tigiance - Hence the
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relations of Tiystance With Mggyrce and Mgy ger are source (ss) and resp. farget (tt). Technically,
Tinstance €an be considered as an in-memory system that takes in a model as input and produces
another model as output; hence this system is modeled (represented by) the T, .
Mathematically, Ty, is a function that maps two sets (in this case languages) described by the
domain metamodel, MM gopqiy , and range metamodel, MM,.4p 4. . Hence the relations of Tgpe,
with mmy,mein and mm,.q,g. are dd (doamain) and rr (range) respectively. Therefore mg,yyce
and Myqrgee conform toMmgomain » and MMyqnge , TEspectively. Also being a model, Ty, is
written is a transformation language Lianform ation @and conforms to a metamodel
MMyranformation - Lhis graph structure can be replicated within megamodels to describe
systematic transformations and evolutions of models in MDE-based architectures.

3.5 ELEMENTS OF A LANGUAGE SPECIFICATION

In this section, we introduce the main elements in the specification of a computational modeling
language and their purposes.

Legend

Language specification 44— Contains

_____ >»semantic mapping(s)

— . . — . .>Syntaxmapping(s)

A 4
Concrete I_ . Abstract o Semantics II
syntax ) syntax domain

Figure 3.27 Elements of a language specification

Essentially, as Figure 3.27 depicts, a modeling language specification can consist of the abstract
syntax, a family of concrete syntaxes and syntax mapping(s) and a family of semantics domains
and semantic mapping(s) [Kle08, HROO].

Mathematically, the specification of a language Lcan be described as:

L= (ALCH{S} tmac Hmus Pijen

Such that VC;, my¢,: A — C; andV.S}-,mASj:A — 5.

A is the abstract syntax of L.

{C;} is a family of concrete syntax specifications for L. i.e., every C; is aconcrete syntax
specification.

{.S}} is a family of semantics domains for L. i.e., every §; is a semantics domain for the language.
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VC;, myc,: A — C; is a syntactic mapping which assigns concrete notations for expressing the

elements of A.

VS, my 5;° A — §; is a semantics mapping which assigns meanings to the elements of A in the

j
domain defined by §;.

Though most language specifications define one each of concrete syntax and semantics domain,
it is possible to have multiple of each. A language may have multiple concrete syntaxes, each
used by different users or in different contexts or viewpoints. Similarly, a language's semantics
may be defined in multiple domains for different computational purposes. In particular, we will
demonstrate the use, and need for multiple semantics domains in subsequent chapters of this
document.

The rest of this section elaborates a bit on the main components of a language specification;

comprehensive discussions on these components have been presented in the literature (e.g.,
[K1e08, HR00, Sel09, HR04]).

3.5.1 Abstract Syntax

The abstract syntax of a language defines its vocabulary by describing the various concepts
expressed in the language and the relationships between them. "Abstract syntax defines the set of
language concepts and the composition rules that represent the 'algebra’ for combining these
concepts into valid or so-called "well-formed' models"[Sel09].

Though abstract syntax describes the valid expressions of a language, it does not provide any
information about how the entities and relationships are rendered physically; rather it serves as
the bridge between those concrete representations and their semantics [Kle08, Sel09].

An Abstract syntax is often described by a metamodel in MDE-based projects. We have
presented metamodeling previously in Section3.3.3. A typical technological support for defining
abstract syntax for MDE-based languages is provided by the Ecore, which is the central
metamodeling language in the Eclipse Modeling Framework (EMF) [SMB+08].

3.5.2 Concrete Syntax and Syntax Mapping

The concrete syntax describes the set of notations used to render the entities and relationships
described in the abstract syntax. It offers the actual human-readable notation used to present and
view models [Sel09]. Depending on the language type, concrete syntax notations may consist of
texts, graphics or a mixture of both. i.e., it may be contain elements like words, sentences, boxes,
diagrams, icons, etc.
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The syntax mapping is a relation that assigns to every element of the abstract syntax,
corresponding elements of the concrete syntax so that the latter can be used to express the
concept described by the former.

The Graphical Modeling Framework (GMF), which ships with the Eclipse Modeling Project
(EMP) [Gron09] provides a typical technological platform to define a concrete syntax
(particularly graphical notations), specify the syntax mapping between it and an EMF-based
abstract syntax and automate the generation of the runtime codes to power the use of the
language editor. Similarly, Xtext [BCE+08] provides the technological support for the
specification and implementation of texfual concrete syntaxes based on Extended Backus Naur
Form (EBNF) grammar [Wir96].

3.5.3 Semantics, Semantics Domain and Semantics Mapping

The semantics of a language is the precise and detailed meanings of its concrete modeling
constructs. i.e., it defines the meanings of the concepts captured in the abstract syntax. It must
provide the meaning of each expression of the language in some well-defined and well-
understood domain [HRO04]. In other words, the semantics domain is the context from which
meanings are assigned to the concepts of a language.

Technically speaking, the semantics domain provides a conceptual model of how the
computations that are being modeled in a language occur at runtime; such models of computation
may be some kinds of algorithmic models, event-driven models, flow-based models, logic
programming models, etc. [Sel09]. It must be noted, however, that though an explicit definition
or selection of a semantics domain is vital to give meanings to the concrete expressions/notations
of a language, the semantics domain itself is normally independent of the notation [HR04].

Therefore, a sound language specification must provide a relation that unambiguously associates
the syntactic elements to their corresponding meanings in the semantics domain. This relation is
called the semantics mapping. That is, the semantics mapping formalizes the relationships
between the concepts of the language being designed and those of the semantics domain.

3.5.4 Semantics Description Methods

Formal semantics, in computer science, is primarily concerned with the rigorous specification of
the meanings of grammatically correct programs, behaviors of some hardware, etc. to provide the
basis for implementation or analysis and verification [NN92]. This subsection presents
overviews of the main methods for formalizing the explanations of semantics of programs in
different contexts. These methods are generally classified into three categories [NN92, SK95]: 1)
Operational semantics, which describes how the effects of the computations in a program are
produced when it is executed on a machine. 2) Denotational semantics, which uses mathematical
objects to describe the effects of executing the constructs in a program, without the details of
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how such effects are produced. 3) Axiomatic semantics, which describes specific (not necessarily
covering all aspects) properties - expressed in logical propositions - of the effects of the
execution of the constructs in the program. We will present a brief overview of Translational
semantics, a special method used in practice to derive rigorous semantics for high level modeling
languages by connecting them with these low-level semantics description methods. It is
important to note that we only provide informal descriptions of the different methods, an
interested reader is invited to consult some of the numerous texts in the literature, such as
[Hoa69, NN92, SK95, Sch96, FPB+09, RS12, Sto77, Plo04, Weg72, Hen90, Gor12], which have
been dedicated to formal discussions of different aspects of the subject.

3.5.4.1 Operational semantics

Operational semantics describes the meanings of program constructs in terms of how the effects
of the computations associated to them are produced when the program is executed on an
abstract machine; i.e., "how the program execution is done on an abstract machine" [NN92,
SK95]. According to Rosu and Stefianescu, the operational semantics of a "programming"
language defines a formal executable model for the language usually in terms of transition
relations between program configurations, which provides a formal basis for the language's
understanding and the design and implementation of software with it [RS12].

Applying these two descriptions in [NN92, SK95, RS12] to the domain of systems engineering,
the operational semantics of a model specification language for DES may be described as a
formal specification of the procedure to be followed by an abstract machine to generate the
behavior traces of a system specification in terms of state transitions during execution. It is
usually defined for an abstract machine in order to be generic enough to allow different
implementers of the language in their choice platforms.

A typical example of operational semantics definition that is referred to in this thesis is the
simulation protocols of DEVS atomic and coupled model specifications [ZPKO00], which defines
the language's operational semantics in the form of abstract algorithms that must be executed to
generate the behaviors of system models described in DEVS.

3.5.4.2 Denotational semantics

Denotational semantics, also known as mathematical semantics [SK95], describes the meanings
of syntactical constructs in a program in terms of mathematical objects such as numbers, truth
values, functions, tupples, etc which represent the effects of executing such constructs without
paying attention to #ow the effects are produced [NN92, SK95].

In contrast to operational semantics which describes how to generate the effects of executing a
program, denotational semantics uses mathematical objects to precisely express the effects
themselves while abstracting away from the how? For instance, two program functions
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implementing different algorithms to compute the factorial of a given number can have different
operational semantics but the same denotational semantics since they both produce the same
effects - the factorial of the input value. Conversely, if we execute one of the two functions with
different inputs, they can have the same operational semantics but different denotational
semantics; it is so because the "how to generate the effects" remain unchanged with different
inputs but the "effects generated" are different.

According to Slonneger and Kurtz [SK95], the fundamental principle underlying denotational
semantics is the notion that computer programs and the objects they manipulate are symbolic
realizations of abstract mathematical objects; hence, each statement of the language is said to
denote a mathematical object. Thus, we can associate an appropriate mathematical object with
each statement of the language so that the former is a denotation of the latter. The denotations of
complex program statements are built from the composition of the denotations of its sub-
statements and the denotation of a complete program derived from the composition of the
denotations of its individual statements.

3.5.4.3 Axiomatic semantics

While operational (resp. denotational) semantics describes how to realize the computations of a
program (resp. the effects of executing the program), axiomatic semantics expresses specific
properties of the effects of executing certain constructs of the program in terms of assertions for
logical reasoning [NN92]. In essence, it allows one to prove whether, or not the desired effects
will be produced when the program is executed.

Based on methods of logical deductions from predicate logics, axiomatic semantics describes the
meaning of a computer program using assertions about relationships that must remain the same
(i.e., invariants) for all executions of the program. An assertion, in this context, is a logical
formula (statement), on system variables and constants, constructed using predicate calculus; an
assertion becomes true or false when the variables involved take specific values during program
execution.

The primary goal of axiomatic semantics is to provide axioms and proof rules that capture the
intended meaning of each command in a programming language to define a proof system,
typically based on Hoare's triples [Hoa69]as a basis for logical reasoning with, and formal
verification of programs [SK95, RS12].

Hoare [Hoa69] has proposed a prominent proof system to provide axiomatic semantics in the
format "Pre {S} Post" or "true {S} Post" where{S} is a sequence of program statements and
Pre (resp. Post) is a sequence of assertions specifying the pre-conditions (resp. post conditions)
for the execution of {S}. While Predescribes the relationships between the system variables
based on their values just before the execution of {S}is initiated, Post is a description of the
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relationships between the variables based on the result of the execution of {S}. According to
Hoare, Pre {S} Post may be interpreted as "If the assertion Pre is true before initiation of a
program {S}, then the assertion Post will be true on its completion (if {S} runs to completion)."
The alternative format"true {S} Post" is applicable where no preconditions are imposed before
the initiation of the execution of {S}.A proof system of this form can be used to prove the partial
correctness (or otherwise) of{S}relative to the specification,the correctness is said to be complete
if we can also prove that {S} will eventually run to completion.

3.5.4.4 Translational semantics

Translational semantics, also known as semantic anchoring [CSA+05], is a method commonly
used (by courtesy of model transformation) to formalize the semantics of DSLs. It involves the
mapping of a DSL's abstract syntax onto the abstract syntax, of an existing formal language, L,
with a formalized and well-understood semantics so that the semantics of DSL can be inferred
from that of L [SK95, CSA+05, BGM+11]. Essentially, the idea of translational semantics was
borne out of the quest for a way to complement high-level languages with formally defined
semantics [BGM+11].

According to Slonneger and Kurtz in [SK95], translational semantics is based on the premise that
the semantics of a language can be preserved when it is translated into another form, called the
target language. Therefore, if the target language can be defined by a small number of primitive
constructs that are closely related to actual or hypothetical machine architecture, then it can
provide a basis to define the semantics of the source language.

In their paper on semantic anchoring [CSA+05], Chen et al. proposed a two-step translational
semantics strategy to define the behavioral semantics of DSLs as follows:

i.  Define a set of minimal modeling languages {L;} for the basic behavioral abstractions
and develop the precise specifications for all components of L; = (A;, Ci, S;, Ms;, M¢;).
We use the term "semantic unit” to describe these basic modeling languages.

ii.  Define the behavioral semantics of an arbitrary L = (A, C,S, Mg, M;)modeling language
transformationally by specifying the My : A — A; mapping. The Mg : A — S semantic
mapping of L is defined by the Mg = Mg; o My composition, which indicates that the
semantics of L is anchored to the semantics domainS;of L;.

This strategy succinctly describes the approach commonly used when a high-level modeling
interface is provided to alleviate the complexity of dealing with a highly mathematical formalism
such as described previously in Chapter 2 of this document (see Section 2.2). In fact, one can as
well claim that it is applicable to describe the basis for the pair wise integration of MDSE
methodologies discussed in Section 2.3. For instance, when a DEVS-based language is
transformed to Z for formal analysis, we can say that, in this context, the semantics of the former
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is anchored to the semantics domain of the latter for logical analysis. In [SK95], Slonneger and
Kurtz argued that even compilers of general purpose languages perform a translation of high
level language into a low level such that executing this target program on a computer provides
the semantics of the program in a high level language.

While translational semantics offers the great advantage of allowing a DSL to take benefit of the
existing tools of the language into which it is translated, it also has a few challenges to meet.
Notable among the challenges, as pointed out by the authors of [BGM+11] is that "since the
semantics definition is not defined in the metamodel of the DSML, it is very challenging to
correctly map the constructs of the DSML into the constructs of the target language. The
underlying cause for this is that the mappings are not at the same level of abstraction and the
target language may not have a simple mapping from the constructs in the source language."”
This corroborates our argument in Section 2.3 that a surjective mapping of the source language
to the target language is not always guaranteed. Another important challenge of translational
semantics is that an expert of the source language may find it difficult to comprehend the traces
generated by execution in the target language; this can be handled, however, by either translating
the traces to the domain of the source language or visualizing/animating it with some specially
designed tools.

3.6 CONCLUSION

In this chapter, we introduced the theories and techniques upon which the contributions of this
thesis are based. In Section 3.2, we introduced DEVS, a system-theoretic formalism for
simulation of DES, Z notations and its object-oriented variant, Object-Z, both of which are used
for the specification of state-based systems for formal analysis, and TL for specifying temporal
properties to be verified about the behavior of DESs. We also presented an overview of a
pattern-based approach, proposed by Dwyer et al. in the late 1990s to alleviate the complexity of
property specification with TL. We used the beverage vending system as a running example to
illustrate the use of each of the formalisms to model different aspects of a system. This running
example, though considerably simple, typifies the herculean task of specifying a system with
disparate formalisms for different analysis methodologies towards the complementary study and
analysis of different aspects of the system. We have presented, in the previous chapter, a
literature review of research efforts to alleviate this task; the contributions of this thesis to the
same course are presented in subsequent chapters.

We presented, in Section 3.3, an overview of MDE techniques and terminologies. Essentially, we
discussed MDE's global objectives; MDA, which is a proposal by the OMG™ for industrial
implementation of the MDE initiatives; and the fundamental tasks in an MDE process: modeling,
metamodeling and model transformations between and (or within) technological spaces and
languages. We also presented an overview of the Ecore metamodeling technology and the
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techniques proposed by Emerson and Sztipanovits for the composition of metamodels. Sequel to
MDE, we presented an introduction to the concept of megamodeling, in Section 3.4, for formal
description of the relationships between the different concepts and artifacts in an MDE
process.MDE and megamodeling techniques will be used extensively in subsequent chapters for
the formulation and presentation of the thesis' contributions. We expect that this chapter has
provided the necessary for the reader to follow all MDE-based presentations in this thesis.

Finally, in Section3.5, we introduced the essential elements in the specification of a modeling
language. We described the abstract syntax, which involves the definition of a language's
vocabulary; the concrete syntax and syntax mapping to provide the concrete notations for
expressing the concepts and relations in the abstract syntax; and the semantics domains and
semantics mapping to, unambiguously, define the meanings of the elements of the language's
vocabulary. We also presented overviews of different theoretical methods for describing the
semantics of a language for different purposes. We will use the lessons learned in this section, in
combination with MDE techniques, in subsequent chapters, for the specification of a high-level
system specification language, which is at the heart of the contribution of this thesis.
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4 SIMSTUDIO II: AN INTEGRATIVE FRAMEWORK
FOR MODEL-DRIVEN SYSTEMS ENGINEERING

4.1 INTRODUCTION

This chapter builds on our preliminary results, reported in [AT15a, AT15b, AT16], to launch the
presentation of the contributions of the thesis and provide answers to research questions RQ1 and
RQ4 and abstract answers to RQ2 and RQ3. We explore, with the SimStudio II framework, the
integration of three MDSE theories and methodologies - simulation, formal methods and
enactment - with the goal of harnessing the synergy of the diverse theories, tools and experiences
for complementary, rather than competitive, studies and investigations of systems' static and
dynamics properties.

In the course of our research work towards this thesis, we realized from our preliminary findings
- reported in [AT15a, AT15b, AT16] - that having a unified formalism at the front end is
paramount to the integration of the disparate methodologies in the proposed framework. We then
defined the High Level Language for Systems Specification (HiLLS)to play this role in the
SimStudio II framework. Essentially, HILLS abstract syntax is built from DES and software
engineering concepts and mapped onto DEVS for simulation, a DEVS-based framework for
enactment, and Z and TL for formal analysis.

In the overall, the work presented in this thesis took its initial momentum from a decade-long
research agenda outlined in [Tra08], named SimStudio, and which has nurtured a previous
doctoral thesis. In essence, with the SimStudio II, we have widened the horizons of SimStudio's
legacy to cover more MDSE methodologies and clear the way for the incremental realizations of
the long-term goals of the project.

In the sequel, we begin the rest of the chapter with the overviews of the SimStudio project
initiative and the previous thesis that had stemmed from it in Section4.2. This is followed by a
description of the methodology and functional requirements of SimStudio II in Section 4.3.
Section 04.4 presents the framework's megamodel, a formal description of its architecture
showing the positions of the various artifacts relative to one another from MDE perspective. In
Section 4.5, we propose a process model to describe a workflow to provide a guide to using the
framework - to achieve the different goals - based on who performs what activity and when.
Finally, in Section 4.6, the chapter ends with concluding remarks and an outline for elaborate
presentations of the various elements of the framework.
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4.2 EVOLUTION OF THE SIMSTUDIO PROJECT
4.2.1 The SimStudio Manifesto

The SimStudio framework was first envisioned by Traoré [Tra08] in his reaction to the emergent
and far-reaching quests for an operational M&S framework to match theoretical advancements
with computing and technological infrastructures towards advancing simulation-based
engineering science [GCG+05,PIT+05, GS05, NSF06]. There were concerns that though M&S
had gained considerable adoption for solving problems in most science and engineering domains,
there was the need to deal with some pressing issues relating to simulation models and the
performance of simulators for the practice of M&S to continue to meet the requirements of
growing system complexities. Those concerns include the verification and validation of the
credibility of simulation models, model reusability and portability between existing simulation
environments, space-time complexities of simulation protocols, tools interoperability, ... Traoré
noted that the grand challenges raised the need to treat simulation models as algebraic entities
which can be manipulated symbolically as well as be easily translatable into operational objects.
He then grouped the various concerns to into four research axes that must be explored and
concretized by an operational framework for M&S:

Axis 1. An algebraic axis, also known as specification axis, to study how to formally specify a
model and the context(s) in which it is used: efforts should be made to answer the
question "what are the objects of the domain and what relationship do they entertain?"

AXxis 2. 4 logical analysis axis to explore the underlying logical semantics to make simulation
models amenable to formal analysis and pave the way for logical reasoning about the
structural and behavioral properties of models. He argued that in addition to the classic
approach of post-simulation analysis of traces, there was also the need to consider ante-
simulation exploration of properties. He noted that this could also help in verifying some
algebraic properties such as the true applicability of the model to the context of the
simulation in the first place.

Axis 3. An executive axis to tackle, both at algorithmic and technological levels, the automated
synthesis of executable simulation codes from models and automatic generation of
output trajectories. He argued that bringing transparency in the specification-to-code
process in the reverse process can help to maintain a clear separation of modeling
activities from simulation activities in M&S.

AXxis 4. An application axis to deal with how to support the scale crossing of application codes;
he identified the issues to explore here to be the definition of generic simulation-based
problem solving schemes and the integration of software components in real-time
environments.
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The SimStudio project was envisioned to concretize the theoretical research efforts identified in
the proposed research axes with the aim of building a next generation M&S framework that will
serve both as a virtual lab to study and experiment with advanced M&S concepts and as a
collaborative and community-focused platform for the mutualization of M&S resources. To set
the research work in motion, an extensible web-based plug-in architecture was proposed in
[Tra08], which advocates continuous installation of plug-ins (by the user community) for
modeling, formal analysis, simulation and visualization of simulation traces with model
transformation interfaces to integrate the heterogeneous plug-in modules.

The SimStudio manifesto is indeed an encompassing outline of a long-term research agenda; a
doctoral research work, by Touraille [Toul2], has been expended in studying some aspects of the
proposed framework to provide answers to some of the questions raised. We present an overview
of the doctoral thesis in the next subsection.

4.2.2 A Previous Thesis on SimStudio

In his doctoral thesis, Touraille [Toul2] proposed a framework, described in Figure 4.1below, to
concretize some of the research axes and the plug-in based architecture proposed in [Tra08]; he
was particularly interested in applying his findings to address the problem of lack of tools for
interoperability and issues on performance of simulators within the DEVS M&S paradigm.
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Figure 4.1 SimStudio architecture(excerpted from [Toul2, TTH11])
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Touraille recognized that the problem of tool interoperability in M&S, which is a major
hindrance to collaborative research among scientists in the same domain, could be attributed to
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the non-existence of a consensual standard for expressing DEVS models, which had led to the
proliferation of models in independent formats that are tightly tied to particular environments. He
then took the challenge and proposed an XML markup for DEVS to define an interchange format
between disparate DEVS-based tools in his plug in-based SimStudio architecture, which is
described in Figure 4.1above.

Standard format: To deal with the issue of interoperability among DEVS tools, Touraille
proposed the DEVS Markup Language (DML) [TTH09], an XML markup language for
DEVS, at the core of the framework's architecture, to serve as a "standard format" (see
Figure 4.1) for model representation. DML is considered to capture essential DEVS concepts
in a platform-independent manner to be suitable to provide the required liaison to glue
heterogeneous DEVS-based M&S tools together in the framework.

Modeling modules: These comprise new and legacy model editors for DEVS. While new
editors may be built to store models directly in the "standard format", legacy editors can be
integrated into the framework through adapters that encapsulate model transformation
specifications targeting DML (standard format). Model modules for non-DEVS simulation
formalisms may also be accommodated in the framework through suitable adapters; this
claim is premised on the work of Vangheluwe [Van00], which suggests that DEVS is
expressible enough to serve as a common denominator for DES simulation formalisms.
Simulation modules: These are platform-specific software implementations of the DEVS
simulation protocols and algorithms. The executable simulation codes (see the inner
rectangle of Figure 4.1) are obtained through model transformations with the DML standard
format as source and selected simulation modules as target. Depending on the capability of
the module, a simulation process may be deployed on a local system or transparently over
distributed infrastructures.

Visualization modules: These are modules for presenting simulation traces in various forms:
listings, diagrams, animations, etc.

Analysis modules: These include tools to check the structural validity (i.e., wellformedness
property) of models with respect to the language's syntax and post-simulation analysis of
simulation results, for instance by computing statistics. These, however, do not include the
capacity for rigorous ante-simulation logical analysis with formal methods as campaigned in
[Tra08].

Managing modules: These modules offer orthogonal services such as model repositories,
collaborative tools, workspace customization, etc.

Another global contribution of Touraille's thesis to the concretization of the SimStudio manifesto

is in the area of enhancing the performance of simulation processes. He proposed the DEVS-
Meta Simulator (DEVS-MS) [TTH10], a parameterized DEVS simulator that uses the C++
Template MetaProgramming technique [AGO04] to generate executable codes of specialized
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simulators for input DEVS models at compilation time. The DEVS-MS was meant to enhance
the performance of a DEVS simulation process by generating only artifacts that are necessary for
simulating the input model while filtering out time-consuming processes that are contained in the
generic simulators, but which are not necessarily required for the input model in particular. We
did not explore the area of simulator performance in this thesis, hence no further details will be
provided on the topic. An interested reader may want to consult [Toul2, TTH10] for detailed
discussions on DEV-MS and its comparison with generic simulators.

We recall from Section 4.2.1 that the SimStudio manifesto, as envisioned in [Tra08], prescribed
research axes for both simulation and logical analysis using FM. The concretization of the
manifesto in [Toul2] is however focused on simulation-based approach to MDSE. Thus, we can
classify Touraille's integration approach into the category of methodology-specific integration
approaches discussed in Chapter 2 (Section2.2).

The general contribution of this thesis to the project, under the name SimStudio II, widens the
horizons of the current solutions by studying both the simulation and FM axes as well as an
additional axis for enactment. In other words, we explore the interoperability between, not only
simulation tools, but also between development tools for simulation, formal analysis and
enactment as well as collaborations among their respective practitioners. i.e., we explore intra-
and inter-disciplinary collaborations of the three dimensions of MDSE. This has become
important with the increasing need for the diverse methodologies to be used in synergy, rather
than competitively, for the development of complex systems. The next section presents the
overview of our methodology and the functional requirements of SimStudio II before we
elaborate on its various components in subsequent sections and chapters.

4.3 THE SIMSTUDIO II APPROACH
4.3.1 MDSE Methodology Integration Approach in SimStudio II

Recall that we discussed the state of the practice of approaches to methodology integration in
Chapter 2 and classified them into two broad categories: methodology-specific and pair wise
integration approaches. The former approach involves finding a way to express the concepts of a
domain in a format that is generic enough not to be tied to any of the existing tools, and yet
portable enough to be compatible with as many tools as possible. The latter approach relies on
the correspondences between the underlying formalisms of two disparate analysis methodologies
to define transformation rules between them. We also discussed the strengths and weaknesses of
each category. The former approach offers the benefit of allowing the systematic synthesis of
multiple and disparate sets of solution- and/or platform-specific artifacts from a platform-
independent system model; it is, however, limited by the fact that the unifying formalisms are
often targeted at specific MDSE methodologies, thereby making it difficult to put analysis
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engines for other methodologies behind them. In contrast, the latter approach allows for inter-
disciplinary transformation of models between disparate MDSE methodologies. The mapping
functions from the source to target formalisms are, however, usually not surjective; hence, the
need to always resort to manual update of all models during the several iterations of
computational analysis activities.

After taking a keen look at the methodology-specific integration approaches, we recognized that
the definition of a generic representation format for any group of tools is premised on the fact
that they all represent the same sets of concepts but in different ways. For instance, all DEVS
simulation tools represent the same set of concepts defined in [ZPKO00] but in different formats
and probably at different levels of refinements. By applying the same reasoning to the integration
of simulation, formal analysis and enactment methodologies for DES, we can attempt to define a
generic representation of models for the three methodologies since they describe sets of concepts
that are only slightly different from one another though in different forms and at different levels
of abstraction. For instance, a DES description is typically characterized by concepts like input,
output, components/subsystems, states, state transitions, etc. and any formalism for DES has a
way of describing most (if not all) of these concepts irrespective of the analysis methodology
behind it. The integration approach we developed for SimStudio II stemmed from this reasoning.
While this may appear rather ambitiously motivated, we will show in Chapter 5 that such
formalisms are, in fact, realizable though not trivial. In this chapter, we focus on the macro-
description of the methodology a presentation of the framework's architecture.

Figure 4.2 describes the proposed approach to integrate three disparate MDSE methodologies -
simulation, formal analysis and enactment - behind a unified formalism in SimStudio II. The
framework is described within the dashed box. Each plane of the 3D system contains the
formalisms and technologies of one of the three analysis methods. i.e., the XY, YZ and XZ
planes contains the theories and techniques for simulation, formal analysis and enactment
respectively.

We mentioned in Section 4.1 that the High Level Language for Systems Specification (HILLS) is
the unified formalism we defined for methodology integration in SimStudio II. Imagine that, in
Figure 4.2, the DES concepts for modeling systems with HiLLS, denoted by the H;,H>, ..., H,
polygons, occupy the three-dimensional (3D) space enclosed by the XY, YZ and XZ planes
while the modeling concepts for each of the three methodologies reside in its two-dimensional
(2D) plane. i.e., modeling concepts for simulation (resp. enactment), denoted by the 57,5, ..., S,
circles (resp. enmactjenact,, ..., enact, rectangles) in the XY (resp. XZ) plane. The formal
analysis methodologies reside in the XY plane, which is divided into two parts by a horizontal
dashed line such that the concepts for system specification, denoted by ssy,ss>, ..., ss, rectangles
reside below the line while the concepts for formal specification of required properties, denoted
by the ps;,pss, ..., ps, rectangles reside above the dividing line.
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By convention, if we were to use the three methodologies in isolation, the modeling activity for
each of them resides within the 2D plane containing it. The approach in SimStudio II takes a
departure from this conventional practice by moving the task of creating and updating models to
the 3D space enclosed by the planes. Through model transformations from HiLLS to the chosen
formalisms in the different planes, a given system model Mpy;; 1 in the 3D space has projections
My on the XY plane, Mr on the YZ plane and Mg on the XZ plane for simulation, formal
analysis and enactment respectively. In other words, Mpy; s is the unified or shared model that
establishes the links between the MDSE processes in the different planes. We will give a detailed
presentation, in Chapter 5, of how the HiLLS' syntax has been built from a disciplined
integration of concepts described by some considerably universal DES formalism in the three
planes.

As a contribution to the state of the art, we claim that the integration approach described in
Figure 4.1 has the potential to combine the strengths of both method-specific and pair-wise
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integration approaches; it presents a unified formalism at the front-end to describe one
independent model, which permits the systematic derivations of the artifacts needed by three
disparate MDSE processes.

In addition to direct modeling with universal DES concepts within the 3D space, the proposed
solution also envisions the mapping of DES-compatible domain-specific models (DSMs) to
models within the 3D space so that the DSM framework can take benefit of the computational
analysis infrastructure provided by the SimStudio II. For instance, given a DES-compatible
domain-specific language with concepts Dy, D3, ..., D, illustrated in the upper part of Figure 4.1,
the domain concept-to-SimStudio II mapping can be realized with the green transformation
arrows targeting the H concepts in the diagram.

Interestingly, there is a philosophical similarity between the approach adopted in [Toul2] and
that proposed in this thesis to promote interoperability between tools, and collaboration between
practitioners: both approaches are based on some unified formalisms for model representation.
While the former uses the DML "standard format" to capture DEVS concepts in a platform-
independent format, the latter uses "HiLLS" to express DES in a methodology-independent form.
The main functional difference is in the area of the target user communities; while the scope of
the former is restricted to the M&S community, the latter targets a wider community with the
aim of exploiting the synergy of diverse expertise and capacities to perform a task that cannot be
individually performed by any of them. It should be noted, however, that the work of this thesis
does not override the intra-disciplinary collaboration established by the previous thesis; on the
contrary, the present thesis may be regarded as an "overlay" over the previous work and other
similar efforts for formal analysis and enactment to serve as a layer of inter-disciplinary
cooperation between them.

4.3.2 Functional Requirements of SimStudio II

The UML use case diagram in Figure 4.3 presents the various MDSE activities that may be
performed, and by whom, with the proposed SimStudio II framework. It should allow
simulation, formal analysis or enactment experts to create and edit system models with HiLLS
and validate the models against the language's syntactic constraints.

HiLLS should allow a formal analysis expert to model system's required properties in addition to
the system itself. From the HiLLS model of both the system and its requirements, it should be
possible to, systematically, generate the necessary artifacts to run a formal analysis of the model
for a rigorous logical investigation of the specified properties.

Similarly, a simulation expert should be able to model experimental frames in HiLLS, couple
them to system models and systematically generate the low-level artifacts required to run
simulation processes.
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Finally, an enactment expert should be able to generate, from a given HiLLS model of a system,
the software prototype of the system under study.
In all cases, the same system model can be used for any of the three MDSE processes.
In the next section, we will present the architecture of SimStudio II to discuss the formal
relationships between the various artifacts in the framework.
4.4 SIMSTUDIO II ARCHITECTURE

The integration methodology in SimStudio II relies heavily on MDE techniques to hide the
complexities of dealing with the different formalisms by federating them behind a unified high-
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level language. Figure 4.4 presents the framework's architecture, showing its various elements
and the intricate relationships between them. Considering their intricacies, we adopt the
megamodeling relations presented earlier in Section3.4 to, unambiguously, position each of the
various artifacts with respect to the others.

The architecture is a complex labeled and directed typed graph. Each node of the graph is a
software engineering (SE) artifact, whose type belong to the set {system, model, metamodel,
metametamodel, language}, and which itself belongs to one of the different technological spaces
(TSs) - model ware, grammar ware and document ware. Each directed edge of the graph has a
label from the set {u, €, x,6,dd, rr,s,t}, which corresponds to a megamodeling relation. For
clarity, the SE artifacts represented in the framework are grouped according to their respective
TSs; and within each group, they are further categorized according to the metaization levels - my,
my, my; and m; - presented previously. For each TS group, every m; artifact is a model (u relation)
of the system under study (SUS) at the my level, which is outside the framework, except for
transformation models that specify some in-memory instances of model transformation
processes.

Conceptually, the entire architecture is a disciplined cascade of two levels of MDA-induced tree
structures with HiLLS models at the topmost root and executable codes for the different MDSE
processes as leaves. Let us discuss the different artifacts under their respective TSs for ease of
understanding.

4.4.1 Model ware Artifacts in SimStudio 11

This group (see top of Figure 4.4) comprises the SE artifacts involved in the development of
generic high-level models of systems, their behavioral requirements and experimental frames. At
the m; level, a HiLLS model may be a composition of (§ relation) a system model, a requirement
model and an experimental frame of the SUS. HiLLS model is authored with (€ relation) the
language HiLLS and conforms to (y relation) the HiLLS metamodel, at m,, which itself conforms
to the MOF at the m; level. The HiLLS metamodelis a model of (u relation) HiLLS; it describes
the language's syntax rules, which must be respected while using the language to describe
models.

From MDA viewpoint (recall from Section 3.3.1), a HILLS model is a "Methodology-
Independent Model" (MIM) in that the system model it describes is not directly tied to any of the
intended analysis methodologies; rather, it is expressive enough to capture the information
required for the systematic synthesis of their required artifacts.

4.4.2 Document ware Artifacts in SimStudio I1

This group, located on the right side of Figure 4.4, consists of the methodology-specific models
of the SUS based on DEVS, Z, TL and a DEVS-based enactment framework (see Chapter 5).
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In the my level, we have the DEVS model, Enactment model, Z specification, Behavioral
requirements which conform to the DEVS schema, Enactment schema, Z schema (this is
different from the "Z schema" discussed previously in Section 3.2.4) and 7L pattern schema(see
Section 3.2.6.3) respectively. Each of the "schemas" is a "metamodel" of corresponding
formalism expressed in, and which conforms to, XMI'* (XML Metadata Interchange).

XMI is an interchange format for metadata that is defined in terms of the Meta Object Facility
(MOF) standard [OMGI15]. It is a widely used XML interchange format that defines an XML-
based representation of objects in terms of elements and attributes, a standard mechanism to link
objects within the same file or across files, a validation scheme for XMI documents using XML
schemas, and Object identity, which allows objects to be referenced from other objects in terms
of IDs and UUIDs. According to the OMG™, every instance of the MOF is required to have a
corresponding XMI document to perform some XML validation on the data serialized in the
XML document. This requirement is implemented in the Eclipse-based EMF [SMB+08] and its
associated projects in the Eclipse Modeling Projects (EMP) [Gro09] where an every model or
metamodel specified has a corresponding XMI document generated for it. In fact, EMF-based
models are permanently stored in XMI.

This group serves as the middleware between the model ware elements and the executable
models in the grammar ware group. From MDA viewpoint, the models (m; elements) in this
group can be considered to be Methodology-Specific Models (MSM) when examined relative to
the models in the model ware group; i.e., they are systematically derived for specific MDSE
methodologies from the HiLLS model, which is considerably generic rather than being tied to
any of the methodologies. In contrast, when examined, from MDA viewpoint also, relative to the
executable models in the grammar ware group, each of DEVS model, Enactment model and Z
specification plays the role of a Platform-Independent Model (PIM) while Behavioral
requirements plays the role of a Computational-Independent Model (CIM) since it does not
represent any computation activity. This is why we said, in the beginning of this section, that the
architecture of the proposed framework is a cascade of two MDA processes. DEVS model,
Enactment model and Z specification are PIMs because system data they contain are represented
in XMI format, which is not directly tied to any programming implementation platform.

4.4.3 Grammar ware Artifacts in SimStudio I1

The grammar ware elements in the architecture are classified into two: Executable models and
transformation models.

" http://www.omg.org/spec/XMI/; last accessed 3rd September, 2016
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4.4.3.1 Executable models

The m; elements in this group are constitute another set of models of the SUS in the form of
platform-specific executable program codes, based on some programming languages (PL) such
as Java, C++, C#, Python, etc., to realize the corresponding MDSE methodologies. As you will
see in the next sub subsection, they should be synthesized from the m; elements in the document
ware group by model transformation processes.

A model in the document ware group may be used to drive the synthesis of executable models in
multiple implementation platforms depending on the available tools. For instance, from DEVS
model in the document ware, we should be able to generate executable models based on any
available DEVS-based simulation framework irrespective of the programming language
involved.

4.4.3.2 Transformation models

This group comprises the various artifacts that work together to effect the model transformation
processes, which engineer the transmissions of system data captured in the HiLLS model(in
model ware) through the m; elements of the document ware to the executable models in the
grammar ware.

Each m; element in this group is a specification of a model transformation process written in a
transformation language (€ relations) and which conforms to (y relations) a metamodel (of the
transformation language), which is itself conformed to the Extended Backus Naur Form (EBNF)
[Wir96].

In addition to the € and y relations, a transformation model has three more relations with other
artifacts in the framework: dd, rr and u. Recall from our previous discussion in Section 3.4.3.5
that a model transformation model is, theoretically, a mathematical function with domain and
range sets, which correspond to the languages used in writing the source and target models
respectively. In the MDE context, a language is modeled by a metamodel. Relations dd (resp. rr)
specify the model of the domain (resp. range) of a model transformation model. i.e., dd and rr
refer to the metamodels to which the source (input) and farget (output) models of a
transformation process must conform. For instance, in Figure 4.4, the dd and rr of the model
transformation modelDEVS synthesizer are HiLLS metamodel and DEVS schema respectively.
Note that model transformation model may have more than one dd and/or rr relations. An
example of this in Figure 4.4 is the Formal Analysis code generator, which has two dd relations:
dd, = Zschema and dd, = TL Pattern schema.

In contrast to all other m; elements in the framework, which are representations of the SUS, the
transformation models are representations of model transformation processes. i.e., the systems
they represent are the actual in-memory runtime processes that generate the target models from
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the source models. Hence, the u relations of the model transformation models in Figure 4.4 point
to the in-memory transformation instances, which are sandwiched between the grammar ware
and the document ware groups. Thus, we can describe these processes as the being in the my
layer to complete the metaization layer of the model transformation artifacts.

A model transformation process may have one or more of each of s and ¢ relations, which point
to the source/input model (s) and target/output model(s) respectively. For instance, in Figure 4.4,
the model transformation process, DEVS gen, which is described by the DEVS model synthesizer,
has an s relation with HiLLS model and a ¢ relation with DEVS model. This implies that the
process generates DEVS model from a HiLLS model. Similarly, the model transformation process
Simulation code gen, described by the model transformation model Simulation code generator,
takes a DEV'S model as input (s relation) and produces a Simulation code as output (¢ relation).

4.5 SIMSTUDIO II PROCESS MODEL

In this section, we present a process model, which describes the workflow that may be followed
by the different users described in Figure 4.3 to achieve their respective goals given an
implementation of the framework architecture presented in the previous section. i.e., a model that
guides the prospective users on how to use an implementation of the framework to realize the
functional requirements presented earlier in Section 4.3.2.

The workflow is described by the UML activity diagram in Figure 4.5. Intuitively, an MDSE
process should start with a model editing activity; the model being edited may be a newly created
one or an existing model loaded from a repository. The case is not different with the proposed
SimStudio II; we recall that the modeling language of the framework is the HiLLS. Hence, the
user may start by creating a new HiLLS model or by loading an existing HiLLS model from the
repository (this thesis does not dig into the model selection process to choose the model to be
loaded from repository) and move to the Edit System model activity. This should be followed by
validating the edited model against the HILLS metamodel to ensure that it is well formed and
that it conforms to the language's syntax rules and constraints. The model is considered invalid if
an error is found during validation; otherwise, it is considered valid. The user can return to the
Edit System model activity to correct the errors in the case of "validation errors" or proceed to the
next activity.

Given a syntactically correct HILLS model of the system under study, the next action depends on
the goal of the user; it depends on whether the user wants to do simulation, formal analysis or
enactment. We present the activities to each of the three goals in separate swim lanes named
Simulation Expert, Formal Analysis Expert and Enactment Expert as described in Figure 4.5. We
will discuss activities in each of the three swim lanes under separate headings in the rest of this
section.
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4.5.1 Formal Analysis Activity

The formal analysis workflow proposed in the SimStudio II is described in the Formal Analysis
Expert swim lane in Figure 4.5. It starts with the "Edit System Requirement" activity, which takes
the system model obtained from the previous step as input. At this stage, the user can use the
HiLLS-based notations for the TL property patterns presented in Section3.2.6.3 to model
required behavioral properties of the system. The HiLLS model produced as output from this
activity contains the system model and the requirement model.

The next activity, "Generate formal methods artifacts” is a function, which takes the HiLLS
model from the previous activity as input and generates a finite state transition system (FSTS)
and a TL specification as outputs; more details on the internal activity of the function are
provided as a sub-activity diagram in the same swim lane.

The "Run model checking" activity is a representation of a model-checking tool, which takes the
two outputs from the previous activity as inputs to perform an exhaustive exploration to verify
that FSTS satisfies the properties specified in the TL specification. The process runs to
termination if no counter examples are found in the model. A counter example, in this context, is
an example of a violation of a property in the system model.

When the "Run model checking"” activity produces a counter example, it is either there is an error
in the system model or the requirement itself; it may even be that the requirement is not realistic
and needs to the changed. In the case that the counterexample is due to an error in the system
model, the user returns to the "Edit system model” activity to effect necessary changes and
continue through the same swim lane. In the case that the counterexample is due to an error in
the requirement, the user returns to the "Edit system requirement” to correct and/or vary the
requirements. This procedure continues in iterations until all required properties are satisfied.

4.5.2 Simulation Activity

The simulation activity, described in the "Simulation Expert” swim lane starts with the "Edit
experimental frame and couple it with system model” activity. The output obtained is passed to
the "Generate DEVS model" activity to generate a platform-independent DEVS model of the
coupled system and experimental frame models, which is then fed as an input to the "Generate
platform-specific executable simulation code" activity to produce some program codes based on
a DEVS-based simulation framework writing in programming language PL.

The program codes obtained from the previous stage are executed in the "Run simulation”
activity to generate the simulation traces of the system model. The simulation traces are
compares with the system's history in the "Validate simulation traces" activity to whether the
behavior of the system model matches with that of the system under study or not. The process
terminates if they match; otherwise, there is a problem in either the system model or
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experimental frame model. The process returns to the "Edit system model” activity if the problem
is in the system model, otherwise it returns to the first activity in the swim lane. This procedure
continues in iterations until the desired reports are obtained.

4.5.3 Enactment Activity

The enactment activity is described in the "Enactment Expert" swim lane starting with the
"Generate platform independent enactment model” activity, which takes a HILLS system model
as input and produces a PIM enactment model. This is then used to generate a PSM enactment
model in the next activity to obtain the executable program codes that are executed to enact the
system under study during the "Run enactment” activity. Like in the other swim lanes, either the
process runs to termination or iteratively returns to the "Edit system model" activity to refine the
model until satisfactory behaviors are obtained.

4.6 CONCLUSION

In this chapter, we introduced the SimStudio II, an integrative MDSE framework to federate
simulation, formal analysis and enactment analysis methodologies behind a unified modeling
formalism. The chapter started with the introduction of the SimStudio project, a long-term
research agenda that gave birth to this thesis, and a previous thesis that sought to address some of
the issues identified in the initial research agenda.

Then we presented the methodology integration approach proposed in this thesis in comparison
with the state of practice. The architecture of the proposed SimStudio II architecture was
discussed in details in this chapter; we used megamodeling techniques to model the intricate
relationships between the various software engineering artifacts in the framework. Finally, we
presented a process model to guide the different users of the framework on how to use the
framework given an implementation of the proposed architecture.

Having presented the framework's architecture and the roles of its various elements, the next line
of actions is to elaborate on the different elements that have been presented in the architecture in
black box views. Of course, the proposed architecture is itself another long-term research agenda
that can hardly be fully implemented within a doctoral thesis. Nevertheless, we will present our
designs of some of the key elements of the framework in subsequent chapters of the thesis. We
have presented DEVS, a DES simulation paradigm, and some formal analysis formalisms in
Section 3.2. However, little has been said about the enactment of DES in the literature; we start
with the presentation of an evolving DEVS-based enactment framework in the next chapter
before discussing the syntax and semantics of the framework's unified formalism - HiLLS - in
subsequent chapters.
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S A DEVS-BASED ENACTMENT FRAMEWORK FOR
DISCRETE EVENT SYSTEMS

5.1 INTRODUCTION

This chapter builds on the work we reported in [AMT15] to present a DEVS-based framework
for enacting DESs. Discrete event simulation paradigms such as DEVS are very suitable for
scenario-based analysis and verification of systems' behavioral properties. The simulation
protocols execute system models using logical - rather than physical - advancements of
execution time to the supposed times of occurrences of events of interest. With the use of logical
time for the scheduling and execution of events, simulation processes can effectively forecast the
future characteristics of a system's behavior.

Usually, the expected result of a simulation process can be in the form of trajectories of events
like inputs, outputs and state transition events. The reconfigurations of state variables that lead to
state transitions are considered instantaneous computations that occur just preceding the
transitions. By courtesy of this time approximation of the real world, a simulation process can
make substantial computational savings that it can run quite many times faster than the real
world; this is considered as deliberately trading functional fidelity for scale and speed, in order to
make the simulation task tractable in a reasonable time [BDMI14]. For instance, the state-
preserving activities (i.e., which do not result into a change of state) that occur during the stay of
the system in some certain states are not of interest, and are not taken into consideration.
However, the period of time required to perform such activities (e.g., time advance in DEVS)
may be used to logically schedule the state transition event(s) that may occur at the end of the
state's sojourn time while the system is considered to have logically (but not actually) stayed in
the state for this period. Moreover, due to this time approximation, simulation processes do not
allow live interaction with the physical environment, e.g., human-in-the-loop and hardware-in-
the-loop. Thus, conventionally, all decision-making operations in a simulation process must be
encoded in the model [BLCO7].

Another computational analysis (cum implementation) methodology, which is more pronounced
in business process management (BPM) [VTWO03, JN14] than in systems engineering domain, is
enactment. In the field of BPM, enactment may be simply described as the execution of process
definitions created by a workflow [KGJ10] where a workflow is described as the complete or
partial automation of business processes during which a set of procedure rules is used to pass
information and work lists from one participant to another for necessary actions [OF07]. A more
general software engineering description of the term enactment, provided in [DF94], is the
execution or interpretation of software process definitions. According to the authors of [DF94],
an enactment mechanism may also interact with the environment (e.g., human-in-the-loop,
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software and hardware devices) to provide supports that are consistent with the process
definitions. This property of interaction with external actors is in fact another feature that
differentiates enactment from mainstream simulation mechanisms in addition to the execution of
system's functionalities in real time. Finally, in service engineering and Human-Computer
Interaction, it can be inferred from [HE07] that enactment is used to describe the playing out of
the functionalities represented by a prototype of a system. According to Holmquist [Hol05], a
prototype is described as an object that represents the functionality but not the appearance of a
finished artifact which can be used as a proof that a certain theory or concept or technology
works or otherwise.

From the above descriptions, we describe enactment, in the context of systems engineering, as
the execution of a software implementation of a system's behavior to verify its operational and
functional characteristics in real clock time. To be able to verify a system's behavior in real time,
there is need for an operational model of the system, which can be executed in a suitable
software environment [BA95]. Analysis of traces generated from such executions can give
further insights into the system's behavior as well as point out certain inconsistencies, missing
requirements, verification of timing correctness in real-time systems etc.

An appreciation of the importance of system enactment can be seen from a closely related
analysis methodology: emulation, which, according to Schiess [SchO1], is the marriage of
simulation and controls designs to achieve —irtual world” system operations. An emulation
process is one in which a part of a real system is replaced by a model so that the functional parts
of the process are carried out partly by the model and partly by some real systems. The model in
the set up is expected to demonstrate functional fidelity by replicating the real world sufficiently
faithfully that the connected equipment(s) cannot distinguish it from the real world it is standing
in for [MGr02]. It is used, majorly, for testing process or control logics in the absence of the real
facility in order to complete the logic testing in advance of the facility being built or modified
[BDM14], and for risk-free trainings of the operators of a system [MGr02]. Some fundamental
differences between simulation and emulation include [MGr02, BLC07, GRLOS]:

* While simulation allows for the observance of the evolution of the internal states of a
model in a predefined situation, emulation reproduces a system's dynamic interaction
with its environment.

= A simulation process runs in virtual time; hence, the faster it is executed, the larger the
search space it can explore in the same length of time. In contrast, an emulation process
must execute in real time to interact with a system evolving in reality.

= All events that influence a simulation process are contained within the model, and are
therefore repeatable. In contrast, absolute repeatability of the order of events is not
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possible in an emulation process due to real time execution and, most commonly, a
physically distributed computation infrastructure.

The enactment methodology we propose in this chapter shares, significantly, some philosophical
and motivational bases with the emulation methodology. It is, however, slightly different in that:

= [ts application is not specifically targeted at the domain of control systems, as is the case
for emulation; rather we intend to apply it for any suitable DES.

= An enactment process does not necessarily consist of enactment model(s) and some real
systems; rather, we could create enactment models for all components and execute
everything as a software system. In fact, at this infant stage of our research in this
direction, we are not yet considering software-hardware interfacing; though we are
interested in human-in-the loop that is limited to live interactions with the running
software through the general input devices like keyboard and mouse.

Using appropriate MDE techniques, we believe that such executable programs to enact systems'
behaviors can be synthesized from models created in some modeling environments. Our target is
to, systematically, derive enactment models from HiLLS-based models as described in the
previous chapter (see Sections 4.3 and 4.4). Nevertheless, before then, some pertinent questions
beg for answers: we must address questions such as "what formalism underlies the enactment
model? What is the operational semantics of the model or its underlying formalism? ...". The
operational semantics should precisely describe the real time execution of the enactment process.
Our answers to these queries, for the moment, will be provided in an enactment framework
proposed in the rest of this chapter.

In order to be general enough to meet the objective of accommodating a large category of DESs
as stated previously, we extend DEVS to define the underlying formalism to express enactment
models. We prefer DEVS for the same reason it is considered universal for expressing most
kinds of DESs and even, approximated models for some kinds of non-DESs as demonstrated by
Vangheluwe [Van00]. However, DEVS' operational semantics, which is a simulation protocol,
was not defined to satisfy the enactment objective of this chapter. We explore the mapping of
DEVS concepts onto the Object-Oriented (OO) observer design pattern defined by Gamma et al.
[GHJ+95] to define semantics framework for enactment. We have chosen the observer design
pattern to take benefit of its natural dialect for enacting the behavior of reactive systems and its
ease of implementation in most general-purpose programming languages. This framework
facilitates the synthesis (and specification) of operational (executable) representation of DES
models for enactment processes. Of course, the pattern has some limitations that can potentially
defeat its suitability for this purpose; we will discuss the most pertinent among them and the
measures we have taken to palliate its potential effect on the accuracy of the order of events and
computations.
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Having earlier presented a detailed description of DEVS in Chapter 3 (Section 3.2.2), we present
an extension of DEVS formalism to capture the concepts required for enactment in the next
section. In Section 5.3, we present an overview of the observer pattern and its variant, which we
have formulated for use in the proposed framework. This is followed, in Section5.4, by the
specification and implementation of the enactment framework. Section 5.55.4presents the
application of the framework to execute the enactment of the BVS running example before we
conclude the chapter in Section5.6.

5.2 DEVS-BASED ENACTMENT FORMALISM

We recall from Section 3.2.2.1 that an atomic DEVS model is defined as a mathematical
structure:

AM = < X,Y,S,Sint,é\ext,gconf,l,ta >

This definition provides abstract definitions of all constructs required to capture a DES for
enactment except the functional activities of the states. As a reminder, a functional activity is a
sequence of "state-preserving" operations that may be executed while a system is in a particular
state. A state-preserving operation, in this context, is one that does not trigger a change of state;
i.e., it does not modify any of the state variables, receive an input or produce an output. It may
however use the instantaneous values of the variables in its computations. A typical example of
an activity can be the display of caller's ID and the playing of some ringing tones when a cell
phone is in the "incoming call" state. None of the two operations leads to a change of state since,
despite their executions, the cell phone will remain in this state until the call is answered or the
maximum waiting time set by the telecoms operator elapses.

To capture this concept of functional activity, we extend the atomic DEVS specification as
follows:
AMenactment =< X; Y: S; 6int ) 6ext ) 6conf ] )1; ta, A, a >

Where A is a set of operations and a: § — {act;|act; C A};>p is a mapping of each state of the
system to an ordered subset (possibly empty) of A, i.e., given s €S and act €A, a:s+
actspecifies that the ordered operations in set act will be executed whenever the system is in
state s. The definitions of all other elements of atomic and coupled DEVS structures are
preserved.

5.3 OVERVIEW OF OBJECT-ORIENTED DESIGN PATTERNS

Design patterns in OO modeling are documented solutions to some recurring problems that can
be reused to build solutions to similar problems. In this section, we present the overviews of two
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design patterns, from the popular Gang of four book [GHJ+95], which will used to define the
metamodel of our enactment framework.

5.3.1 Observer Design Pattern

The observer pattern is a behavioral pattern for establishing relationships between objects at
runtime such that changes in the state of an object (referred to as subject) trigger some actions in
another (the observer). It is defined by the Gang of Four as a pattern that "defines a one-to-many
dependency between objects so that when one object changes state, all its dependents are
notified and updated automatically."

| forAll (obs: observers){

I

-3 '

Subject - obs.update(self) :

~observers: List<Observer> | 3 S [
+notifyObservers(arg: Subject)® — =~ s cinterfacen
+hasChanged() : bool notifies Observer

+setChanged() +Synchronized update(arg: Subject)
T !
ConcreteSubject ConcreteObserver
+update()

Figure 5.10bserver design pattern

Figure 5.1 describes the observer pattern. The basic idea is that Subject maintains a list of
references (see attribute observers) to some independent objects called the Observers. Whenever
there is a change of state in the subject, the operation notifyObservers() is executed, which notify
all observers of Subject of its state transition the invocation of the update method of each of
them. The notifications are done in a loop according to the small algorithm on the northeast
region of Figure 5.1. Each observer (i.e., ConcreteObserver) must implement its update method
to define the corresponding actions to be taken whenever a notification is received. This pattern
is widely used in Graphical User Interface (GUI) programming and it provides the underlying
principle for the Model-View-Controller (MVC) architecture [KP88] so that all views are
automatically updated whenever there is a change of state in the model.

5.3.2 Command Design Pattern

The command design pattern is described in Figure5.2. A command in this context means a
method call. The pattern provides a methodology to encapsulate a command in an object and
issue it (the command) in such a way that the requested operation and the requesting object do
not have to know each other.
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FigureS.2 Command design pattern

Client is the requesting object while the method action() of Receiver is the requested operation.
Client creates the request command and delegates its execution to the /nvoker, which manages a
queue of command threads. The invoker identifies the receiver of the request carried by each
command in its queue and then executes the command. When its "execute()" method is invoked,
the command delivers its request by invoking the appropriate action() method. This pattern
provides a methodology for asynchronous (i.e., non-blocking) method call, sharing of a method
call among multiple objects, saving method calls in a queue so that they are executed when the
necessary conditions have been satisfied, etc. It has also been used to decouple clients from
server methods in Asynchronous Remote Method Invocation (ARMI) [RWB97].

5.3.3 Observer Pattern with Asynchronous Notifications for DES Enactment

The observer pattern offers a simple software design method to describe the exchange of
messages and reactions to state transitions and reception of messages in reactive systems. For
instance, in a network of interconnected system components, a component can influence some
peer components when its state changes by notifying its influencee(s) with appropriate messages.
An influenced component can also react to a received message/notification in its update()
method.

We can observe, however, from the notification loop described in Figure 5.1 that the notification
of each observer is done via a synchronous invocation of its update() method. This characteristic
has two important effects that threaten the suitability of the pattern for the implementation of
DESs:

1. When a subject notifies an observer, the processes in the former will be put on hold until
the later executes its update() method and returns the control. It will even be more
complicated if the observer is, itself, a subject to some other observers. This is a clear
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contradiction of the behavior of a DES; the exchanges of messages between components
of a DES occur instantaneously and a sender does not have to keep track of how and
when the message sent is processed. Thus, we must find a way to decouple the subject
from the observer by doing the notifications asynchronously.

ii.  When a subject has multiple observers, they will be notified sequentially, in a loop, in a
non-determinate order. If we use this to implement a DES component sending a message
to multiple destinations, the effect will be that, the message will not be received at some
destinations until after some destinations have received and process it. The notifications
of multiple observers must be done concurrently in order to conform to the through
behavior of a DES.

We try to address these problems by using the command pattern to decouple the subject from its
observer(s) during notifications. Figure 5.3 shows our attempt to introduce an asynchronous
message passing between the subject and its observer(s) to make it more suitable for enacting
systems' behaviors in real time. By comparing with the description of the command pattern in
Figure5.2above, Subject, Observer, Notifier, Notification and ConcreteNotification are
equivalent to Client, Receiver, Invoker, Command and ConcreteCommand respectively.

Motifier winterfaces
e Notification
+axecule|)
Subject ﬁ?_‘.
“observers: List<Observer> cinstontiatosss ConcreteNotification
Tnsiarnnalies
+notifyObservers(arg: Subject) ————————~—~~"~"~"—~"~>7—7 B _
+hasChanged() : bool T T T T —S+rexecute() : void
+getChangedy | @ === A
: k obs
1 obs.update(self) ! ey s
|
li_________' Observer
+Synchronized update(arg: Subject)
1
ConcreteSubject ConcreteObserver

+update()

Figure 5.3 Observer design pattern with asynchronous notifications

Therefore, Subject will delegate the notifications of observers to Notifier and continue its
activities. Since the subject does not expect any return value from these method calls, it is easy to
use the "fire-and-forget" approach to solve problem (i). Notifier has a pool of threads to which
the requests are assigned on arrival; hence, it does not create threads too often, thereby
minimizing the overhead that may be incurred due to thread creation. In case of multiple
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observers to be notified of a change of sate, each notification request is assigned to a thread in
the pool managed by the Notifier. With concurrent executions of the different notification
threads, problem (ii) above is extremely mitigated if not completely solved.

5.4 ENACTMENT FRAMEWORK FOR DES

The methodology we propose is to use the dialect of observer design pattern to express DEVS-
based concepts towards building a software framework for the enactment of DES. In this section
we present the metamodel and enactment protocol of the framework and a Java-based
implementation.

5.4.1 Metamodel of the Framework

We present the metamodel of the framework in Figure 5.4.In order not to inherit the limitations
of the conventional observer pattern, the enactment framework reuses the observer pattern with
asynchronous notifications presented earlier in Figure 5.3; this is represented by the classes
Subject, Observer, Notifier, Notification and ConcreteNotification,on top of Figure 5.4, and the
relationships between them.

The elements of the framework itself are described within the dashed box; the classes
ConcreteAtomicSystem and ConcreteCoupledSystem at the bottom of the figure represent the
enactment models of real systems that inherit the framework.

By virtue of their inheritance relationships with the AbstractSystem, AbstractAtomicSystem and
AbstractCoupledSystem implement the Observer interface. Hence, both of them can be
influenced by notifications from the objects they observe.

The generic class Port describes both input and output ports; the generic parameter T models the
type of events admissible in the port, and must be provided at instantiation. Due to its
relationships with Subject and Observer, a port can be an observer while it is itself an observable
entity. Conceptually, the subject-observer relation can be used to express any kind of DEVS
coupling. Recall that a DEVS coupling is a connection between two I/O ports in a coupled
DEVS model for the purpose of exchange of messages/events so that whenever a message is
placed on the source port, it is immediately transmitted to the target port. We express this in the
enactment framework by registering the target port in the observers list of the source port so that
whenever its value changes, it automatically notifies all target ports of all couplings in which it is
the source with the new value. By the virtue of being a subject and an observer at the same time,
a port may be involved in multiple couplings and play the role of source in some of the couplings
while playing the role of target in the others.
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Figure 5.4 Metamodel of a DEV-based enactment framework for DES
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An AbstractAtomicSystem is registered in the observers list of all its input ports; thus, the
reception of an input event on an input port to naturally triggers an external state transition in the
system that owns the port. i.e., an input port will automatically notify the host system whenever
it receives an event. An AbstractSystem has a clock timer, which references the clock of the
machine upon which it executes to manage the time advances of its states and the execution of
activities. The Timer is an observable entity by virtue of its inheritance of the Subject class and
only observer is its host system. Upon assumption of a new state, the system sets its clock to
monitor the time advance of the state; once the time advance elapses, the clock sets its timedOut
attribute to #rue and automatically sends notification to the system, thereby triggering an internal
state transition. If the clock's notification coincides with that from an input port, a confluent state
transition is triggered instead.

All methods in the AtomicSystem and CoupledSystem classes are abstract; therefore, the concrete
atomic and coupled system classes using the framework must implement them to provide the
specific elements of the system being modeled. They can also declare the necessary state
variables (stateVariables) and user-defined special-purpose operations (utilityOperations)
through a subset of the UML class framework described in the dotted box at the bottom of Figure
5.4above. Utility operations may be called from the framework-defined operations to do some
computations. The wupdate method of the AbstractAtomicSystem class implements the
framework's enactment protocol, which will be provided in the next sub-section. The
dolnternalTransition, doExternalTransition and doConfluentTransition allow the user to
describe the internal, external and confluent transition behaviors respectively. Similarly,
setTimeAdvance and setOutputEvents methods must be implemented to provide the time advance
and output functions respectively. Method setActivities can be used to define and associate
activities to each state.

The modeler can specify a coupling by simply providing the names of the source and target ports
to the addCoupling() method. The communications between the ports has been implemented in
the framework based on their subject-observer relations.

5.4.2 Enactment Protocol

A state transition event occurs in an AtomicSystem whenever its update()method is invoked; this
is typically when it receives notifications from the subject(s) it observes. As a reminder, an
AtomicSystem is, by default, an observer of its clock and all its input ports; henceforth, we refer
to the notifications received from the two as clockMessage and portMessage respectively.
Technically, a clockMessage is received when the clock of the particular model has timed out
(i.e., time advance of current state has elapsed) while a portMessage is transmitted from an input
port upon the receipt of an external trigger. Since the notifications are independent, it is possible
to receive multiple messages concurrently, which may consist of only portMessages (from
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different input ports) or a mixture of a clockMessage and one or more portMessages. Upon

receipt, portMessages are "momentarily" stored in a global variable messageBag (see Figure 5.4,

messageBag is an attribute of AbstractAtomicSystem); then the system's reaction will depend on
the content of the bag, and whether the clock's timedOut flag is true or false.

Figure 5.5 presents the enactment protocol of the atomic system, which is based on the receipt
of, and reactions to port and clock messages. Recall that every enactment model is an "observer"
(i.e., implements the Observer interface); thus such reactions are specified in its "update"

method. Function update takes an argument msg, which is a Subject (line 1); recall from our

descriptions of the observer pattern that the subject passes itself as an argument in the

notifications to its observers.

1: function UPDATE(Subject msg) > a message msg is received
2:  while semLock_waitingQueue # ¢ do > loop to treat all concurrent notifications
3: SemaphoreW ait(semLock, 1); & one notification thread has access at a time
4: if msg = portMessage then
5: messageBag < messageBag U {msg}: > add only portMessages to message bag
6: end if
T: SemaphoreSignal All(semLock); > release lock and notify all waiting threads
8:  end while > all concurrent messages have been saved, next is system’s reaction
9:  if messageBag = ¢ A clock.hasTimedOut then > only a clockMessage was received
10: doOutputOperation); > send output events if any
11: doInernalTransition(); > fire internal state transition operation
122 end if
13:  if messageBag # ¢ A —clock.hasTimedOut then > only portMessage(s) received
14: doEzxternalTransition(message Bag); > fire external state transition operation
15 end if
16:  if messageBag # ¢ A clock.hasTimedOut then > clockMessage & portMessage(s) received
17: doOutputOperation); > send output events if any
18: doCon fluentTransition(messageBag); > fire confluent state transition operation
19:  end if
20:  flush messageBag: > clear the content of message bag
21:  setTimeAdvance(); > compute timeAdance of new state & set clock timer
22:  runActivity(); > start execution of state’s activity if any

23: end function

Figure 5.5 Enactment protocol for atomic system models
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Since multiple messages may be received simultaneously in the form of concurrent notifications,
we need to enforce atomic access to the critical section of the update operation to ensure
consistency of the shared variable, messageBag; this is realized with the acquisition of
semaphore lock, semLock, in line 3 and its release in line 7.

In order to consider all concurrent messages in the system's reaction, they are all momentarily
stored in a loop (see lines 2-8); portMessages are momentarily collected into the messageBag
while the receipt of a clockMessage is remembered as long as the timedOut variable of the clock
remains true. It is set to true whenever a scheduled time advance elapses and set to false
whenever a new state is assumed and the new time advance scheduled. The loop in lines 2-8
iterates until no more messages are waiting to be recorded (i.e., to acquire the semaphore's lock).

Once the loop terminates, the system's state transition behavior follows from the content(s) of
messageBagand the state of the clock's fimedOut variable (inferred from the value returned by
the function clock.hasTimedOut()) as follows:

1.  When messageBag is empty and timedOut is true, lines 9-12, it implies that the
notification is due to the expiration of the timeAdvance of the current state. Hence the
system sends outputs (if any) to the appropriate output port(s) and immediately fires the
internal state transition operation.

ii.  When messageBag is not empty and timedOut is false, lines 13-15, this implies that the
notification is due to the reception of a message on an(some) input port(s), which triggers
an external state transition event in the system.

iii.  When messageBag is not empty and timedOut is true,(lines 16-19), it implies that the
expiration of the timeAdvance of the current state coincides with the arrival of a (some)
message(s) at an (some) input port(s). The system reacts to this phenomenon by sending
outputs (if any) on the appropriate output port(s) and follows it immediately with the
confluent state transition operation.

Once the appropriate path of behavior has been chosen, the notification bag is cleared (line 20)in
preparation for subsequent notifications. A new value of time advance is set (line 21) based on
the specification of the new state. Technically, this is done by setting the clock to fire a
notification on the expiration of the given time period; the clock resets its timedOut variable to
false every time it sets a timer for new time advance. Finally, the activity execution is activated
(line 23) based on the new state.

The enactment protocol for the coupled model is implicit in the coupling of appropriate ports
based on the subject-observer relation of the observer pattern. Exchanges of messages between
ports are automatically effected by courtesy of the subjects sending notifications to their
observers.
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5.4.3 An Implementation of the Enactment Framework

We have implemented the framework's metamodel and enactment protocol in Java. The UML
package diagram in Figure 5.6 presents an overview of the implementation. The elements of the
framework are structured into three packages: enactment, enhancedObserverPattern and
designException. The framework takes benefit of some pre-defined infrastructure in Java,
particularly the Exception class and Rumnnable interface in the java.lang package. As shown
inFigure 5.6, java.lang. Exception is sub-classed to define some domain-specific exceptions used
to signal violations of design constraints in the enactment model specified by the framework's
user. Similarly, some elements of enactment and enhancedObserverPattern packages subclass
java.lang. Runnable to provide the bases for the implementation of some concurrent and/or
asynchronous operations in the enactment protocol. The elements of package enactment are
presented in the rest of this subsection; we invite an interested reader to check Appendix A for
the implementations of packages designException and enhancedObserverPattern.

To use the framework, we need to subclass AbstractAtomicSystem and AbstractCoupledSystem in
package enactment and provide problem-specific implementations of their abstract methods. We
will demonstrate this in the next section by using the framework to enact the running example in
this thesis.

designExceptions |

NoSuchPortExistsException| InvalidCoupling Exception

java.lang
5 Exception

SystemDesignException

l;‘ «winterface»
Runnable

Al

i

InvalidTimeAdvanceException| |DuplicateldException —
+runf) ;- void
Zs Zs ZaS

] T T

1 1 I

1 1 1

P T T T T T T T T T T T T T T T ! : i
enactment | e 1 I

h
] H !
_ [ Clock \
Activity | - ! |
i
1
AbstractSysterm | — — — | I
. H enhancedObserverPattern | !
inputs | '
S B — 4= «interface» Notifier
T T T T T Observer
AbstractAtomicSystem Port | T “[>+updafe()
outputs ort
= EnhancedSubject
AbstractCoupledSystent
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Figure 5.6Package diagram for a Java implementation of the enactment framework
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5.4.3.1 Class Port|T]

Figure 5.7presents the Java implementation of the generic class Port. A port can be used either as
input or as output as defined by the enumeration PortDesignation in lines 30-33. As port (either
input or output) can listen to some observable entities and, itself, be listened to for state changes.

As specified in its setValue() method on line 19, whenever a port receives a new value, it
automatically transmits the message to all its observers by invoking the noftifyObservers()
method. The details of the asynchronous notification of the observers are provided in the
implementation of class EnhancedSubject.

package enactment;
import enhancedObserverPattern.*;

e e ok e ok o o oo e s o o o o o o o o o ook o ok o ol o oo o o ok of o o o o ok o o ok ok ok ok o ook ok oo o o ok o o ok o ok ok o oo o ke e o o ok o

Port. java

A generic template for creating ports; the generic parameter defines the type of
objects that may be transmitted in it. Being an observable observer, a port may
influence or be influenced by another port. it may also influence its system.
Bauthor H. 0. ALTYU

ok o o ok ook ok ok o ok ok oo ok ok o ok o o o o o o o o o ok o o ook o ok o ok o ook s ok ok ok ok ok ok ok ok ok o ok ok o ok o ok o ok o ok o o ok ok ok ok ke ke

public class Port<T> extends EnhancedSubject implements Dbserver{

private T walue;
private Btring name;
private PortDesignation designation;
private AbstractSystem owner;
public Port (String name, PortDesignation designation){
this.name = name; this.designation = designation;
s
public T getValue()}{ return value;}
public void setValue(T arg){ value = arg; setChanged(); notifyDObservers();}
@0verride
public veid update(EnhancedSubject sub) {
setValue (((Port<T>) sub).getValue());
+
public PortDesignation getPortDesignation (){return designation;}
public void setOwner(AbstractS3ystem sys){owner = sys;}
public AbstractSystem getOwner(){return owner;}
public String getlName(){return name;}

public enum PortDesignation {

AS_INPUT,
AS_DUTPUT

Figure 5.7Java implementation of generic class Port
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5.4.3.2 Class AbstractSystem

package enactment;

import enhancedObserverPattern.Observer;
import java.util.Arraylist;

import enactment.designExceptions.#;

P L L L e L ]

*

*

*

*

*

AbstractSystem. java

AbstractS8ystem is the base class for modelling systems for enactment

It describes some general system’s structural and behavioural properties
Bauthor H. 0. ALIYU

R e R e e e L Ly

public abstract class AbstractSystem implements Observerd
private ArrayList<Port>» inputPorts; //input interface, a set of input ports
private ArrayList<Port> outputPorts;//output interface, a set of output ports
private String name; //models system’s ID
private AbstractCoupledSystem container;
public AbstractSystem(String name){

g
/

this.name = name;

inputPorts = new ArrayList<Port>();
outputPorts = new ArraylList<Port>();
validateInputOutputPort=(});

**flbatract methods to be implemented by sub-classes. registerInputOutputPorts() must
be implemented in a concrete atomic or coupled model to register the system’s
input and output ports by calling methods addInputPort(String name, T type) and
addDutputPort (String name, T type) respectively=/

protected abstract void registerInputDutputPorts() throws DuplicateldException;
protected abstract void init(); //to initialize the model for enactment
private void walidateInputOutputPorts(){

g
/

P

+
/

try {
registerInputOutputPorta();
} catch (DuplicateIdException e){e.printStackTrace(]);}

*## @throws DuplicateldException when two input portes are identicals*/
rotected final <T> void addInputPort(String name) throws DuplicateIldExceptiond
if (portExists(inputPorts, name))
throw new DuplicateldException("Duplicate input port: '"+name+"’'");
Port<T> newPort = new Port<T>{(name, PortDesignation.AS_TINPUT);
newPort.add0bserver (this);//a system is, by default, an observer of its ’input’ ports
newPort.setOwner(this); // a port ie =olely owned by one and only one system
inputPorts.add(newPort);//add port to the input interface

**@throws DuplicateldException when two output porte are identicals*/

protected final <T> void addDutputPort(String name) throws DuplicateIdException{

i

if (portExists(outputPorts, name))

throw new DuplicateldException("Duplicate cutput port: *"+name+"’'"};
Port<T> newPort = new Port<T>{(name, PortDesignation.AS_OUTFUT);
newPort.setOwner (this);
outputPorte.add(newPort);
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/**@throws NoSuchPortExistsException when the requested port is unknown to the system*/
public <T> Port<T> getInputPort(String name) throws NoSuchPortExistsException {
if (!portExists(inputPorts, namel)
throw new NoSuchPortExistsException("Input port® "+name+"’' does not exist");
Port<T> requiredPort = null;
for (Port<T> p:inputPorts)
if (p.getName().equals(name})
requiredPort=p;
return requiredPort;
+
/+*@throws NoSuchPortExistsException when the requested port is unknown to the system#/
public <T> Port<T> getOutputPort(String name) throws NoSuchPortExistsException {
if (!portExists(ocutputPorts, name))
throw new NoSuchPortExistsException("Output port’ "+name+"’ does not exist");
Port<T> requiredPort = null;
for (Port<T> p:outputPorts)
if (p.getName().equals(name)) requiredPort=p;
return requiredPort;
}
public ArraylList<Port> getInputInterface(){ return inputPorts;}
public ArraylList<Port> getOutputInterface(){ return outputPorts;}
protected boolean portExists(ArrayList<Port> portList, String name)d{
for(Port p:portlist)// checks whether there is a port registered with the given name
if (p.getName()}==name) return true;
return false;
T
public String getName (){return name;}
public AbstractCoupledSystem getContainer(){return container;}
public veid setContainer(AbstractCoupledSystem cont){container = cont;}

Figure 5.8 Java implementation of class AbstractSystem

The Java implementation of class AbstractSystem is presented in Figure 5.8. It implements
structural properties that are common to both atomic and coupled systems. These are operations
to register and validate input/output ports and setting a reference to the system's container if any.
Note that upon the creation of an input port, lines 30-38, the system that owns it is immediately
added to its list of observers. This is to ensure that the system is automatically notified every
time the port receives a new value.

5.4.3.3 Class Clock

Figure 5.9below presents our Java implementation of class Clock. It implements interface
Runnable so that its operations can be managed by process that starts and stops it when
necessary. It also extends class EnhancedSubject so that it can be monitored, by some entities,
for changes in its state. As specified in lines 16-19, immediately a system creates a clock, the
former (referred to as user in lines 16 and 18) is registered as the sole observer of the latter so
that the former can automatically react to changes of state in the latter.

The abstract method run() inherited from interface Runnable is implemented in lines 21-28; the
method is invoked every time user assumes a new state. On invocation, the clock runs as a
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thread, which is scheduled to "sleep" for a physical period equal to the time advance of the
current state of user. Upon wake up from sleep, clock immediately notifies user to take necessary
action(s). user may also interrupt and shutdown the sleeping clock thread before its scheduled
wake up time; technically, this interruption occurs just before an external state transition in user.

package enactment;
2 import enhancedObserverPattern.EnhancedSubject;
e e ok ek o ook e ke o e ook e ok o o e o ke o oo e ok o o o o o o o e o o o o o o o o o o o e o o o o o ok ok o ok sk R R Rk ok R R ok
* Clock. java
This class manages the timer that monitors the time advance of every state the
system assumes based on the real clock of the machine on which it is executed.
By implementing the Runnable interface, it can be executed concurrently with the
system. As an EnhancedSubject, its only observer is the system that owns and
manages it. It sets a thread to sleep for a period equal to the time advance of
the current state and notifies the system (its observer) on wake up.
@Bauthor H. 0. ALIYU
a5 o ok 3 of ok ok e 3 o ok e of 3 ok ok ok ok ok o ok ok 3 ok ok 3 ok 3 ok ok o of o 3 ok o e ok sk ok o ok o 3 ok e ok 3 ok ok 3 of ok 3 o ok o ok 3 ok ok 3 ok ok o ok of o ok o sk ok ok ok ok ok ok ok
public class Clock extends EnhancedSubject implements Runnable {
private boolean timedOut; //it is true when current time advance has elapsed.

* % * * * #F K

private long period; //holds the time advance of system’s current state
public Clock(AbstractSystem user) {
timedOut =false;
this.addObserver (user) ;
+
_ @0verride
a1 public void run() {
o try {
23 Thread.sleep(period); //sleep for a periocd equal to the current time advance.
2 setTimedOut(); //set timer’s ’timed0ut’ wvariable to true on wake up.
2 setChangad(); //as a subject, set your do setChange() to indicate state change
2 notifyObservers{); //notify the system that time advance has elapsed
a7 } catch (InterruptedException e) {}//don’t complain when interupted
28 +

public void setTimedOut () { timedOut = true;}
1 public veid unsetTimedOut (){ timedOut =false;}
12 public boolean hasTimedOut(){ return timedOut;}
public veoid setPeried(long t){ perioed = t;}

Figure 5.9 A Java implementation of Clock class

5.4.3.4 Class AbstractAtomicSystem

Figure 5.10 below shows the implementation of class AbstractAtomicSystem. Upon creation
(lines 27-27), an atomic system class creates a list of port references (messageBag) for
momentary storage of "portMessages" during excitations, a Clock object (clock) to monitor the
time advances of states as they evolve and a semaphore lock (semLock) to maintain the integrity
of the contents of messageBag when multiple messages are received concurrently. When
initialized (lines 28-31), the system initializes the state variables and invokes method
doTransition() to assume the initial state. initializeStateVariables() is an abstract method so that
the user of the framework can provide problem-specific implementations for each system.
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Recall that the system is, by default, an observer of all its input ports and the sole observer of its
clock and that its behavioral protocol is based on its reactions to automated notifications from
these sets of subjects. This behavioral protocol is implemented in the method update() (lines 35-
45) inherited from interface Observer via class AbstractSystem. Concurrent notification
messages are first examined in a loop (lines 37-41) while all portMessages among them are
stored in messageBag before invoking method doTransition() to react as described in the
enactment protocol described in Section 5.4.2. doTransition() (lines 47-70) invokes methods
doOutputOperation(), dolnternalTranstion(), doExternalTranstion(), doConfluentTranstion()
and computeTimeAdvance() when appropriate, all of which are abstract methods (lines 95-101)
that require problem-specific implementations by the user of the framework. Immediately a state
transition is complete, an asynchronous process is provided to run the activities of the new state
(lines 31-32). Class Activity is implemented as an inner class in this class (see lines 103-110);
when its run() method is executed, it runs the interruptible activities of the current state by
invoking method runActivities() (line 108), which is also an abstract method (see line 100) to
which the framework's user must provide a problem-specific implementation.

package enactment;
import java.util.Arraylist;
import java.util.concurrent.Semaphore;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
import emnhancedibserverPattern.EnhancedSubject;
import enactment.designExceptions.*;
.,-"tt--****‘kt--*****tt--****‘kt---**1:1‘**--***\F‘ktt--**1:1‘**--**1‘1‘1‘**--****tt--*****tt--****tt-
*= AbstractAtomicSystem. java
= This class implements the enactment protocol of an atomic system.
= A concrete atomic class must extend this class and implement its abstract methods.
= @author H. 0. ALIYU
B o o e o A o R A 0 o o 0 o R o T 0 o 0 S R G S oo e o 0 o e o o o ke
public abstract class AbstractAtomicSystem extends AbstractSystem {
private ArrayList<Port<?>> messageBag;.//to store port messages temporarily
private Clock clock; [/ the clock that schedules and monitors time advances of states
private long timeAdvance; //a variable to hold the instantaneous time advance values
private Semaphore semLock; //a lock to enforce atomic write access to messageBag
private long startTime;// a wvariable te document when the system enters a state
private ExecutorService activityProcess;//a thread to run activities
private ExecutorService timeKeeper; //a thread to execute the clock timer when needed
public AbstractAtomicSystem{String name) o
super {namea) ;
messageBag = new ArrayList<Port<?>>();
clock = new Clock(this);
semLock = new Semaphore(l, true);//fatomic access with fairmess to waiting threads
T
protected woid init{){
initializeStateVariable=s();

doTransition();

activityProcess = Executors.newCachedThreadPool();

activityProcess.exacute(new Activity());//execute the activities for new state
}
/*#*update method implements the enactment protocel of an atomic system.=/
@0verride

public void update(EnhancedSubject subject)d{
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¥

do { //concurrent messages are momentarily registered in messageBag before action
semLock.tryhcquire();//ensure atomic access to the critical section
{if (subject instancecf Port) messageBag.add((Port<?>) subject);}
semlLock.releasel);
}while (semLock.has(ueuedThreads(}};//loocp terminates when no thread is waiting
doTransition(); //fire the appropriate state transition cperation
activityProcess = Executors.newCachedThreadPool();
activityProcess.execute (new Activity({)});//execute the activities for new state

f**fire a state transition operation based on the state of messageBag and the clock#/
private void doTramsition() {

¥

if (clock.hasTimedOut() &% messageBag.isEmpty()){ //only clock message received
dolutputOperaticon();
doInternalTranssition() ;

i

else if (clock.hasTimedOut() && !'messageBag.isEmpty()}){//clock and port meszages
doOutputOperation();
doConfluentTransition{messageBag) ;
flushMessageBag(); //clear the content of messageBag

}

else if (lclock.hasTimedOut{} k& 'messageBag.isEmpty({)}){//port message(s) received
interruptClock() ; ffstop the clock timer
long eTime = System.currentTimeMillis()-startTime;//time spent in current state
doExternalTransition{messageBag, eTime);
flushMes=ageBag() ;

}else { /#The system should never be in this situatiom =/}

try L
setTimeAdvance (computeTimeAdvance()); //compute time advance for new state

} catch (InvalidTimeldvanceException e){ //time advance must be non-negative
e.printStackTrace(};

}

startClock{getCurrentTimeAdvance(}}; //start the clock teo monitor the time advance

startTime = System.currentTimeMillis();//time stamp of the beginning of the new state

public long getCurrentTimeAdvance(}{ return timeAdvance;}
protected final void setTimeAdvance{long duration) throws InvalidTimeAdvanceException{

T

if {(duratiom < Q)
throw new InvalidTimeAdvanceException{"Negative time advance in "+ this.getName());
timeAdvance =duration;

private void flushMessageBag(){ messageBag.clear();}
f+%* This method handles asynchronous delivery of an output event to an cutput port#/
protected final woid sendMessage(String portlddress, Object message)q{

T

ExecutorService transporter = Executors.newCachedThreadPool () ;
PostMaster postMaster = new PostMaster(portAddress, message);
transporter.execute (postMaster) ;

transporter.shutdown() ;

S#*%* start the clock to monitor time advance duration => timefAdvance of current states/
public woid startClock(long duration){

¥

clock. unsetTimedOut{); //reset the timedOut flag to false
clock.setPericd (duration) ;

timeKeeper = Executors.newCachedThreadPool ()} ;
timaKeeper.axecute(clock);

S#*% This method is invoked just before an external transition to stop the clock*/
public woid interruptClock{){if(!timeKeeper.isTerminated()}timeKeeper.shutdownNow();}
S**The following abstract methods reguire problem—-specific implementations=/
protected abstract long computeTimelAdvancel();

protected abstract woid doInternalTranssitiom();

protected abstract void doExternalTransition{ArrayList<Port<7>> eventBag, long

elapsedTime)l ;

protected abstract void doConfluentTransition(Arraylist<Port<?>> eventBag);
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protected abstract woid dolutputOperation();
protected abstract void runfictivities();
protected abstract woid initializeStateVariables();
S#*The runnable inner class Activity executes the state activitiess/
private class Activity implements Runnable {
public Activity() {
¥
A0verride
public woid run() {
runfictivities{);
¥
¥
J/#**The runnable inner class PostMaster asynchronously puts messages on output ports )
private class FostMaster implements Runnabled{
String address; /) id of the port on which output is sent
Object message; 7/ the value to be sent
public <T> PostMaster(String address, T messageld{
this.address = address; thlis.message = message;
¥
Alverride
public woid run() o
try 1
getlutputPort{address) .setValue (message) ;
¥ catch (NoSuchPortExistsException el)}{e.printStackTrace();}

Figure 5.10 A Java implementation of class AbstractAtomicSystem

5.4.3.5 Class AbstractCoupledSystem

1 package enactment;
2 dmport enactment.designExceptions.#;
import enhancedObserverFPattern.EnhancedSubject;
import java.util.ArrayList;
g ook ok o o ol o o o o Gk o R ok o o o o 0 o o o ok 80 ook o o o o 0 ok o o 0 o 8 o o o o 6 0 o o o 8 o 8 o o o o 0 o o o o o

e

® % ¥ ¥ ¥

&

AbstractCoupledSystem. java

This class implements the enactment protocol of a coupled system. It provides the
infrastructure to specify and wvalidate the components of a composite system and their
coupling relationships. Every concrete coupled system model must extend this class

and provide the problem—-specific implementations of its two abstract methods

@Qauthor H. 0. ALIYU

e ok o e o o e o e o oo o o o o o e e o o o e e o o e o o e o e o oo e o e o o o o o o o o e o o o o o o o e e o ok b g e

public abstract class AbstractCoupledSystem extends AbstractSystem {
private Arraylist<AbstractSystem> components;
E public AbstractCoupledSystem(String name) |

super (name) ;
components = new ArraylList<AbstractSystem>();

}

@0verride
public void init(){

validateComponents()};//ensures that there are noc duplicate component identifiers
validatePortCouplings();//ensure that all couplings satisfy the coupling constraints
for (AbstractSystem comp: components) comp.init();//initiali=ze all components

t

S**Uger must implement the following twoe abstract metheds. every statement in

registerComponents() uses addComponent(AbstractSystem sys) to register a component
of the present system while each statement in registerPortCouplings() uses one of
methods connectIC, connectEIC and connectEOC to specify couplings#®/

2 protected abstract veid registerComponents()} throws DuplicateIdException;
27 protected abstract woild registerPortCouplings() throws InvalidCouplingException,

NoSuchPortExistsException;
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S*%* addComponent (AbstractSystem sys) checks to ensure that *sys’ is not already a
component of the present system before adding it to the list of components.=/
protected void addComponent{AbstractSystem sys) throws DuplicateldExceptiond
if (this.getComponents().contains(sys)) throw new DuplicateldException{"Duplicate
component identifier: "+ ays.getName()+" in "+ this.getName());
components.add(sys);
sys.setContainer(this);
T
S+*[t executes all the instances of addComponent(AbstractSystem sys) specified in
registerComponents() & report any duplicate id found=/
protected void walidateComponents({l}{
try 1 registerComponents();
} catch (DuplicateldException e){e.printStackTrace();}
T
f+* validatePortCouplings() executes all the instances of connectEIC, connectEOC and
connectIC specified in registerPortCouplings() by the user and reports any
vioclation of coupling constraints found#*/
private void Ualidat&PortCoupliugs(){
try {
registerPortCouplings{) ;
} catch (ImvalidCouplingException e} {e.printStackTrace();
} catch (NoSuchPortExistsException e) {e.printStackTrace();}
T
f#*if piven parameters do not vioclate loop coupling constraint and specific EIC
requirements,add the receiwving port to the list of observers of sending port.
otherwise, throw exception=*/
protected final wvoid connectEIC(AbstractSystem sender,String sendingPort,
AbstractSystem receiver, String receivingPort)
throws InvalidCouplingException, NoSuchPortExistsExceptiond{
if {loopCoupling (sender,receiver) linvalidEIC(sender, sendingPort, receiver,
receivingPort)) throw new InvalidCouplingException{"Illegal EIC coupling:EIC
requirements not satisfied");
sender.getInputPort{sendingPort) .addlbserver{receiver.getInputPort (receivingPort));
}
f*%if given parameters do mnot wiolate loop coupling constraint and specific EOC
requirements, add the receiving port to the list of observers of sending port.
otherwise, throw exception#/
protected final woid connectEOC(AbstractSystem sender,String sendingPort,
AbstractSystem receiver, String receivingPort)
throws InwvalidCouplingException,NoSuchPortExistsExceptiond
if {loopCoupling(sender,receiver) linvalidEOC(sender, sendingPort, receiver,
receivingPort)) throw new InvalidCouplingException{"Illegal EOC coupling:EDC
requirements not satisfied"};
sender . getlutputPort (sendingPort) . addObserver {(receiver.getOutputPort (receivingPort) };
;** if given parameters do not wiolate loop coupling constraint and specific IC
requirements, add the receiving port to the list of observers of sending port.
otherwise, throw exception=*/
protected fimal woid conmectIC(AbstractSystem sender,S5tring sendingPort,
AbstractSystem receiver, String receivingPort)
throws InvalidCouplingException, NoSuchPortExistsException{
if {(loopCoupling (sender,receiver) |invalidIC (sender, sendingPort, receiver,
receivingPortl}) throw new InvalidCouplingException{("Illegal IC coupling:IC
requirements not satisfied");
sender . getlutputPort{sendingPort) . addlbserver {receiver.getInputPort (receivingPort));
T
S#%* in any kind of coupling, sender and receiver must be different*/
private boolean loopCoupling{AbstractSystem sender, AbstractSystem receiwver){
return (sender.eguals({receiver))?true:false;
T
A#*I10 requirements: 1lsender and receiver must have the same container
* 2} sending port is output port, 3) receiving port is input port*/
private boolean invalidIC(AbstractSystem sender, String sendingPort,AbstractSystem
receiver, String receivingPort) 4
if{!{sender.getContainer().equals(receiver.getContainer () ) &
sender.portExists (sender . getOutputInterface (},sendingPort)&&
receiver .portExists{receiver.getInputInterface(), receivingPortl)}) returm true;
return false;
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1
/#*EIC requirements: 1)sender must be the container of receiver
# 2} sending port is input port, 3) receiving port is input ports*/
private boolean invalidEIC{AbstractS8ystem sender,String sendingPort, AbstractSystem
receiver, String receivingPort){
if (! (receiver.getContainer() . equals(sender)ilk(sender.portExists(sender . getInputlnterface(),
sendingPort)}&&receiver.portExists(receiver.getInputInterface() ,receivingPort))))
return true;
return false;
1
/#*E0C requirements: 1)lreceiver must be the container of sender
# 2) sending port is output port, 3) receiving port is output port#/
private boolean invalidEOC{AbstractSystem sender, String sendingPert,ibstractSystem
receiver, String receivingPort){
if (! (sender.getContainer () .equals(receiver) ik (sender.portExists (sender.getOutputInterface(l,
sendingPort)}&&receiver.portExists(receiver.getInputInterface() ,receivingPort))))
return true;
return false;
1
/#* returns a list containing all components of a composite system =*/
public ArraylList<fAbstractSystem> getCompenents(){ return this.components;}
@0verride
public woid update{EnhancedSubject subject}{/*not required in a coupled system#/}

Figure 5.11 A Java implementation of class AbstractCoupledSystem

Finally, we present the implementation of class AbstractCoupledSystemin Figure 5.11. It
implements the constructs and constraints for hierarchical modeling and enactment of composite
systems.

Upon creation (lines 15-18), a coupled system class creates a list (components)to store the
references to all its components. When initialized (lines 20-24), it validates the components and
coupling specifications defined in a coupled system model and then initializes all its components.
We believe the comments provided in the code itself are sufficient to aid the reader's
understanding of the implementation. The next section demonstrates an application of the
framework to the enactment of the BV'S running example.

5.5 ENACTMENT OF THE BEVERAGE VENDING SYSTEM

In this section we present the application of the DEVS-based enactment framework introduced in
this chapter to the modeling and enactment of our running example, the Beverage Vending
System (BVS), (see Section 3.2.1). We will first present the enactment models based on the
framework's implementation; and then the enactment traces obtained from their executions.

5.5.1 Enactment Models of the Beverage Vending System

We recall that the BVS was described in Section 3.2.1 as a composite system consisting of two
atomic components: Beverage Vending Machine (BVM) the User. Hence the model will
comprise two atomic system models, BVM and BVMUser, and one coupled system model BVS.
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In addition, we have models of coin and beverage objects that are exchanged between the BVM
and the BVMU ser. In this chapter, we present the BVS and the most essential parts of BVM and
BVMUser while the complete model is documented in Appendix A.

5.5.1.1 BVM enactment model

The Java class in Figure 5.12 presents the enactment model of the BVM. Being a model of an
atomic system, class BVM extends the framework class AbstractAtomicSystem as suggested in
the discussion of the framework in the previous section. BVM declares the state variables; we
reuse the same state variables presented in the simulation model in Section 3.2.3.1. Recall that
class AbstractAtomicSystem, as discussed previously in Section 5.4.3.4, declares some abstract
methods that require problem-specific implementations; these are exactly the methods we
implement in BVM. In order to implement the framework-based operations, we have defined
some special-purpose methods, which are not declared in the framework, to perform some
specific operations; such operations are presented in the full version of the model in Appendix A.
We believe that the comments provided in the code, in addition to the description of the
framework in the previous section, is sufficient to help the reader follow the system's structural
and behavioral properties specified in the code.

package bvs.enactment;
2 dmport java.util.Arraylist;
import java.util.Random;
import enactment.AbstractAtomicSystem;
import enactment.Port;
import enactment.designExceptions.DuplicateldException;
e e e B e e e e e o e S e S S e S
# BVM. java
An enactment model of the BVM based on the DEVS-based enactment framework.
It declares state variables and provide the problem—specific implementations of the
abstract methods specified in AbstractAtomicSystem. java.
@Qauthor H. 0. ALIYU
e B e e e S e S e e e e e e S o e e e S S S eE e S e e o
public class BVM extends AbstractfAtomicSystem {
JHekserertskxrks State variables srrkssrsrrsbrrksrrsrrsbrrksrbsrksbrrkerts

¥ ¥ ¥ ¥ ¥

# state is a derived variable whose values in the enum BVMState depend on the
*# instantanecus wvalues of the main state variables as defined in method setState()s*/
private int credit:; //holds the cummulated value of coins accepted for a transaction
private int price; //price of the transaction
! private int current; //code number of selected beverage
21 private Coin badC; //temporarily hold invalid (non-acceptable) coins
22 private ArrayList<Coin> vault; //permanent storage for accepted coins
23 private ArrayList<Coin> escrow; //interim storage for accepted coins in a transaction
2 private BVMState state; //ite value depends on the set of walues of the state variables
2r private enum BVMState {IDLE, CHARGING, DISPENSING, RETURNING, REJECTING, CANCELING};

a7 public BVM(String name) {

28 super (name) ;

2 wvault = new ArrayList<Coin>();
escrow = new ArrayList<Coin>();

+
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ja @0verride
protected void registerInputOutputPorte() throws DuplicateldException {

i

super.<Coin>addInputPort("inC"); //to receive coins during transactions

super .<Integer>addInputPort{"code"); //to receive order and cancellation codes

super . <BeverageraddlutputPort ("cup"); //to deliver cups of beverages
super.<Arraylist<Cein>>addOutputPort ("outC"); //to deliver rejected or returned coins

@0verride
protected long computeTimeAdvance() {

}

switch (state) {

case IDLE: return Long.MAX _VALUE; //timeAdvace = +ve infinity

case CHARGING: return 60+1000; J/timeAdvace = 1 minute (60 # 1000 milliseconds)
case DISPENSING: return 45 # 1000; //timefAdvace = 3/4 minute

case RETURNING: returm 0; fftimeddvace = 0 minute
case REJECTING: returm 0; fftimeddvace = 0 minute
case CANCELING: return 0; J/timeldvace = 0 minute
default: return 0;
by
T
51 @0verride

protected void initializeStateVariables() {

credit = 0; price = 0; current = 0; badC = null;
initializeVault(30);//initialize vault with 30 randomly generated coins
setState();

/#* The next two lines are used to print the system’s traces during enactment*/

System.cut.println(Trajectory.getCurrentTime(}+": "+this.getName().toUpperCase(Jj+ ":
Initialized to state: "+state);

System.out.println(Trajectory.getCurrentTime()+": "+this.getlName().toUpperCase()+ ":
[current= "+current+ ", price= “"+price+ ", credit= "+credit+ ", badCIslull= "+

(badC==null)+ ", vaultSize= "+vault.size()+", wvaultValue= "+getBagValue(vault)+",
escrowSize= "+escrow.size()+", escrowValue= "+getBagValue(escrow)+"]%\n");

@0verride
1 protected void doInternalTranssition() {

BVMState sourceState = state;

awitch (state) {

case CHARGING: current=5;break;//if no coin is received, auto-cancel the transaction
case REJECTING: badC = null; break;

case DISPENSING: current = 0; price=0; credit = 0; break;

case CANCELING: current=0;price=0;credit=0;escrow.clear();badC=null;break;

case RETURNING:credit -= (credit-price); break;

default: break;

1

setState();

/#* The next two lines are used to print the system’s traces during enactment*/

System.out.println(Trajectory.getCurrentTime()+": "+this.getName().toUpperCase()+ ":
[current= "+current+ ", price= "+price+ ", credit= "+credit+ ", badCIsNull= "+
(badC==null)+ ", vaultSize= "+vault.size()+", wvaultValue= "+getBagValue(vault)+",
escrowSize= "+escrow.size()+", escrowValue= "+getBagValue (escrow)+"]1");

System.out.println(Trajectory.getCurrentTime()+": "+this.getlame().toUpperCase()+ ":

"+ gogurceState + " -> "+state+"\n");
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@0verride

protected void deExternalTransition(ArraylList<Port<?>> eventBag,., long elapsedTimel{
BVMState sourceState = state; // this is just to print the state trajectory
switch (atate) {
case IDLE:

if (eventBag.get(0).getName(}=="code")}{//input (portMessage) received on port code

if ((Integer)eventBag.get(0).getValue()!=56) {//transaction code received
current = (IntegerleventBag.get(0).getValue();
setPrice(current) ;
credit=0;
System.out.println(Trajectory.getCurrentTime (}+":

"+this.getName () .toUpperCase()+ ": Received transaction code "+ curremnt);
¥
else; //do nothing if canceling code is received in sate IDLE.
¥
breals;

case CHARGING:

if (eventBag.get (0).getName()=="code"){ //input (portMessage) received on port code

if ((Integer)eventBag.get(0) . getValue(}==5),//canceling request received
current = 5;
else; // ignore any transaction request received while one is ongoing.
¥
else { //input (portMessage) received on port inC
Coin c = (Coin)eventBag.get(0).getValue();
System.out.println(Trajectory.getCurrentTime()+":
"+this.getName().toUpperCase()+ ": Received a coin of value: " +
c.getValue()+ " cents");
if (isAcceptablelc)) {//received coin is within the range acceptable to BVM
escrow.add(c); //temporarily store received coin in escrow
credit+=c.getValue(); /J/update credit
if {credit>=price) { //latest walue of credit to complete the transaction
wvault.addAll (escrow); //transfer all coins in escrow to wvault
escrow.clear();
+
else; //accepted coins not sufficient to complete transaction
+
else //received coin is NOT within the range acceptable to BVM
badC = c; //keep coin in badC momentarily to return it to the user.
¥
break;
default: break;
iy
setState () ;
/=* The next two lines are used to print the system’s traces during enactment*/
System.out.println(Trajectory.getCurrentTime(}+": "+this.getName().toUpperCase()+ ":
[current= "+current+ ", price= "+price+ ", credit= "+credit+ ", badCIzNull= "+
(badC==null)+ ", wvaultSize= "+vault.size()+", vaultValue= "+getBagValue(vault)+"
escrowSize= "+escrow.size()+", escrowValue= "+getBagValue(escrow)+"]1");

System.out.println(Trajectory.getCurrentTime(}+": "+this.getName().toUpperCase()+ ":
"+ source3tate + " ——> "+atate+"\n");
+
@0verride

protected void doConfluentTransition(ArraylList<Port<?>> eventBag) {
BVMState sourceState = state;
switch (state) {
case CHARGING:
if (eventBag.get(0).getName()=="inC") {//input (portMessage) received on port inC
Coin ¢ = (Coin)eventBag.get (0).getValue(l;
if (isfAcceptable(c)ii credit+c.getValue()>=price) {
if (lescrow.isEmpty())
vault .addAll({escrow);
escrow.clear(); vault.add(c); credit+=c.getValue();
¥
if (isfAcceptable(c)&& credit+c.getValue()<price) {
credit += c.getValue(); escrow.clear()}; current=5;

¥
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if (lisAcceptable(c)) {
badC = ¢; current=5;
¥
1
break;
default: break;
T
setState();
/#** The next two lines are used to print the system’s traces during enactments/
System.out.println{Trajectory.getCurrentTime()+": "+this.getName().toUpperCase()+ ":
[current= "+current+ ", price= "+price+ ", credit= "+credit+ ", badCIelNull= "+
(badC==nulll+ ", vaultSize= "+vault.size()}+", waultValue= "+getBagValue(vaultl+",
escrowSize= "+escrow.size()+", escrowValue= "+getBagValue(escrow)+"]");

System.out.println{Trajectory.getCurrentTime()}+": "+this.getName().toUpperCase()+ ":
"+ aourceState + " .-.-> "+state+"\n");
+
B0verride

protected void doOutputOperation() {

switch (state) {

case DISPENSING:
Beverage drink = new Beverage(current);
sendMessage("cup", drink); //send cut a cup of requested drink on port "cup"
System.out.println(Trajectory.getCurrentTime()+": "+this.getName() .toUpperCase()+

": Dispensed a cup of "+ drink.getContent()});

break;

case REJECTING:
ArrayList<Coin> msgBag = new ArrayList<Coin>();
magBag . add (badC) ;

sendMessage ("outC", msgBag);//wrap badC in a bag and send it out on port "outC"
System.out.println(Trajectory.getCurrentTime()+": "+this.getName().toUpperCase()+
": Rejected a coin of wvalue "+ badC.getValue());
brealk;
case RETURNING: //withdraw the balance from vault and send it out on port "outC"
sendMessape ("outC", removeChangeFromVault (credit-price));
System.out.printla(Trajectory.getCurrentTime(J+": "+this.getName().toUpperCase()+
": Returned a balance of "+ (credit-price));
break;
case CANCELING:
if (lescrow.isEmpty()||badC!=null) {
Arraylist<Coin> refunds = new ArraylList<Coin>();
if (lescrow.isEmpty()) refunds.addAll(escrow);
if (badC'=null) refunds.add(badC);
sendMessage("outC", refunds);//refund all coins received for the transaction
System.out.println(Trajectory.getCurrentTime()+":
"+this.getName().toUpperCase()+ ": Refunded a bag of coine of total wvalue "+
getBagValue (refunds));
b
break;
default:
break;
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3}
i
@0verride
protected wveoid runfctiwities(}
switch (state) {
181 case IDLE: S/display welcome message in intervals of 30 seconds
182 display(state, " Welcome. Choose a beverage code to start a transaction: 1->Cocoa,
2->Coffee, 3—>0range, 4—>Apple", 30000) ;
brealk;
case CHARGING:
while (state==BVMState.CHARGING) {//display the chosen beverage, its cost and the
amount of coins left to complete transaction
System.out.println(Trajectory.getCurrentTime()+":
"+this.getName () .toUpperCase(J+": ### Chosen beverage: "+
getBeveragelame (current)+ ", Insert coins: "+ (price—credit) +" cents #3##");
try {
Thread.sleep(20000) ; //repeat message display in interwvals of 20 seconds
} catch (InterruptedException e) { } //don*t complain when interrupted
¥
breal;
case REJECTING:// No activity is defined for this state
brealk;
cagse RETURNING:
display(state, " Take your balance", 1000);//display message once in the transient
state
brealk;
case DISPENSING: //inform the user that the beverage is being prepared every l15sec
String msgDispensing = " Your cup of "+ getBeveragelName(current)+ " is being
prepared; it will be ready shortly";
1 display(state, msgDispensing, 15000);
P breal;
1 case CANCELING:

String msgCanceling = (credit>0)7 " The transaction has been canceled. Remember to

take your coins": " The transaction has been canceled.";
2 display(state, msgCanceling, 1000);
4 break;
1 default: break;

2 }

7 1

/#+ Only implentations of abstract methods inherited from the framework are shown
here. The complete code, with the user-defined operations, is documented in the

appendix##/

Figure 5.12 Enactment model (code) of the BVM
5.5.1.2 BVMUser enactment model

Figure 5.13 presents the executable code for the enactment of the BVM's user following the state
variables and behaviors specified in the simulation model (see Section 3.2.3.2). An alternative
way to enact the BVM's user could be for us to execute the BVM model and interact directly
with it at runtime. However, creating another atomic model would allow us to demonstrate how
to create and enact coupled system models using the proposed framework.
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package bvs.enactment;

import java.util.ArrayList;

import java.util.Random;

import enactment.AbstractAtomicSystem;

import enactment.Port;

import enactment.designExceptions.DuplicateldException;

‘fqzzs1:===1===1:*s*zt*zt*z**t*zt*zs*z* kkhkkkkxkkkkkkkdkhkkkhkEhkkkdhhkkhkkxhkhkkkmhkdkhhkkkk bkt ke hihkk

*
*
*
*
*

*

EVMUser. java

An enactment model of the BVM’s user based on the DEVS-based enactment framework.
It declares state wariables and provide the problem-specific implementations of the
abstract methods specified in AbstractAtomicSystem. java.

Bauthor H. 0. ALIYU
R o S S L R R e T L AR e e R SR LR L e R

public class BVMUser extends AbstractAtomicSystem {

Seekkkkxrkrkked* State variables **kksskdkksbdkkxebsrkkhkebkkbsrkthbrrbrhhs

* gtate is a derived wariable whose values in the enum UserState depend on the

# instantanecus values of the main state variables as defined in method setState()=*/
private ArraylList<Coin> wallet; //a bag of coins to make transactions

private int bill; //cost of current transaction
private int advance; //total amount of coins expended on current transaction
private int choice; //reference code for an ordered beverage

private Beverage cup; //holds a cup of beverage received at the end of a transaction
private ArraylList<Coin> purse; //a bag to store coins rejected by BVM

private UserState state;//value depends on the instantanecus wvalues of state wariables
private enum UserState {AWAY., INSERTING, ORDERING, CANCELING, WAITING};

public BVMUser (String name) {
super (name) ;
wallet = new ArrayList<Coin>();
purse = new ArraylList<Coin>(};
cup = new Beverage();

+

@0verride

protected void registerInputOutputPorts() throws DuplicateldException {
super .<Beverage>addInputPort ("drink"); //to receive cups of beverage
super . <ArraylList<Coin>>addInputPort{"inC"); //to receive bags of coins
super . <CoinraddlutputPort ("outl"); //{to send out coins
super.<Integer>addOutputPort ("request");//to send out order and cancellation codes

+

@0verride

protected long computeTimeAdvance() {
switch (state) {
case AWAY: Random rand = new Random(System.currentTimeMillis());

return (rand.nextInt(2)+2)#60+#1000; //timeAdvace >= 2 minutes

case INSERTING: return 250%60; J/timeldvace = 1/4 minute
case WAITING: return 1500+%60; J/timefdvace = 1.5 minutes
case CANCELING: return 0O; S/timeddvace = 0 minute
default: return 0;

T
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+

@0verride
protected veid initializeStateVariables() {

+

bill=0; advance=0; choice=0; cup = null; initializeWallet(20);//initialize wallet
with 20 coins

setState();

/#=* The next two lines are used to print the system’s traces during enactment*/

System.out.println(Trajectory.getCurrentTime()+": "+this.getName () .toUpperCase()+ ":
Initialized to state: "+state);

System.ocut.println(Trajectory.getCurrentTime()+": "+this.getName().tolUpperCase()+ ":
[choice= "+choice+ ", bill= "+bill+ ", advance= "+advance+ ", cuplsNull= "+
{cup==null)+ ", walletSize= "+wallet.size()+", walletValue=

"+getBagValue(wallet)+", purseSize= "+purse.size()+", purseValue=
"+getBagValue (purse)+"]1");//traces

@0verride
protected void doInternalTranssition() {

UserState sourceState = state; //used to print the state trajectory
switch (state) {
case AWAY:
Random rand = new Random(System.currentTimeMillis()});
choice = rand.nextInt(4)+1; //decide on a beverage to order
cup =null;
break;
case ORDERING:
bill = getBill(choice); //bill depends on the chosen beverage
break;
case INSERTING:
if (lwallet.isEmpty(2){ //if wallet is not empty, pick a coin from it
advance += wallet.get(0).getValue(); wallet.remove(0);
}
else {
choice=5; //cancel transaction if wallet is empty
System.out.println(Trajectory.getCurrentTime()+":
"+this.getName() .toUpperCase()+ " [Ran out of coins]");//traces
}
break;
case CANCELING:
if (advance>0) choice = 0; //advance>) => some coins have already been inserted
else choice = bill = 0;//advance==0 => no coin has been expended
break;
case WAITING:
choice = b; //cancel transaction if bvm fails to deliver order after a long wait
break;
default:
break;
}
setState();
/#* The next two lines are used to print the system’s traces during enactment#/
System.out.println(Trajectory.getCurrentTime(}+": "+this.getName().toUpperCase()i+ ":
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[choice= "+choice+ ", bill= "+bill+ ", advance= "+advance+ ", cupIzsNull= "+
(cup==null)+ ", walletSize= "+wallet.size()+", walletValue=
"+getBagValue (wallet)+", purseSize= "+purse.size()+", purseValue=
"+getBagValue (pursel)+"]1");
System.out.println(Trajectory.getCurrentTime()+": "+this.getName().toUpperCase()+ ":
"+ sourceState + " -> "+state+"\n");
}
@0verride
protected void doExternalTransition(Arraylist<Port<?>> eventBag, long elapsedTime) {
UzerState sourceState = state;
switch (atate) {
case INSERTING:

1 if (eventBag.get(0).getName ()=="1inC"){

L1 Port<Arraylist<Coin>> p = (Port<Arraylist<Coin>>) eventBag.get(0);

12 ArrayList<Coin> rejectedCoins = (Arraylist<Coin>) p.getValue();

System.out.println(Trajectory.getCurrentTine()+":
"+this.getlame () . toUpperCase()+ ": Received coin(s) of total walue "+
getBagValue(rejectedCoins));

advance-=getBagValue(rejectedCoins);
purse.addAll (rejectedCoine);
}
break;
case WAITING:

! if (eventBag.get(0).getName ()=="inC"){

1 Port<Arraylist<Coin>> pp = (Port<Arraylist<Coin>>) eventBag.get(0);

111 ArrayList<Coin> balance = (ArrayList<Coin>) pp.getValue();

112 System.out.println({Trajectory.getCurrentTine()+":
"+this.getName().toUpperCase()+ ": Received balance coinis) of total value
getBagValue (balance));

113 wallet.addAll(balance);

114 advance—-=getBagValue (balance);

112 if (advance==0) {bill=0; choice=0;}

11 ¥

17 if (eventBag.get(0).getName ()=="drink"){

118 cup = (Beverage) ((Port<Beverage>)eventBag.get(0)).getValue();

. System.out.println(Trajectory.getCurrentTime()+":
"+this.getName().toUpperCase()+ ": Received a cup of "+cup.getContent());

12 bill=0; advance=0; choice=0;

121 }

122 break;

123 default:

124 break;

L2 :I'

12 setState();

127 /#+ The next two lines are used to print the system’s traces during enactment=/

13 System.out.println(Trajectory.getCurrentTime()+": "+this.getName().toUpperCase()+ ":

[choice= "+choice+ ", bill= "+bill+ ", advance= "+advance+ ", cupIlsNull= "+

(cup==null)+ ", walletSize= "+wallet.size()+", walletValue=

"+getBagValue (wallet)+", purseSize= "+purse.size()+", purseValue=

"+getBagValue (purse}+"]");

"+
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System.out.println(Trajectory.getCurrentTime()+": "+this.getName().toUpperCase()+ ":
"+ gogurceState + " —-—> "+gtate+"\n");
i3
@0verride
protected void doConfluentTransition(ArrayList<Port<7>> eventBag) {
UserState sourceState = state;
switch (state) {
case INSERTING:

if (eventBag.get (0).getlName ()}=="1nC")}
purse.add((Coin)eventBag.get (0) . getValue());
break;
case WAITING:
if (eventBag.get(Q).getName()}=="inC")} // a bag of coins received on port "inC"
wallet.add({Coin)eventBag.get(0).getValue());
else /fa cup of beverage received on port "cup"
cup = (Bewverage)eventBag.get(0).getValue();
break;
default: break;
1
setState();
/=% The next two lines are used to print the system’s traces during enactments/
System.out.println(Trajectory.getCurrentTime()+": "+this.getName().toUpperCase()+ ":
[choice= "+choice+ ", bill= "+bill+ ", advance= "+advance+ ", cupIzsNull= "+
(cup==null}+ ", walletSize= "+wallet.size()+", walletValue=
"+getBagValue (wallet)+", purszeSize= "+purse.size()+", purseValue=
"+getBagValue (pursel+"1");
System.out.println(Trajectory.getCurrentTime()+": "+this.getlName().tolUpperCase()+ ":
"+ gourceState + " .-.-» "+state+"\n");
+
@0verride

protected void doOutputOperation() {
switch (astate) {
case ORDERING:
case CANCELTING:
sendMessage ("request", choice);
System.out.println(Trajectory.getCurrentTime()+": "+this.getName() .toUpperCase(}+
": Sent reguest code "+ choiced;/ /traces
break;
case INSERTING:
if (advance<bill && !wallet.isEmpty()){
sendMessage ("outC", wallet.get(0));
System.out.println(Trajectory.getCurrentTime()+":
"+this.getName () . toUpperCase()+ ": Sent a coin of value "+
wallet.get(0).getValue()); //traces

¥
else; //No output if wallet is empty
brealk;
default: break;
I
T
@0verride

protected wvoid runActivities() {
S #MNao activities are specified for this component

T

F** Only implementation of abstract methods inherited from the enactment framework are
shown here. The full code with the user—-defined operations is presented in the

appendix*/

Figure 5.13 Enactment model (executable code) of the BVM's user
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5.5.1.3 BVS enactment model

package bvs.enactment;
: import emactment.AbstractCoupledSystem;
import enactment.designExceptions.DuplicateldException;
import enactment.designExceptions.InvalidCouplingException;
import enactment.designExceptions.NoSuchPortExistsException;
B e e e e s
* BVS. java
* An enactment model of the coupled beverage vending system. It creates the components
*# and provides the problem-specific implementations of the abstract methods specified
* in AbstractCoupledSystem. java.
*# Qauthor H. 0. ALIYU
* Fkkkkkkkkkkkk Rk kkkEk Rk dkkkk Rk kR k Rk R kk Rk kkkkokkkk Rk kokkkkkkkk kR kRok R kk kR koK dkk S
public class BWVS extends AbstractCoupledSystem {
fHxkskkxs2+ declare instances of BVM and BVMUser as components #skskksssssss/
private BVM bvm;
private BVMUser user;

public BVS(String name) {
! super (name) ;
2 bvm = new BVM("BVM");
11 user = new BVMUser("User");
22 t
23 @lverride
2 protected veid registerInputDutputPorts() throws DuplicateldException {
21 J/ BVS ie a closed system; it has no I/0 ports
2 +
¥7 @lverride
28 protected void registerComponents()} throws DuplicateldException {
2 addComponent (user) ;
addComponent (bvm) ;
t
12 @0verride
protected void registerPortCouplings()} throws
InvalidCouplingException,NoSuchPortExistsException {
connectIC{user, "request", bvm, "code"); //output "request" -> input "code"
connectIC(user, "“outC", bvm, "inC"); //output "ocutC" -> input "inC"
connectIC(bvm, "cup", user, "drink"); /Sfoutput "cup" -> input "drink"
connectIC(bvm, "outC", user, "inC")}; //output "outC" -> input "inC"

Figure 5.14 Enactment model of the BVS

Figure 5.14 presents the enactment code of the BVS. As a coupled system, BVS extends the
framework's class AbstractCoupledSystem. BVS has two components, bvm and user, which are
instances of BVM and BVMUser respectively; these components are registered in inherited
method registerComponents() (lines 27-31). BVS is a closed system; hence, no input/output
ports are registered. We specify four internal couplings in lines 32-38. The coupling in line 34
specifies that the output port "request" of component user be coupled with the input port "code"
of component hvm; the other three couplings can be read in similar manner.
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5.5.2 Enactment Execution and Enactment Traces
5.5.2.1 |Initialization of the enactment process

The class BVSEnactment in Figure 5.15 defines the main method that initializes the enactment
process. This is simply done by creating an instance of the BVS, which is the topmost system in
the composition hierarchy of the model, and invoking its irif() method. From this point, the
enactment framework takes charge and initializes all components down the hierarchy tree.

package bvs.enactment;
.,I'rikt**t**t*ﬁ**t**t**t*ﬁ**t**t*ﬁt*ﬁ**t**t*ﬁt*ﬁ**t**t*1‘!’**1*21*!11‘!’**1*21*!’1*t****t**l’**l’**:
* BVSEnactment. java

* This is the main class used to initialize the enactment process.It simply creates an

* instance of the topmost model (in this case BVS) and call its init() method.

* @Bauthor H. 0. ALIYU

* l’**l’****l’**l’**‘****l’**‘**‘****l’**t**‘****‘**‘**l’****‘**‘**l’****‘**l’**'****'**'**l’****}‘

public class BVSEnactment {

public BVSEnactment() {
T

public static void main(Stringl[] args) {
BVS bvs = new BVS("BVS");
bws.init();
T
}

Figure 5.15Initialization of the enactment process of the BVS

5.5.2.2 [Execution traces

We present excerpts from the traces of the enactment of seven consecutive transactions involving
the interactions of the BVM and the USER in Figure 5.16 and Figure 5.17. The entire traces are
documented in Appendix B.

The traces are presented in the format: Time: System: Event is the wall clock time of the
occurrence of the event and is presented in the format Hour :Minute:Second:Millisecond.
For instance; a trace23:21:23:153: BVM: E; documents that an event E; occurred in BVM at
23 hour, 21 minutes, 23 seconds and 153 milliseconds. The events are represented as follows:

Internal state transition events are presented in the format SOURCE_STATE -> TARGET_STATE.
For instance, the trace "23:23:23:154: USER: AWAY -> ORDERING" documents an internal
state transition from state AWAY to state ORDERING that occurred in USER at time
23:23:23:154.

External state transition events are presented in the format SOURCE_STATE-->
TARGET _STATE. For instance, the trace 23:23:23:168: BVM: IDLE --> CHARGING
documents that an external state transition from state IDLE to state CHARGING occurred in BVM
at time 23:23:23:168.
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Confluent state transition events are in the format SOURCE_STATE -.-.> TARGET_STATE.
There are no confluent transition events in the execution traces presented in Figure 5.16below.

Input and output events are described written in natural language. For example;
"23:23:23:168: BVM: Received transaction code 3" documents an input event and
23:23:38:168: USER: Sent a coin of value 50 records an output event.

Instantaneous values of state variables are presented between square brackets; i.e. [ and ]. For
example, "23:23:38:178: BVM: [current=3,price= 120, credit=
50, . ..]"documents the status of each state variable of BVM at the specified time.

Instantaneous activities are recorded between two groups of three hash symbols (###). All
activities illustrated in this case study are in the form of displaying some messages; hence, the
displayed messages are recorded between the hash symbols. For instance; 23:23:23:170:
BVM: ###Chosen beverage: Orange, Insert coins: 120 cents###documents that
at 23:23:23:170, BVM was displaying information about the chosen beverage for the ongoing
transaction and the total value of coins expected to complete the transaction. 23:24:23:234:
BVM: ###Take your balance###indicates that the BVM was informing the user that he/she
has some balance from the ongoing transaction while 23:24:23:250: BVM: ###Your cup
of Orange 1is being prepared; it will be ready shortly###shows that the
system was displaying another information at time 23:24:23:250.

Having understood the format of the information presented in the traces, we can now discuss the
traces themselves. We can see in Figure 5.16 that from the beginning that the enactment of USER
(resp. BVM) started from the initial state AWAY (resp. IDLE) at 23:21:23:144 (resp.
23:21:23:153) with 20 (resp. 30) randomly generated coins in its wallet (resp. vaulf). The
initial total value of all coins in the wallet (resp. vault) was 663 (resp. 872) cents. While in the
IDLE state, BVM was displaying the welcome messages in intervals of 30 seconds as specified
in the activity of state IDLE in enactment model. No activity was specified for USER.

The IDLE activity of BVM continued until 23:23:23:168, when it received a transaction code (3)
which had been sent by USER about 6 milliseconds earlier (23:23:23:162) just before an
internal state transition (ORDERING -> INSERTING) in the latter. The transaction code received
in BVM (port message) triggered, an external transition, 23:23:23:168: BVM: IDLE -->
CHARGING followed by the launching of another activity, at 23:23:23:170,which displays
information about the requested beverage and the amount of coins left to complete the
transaction. Note the evolutions of the state variables of the two subsystems.

USER released a 50-cent coin at 23:23:38:168, then updated its state variable advance and did
an internal state transition, 23:23:38:170: USER: INSERTING -> INSERTING.
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@ Javadoc [2 Declaration B console &2 |E Properties X %| G QE[
«<terminated: BYSEnactment [Java Application] C\Program Files\lava\jre7\bin\javaw.exe (Sep 24, 2016, 11:21:22 PM)

23:21:23:1404:
23:21:23: 1404
23:21:23:153:
23:21:23:153:

23:21:23:156:
23:21:53:158:
23:22:23:158:
23:22:53:159:
23:23:23:154:
23:23:23:154:

23:23:23:160:
23:23:23:162:
23:23:23:162:
23:23:23:162:

23:23:23:168:
23:23:23:168:
23:23:23:168:

23:23:23:170:
23:23:38:168:

23:23:38:170:
23:23:38:170:

23:23:38:178:

23:23:38:178:
23:23:38:179:

23:23:38:182:
23:23:43:172:
23:23:53:179:
23:23:53:181:
23:23:53:182:

23:23:53:190:
23:23:53:190:
23:23:53:190:

23:23:53:198:
23:23:53:198:
23:23:53:198:

23:23:53:205:
23:23:53:285:
23:23:53:206:
23:23:53:206:

23:23:58:182:

USER: Initialized to state: AWAY

USER: [choice= 8, bill= B, advance= B, cupIshull= true, walletSize= 28, walletValue= 663, purseSize= 8, purseValue= 8]
BVM: Initialized to state: IDLE

BVM: [current= 8, price= 8, credit= 8, bad(IsNull= true, vaultSize= 38, vaultValue= 872, escrowSize= 8, escrowValue= 9]

BVWM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3->0range, 4-»Apple ##H

BVM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3->Orange, 4->Apple #H

BVM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3->0range, 4-»Apple ##H

BWM: ### Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3->Orange, 4->Apple ##H

USER: [choice= 3, bill= @, advance= @, cupIsiull= true, walletSize= 28, walletValue= 663, purseSize= @, purseValue= 8]
USER: AWAY -» ORDERING

BWM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3->Orange, 4-»Apple ##H

USER: Sent request code 3

USER: [choice= 3, bill= 120, advance= @, cupIshull= true, walletSize= 28, walletValue= 663, purseSize= B, purseValue= 8]
USER: ORDERING -» INSERTING

BWM: Received transaction code 3
BVM: [current= 3, price= 120, credit= @, badCIsNull= true, vaultSize= 3@, vaultValue= 872, escrowSize= @, escrowValue= @]
BVM: IDLE --» CHARGING

BVWM: ### Chosen beverage: Orange, Insert coins: 120 cents ##

USER: Sent a coin of value 58

USER: [choice= 3, bill= 120, advance= 58, cupIshull= true, walletSize= 19, walletValue= 613, purseSize= B, purseValue= 8]
USER: INSERTING -> INSERTING

BVM: Received a coin of value: 5@ cents
BVM: [current= 3, price= 128, credit= 58, bad(IsNull= true, vaultSize= 30, vaultValue= 872, escrowSize= 1, escrowValue= 58]
BWM: CHARGING --» CHARGING

BVM: ### Chosen beverage: Orange, Insert coins: 7@ cents #H

BVM: ### Chosen beverage: Orange, Insert coins: 7@ cents #H

USER: Sent a coin of value 5

USER: [choice= 3, bill= 128, advance= 55, cupIshull= true, walletSize= 18, walletValue= 608, purseSize= @, purseValue= 8]
USER: INSERTING -» INSERTING

BWM: Received a coin of value: 5 cents
BVWM: [current= 3, price= 128, credit= 58, bad(IsNull= false, vaultSize= 38, vaultValue= 872, escrowSize= 1, escrowValua= 58]
BVM: CHARGING --» REJECTING

BVM: Rejected a coin of value 5
BVM: [current= 3, price= 128, credit= 58, badCIsNull= true, vaultSize= 30, vaultValue= 872, escrowSize= 1, escrowValue= 58]
BVM: REJECTING -» CHARGING

USER: Received coin(s) of total value 5

BVM: ##H Chosen beverage: Orange, Insert coins: 70 cents ###

USER: [choice= 3, bill= 128, advance= 58, cupIshull= true, walletSize= 18, walletValue= 608, purseSize= 1, purseValue= 5]
USER: INSERTING --» INSERTING

BVM: ### Chosen beverage: Orange, Insert coins: 7@ cents #H

23:24:3:173: BVM: ### Chosen beverage: Orange, Insert coins: 78 cents ##ﬁ

23:24:8:211: USER: Sent a coin of value 20

23:24:8:213: USER: [choice= 3, bill= 128, advance= 78, cupIslull= true, walletSize= 17, walletValue= 588, purseSize= 1, purseValue= 5]
23:24:8:213; USER: INSERTING -> INSERTING
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23:24:8:221: BWM: Received 2 coin of value: 20 cents
23:24:8:222: BVM: [current= 3, price= 128, credit= 78, badCIsNull= true, vaultSize= 38, vaultValue= 872, escrowSize= 2, escrowValue= 78]
23:24:8:222: BWM: CHARGING --» CHARGING

23:24:8:226: BVM: #H#H# Chosen beverage: Orange, Insert coins: 58 cents ###

23:24:13:206: BVM: #H Chosen beverage: Orange, Insert coins: 58 cents #H

23:24:18:182: BVM: ### Chosen beverage: Orange, Insert coins: 58 cents ##H#

23:24:73:174: BVM: ##H Chosen beverage: Orange, Insert coins: 58 cents ###

23:24:23:220: USER: Sent a coin of value 100

23:24:23:222; USER: [choice= 3, bill= 120, advance= 178, cupIshull= true, walletSize= 16, walletValue= 488, purseSize= 1, purseValue= 5]
23:24:23:222; USER: INSERTING -» WAITING

23:24:23:729: BWM: Received a coin of value: 168 cents
23:24:23:238: BWM: [current= 3, price= 128, credit= 178, bad(IsNull= true, vaultSize= 33, vaultValue= 1842, escrowSize= B, escrowValue= 8]
23:24:23:23@: BVM: CHARGING --> RETURNING

23:24:23:234: BVM: #H Take your balance ##H

23:24:23:237: BWM: Returned a balance of 50

23:24:23:237: BWM: [current= 3, price= 128, credit= 128, bad(IsNull= true, vaultSize= 32, vaultValue= 992, escrowSize= @, escrowValue= 8]
23:24:23:242: BWM: RETURNING -» DISPENSING

23:24:23:250: BVM: #H# Your cup of Orange is being prepared; it will be ready shortly #H

23:24:23:250: USER: Received balance coin(s) of total value 5@

23:24:23:251: USER: [choice= 3, bill= 128, advance= 128, cupIshull= true, walletSize= 17, walletValue= 538, purseSize= 1, purseValue= 5]
23:24:23:252: USER: WAITING --» WAITING

23:24:38:251: BVM: #H# Your cup of Orange is being prepared; it will be ready shortly ##H

23:24:53:251: BVWM: ### Your cup of Orange is being prepared; it will be ready shortly ###

23:25:8:251: BVWM: Dispensed a cup of orange

23:25:8:252: BWM: ### Your cup of Orange is being prepared; it will be ready shortly ###

23:25:8:252: BWM: [current= 8, price= B, credit= 8, bad(TsMull= true, vaultSize= 32, vaultValue= 992, escrowSize= @, escrowValue= ]
23:25:8:252: BVM: DISPENSING -» IDLE

23:25:8:259: BVWM: ### lelcome. Choose a beverage code to start a transaction: 1-»(ocoa, 2-»(offee, 3-»0range, 4->Apple ###
23:25:8:259: USER: Received a cup of orange

23:25:8:259; USER: [choice= @, bill= @, advance= B, cupIshull= false, walletSize= 17, walletValue= 538, purseSize= 1, purseValue= 5]
23:25:8:260: USER: WAITING --> AWAY

23:25:38:259: BVM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»(offee, 3-»0range, 4-»Apple ###
23:26:8:260: BWM: ### Uelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»(offee, 3-»0range, 4->Apple ###
23:26:38:261: BVWM: #3% Welcome. Choose a beverage code to start a transaction: 1-Cocoa, 2->Coffee, 3->0range, 4->Apple ###

Figure 5.16 Enactment traces of the BVS: Excerpt A

USER released a 50-cent coin at 23:23:38:168, then updated its state variable advance and did
an internal state transition, 23:23:38:170: USER: INSERTING -> INSERTING. The trace
23:23:38:178: BVM: Received a coin of value: 5@cents shows that BVM received
the coin about 10 milliseconds later, kept it in its escrow and update its credit (see the evolution
of variables credit, escrowSize and escrowValue in the traces) and immediately did an external
state transition 23:23:38:179: BVM: CHARGING --> CHARGING. Though BVM was in state
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CHARGING at both times 23:23:23:170and 23:23:38:182, the state activities were slightly
different due to the evolution of the system's state variables: while it displayed 120 cents at the
former instant, the activity at the latter instant displayed 70 cents.

The 5-cent coin released by USER at 23:23:53:179was received by BVM at 23:23:53:190and
momentarily kept in its badC variable instead of escrow (see the evolution of badCIsNull),
followed immediately by an external state transition CHARGING --> REJECTING to expel the
newly received coin. The rejected coin made its round trip back to USER at 23:23:53:205 and
was immediately committed to the purse (see the evolution of purseSize and purseValue)
while advance is updated.

This exchange of coins continued until 23:24:23:229, when BVM received the 100-cent coin,
which had been released by USER at 23:24:23:220. With this latest coin, credit became
greater than required; leading to the transition 23:24:23:230:BVM: CHARGING- - >RETURNING
to refund the balance before assuming state DISPENSING at 23:24:23:242 with yet another
activity while USER waited to get the order.

Finally, the cup of orange released by BVM at 23:25:8:251 was received by USER at
23:25:8:259 while BVM and USER closed the transaction with state transitions 23:25:8:252:
BVM: DISPENSING -> IDLE and 23:25:8:260: USER: WAITING --> AWAY
respectively.

Another case that might interest the reader is the system's behavior when USER runs out of coins
in the midst of a transaction. This scenario is demonstrated in the last transaction recorded in
these traces. The excerpt of the traces that contains this is presented in Figure 5.17.

23:44:53:742: BWM: ### Uelcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3->Orange, 4->Apple ###
23:44:53;742; USER: [choice= @, bill= @, advance= 0, cupIshull= false, walletSize= 2, walletValue= 28, purseSize= 7, purseValue= 13]
23:44:53:743: USER: WAITING --» AWAY

23:45:23:744; BVM: ##% Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»0range, 4->Apple #5#
23:45:53:745: BVM: llelcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->(offee, 3->Orange, 4-»Apple ###
23:46:23:745; BWM: llelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»(offee, 3->0range, 4->Apple ##
23:46:53:746: BWM: llelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»(offee, 3->0range, 4->Apple ##
23:47:23:747: BM: llelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»(offee, 3->0range, 4->Apple ##
23:47:53:747: BWM: ### lelcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->(offee, 3->0range, 4->Apple ###
23:47:53:748: USER: [choice= 1, bill= 8, advance= @, cupIshull= true, walletSize= 2, walletValue= 20, purseSize= 7, purseValue= 13]
23:47:53:748: USER: AWAY -> ORDERING

HE
i
i
H

23:47:53:755: USER: Sent request code 1
23:47:53:755: USER: [choice= 1, bill= 109, advance= 8, cupIsllull= true, walletSize= 2, walletValue= 26, purseSize= 7, purseValue= 13]
23:47:53:755: USER: ORDERING -» INSERTING
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23:47:53:761:
23:47:53:761:
23:47:53:762:

23:47:53:765:
23:48:8:760:
23:48:8:763:
23:48:8:763:

23:48:8:771:
23:48:8:771:
23:48:8:771:

23:48:8:775:

23:48:13:765:
23:48:23:769:
23:48:23:771:
23:48:23:772:

23:48:23:780:
23:48:23:780:
23:48:23:780:

23:48:23:784:
23:48:28:776:
23:48:33:766:
23:48:38:779:
23:48:38:779:
23:48:38:780:

23:48:38:788:
23:48:38:788:
23:48:35:788:

23:48:38:796:
23:48:38:796:

23:48:35:800:
23:48:36.804:
23:48:38:804:
23:48:38:804:

23:48:38:810:
23:48:38:812:
23:48:38:812:
23:48:38:812:

23:49:8:810:

BVM: Received transaction code 1
BVM: [current= 1, price= 100, credit= @, bad(Ishull= true, vaultSize= 41, vaultValue= 1582, escrowSize= @, escrowValue= @]
BVM: IDLE --» CHARGING

BVM: ### Chosen beverage: Cocoa, Insert coins: 1008 cents ##

USER: Sent a coin of value 18

USER: [choice= 1, bill= 18@, advance= 18, cupIshull= true, walletSize= 1, walletValue= 18, purseSize= 7, purseValue= 13]
USER: INSERTING -» INSERTING

BWM: Received a coin of value: 18 cents
BWM: [current= 1, price= 108, credit= 18, bad(Tslull= true, vaultSize= 41, vaultValue= 1582, escrowSize= 1, escrowValue= 18]
BVM: CHARGING --»> CHARGING

BVM: ### Chosen beverage: Cocoa, Insert coins: 908 cents ##H#
BWM: ### Chosen beverage: Cocoa, Insert coins: 99 cents ##
USER: Sent a coin of value 18
USER: [choice= 1, bill= 100, advance= 28, cupIshull= true, walletSize= @, walletValue= @, purseSize= 7, purseValue= 13]
USER: INSERTING -> INSERTING

BVM: Received a coin of value: 1€ cents
BVM: [current= 1, price= 108, credit= 20, bad(IsNull= true, vaultSize= 41, vaultValue= 1502, escrouSize= 2, escrowValue= 28]
BVM: CHARGING --» CHARGING

BVM: ##H# Chosen beverage: Cocoa, Insert coins: 8@ cents ##H

BVM: ##H Chosen beverage: Cocoa, Insert coins: 80 cents ##

BVM: ##H# Chosen beverage: Cocoa, Insert coins: 8@ cents ##H

USER [Ran out of coins]

USER: [choice= 5, bill= 100, advance= 26, cupIshlull= true, walletSize= 8, walletValue= B, purseSize= 7, purseValue= 13]
USER: INSERTING -» CANCELING

USER: Sent request code 5
USER: [choice= 8, bill= 100, advance= 26, cuplshull= true, walletSize= 8, walletValue= B, purseSize= 7, purseValue= 13]
USER: CANCELING -» WAITING

BWM: [current= 5, price= 100, credit= 26, badCTsNull= true, vaultSize= 41, vaultValue= 1582, escrowSize= 2, escrowValue= 20]
BVM: CHARGING --> CANCELING

BVM: ### The transaction has been canceled. Remember to take your coins ###

BVM: Refunded a bag of coins of total value 20

BWM: [current= 8, price= 8, credit= 8, bad(Ishull= true, vaultSize= 41, vaultValue= 1582, escrowSize= 8, escrowValue= 8]
BVM: CANCELING -» IDLE

BVM: ### MWelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»Orange, 4-»Apple #H

USER: Received balance coin(s) of total value 20

USER: [choice= 8, bill= 8, advance= 8, cupIshull= true, walletSize= 2, walletValue= 28, purseSize= 7, purseValue= 13]
USER: WALTING --»> AWAY

BUM: ## Uelcome. Choose & beverage code to start a transaction: 1->Cocoa, 2-»Coffee, 3->Orange, 4-»Apple #4#

Figure 5.17 Enactment traces of the BVS: Excerpt B
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At 23:47:53:755, USER initiated the last transaction in the traces by sending a transaction code
1. This was followed by the routine exchange of coins between USER and BVM until the former
suddenly ran out of coins at 23:48:38:779 (walletSize= © and walletValue= 0) after
having expended coins worth 20 cents (advance= 20) on the transaction. This triggered the
internal state transition recorded in 23:48:38:780: USER: INSERTING -> CANCELING,
and consequently, the issuance of a request to cancel the transaction as recorded in trace
23:48:38:788: USER: Sent request code 5, followed by the internal state transition
23:48:38:788: USER: CANCELING -> WAITING to await the refund of the coins already
expended.

BVM, which was expecting a coin towards completing the transaction, reacted to the transaction
code received with the transition 23:48:38:796: BVM: CHARGING --> CANCELING; this
was followed by a refund of the content of its escrow at 23:48:38:804 before transiting to the
idle state as recorded in trace 23:48:38:804: BVM: CANCELING -> IDLE. USER received
the refund at 23:48:38:812, kept it in its wallet (walletSize= 2, walletValue= 20)and
walked away as indicated in trace 23:48:38:812: USER: WAITING --> AWAY without a
cup of beverage (cupIsNull= true).

5.6 CONCLUSION

In this chapter, we have proposed a DEVS-based framework for the enactment of DESs. We
described enactment, in the context of systems engineering, as a methodology for the execution
of a software implementation of a system's behavior to verify its operational and functional
characteristics in real clock time. Our intent is to complement the conventional DES simulation
with a novel methodology that supports the runtime (occurring in real wall clock time)
observation and analysis of the evolution of the state and input/output trajectories of a system. It
also the runtime observation and analysis of the activities (state-preserving operations) executed
during the system's sojourn in certain states, as well as the possibility of live interactions with the
running system, either by human or by machine.

Relying upon the considered universality of DEVS to express DESs for simulation, we extended
the atomic DEVS formalism with the concepts of activity to define the underlying formalism for
our enactment framework. In contrast to the DEVS simulation algorithm, which uses virtual time
to schedule states and state transitions, we use a variant of the Object-Oriented observer design
pattern to orchestrate the state transition events in the enactment protocol we define for the
framework. In the framework design, every system has a clock, which references the real clock
of the machine on which the enactment process is being executed.

Using the observer pattern's terminology, a system is an observer of its clock and all its input
ports (the clock and all ports are subjects) and a port can be an observer of the ports of other
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systems. Hence, the system is automatically notified of changes in the state of its clock and/or
any of its input ports. Upon assuming a new state, a system uses its clock as a timer to monitor
the time advance, which automatically notifies the system when the deadline expires. This
notification triggers an internal state transition in the system. In addition, whenever an input is
received, the input port involved automatically notifies the system thereby triggering an external
state transition. A confluent state transition event is triggered when notifications from the clock
and an input port occur concurrently. We realize couplings between the components of a coupled
system model by making receiving ports observers of the corresponding sending ports so that the
formers are automatically notified whenever there are changes of states in the latter.

We have done a Java implementation of the framework; the most essential parts of the
implementation have been presented in the chapter and the remaining parts are documented in
Appendix A.

To demonstrate the use of the framework, we presented a case study of the modeling and
enactment of the beverage vending system. The traces obtained from running the enactment with
a 64-bit Windows operating system running on a 2.40GHz processor and 8GB installed memory
was also presented in the chapter. We observed from the traces that exchange of messages
between components occur in a "maximum" delay of 10 milliseconds; we claim that this
coupling performance is reasonable except may be in some "very time-critical" systems.
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6 HIiLLS' SYNTAX

6.1 INTRODUCTION

In Chapter 4, we proposed the SimStudio II framework to address the research problems in this
thesis: the integration of MDSE theories and methodologies, based on simulation, formal
methods and enactment, with the goal of harnessing the synergy of the diverse theories, tools and
experiences for complementary, rather than competitive, analyses of DESs. At the kernel of the
architecture of the proposed framework is HiLLS, which is meant to serve two major purposes:
1) to be the unified formalism at the front-end for creation and updating of system models and 2)
to be the seam that integrates the three computational analysis methodologies considered in the
thesis. By virtue of its position and roles in the framework's architecture, HiLL provides a
comprehensive answer to the research questions RQ2 (which formalism should we adopt to write
the shared unified model?) and RQ3 (how can the disparate concerns of the different
methodologies be captured in the so-called unified model?).Some of our research efforts and
results on HiLLS have been reported in [MAT15, AMT16, AT16]; in this chapter we build on
the preliminary results to present the current state of HiLLS's abstract and concrete syntaxes.

Recall from Section 3.5 that a language specification may consists of an abstract syntax, one or
more concrete syntaxes and one or more semantics. The abstract syntax precisely defines the
concepts expressed in the language and the legal relationships between them while a concrete
syntax describes a set of human-comprehensible notations that physically, and unambiguously,
render the entities and relationships specified in the abstract syntax.

The HiLLS' abstract syntax has been built from a disciplined integration of system-theoretic and
software engineering concepts to capture, in a considerably generic form, the different concerns
of simulation, formal analysis and enactment methodologies for DES in a coherence whole; this
will be presented in details in Section 6.2. Section 6.3presents the HILLS' concrete syntax, which
contains, in addition to the notations specifically defined for HiLLS, variants of some notations
adopted from Z schema and the UML family languages. We will demonstrate system
specification with the language by presenting, in Section 6.4, the HiLLS model of the running
example in this thesis - the Beverage Vending System (BVS) - and its required properties before
concluding the chapter in Section6.4.4

6.2 HILLS' ABSTRACT SYNTAX

In order to be expressive enough to actualize the visions of SimStudio II, we have derived the
HiLLS’ abstract syntax from a disciplined integration of system concepts from disparate, but
related sources to express coherently unified models that can serve the purposes of the three
target platforms of the framework. Figure 6.1 presents a revised version of a diagram we
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reported in [AT16], which informally describes the steps taken to determine the concepts and
relations to be specified in the HiLLS' abstract syntax.

Integrated
formalism
Temporal Logic Object-Z DEVS Universal
= _ formalisms
Required e Experimental What to
properties frame model
. . Object- . . :
Logic-based Analysis Orientation Discrete Event Simulation Approaches
Formal Analysis Enactment Simulation IL— purposes

Figure 6.1 Build-up to HiLLS' abstract syntax

Starting with the purposes of modeling in the SimStudio II framework at the bottom row, we
identified the conventional approaches (in the "Approaches" row) to study DESs for the
corresponding purposes. We realized at this stage that an enactment process for DES could be
established through a blend of discrete event simulation and object-orientation approaches to
design a software prototype of a system. We then identified, in the middle row, the
computational models that may be required to realize the different purposes using the
corresponding approaches. While the model of the system under study may be sufficient for an
enactment process, simulation and formal analysis methodologies often require, in addition to the
modeling of the system under study, models of the experimental frame and required properties
respectively. Next, we identified universal and highly expressive formalisms often employed for
the different approaches.

Vangheluwe [Van00] has shown that DEVS is considerably universal for modeling most kinds
of DESs, as well as provide approximated models of non-DESs, for simulation; it may also be
used to model the experimental frame for a DEVS-based simulation process; hence we relied on
DEVS for a comprehensive study of the concepts required for simulation processes. Object-Z is
an object-orient variant of Z, which is extensively used by Formal Methods practitioners to
specify state-based systems for logical analysis so much so that it has been recognized by the
International Organization for Standardization. Thus, we considered to study the system
constructs expressed in Object-Z to take benefit of the universality of its base formalism, Z, and
the Object-Oriented structuring of system specifications. Moreover, it offered the opportunity of
exploring the combination of object-orientation with discrete event system concepts to serve the
purpose of enactment. Finally, we have chosen the Temporal Logics (TL) to study the concepts
for specifying the required system properties for its rigor and succinctness in expressing
temporal properties and its usability in combination with system specification formalisms such as
Z for requirement verifications.
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After thorough examinations and comparisons of the significances of the different concepts
expressed in DEVS and Object-Z in their respective paradigms, we realized that the purposes
served by their common concepts are sufficiently related to warrant the specification of common
and high level representations for them. For instance, DEVS' state set and Object-Z's state
schema describe the same aspect of a system, though at different levels of refinement and for
different purposes; similarly, we can find a common representation for the state changing
operations in Object-Z and DEVS' state transition functions. Another interesting discovery we
made is that TL formulas can be expressed in the form of a state-transition system with similar
representations as the behavior of the system itself. This discovery gave further credence to the
prospect of a unified model from which the artifacts for the disparate methodologies can be
systematically derived. Thus, we have built the HiLLS' abstract syntax from a systematic
integration, using metamodel integration techniques presented in Section 3.3.3.4, of system-
theoretic concepts from DEVS and of software engineering concepts from Object-Z and TL.

In the rest of this section, we will first present overviews of the metamodels that describe the
concepts and relations we adopt from the different source formalisms, this will be followed by
the integration of the different concepts for incremental definition of the HiLLS' syntax.

6.2.1 System-Theoretic Concepts Adopted from DEVS

Figure 6.2 presents a simple metamodel of the DES concepts adopted from DEVS plus a few
other concepts to kick-start the incremental definition of the HiLLS' abstract syntax. As shown in
Figure 6.2(a), class HSystem describes a DES. HSystem may have zero or more state variables
(stateVariables), input ports (inputs), output ports (outputs),and references to components
(components), each of which is HSystem (target).A composite system defines couplings between
its components to facilitate the exchange of messages between them. A coupling belongs to one
of three kinds: InputCoupling, InternalCoupling and ExternalCoupling, which are equivalent to
DEVS's EIC, IC and EOC respectively. More details on the properties and distinguishing
features of each of the three couplings are provided in the OCL (Object Constraint Language)
constraints specified in Figure 6.2(b).

The behavior of a HSystem is described by configurations and transitions between
configurations. A configuration is a labeled cluster of states that satisfy some unique properties
defined on the state variables. i.e., configurations are disjointed subsets of the state space; the
elements of each subset are states that satisfy a unique property defined by some logical
constraints on the state variables.
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(a) DEVS-based discrete event system concepts

Port
owner_Constraint ('A port is used for either input or cutput and not both'):
inOwner->isEmpty() xor outOwner->isEmpty()

owner:System = if (inOwner->isEmpty()) then outOwner else inOwner endif

Coupling
inv No_feedback_coupling ('Coupling ports of same system is illegal'):
sender.owner <> receiver.owner

InputCoupling

EIC Constraints ('sender = input of container, receiver = output of a component'):
sender.owner. components. target-> includes({receiver.owner) and

sender.owner.inputs -»> includes(sender) and --sender iz an input port of its owner
receiver.owner.inputs -»> includes(receiver) --receiver is an input port of its owner

OutputCoupling

EOC_Constraints ('sender = input of a component, receiver = output of container'):
receiver.owner.components. target-»includes(sender.owner) and

sender.owner.outputs -»> includes(sender) and --sender is an output port of its owner
receiver.owner.outputs -»> includes(receiver)--receiver is an output port of its owner

InternalCoupling

IC_Constraints ('sender = cutput of a component, receiver = input of a component’):
sender.owner.outputs -» includes(sender) and

recelver.owner.inputs -»> includes(receiver)

(b) Static constraints

Figure 6.2Metamodel of system-theoretic concepts adopted from DEVS
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A typical example of the use of configurations is the variable ¢ in our DEVS specification of the
BVS in Section 3.2.3; each of the values of ¢ defines a configuration. In addition to unique
property, a configuration is characterized by a unique /abel and a sojournTime (same as
timeAdvance in DEVS) that defines the maximum possible length of the system's sojourn in the
state. It may also define some activities, which are operations that are executed whenever the
system is in the configuration but which do not lead to a change in the value of any state
variable, neither do they involve input and/or output operations. In a similar manner as in DEVS
states, a configuration can be classified into one of three kinds based on the value of its sojourn
time: TransientConfiguration (sojournTime = 0), PassiveConfiguration (sojournTime = positive
infinity) and FiniteConfiguration (0 <sojournTime< positive infinity).

Finally, HSystem may define zero or more configuration transitions that specify the system's
behavior in terms of the evolution of the configurations. Like in DEVS, a
ConfigurationTransition can be one of three kinds: InternalTransition, ExternalTransition and
ConfluentTransition all of which are the effects of computations that result in the re-
configuration of the state variables, and consequently, leading to the satisfaction of the farget
configuration. i.e., to transit from the source configuration to the farget configuration, the
computations of the transition must be executed. This execution results in the modification of the
values of some state variables, thereby making the new values satisfy the constraints of the target
configuration. An InternalTransition occurs when the sojournTime of the source configuration
expires and it may be preceded by some output events. An ExternalTransition occurs when input
event(s) is (are) received on at least one of the imput ports before the expiration of the
timeAdvance of the source configuration. A ConfluentTransition occurs when input event(s) is
(are) received at the expiration of the sojournTime of the source configuration and may be
preceded by some output events. Every event (message) is associated with a transition and has a
reference to a port; a received message has a reference to the input port on which it was received
while an output message generated within the system has a reference to an output port on which
it will be sent.

6.2.2 Software Engineering Concepts Adopted from Object-Z

The author of Object-Z provides a grammar-based specification of its syntax in [Smil2]; the
detailed presentation of all elements of the grammar is beyond the scope of this thesis. We have
derived a simplified metamodel of the concepts that are most relevant to our work for integration
with concepts of other formalisms in a modelware technological space. The derived metamodel
is presented in Figure 6.3.An Object-Z specification consists of paragraphs, each of which is an
OZClass or a FreeType definition.
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Figure 6.3 Simplified Object-Z metamodel
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We presented, in Section 3.2.5, an abstract template of the structure of an Object-Z class schema
in Figure 3.13; let us use this template to explain the metamodel in Figure 6.3 for the sake of
clarity and brevity. Class OZClass in the metamodel describes the Object-Z class schema.
OZClass has an attribute className, which represents the class’ identifier, zero or more
parameters, an optional visibilityList, an optional list of InheritanceDesignators, zero or one
state schema, Sate, which declares primary and/or secondary state variables (whose types are
defined by expressions) and possibly a list of predicates specifying constraints on the declared
variables. It also has an optional axiomatic definition, AxiomaticDef, which may define constants
and global variables, an optional /nit that specifies the predicates defining the initial state of the
class at creation, and finally, zero or more operations that use and/or manipulate the variables
declared in the state schema.

Object-Z specifies different kinds of predicates for writing many kinds of logical expressions,
which may be true or false. While simple predicates use relational operators such as described in
enumerations Re/ and I[nRel to define logical expressions, complex predicates use logical
connectives such as enumerations BinaryLogics and LogicalNot for hierarchical composition of
simpler predicates. The remaining parts of the metamodel give further refinements of the
different elements of the Object-Z class schema.

6.2.3 Metamodel of TL Property Patterns

We discussed, in Section 3.2.6.3, the patterns of commonly checked temporal properties in
system as compiled by Dwyer et al. and used as a guide for the specification of complex
temporal properties in system requirement specifications. We present a metamodel of the
property patterns in Figure 6.4 to facilitate our attempt to establish the relationships between the
elements of the patterns and the system concepts in DEVS and/or Object-Z and unify them in the
abstract syntax of HiLLS.

As described in Figure 6.4, a RequirementSpecification consists of temporalProperties each of
which conforms to a PropertyPattern and a Scope. There are five kinds of Scope: Before, After,
Global, AfterUntil and Between. A Before (resp. After) scope refers to a proposition (delimiter),
which when it becomes true marks the "end" (resp. "beginning") of the segment of execution
within which the pattern of a TLProperty must be satisfied. A Between scope is a cascade of
After and Before scopes; it refers to two propositions - startDelimiter and endDelimiter - between
which the specified pattern must be satisfied. The AfterUntil scope is similar to Between except
that the occurrence of the truth of the endDelimiter is not guaranteed in the former. A Global
scope implies that the specified pattern must be satisfied throughout the execution.
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Figure 6.4 Metamodel of Dwyer's TL property patterns

Similarly, a TLPattern can be of the kind absence, existence, universality, bounded existence,
precedence, response, precedence chain (with single cause and multiple ordered effects or with
multiple ordered causes and single effect), and response chain (with single trigger and multiple
ordered responses or with multiple ordered triggers and single response) as described in Section
3.2.6.3.

6.2.4 Derivation of the HiLLS' Metamodel

The HiLLS metamodel has been built incrementally by successive applications of some of the
metamodel composition techniques described in Section 3.3.3.4 for the integration of concepts
from the different metamodels presented earlier. This sub-section presents the major steps taken
to arrive at the final metamodel. We will start with the integration of the concepts to model
system, and then follow it up with the integration of the concepts to model requirements.

6.2.4.1 Integration of System Modeling Concepts in HILLS Metamodel

As a reminder, we intend to integrate the system-theoretic concepts in Figure 6.2 and some
concepts in the Object-Z metamodel (Figure 6.3) in order to exploit the strength of one to
complement the other; it would be interesting if concepts such as stateSchema and operations in
the latter are shared with the former. For instance, the state schema offers a more precise and
verifiable way to specify the state space compared to the abstract description of class Variable in
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Figure 6.2. Moreover, incorporating the operation schema and axiomatic definition can further
enrich the language with constructs to specify some system-specific operations and global
constants or variables. One quick solution to come to mind would be to create an inheritance
from HSystem to OZClass; this is, however, not a panacea in this case because the latter has
many other elements that are not required in the former.

We recall that metamodel interfacing (see Section 3.3.3.4) suggests the introduction of new
classes and relations to combine two metamodels describing distinct but related domains in order
to explore the relationships between them. Using this technique, we introduce an interface class,
HClassifier, to kick-start the integration of the DEVS-based and Object-Z concepts as shown in
Figure 6.5. Consequently, HSystem and OZClass become kinds of HClassifier but no relations
have been established between their components.

— El Operaltlon - g--* operations H HClassifier
opnName : EString H port

. [}
auxVariables name

o i ts 0.7 | & e
H ozclass ;I_ —‘7 npu P
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B T
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Figure 6.5 Interfacing the DEVS-based and Object-Z concepts in HiLLS metamodel

We restructure the metamodel by filtering the OZClass concepts required by HSystem and
associate them to the interface class (HClassifier) as shown in Figure 6.6; OZClass has now been
renamed to HClass for uniformity of nomenclature. Hence, HClass can preserve its associations
with other elements as in the original metamodel while maintaining relations with the shared
elements via HClassifier. At this point, the set of variables stateVariables directly owned by
HSystem becomes redundant since a more rigorous mechanism (i.e., stateSchema) to specify the
state space has been inherited from HClassifier. Thus, class Variable is marked for deletion to
remove the redundancy.
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Figure 6.6Reorganization of concepts and marking of abstract concepts for

refinement
Almost all components of HSystem require more details to clarify their true natures. For instance,
the attribute predicate of Property is actually a constraint on the state variables; it is, however,
not clear, how the predicate is specified. Similarly, class Port (resp. Message) is defined as
having a name (resp. value) and type, which require some clarifications. Each of the operations
computations and activities of ConfigurationTransition and Configuration respectively is
conceptually an ordered set of expressions; while the former is executed during a transition, the
latter is executed during the sojourn of the system in the corresponding configuration. All these
details can be obtained freely from the components of HClassifier using the class refinement
technique (described in Section 3.3.3.4), which involves the reuse a fragment of a metamodel to
provide a detailed specification of a considerably abstract concept in another metamodel.

Figure 6.7 presents the resulting metamodel after the application of the class refinement
technique to the metamodel in Figure 6.6. ClassProperty refined by its new reference to
Predicate, which offers a wide range of constructs to specify logical predicates (only a few are
shown in this excerpt). Class Configuration is refined by its two relations soujournTime and
activates with the class Expression. While the former allows the language's user to use the
different kinds of expression to precisely specify how the sojournTime of a configuration is
computed at runtime, the latter provides the means to clearly specify an ordered set of expression
as the activity of a configuration. Similarly, the reference computations of class
ConfigurationTransitionallows for the precise specification of the ordered set of expressions,
which when executed will lead to the corresponding transition. Reference value of class Message
defines the expression that yields the actual message event. Finally, class Port refers to a
declaration (portDecl) that precisely specifies a port's name and its type of admissible objects.
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Figure 6.7Refinement of essential system modeling concepts in HiLLS metamodel

6.2.4.2 Integration of System and Requirement Modeling Concepts in HiLLS Metamodel

Figure 6.8 presents the integration of the system metamodel (Figure 6.7) and the metamodel of

property patterns (see Figure 6.4).Using metamodel interfacing; we introduce an interface class
HiLLSSpecification with references to HClassifier and HRequirementSpecification. Therefore, an
hclassifier satisfies zero or more requirement specifications. Conceptually, the class Proposition
in the property metamodel is a statement on the system's state, which may be true or false; we
refine the class to provide this detail via its new reference to class Predicate.
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Figure 6.8 Essential elements in HILLS metamodel
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The OCL code in Figure 6.9 specifies some static constraints on the metamodel in Figure 6.8 to

disambiguate some of its elements, especially the configurations, configuration transitions and
port couplings specified in a HSystem.

import 'HiLLE.ecore’
package hills
context HiLLSSpecification

inv unique HClasaifier name ('HSystems and HClasses must have unique names'):
modelElements—>forkll{entl:HClassifier, entZ:HClasaifier|
entl.name <> ent?.neme)

entl <* ent2 implies
context HSyatem

inv unique_configurationa ('configuretions must hawve unigue names and propertiea®):

configurationa->fordll{cenfigl:Configuration, configl:Configuraticon|configl<>config
impliea

configl.label <> configl.label and configl.properties<»>config2.propertiss)
context Configuration

H3yatem.transitiona-»>exiatse{acurce

inv iaclated_configuration_constraint {*Isclated configuration iz illegal®}:

gelf xor target = aelf)
inv nonPassive_Configurations_sonstreints {’non-passive config cannot be & final
=tate'):

not gelf.ocllaTypeldf (FasaiveConfiguration) implies System.transitions-»exista(scurce
= aalf}

context ConfigurationTransition

inv PaaeiveConfig InternalTrans_Conatraint (*Internal and confluent tramsitions cannot
originate from a pazaive cofiguration'}:

gelf.ocllsTypelf {InternalTranaition} or aelf.ocllsTypelf{ConfluentTransition}
implies not self.aocurce.occllaTypelf (FassiveConfiguration)
context Port

def: cuner:Syatem =

if (inOwner-»izEmpty(})} then outlwner elze inlwner endif
context Coupling

inv No_feedback_coupling (*Coupling ports of same system ia illegal®}:
aender .ouner <* receiver.owner

context Inputloupling
inv EIC_Constraints {°sender

input of container, receiver = output of a component®):
aender . owner . hComponents . target—> includes{receiver.owner)} and
aender.owner.inputa -> includes{sender} and --sender iz an input port

receiver.owner.inputs -* includes(receiver) --receiver is= an input port
context DutputCeoupling

inv EDC_Ceonstraints {°sender

input of & component, receliver =

output of container®):
receiver.owner .hComponenta. target->includes{sender . owner) and --
component of receiver

sender iz &

gender . ouner.outputa —> includes(sender) and --=

ender is amn output port
receiver.owner.outputa —* includea{receiver}--receiver 1 an cutput port
context InternalCoupling

inv IC_Conetraintas ('eender = output of &2 component, receiver = input of &2 component®):
aender.owner.ocutpute -* includes{sender} and --sender is an cutput port
receiver.owner.inputs -* includea(receiver} --receiver i= an input port
endpackage

Figure 6.9 Static constraints on the HiLLS metamodel

6.3 HIiLLS' CONCRETE SYNTAX

This section presents the concrete notations for expressing the concepts and relationships
described in the HILLLS' abstract syntax. In order to take benefit of its universality and ease of
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comprehension, we adopt and extend some notations from the UML family of languages and
some notations from Object-Z to define the graphico-textual notations for HiLLS' concepts. This
section is divided into two parts; we will present the notations for describing systems in the first
part, and follow it with the notations for high-level modeling of temporal requirements in the
second part.

6.3.1 Concrete Notations for System Specification
Table 6.1 presents the HiLLS notations for expressing system models.

Table 6.1 HIiLLS' notations for system description

Notations Descriptions
HClass is a box with three compartments similar
to the UML class symbol. The first compartment
HClassName[par1...., parn] contains the HClass’ name and parameters if any.
declarations |declarations The second compartment houses the state and
predicates  [predicates axiomatic schema if any; we adopt the notations
|—Inlt - of the state schema and axiomatic definition as
Predicate . . .. . .
opn_ mﬂmammsn[nrpﬂ]— used in Object-Z. A declaration is written in the
arations : . ;
Dredicates format  declarationName:Type. The ' third
5 compartment houses the class’ operations if any.
n_ name rams — 1 1 1 1
FP —mclaﬁ‘i‘ims liitype] An operation is similar to the state schema but
predicates with additional information indicated on its top
HClass side. The top bears the name attribute of the
operation, the type and list of parameters (if any)
of the operation in brackets.
HSystemN 1, ..., : :
[ HSystemName(par parn] r]. HSystem's notation extends that of HClass; it has
P — p—— -~ . .
"‘%"” declarations |declarations |eomoe<ivl | for compartments with the first three serving
= predicates | predicates . o i . .
scibact o pdioects] | similar functions as in HClass while the fourth
|—'"'tpred|catas contains the configuration transition diagram that
opn_ 3‘:’,‘;‘,’;‘,";":,‘,‘;51'“"""1 describes the system’s behavior. The input and
predicates output interfaces are denoted by windows
PN Eiﬂiﬂ:;.’:.ﬂs"m"’e] attached to the left and right sides respectively of
e = the second compartment. In each rectangular
- tﬁ ) I window, we express a port as a small arrowhead
rg:l .\-_E—f labeled with the port's declaration. The format of
= | ..
a port declaration is portName: Type.
HSystem p p P
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Notations

Descriptions

hReferenceMame

HClassifier

hContainmentReferenceMame

HReference and HComponentReference use
similar notations as reference notations in UML;
they are labeled arrows from an HClassifier to a
target entity. While the target of the former is an

HReference HClass, the latter has a HSystem as target. In all
hComponentRefName cases, m..n denotes the cardinality with m and n
Hsystem_a> m..n representing the lowerBound and upperbound
HComponentReference attributes respectively. The. relation parentClass
between any two HClasses is represented exactly
Hclass_a|{] Heclass b \ the same way as the generalization concept in
UML class diagram.
parentClass
label FiniteConfiguration is denoted by a box with
properties five compartments for its label, properties
sojourn Time predicate, sojournTime expression, activities
aciivities expression(s) and sub-configurations respectively
sub- from top to bottom.
configurations
FiniteConfiguration
L’EL' PassiveConfiguration 1s similar to finite
properties configuration except that the compartment for
activities sojournTime is not represented; a vertical stripe
I SHb- is attached to its right side as an indication of its
configurations infinite sojournTime.
PassiveConfiguration
/‘I;;;I\\ TransientConfiguration is denoted by a circle

properties
activities

TransientConfiguration

with three compartments for its label, properties
predicate and activities expressions if any. Its
shape naturally depicts its zero sojournTime.
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Notations

Descriptions

sowrce  joutputEvents; computations; [ (arge:
(finite configuration) configuration
/"r—-"‘\\
/ S Y
|.- {trarfs?:m \outputEvents; computations; [ (arger
\configuration) | configuration |
\.\\1- ---,J,.-’
. outputEvents; initialization; il
configuration

InternalTransition

InternalTransition is a labeled solid arrow from
source configuration to target configuration. The
(if any) and the ordered
computations expressions constitute the label of

outputEvents

the transition in the order presented in the figure.
An outputEvent 1is specified in the format
the
name of the associated output port and the

outputPortName'expression, indicating

expression that specifies the value to be sent; the

mn

exclamation mark is an indication that
expression 1is produced as output on port
outputPortName. An internal transition may
emanate from the right of a finite or transient
source configuration and terminate on the left
side of the target, which can be any kind of
configuration. It may also emanate from an
initial configuration notation and terminate on

the actual sartingConfiguration of the system.

s0Urce Ll el
(inkelpassiie computations; |confguraion
configuration)

ExternalTransition

An ExternalTransition is a labeled dashed arrow
from the source configuration, which may be a
finite or passive configuration, to the target
configuration, which may be any kind of
configuration. The transition
terminates on the left side of the target; it,
however, emanates from either the top or the

arrow  also

bottom side of the source configuration. The
triggers are specified in a comma-separated list
within a bracket at the source end of the
transition arrow. A trigger specification is in the
which
indicates that the value of expression is received

format  inputPortName?expression,

on input port inputPortName.
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Notations

Descriptions

AConfluentTransition is a labeled dotted-dashed
arrow from the source configuration, which may
be a finite or transient configuration, to the target
configuration, which may be any kind of
configuration. While the
terminates on the left side of the target like in the
previous cases, it originates vertically from the

transition  arrow

right edge (either bottom or top) of a finite
source configuration as an indication that the
trigger(s) is (are) received at the end of the
sojourn time of the source.

....... tanget
|[trigger 1,....trigger_n] configuration
SOUrce
{finite: configuration)
!/’--F_--x'
{ Swurce Y\ outputEvents; computations; target
| (ransient s o= o= i o = configuraiion
\corfigurationyItriager_1.... trigger_n] ig
S
ConfluentTransition
— - h

- condition

o=

\J

Conditional transition paths

In cases where the path taken by a transition
depends on a condition, we use the diamond
symbol to disambiguate the flow of the
computations in the conditional expression. The
condition is, conceptually, a graph node with one
inflow and two outflows; the transition flows into
the diamond from any of its four edges; the
outflow from an edge with a small circle indicate
the path taken when condition is true and the
other outflow is the path taken when condition is
false. In some of our previous publications
[MATI15, AMTI16], the rule has been that the
inflow is strictly on the left edge of the diamond,
the outflow the truth of condition is strictly on
the right edge and the other outflow can be on
either the top or bottom edge. From our
experience in using the language, we have
relaxed this rule for greater flexibility since the
inflow is distinguishable from the two outflows
with the direction of the arrow and the small
circle at the base of the truth path is sufficient to
differentiate it from the other irrespective of the
diamond edge.
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6.3.2 Concrete Notations for Requirement Specification

This sub-section presents the proposed graphical notations for expressing the temporal properties
patterns described in the HiLLS abstract syntax. In order to simplify communications of
requirement specifications among the different stakeholders, we propose to use variants of the
elements of HiLLS' transition diagram for expressing temporal properties in HILLS. We believe
that uniformity of notations in both system and requirement models will aid the user's
specification and understanding of required temporal properties for DES. Similar benefits have
motivated Meyers et al. [MWV+13, MDL+14] to propose a framework to support the use of
domain-specific notations for specifying properties in DSLs.

Firstly, we introduce the notation of a requirement specification and its relation with
theHClassifier(s) that satisfy the properties specified in it. A requirement specification is
represented as a rectangular box with two compartments (see right of Figure 6.10) for the
requirementName attribute and the temporal properties. The relation satisfies between an
HClassifier and a RequirmentSpecificationis denoted by a generalization arrow with dashed tail
similar to the UML symbol for interface implementation/realization.

requirementName

HClassifier |——————————— > s

Figure 6.10Requirement notation

To express the temporal properties, we propose two notations, generic configuration notation
and hypothetical configuration notation to express different aspects of a property pattern. A
generic configuration notation, described on the left of Figure 6.11, is a variant of the
FiniteConfiguration notation; its rounded corners indicate that it does not specifically represent a
finite configuration or any of the three kinds of configuration. In addition, only the predicate and
sub-configuration compartments may be filled; the sojourn time and activities compartments are
empty. The predicate compartment is filled with the predicate that defines a proposition as
described in the abstract syntax. Hence, a generic configuration notation is an abstract
representation of any concrete configuration in which the proposition specified in it is true. A
"hypothetical" configuration notation, described on the right of Figure 6.11, denotes a symbolic
generic configuration notation, which is used to indicate that a configuration in which its
specified proposition is satisfied is permissible at its location in the specification; it, however,
does not enforce the existence of such configuration(s).
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_— — — — — —,

proposition

subconfiguration

Figure 6.11 Generic and arbitrary configuration notations

These two notations will be used, in the rest of this subsection, as the building blocks to specify
temporal properties based on Dwyer's property patterns. Taking clue from the work of Klein and
Giese [KGO06, 07], we will first present the templates, based on the two notations above, for the
property scopes; this is followed with the templates for the patterns themselves and how they fit

into the different scopes.

6.3.2.1 Property scope notations

We present the concrete notations for expressing property scopes in Table 6.2. Recall from our
previous discussion in Section 3.2.6 that a temporal property specification is an abstract assertion
on a segment of the execution of a system; we denote the entire execution by the elements
between the initial state (solid ball) and final state (bull's eye) symbols. Each of the scopes
describes the segment of the entire execution within which the specified property pattern
(represented by dotted lines) must hold. Thus, to use any of the scope templates, we replace the
dotted lines with the property pattern to be checked. Note that the transitions between the generic
and/or hypothetical configurations are abstract transitions without specific operations, triggers or
output events. Hence, they do not specifically indicate any of the three kinds of configuration

transition.

Table 6.2 HIiLLS notations for property scope template

Scope| Property scope notations with examples Descriptions

The globally scope expresses that the

)
E . - . - C‘J property pattern... must be satisfied in
5 Globally every state‘ 'tl'lroughout the execution
between the initial and final states.
This specified property pattern ... must be
- satisfied before a transition into a state in
: . ...l R = true ! @ which tt}e predlcate. R is satlsﬁed The
< — hypothetical state satisfying predicate true
R after R indicates that whatever property is

Before R ) . .
satisfied in  subsequent states is

inconsequential.
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The property pattern ... must be satisfied
after a transition into state in which the
predicate R is satisfied. It does not matter
whether R itself is satisfied from the initial
state or not.

Property pattern ... must be satisfied affer a
transition into a state in which the predicate
Q is satisfied and before a transition into a
state in which R is satisfied. Whatever
happens afterwards is immaterial for this
scope.

| _-|R_| R
5 .—ki > > -
= : ]
< -
After R

= = _| Q| R
8 ._.lil_. L L L
=
R Between Q and R
— .—n-l o |l 9, —I-@
= [ i I
= = =
5 LI
< .
< N

After Q until R

Property pattern ... must be satisfied affer a
transition into a state in which the predicate
Q is satisfied, and continue to hold until a
state in which R is satisfied occurs. If R
does not occur then the scope of the
specified pattern continues until the end of
execution. Since the occurrence of R
interrupts the scope of the specified
pattern, we express the transition to the
satisfying R with an external
transition notation. It, however, does not
imply that the transition between such

states in the system specification must be

state

an external transition.

6.3.2.2 Property pattern notations

Both scopes and patterns are expressed using mixtures of generic and hypothetical configuration
notations and abstract transitions between them. In order to distinguish the two parts in a
property specification, we express patterns within composite generic configuration notations.

Table 6.3 presents the concrete notations for the property patterns.

To disambiguate the different elements in the precedence and precedence chain patterns, the
preceded states (effects) are represented with shaded generic configuration notations. For the
same reason, trigger states are represented with shaded generic configurations in response and
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response chain patterns. In fact, the shaded elements mark the difference between precedence
and response patterns and their respective chains.

Table 6.3 HiLLS notations for property pattern templates

Pattern Property pattern notations with examples Description

Pattern specifies that a transition into
a state in which predicate R is
satisfied must eventually occur (at
least once) within the specified scope.
The hypothetical configuration
satisfying —R indicates that R does

not necessarily have to be satisfied by
the first state visited within the scope.
Similarly, the second hypothetical

Existence (eventually)

configuration notation indicates that

R exists
any predicate may be satisfied
subsequent states within the scope.
— [ ] The pattern species that all states
w2
= visited (from the first to the last)
% R within the associated scope must
iy —> | satisfy predicate R. Hence, there are
g no hypothetical configuration
E - - notations before or after the state of
= .
= Always R interest.
i
E Predicate R must not hold in any of
2 o R - the states visited within the associated
2 scope.
=
< LY -
Never R
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Pattern

Property pattern notations with examples

Description

Bounded existence

R exists at most twice

This requires that a state where
property R holds is visited at most
two times (i.e., maximum frequency =
2) within the specified scope. The
hypothetical state indicates that R
may not necessarily hold in the first
state. The transitions into R must,
however be kept within the limit
defined by the maximum frequency.

Precedence

ruill

':I—j

S precedes R

Within the associated scope, a
transition to a state satisfying R must
be preceded by a transition to a state
in which S holds.

The hypothetical configuration —R
preceding S strictly enforces the
requirement that R should not precede
S while the one between S and R
indicates that the latter does not
necessarily have to follow the former
immediately.

Response

| true "*—-‘

==

|
.__’ A

R responds to S

A state satisfying S must be followed
by a transition to a state in which R
holds within the specified scope. The
hypothetical configuration =R
between S and R indicates that
response R does not necessarily have
to follow trigger S immediately.

To further disambiguate between the
notations of response and precedence
patterns, we use a shaded generic
configuration for the trigger (S) in the
former and for the event that follows
the precedent (R) in the latter.
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Pattern Property pattern notations with examples Description
Within the associated scope, a
transition to a state satisfying T,
followed (not necessarily
{ | immediately) by a state satisfying R
-5 must be preceded by a transition to a
S s | Mg R > e ||y | State in which S holds.
Q - I
5 I’“—* — r_ — The hypothetical configuration “RVT
& | — — — —)J indicates a state where R or T holds
E ] ~RvDU| [ T —F‘J ~R does not precede S. Similarly, the
a I ] e/ J | hypothetical configuration —-R
- . .
following S requires that R must not
S precedes T, R hold between S and T while the one
following T implies that it is not
necessary that R follows T
immediately.
£ This pattern specifies that a sequence
= — — o e
S 5 . R ol e |_+ of transitions to sta‘tes satlsfy1'ng S
g > | i ! and T (not necessarily successively)
é ey | [ W must precede a visit to a state in
§ —— —_— which R holds within the associated
& =Ry T)| T | -R scope.
o | i |
N 1 — _ )
S, T precede R
This pattern specifies that a sequence
= o o
‘= = == of transitions to states satisfying T
< s | | S R true . .
© r > R E_H" e, and R (not necessarily successively)
g _“—-"_ [ ) | [ S— — I mus't ‘respond to (i.e'., be t.riggered by)
E Mwe | = _.,J = | a ‘Vl.Sl'[ to a sta'te in which S holds
= Tg i : within the associated scope.
™ — — S 1 )
T, R respond to S
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Pattern Property pattern notations with examples Description

Within the associated scope, a
= transition to a state satisfying S,
s — = e .
5 S - R el tue |l followed (not necessarily
z r Rl | r — immediately) by a state satisfying T
é. — — — must trigger (be responded to by) a
& | true || T _.J -R )J transition to a state in which R holds.
a4 | i |
— — ! T/ T/

R respondto S, T

To use the property notations for the specification of temporal requirements, the modeler needs
to map each required property to a pair of pattern and scope selected from Table 6.3 and Table
6.2 respectively. Then the dotted section of the scope is replaced with the pattern template to
complete a template for the property.

In future work, we intend to explore the provision of HiLLS-based notations for timing
requirements also. The next section presents the HiLLS specification of the BVS running
example, which includes the system and requirement models (using the property notations
provided in this subsection).

6.4 HIiLLS SPECIFICATION OF THE BVS

In this section, we demonstrate the application of HiLLS concrete notations for system and
requirement modeling by presenting the HiLLS specification of the running example in this
thesis: the Beverage Vending System (BVS), the synopsis of which has been provided in Section
3.2.1.

As described in the synopsis, BVS is a composite system with two components: Beverage
Vending Machine (BVM) and the user (BVMUser). It also states some temporal properties,
which BVM must satisfy. We will present the HiLLS specification in a bottom-up approach. i.e.,
first, we present the components -BVM and BVMUser - and their requirements (if any); then, we
will present the BVS and its relationship with its components as well as the link between the
BVM and a model of its required properties.

6.4.1 HiLLS specification of BVM

We present the HiLLS model of the BVM in Figure 6.12. BVM has two input ports and two
output ports. The type of output port outC is a bag of coins. To describe the system's behavior,
BVM has six configurations: idle, charge, reject, return, dispense and cancel each having a
unique property specified by the predicate (on the state variables) in its properties compartment.
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BVM

— credit:k;
inC:Coin price:r; =
L ode: ?1’2 446 current: i outC:[Coin]
—_— prices[0, 100, 80. 120, 130]; cup:Bg:erage
current 0.1, 2, 3. 4. 5;
— [Jvalid[c:Coin]|[Beol | — — — [[playWelcome[ ]|[ ] — [- 1setPrice[code:M ]|[ 1—
If c.getValue() = {100, 80, 120, 130} | While true{ code ={1,2. 3. 4};
Then out! = true; Print “Welcome! Press button to choose a beverage™. | |f code==
Else out! = true; Print “1-=Cocoa, 2-=Coffee, 3->0range, 4-=Appla”; Then price’ = 100;
Endif 1 Else If code==
~ [-]playDispenseMessage[ ]|[ ]  [-lplayCoinRequest] ]Il ]———| Then price’ = 80;
While trus{ xghilxiz "tlme{ . . inue. - Else if <>(I>da'=_=3 .
Print "Your cup of beverage will be ready in a moment”; nnt insert a coin to Co.r.]_ inue: | Then price’ = 120;
} Print price-credit * cents™; Else price’ = 130;
} Endif

outClescrow =badC=; current’=0; price’=0; credit’=0; escrow'=<>; badC"=null;

current’=0; price'=0; credit'=0; escrow'=<>; badC'=null;

- <= - - urrent=x;
n@.— uﬁ,grﬂf:—n;—l badC= null
setPrice(x))

I
[code?x]
charge
currents {1,2,3, 4} price==

\[code?x]
idle

|
|
|
|
|
|
I
'

credit==0 current==0x price== current’=5:

A credit<price A badC==null

badC==null » escrow==<>
playWelcome()

credit= 0; price=0; current=0; badC=null;

=5

playCoinRequest()

— -
— - t=2.0
-

nC7x] [inCzx]!

X, curren

current £ {1,2,3,4}
A badC =null

2l
o
2
i
*|
I N
bad

-
I
I
I
I
I
I
I
I
I .
I

: credit’= credit+x getValue(),

| BSCTOW =BSCraw_<x>;

(x.getValue() ¥
credit) < price

|
credit’= credit+x.getValue();

vault'=vault escrow <x=;

' eserow'=ex: :
! I credi i Teredit'= credit+x.getValue();
I : return jvault'=vault"escrow”<x>; escrow’'= <>,
I | | » ) AR — . dispense
| | urrents {1,2,3 4}==0 » leradit’= credit+x.getValue(); currente {1,2,3, 414 price=0
i —-—— price=0 A credit=price » :vauIt’=vau|t"escrow“<x>; Acredit==price »
L badC=null Aescrow==<> escrow'=s== _ _ _ _ _ _ _ _ _ _ p- DadC==null» escrow==<>
--------- _ S »- t=1.0
outClgetChangeicredit-price); lavDi M
credit'= price; playDispenseMassage()

cuplgetBeverage(current); credit'= 0; price'=0; current’=0;

Coin

value:f+
value =11.2. 5. 10. 20.50. 100. 200} | 0..1 badC

vault 0..% [+ start{n M I[]—
| [ vaue=n 0..* escrow

|-[+] getValue[ JI[r]-
| outl = value

Figure 6.12 HiLLS model of the BVM
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For instance, it transits to configuration idle whenever predicate credit == 0 A current ==
0 Aprice == 0 A badC == null A escrow ==<> is true. Idle is a passive configuration,
charge and dispense are finite configurations while reject, return and cancel are transient
configurations; hence only charge and dispense need to have their sojourn times explicitly
defined, others are implicit. i.e., zero for transient configurations and positive infinity for passive
configurations. The configuration transition diagram specifies the BVM's behavior as follows:

The system initializes to configuration idle. It remains in this idle while playing the welcome
message as specified in the activities compartment until it receives an input x € {1,2,3,4} on
input port code; the input triggers an external transition to configuration charge while the
received x is assigned to state variable current and used as argument to the operation that
computes the value of variable price. Note that the code x received indicates an order for a
beverage.

Once it assumes configuration charge, BVM awaits the receipt of coins within its set of
acceptable coins to fund the ongoing transaction while displaying the amount of coins expected
in its activities. If does not receive any input within 2 minutes, which is the sojourn time of the
configuration, an internal transition to configuration cancel is fired by doing the computation
current = 5, to automatically abort the transaction. An input x == 5 on input port code also
triggers an external transition to cancel while assigning x to current. If a coin x is received on
input port inC, it first checks whether x is an acceptable coin or not; if not acceptable, x is
assigned to variable badC, leading to an external transition to configuration reject. This leads to
an instantaneous output of hadC on output port outC and an internal transition back to charge. If
x is a valid coin, a check is done to see whether its value makes the condition x. getValue +
credit < price is true or not. If the condition is true, x is not sufficient to pay the price of the
selected beverage; hence, the eternal transition targets configuration charge to await more coins.
If the condition is false, then x is either exactly equal to, or greater than the amount required to
complete the transaction, so a test for a last condition x. getValue + credit > price is checked.
If this condition is false, then x is just sufficient for the transaction and the transition targets
configuration dispense. If condition is true, it implies that the value of x is greater than the
amount required; hence, the transition terminates on configuration refurn. Whenever it assumes
configuration return, BVM immediately outputs a bag of coins of value credit — price and fires
an internal transition to configuration dispense.

A confluent transition may also occur if a coin x is received BVM has been in configuration
charge for exactly 2 minutes. It first checks whether x is valid or not as in the case of an external
transition; however, an invalid coin in this case leads to an automatic cancelation of the
transaction. If x is valid, the confluent transition follows similar paths as the external transition.
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BVM spends about 1 minute in configuration dispense while the requested beverage is being
prepared; the activity of the configuration is to continuously display a message to that the
requested beverage is on its way. At the end of the sojourn time, it outputs the beverage on
output port cup and immediately does an internal transition to configuration idle.

The moment BVM enters configuration cancel, it immediately checks whether a coin has been
stored in badC and/or whether escrow is not empty. badC will be occupied if cancel is entered
through a confluent transition from charge; escrow may not be empty if the system has been
iterating in configuration charge before making a transition to cancel either through an internal
or confluent transition. If either or both of the two variables is/are occupied, the occupant(s)will
be sent out on port outC before reinitializing the system to configuration idle.

6.4.2 HIiLLS Specification of BVMRequirement

In this subsection, we discuss the steps taken to model the three required temporal properties of
the BVM. As reminder, we have matched the required temporal properties of BVM to some
property patterns in Section 3.2.6.4. We will repeat the matching in this subsection and then
demonstrate how to express them with the HiLLS' notations proposed in this chapter for
modeling the property patterns and scopes.

6.4.2.1 Temporal property I1: BVM must not dispense unless enough coins are inserted to pay
for a selected drink

We can rephrase this property to match the precedence chain pattern as:

The selection of a drink, and acquisition of sufficient coins always precede the dispense of
selected drink.

This statement matches with the property pattern "S, 7, precede R globally" where:

S = "a drink is selected", 7= "sufficient coins have been acquired" and R = "selected drink is
dispensed". From the BVM model, we know that current € {1, 2, 3,4} when a drink has been
ordered. credit = pricemust be true when sufficient coins have been cumulated for a
transaction and current € {1,2,3,4} Aprice > 0 A credit = price must hold when the
ordered drink is being dispensed. i.e., S := current € {1,2,3,4}, T := credit = price and
R = current € {1,2,3,4} Aprice > 0 A credit = price.

We can construct the property "S, 7, precede R globally” by substituting the template of pattern
S, T, precede R (see Table 6.3) for the dotted line in the template of scope globally (see Table
6.2). Figure 6.13 shows the outcome of this substitution.
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Figure 6.13 HIiLLS notation for property "S, T precede R globally"

By substituting the predicates R, S and T in Figure 6.13, we have the HiLLS specification of the
property as shown in Figure 6.14.

i !

i ]
L T —_— el

J—— I—-(nurrant:;{1,2,3,4}ﬂ.pr1'|:at-ﬂi . —
rFumam..-t {1233}, | credit==price | ﬁ“mme (1232 prioencrediemerce
|

.-—
|

rTo ~ £ : ;
. ((currente {1,2,3,4}a price=0 A : ﬁ = {cudr_rle_rlle .{1 23410 pncesao:
. P credit==price) v credit > price) credit > price | » credit==price) |

| 1 \, 7

o ————— o — o —

@

Figure 6.14 HiLLS specification of temporal property I of BVM
BVM must not dispense unless enough coins are inserted to pay for a selected drink

6.4.2.2 Temporal property II: BVM should always refund the balance whenever excess coins
are inserted

We rephrase this requirement to match the response pattern as:
Refund balance responds to excess payments always

This statement matches with the pattern "R responds to S globally” where R = "refund balance
occurs" and S = "excess coins have been inserted".

Excess coins have been inserted when credit > price and refund of balance has occurred when
credit reduces to the value of price, i.e., credit = price.

Therefore, S = credit > price and R := credit = price.

Figure 6.15 shows the outcome of substituting the template of pattern R responds to S (see Table
6.3) for the dotted line in the template of scope globally (see Table 6.2).
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Figure 6.15 HiLLS representation of temporal property "R responds to S globally"

By substituting the predicates R and S in Figure 6.15, we have the HiLLS specification of the
property as shown in Figure 6.16.

credit = price true  —tm ©
| —
t;‘|_ ———————— 5
. | true J L:—'{crecﬁt == price)| credit == price
1 L !
— — e — — —— - —

Figure 6.16 HiLLS specification of temporal property Il of BVM
BVM should always refund the balance whenever excess coins are inserted

6.4.2.3 Temporal property IlI: Once the payment for a drink is complete, the transaction
cannot be canceled any longer

Again, we can rephrase this property to match with the absence property pattern as follows:

Transaction is canceled is not allowed after sufficient coins have been acquired for the
transaction.

This matches with the occurrence pattern S is absent after R with S = "transaction is canceled"
and R = "sufficient coins have been acquired for the transaction".

From the system specification, we know that current == 5 is necessary to cancel a transaction
and sufficient coins have been acquired when credit > price. Therefore, S := current ==
and R = credit = price.

® | -r | R -5 @
i |
1 (N ]
Figure 6.17 HiLLS template for temporal property "S is absent after R"

We substitute the absence pattern template in the dotted segment of the affer scope and we have
the template for property S is absent after R as shown in Figure 6.17.
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We substitute the predicates R and S in Figure 6.17 and the HiLLS specification of the required
property is as shown in Figure 6.18

._-: ':f:':r‘;l'.;t; E'r:‘:;}lﬂi credit = price —{current==5) »@

________ - i L.

Figure 6.18HIiLLS specification of temporal property III of BVM
Once the payment for a drink is completed the transaction cannot be canceled any longer

6.4.2.4 BVM requirements

BVMRequirements

4

-

I= {currente {1,2,3 434 prlce}EI] F _—
currents {1,2,3 4} ...,Ia\ credit==prica} ﬁ_’“mrrenls {1,234 prioe>OAcredpros
e ——————— - e T | — —
IS {{currente {1,234} price=0 A : | - : :-| fCUITF._'flTE {1 2,34k prloe:ﬂl: true |

._"':credlt==prlce] v credit = price) -iﬁmd' 2 price 4, A credit==price) o |@
i - ;. —
credit = price —‘
';'_ [ —— o
. . | lrue J Lf-l'credil == price}
: ] | i
[— S — -

P . ——
._;: S(credit # price) | _ |credit = price ~{current==5) —4>©
: .

1
_—
[ — o L o L -

Figure 6.19 HiLLS model of BVM's requirements

Figure 6.19 shows the HILLS model of the BVM's requirements showing the specifications of all
the three properties in its second compartment.

6.4.3 HiLLS Specification of BYMUser

Figure 6.20 presents the specification of BVMUser. It also uses the same state variables, and for
the same purposes, as its DEVS specification in Section 3.2.3.2.
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I EVMUser I
I EI I:N; L

= ==
inC:[Coin] advance:r; putC:Coin
drink:ﬁeverage choice: 1 reql_:uz:;st:N
choicee (0, 1, 2, 3, 4, 5);

_ — [- 1setBill[code:M ]|[ ]—
 [- JgetBagValue[bag:[Coin] ][ ]-
L code ={1,2, 3 4);
b;:‘ E]] If code==
=[: ice
: Then price” = 100;
forAll ¢:Coin in bag Else |fr.;r;de==
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Figure 6.20 HiLLS specification of BVMUser

BVMUser initializes to away and remains in the configuration for a random period of between 1
and 10 minutes before doing an internal transition to ordering. Before entering ordering, a
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random integer from 1 to 4 is assigned to variable choice and cup is reset to null. Once it
assumes configuration ordering, BVMUSser is ready to place an order for a beverage; it outputs
choice on port request, computes the bill and immediately transits to inserting to commence the
payment.

BVMUser stays in configuration inserting for 0.25 minute to get a coin from the wallet. While in
this configuration, if a coin x is received on port inC, x is considered to be a coin that has been
previously sent out, which is rejected because it is not acceptable for the ongoing transaction;
hence, it is kept in the purse while its value is deducted from advance before going back to
inserting. If BVM receives a coin ¢ on port inC at the end of inserting, it will be treated the same
way, as in the external transition, during the confluent transition back to inserting.

At the end of inserting, the target of the internal transition depends firstly on the status of the
wallet. An empty wallet implies that BVMUser has run out of coins to complete the transaction;
hence, the transition targets configuration canceling to order the termination of the transaction in
progress. If wallet is not empty, then the final path of the transition depends on the condition
advance + head(wallet). getValue = bill. If this condition is false, it implies that the next
coin picked from the wallet is not sufficient to complete the transaction; hence, the picked coin is
sent out on port outC and its (the coin picked from wallet) valued added to advance before
terminating the transition in inserting. If the condition is true, however, it implies that the next
coin from wallet is sufficient to complete the ongoing transaction, probably with some balance;
hence, BVMUser sends out the coin, adds its value to advance and transits to configuration
waiting to await the ordered beverage, and possibly some balance.

BVMUser assumes the canceling configuration whenever it is ready to abort an ongoing
transition. It immediately sends out the value of variable choice on port request and the target of
the internal transition that immediately follows depend on the status of variable
advance.advance == 0 implies that the net value of coins expended by BVMUser on the
transaction is zero; hence, it is reinitialized to configuration away. If advance > 0 however, the
transition targets configuration waiting to await the refund of already expended coins.

If BVMUser stays in configuration waiting for 1.5 minutes without receiving any input, an
internal transition to canceling occurs to request the termination of the transaction. If BVMUser
receives a bag of coins during or at the end of its sojourn in configuration waiting, the same
computations will accompany the external or confluent transition that triggered and the targets
will be the same under the same conditions. In either case, the cumulative value of all the coins
in the bag received will be deducted from advance while the coins are deposited in the wallet.
Then the final path of the transition depends on condition advance > 0. advance > 0 implies
that the coins received is a balance for a completed transaction; hence the system returns to
waiting in anticipation of the ordered cup of beverage. advance == 0 implies that the received
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coins is a refund for a canceled transaction and BVMUser has nothing else to wait for; hence, it
is reinitialized to configuration away. Finally, the receipt of a beverage d on input port drink
either during or at the end of waiting leads to a transition to away while d is assigned to variable
cup.

6.4.4 BVS' Structure and BVM's Requirements

[ BVS ]
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Figure 6.21 HiLLS model of BVS
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Figure 6.21 presents the entire HiLLS specification of the case study, showing the BVS, its
components -BVM (and its requirements) and BVMUser with their operations and behavior
compartments collapsed - and the relationships between them.

As described in the model, BVS (on top of the figure) has two components: bvm (an instance of
BVM) and user (an instance of BVMUser).

BVS is a closed system, hence its input and output interfaces are empty. It has no sate variables
but the state schema specifies constraints on the couplings between the ports of its components.
For instance, predicate bvm.code == user.request specifies that the value of message on port
code of bvm is always equal to that on port request of user. Operation connect() establishes the
port couplings when the system is being initialized into its only state. A coupling is established
between two ports by assigning the value of the sender to that of receiver. For example,
bvm.code = user.request assigns the message on user's request port to bvm's code port.

The HRequirement model BV MRequirements at the bottom of Figure 6.21 specifies the required
temporal properties of BVM. The "satisfies” relation between BVM and BVMRequirements
indicates that the former satisfies the properties in the latter.

6.5 CONCLUSION

In this chapter, we have presented the HiLLS' abstract and concrete syntaxes and an informal
mapping between them. We have built the HiLLS' abstract syntax from a disciplined integration
of system-theoretic and software engineering concepts to capture, in a considerably generic form,
the different concerns of simulation, formal analysis and enactment methodologies for DES in a
coherent whole. Specifically, we adopt system-theoretic concepts from DEVS to capture DESs in
a considerably generic form, concepts from Object-Z for rigorous refinements of abstract DEVS-
based concepts and to make models amenable to formal analysis. We also adopt concepts from a
pattern-based classification of Temporal Logic specifications of commonly occurring temporal
requirements to express required properties in HILLS. The chapter presents in details, the steps
we have taken to apply metamodel integration techniques for a disciplined integration of the
disparate concepts adopted from independent sources.

To build the concrete notations for HILLS' concepts, we adopt and extend some notations from
the UML family of notations to make the language easy to learn and use. In addition to the
graphical notations for system modeling, we also propose graphical notations, similar to the
graphical elements for describing systems' behaviors, to express the required temporal properties
of systems under study. We believe that providing similar sets of notations to describe systems
and their requirements is a step towards bridging the chasm between simulation and formal
analysis methodologies. It may also stimulate further research into finding common grounds for
practitioners of the disparate analysis methodologies.
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To demonstrate the use of HILLS for system and requirement specification, we have presented
the HiLLS specification of the running example in this thesis - the Beverage Vending System
(BVYS) - and its required properties with detailed discussions of how HiLLS constructs express
different aspects of the system.

In future work, we intend to explore the specification of timing requirements in addition to
temporal properties, with similar notations. There is an ongoing research towards formalizing the
HiLLS' concrete syntax and, subsequently, develop a model editor for the language to allow for
the synthesis of artifacts for simulation, formal analysis and enactment as envisioned in Chapter
4.

196



7 HIiLLS' SEMANTICS

7.1 INTRODUCTION

We have presented the abstract and concrete syntaxes of HIiLLS in the previous chapter. In this
chapter, we build on parts of the results we reported in [AMT16, AT16] to present the language's
semantics. Recall from our discussion in Section 3.5 that a language's abstract syntax may be
mapped to one or more semantics domains; hence, providing different kinds of semantics of
models for different purposes and/or audiences. Figure 7.1 presents an overview of the semantics
framework of HiLLS covered in this thesis. Using the translational semantics technique, the
HiLLS' abstract syntax is mapped to four semantics domains: DEVS for the purpose of
simulation, Z and Temporal Logic for the purpose of formal (logical) analysis, and the DEVS-
based enactment framework presented in Chapter 5 for the purpose of enactment. Its
compatibility with the underlying formalisms of the three purposes - simulation, formal analysis
and enactment- is, in fact, what makes HiLLS fit in the kernel of the integrative MDSE
framework (SimStudio IT) presented in Chapter4.

Coevs > |HETE
A
Analysis
Logic
CE Y =

Legend:

Semantics . .
[ Purpose ] —_—> Semantics mapping

Figure 7.1 Semantics framework of HiLLS
*DESEnact refers to the DEVS-based enactment framework presented in Chapter 5

As explained previously in Chapter 5, we have chosen DEVS as the semantics domain to provide
simulation capability for HILLS because of the universality of the former to express most kinds
of DES [Van00] and the availability of tools implementing its simulation protocols. Examples of
the many, and evolving, published DEVS-based M&S tools or environments include DEVSJava
[SZ98, Mat03], DEVS-Suite [KSE09], MS4Me [ZS13, SZC+13], CD++ [WCDO01, Wai02,
BWC13], PowerDEVS [KLP03, BK11], LSIS-DME [HZ07], DEVSimPy [CSP+11, CS15], and
so on. Z and TL have also been chosen, for the same reason, as the semantics domains for logical
analysis. Particularly, the Community Z Tools (CZT) [MUO0S, MFM+05] links Z with a host of
evolving tools for formal analysis.

The rest of the chapter is structured to present the different branches of HiLLS' semantics in
separate sections. Sections7.2, 07.3 and 7.4 present the simulation semantics, logical (formal
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analysis) semantics and execution (enactment) semantics respectively. In each of the sections, we
discuss (informally) how the different models of the BVS (the running example) presented in
Chapters 3 and 5 can be derived from its HiLLS specification. Finally, we conclude the chapter
in Section 7.5.

7.2 SIMULATION SEMANTICS

In this section, we present a DEVS metamodel and show the concepts it describes may be
derived from a given HiLLS model. Then, we demonstrate with a discussion of the
correspondences between the HILLS model of the BVS and its DEVS model.

7.2.1 DEVS Metamodel

Though DEVS is considered universal for modeling DESs, has many areas of application and
enjoys a plethora of supporting tools, there is not yet a standard DEVS metamodel, which is
generally agreed upon by the community to drive MDSE practices with the formalism. Hence,
everybody uses the mathematical specification of the language as a metametamodel to build a
DEVS metamodel that is most suitable for the intended use without violating the language's
constraints. Figure 1.1Figure 7.2presents a simple DEVS metamodel, which we have defined in
conformity to the mathematical specification, as presented in Section 3.2.2, and reported in
[AMTI16].

As shown by the two sub-types of the abstract DEVS class in Figure 7.2(a), DEVS describes a
DES as either an AtomicDEVS or CoupledDEVS. A DEVS model may have zero or more input
ports, iports, and/or zero or more output ports, oports; a port is defined by a name, portid, and a
type, portType, which may be a Class or primitive Data Type. An AtomicDEVS defines state
variables, stateVars and a finite set of phases where a Phase is an abstraction of a unique
combination of values of (or predicate on) the state variables. Technically, the phases constitute
disjointed subsets of the state space. A typical example of phase variable is the variable ¢ in our
DEVS specification of the BVS in Section 3.2.3. A phase is characterized by a timeAdvance.

An AtomicDEVS may also define sets deltalnt, deltaExt and deltaConf of internal, external and
confluent phase transitions, respectively. Each IntTransition and ConfTransition may be
accompanied by a bag of outputs events while every ExtTransition and ConfTransition is
triggered by a bag of intputs events. Additional information on phase transitions is provided in
the OCL (Object Constraint Language) constraints in Figure 7.2(b). The constraints define some
restrictions on exceptional cases in which each of the transitions may not occur. A CoupledDEVS
defines a set, A subModels, of at least one component(s) of the A container model. It also
defines the sets eics, ics and eocs of couplings between the components of the model. Figure
7.2(b) also provides additional information and restrictions on the three kinds of couplings in
accordance to the DEVS formalism.
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(a) DEVS Metamodel

import ‘DEVS.ecore’
package devs
context PhaseTransition
def:zeroTime:Real = 2.8
def:inf:Real = UnlimitedNatural
inv delta_Int_constraint('nc internal transition from a passiwve state’):
oclIsKindOf (IntTransition) implies sourcePhase.timeAdvance < inf

= W s LR

3 inv delta_Conf_constraint('nc confluent transiticon from a passive state’):

=] pclIsKindof (ConfTrans) implies sourcePhase.timeddvance < inf

18 inv delta_Ext_constraint('noc external transition from a transient state’):

11 oclIsKindOf (ExtTrans) implies sourcePhase.timeddvance > zeroTime

12— context EIC

13 inv EIC_components_constraint('EIC is between a coupled model and its sub-model’):
14 influencer.owner.oclAsType (CoupledDEVS) . subModels->includes(influencee . owner)
15 inv EIC_ports_constriant('EIC must be between two input ports'):
16 influencee.ocl IsKind0f (ITPort) and influencer.oclIsKindOf(IPort)
17= comtext IC
18 inv IC_components_constraint('IC is between peer components of a coupled model’):
19 infFluencer.owner.container = influencee.owner.container
28 inv IC_ports_constriant('IC is from an cutput port to an input port’):
21 infFluencer.oclIsKind0f(OPort) and influencee.oclIsKindof(IPort)
22 inv IC_ports_constriant(’'Feedback loop is not allowed in DEVS'):
23 influencer.owner <> influencee.owner
24= context EOC
25 inv EQC_components_constraint('EQC must be between a sub-model and its container'):
26 influencee.owner.oclAsType (CoupledDEVS) . subModels->includes(influencer.owner)
27 inv EIC_ports_constriant('ECC must be between two ocutput ports'):
28 influencee.ocl IsKind0f (OPort) and influencer.oclIsKindOf(OPort)
29 endpackage

(b) DEVS Static constraints
Figure 7.2 DEVS metamodel and static constraints [AMT16]
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7.2.2 HIiLLS to DEVS Mapping

Using model transformation technique, we show the correspondences between the concepts and
relationships described in the metamodels of HiLLS (see Figure 6.8 and Figure 6.9) and DEVS.
The HiLLS-to-DEVS mapping rules, specified in ATLAS Transformation Language (ATL)
[JAB+06], have been reported in [AMT16].

rule HSystem2AtomicDEVS {
from--HSystem without components -> Atomic DEVS
hsystem : HiLLS!HSystem(hsystem.hcomponents->isEmpty())
to
atomicDEVS : DEVS!AtomicDEVS (

name <- hsystem.name,
iports <- hsystem.inputs->collect(p|thisModule.HiLLSPort2DEVSInput(p)),
oports <- hsystem.outputs->collect(q|thisModule.HilLLSPort2DEVSOutput(g)),
stateVars <- hsystem.stateSchema.declarations->collect(v|thisModule.HilLLSVar2DEVSVar(v)),
phases <- hsystem.configurations->collect(ph|thisModule.HiLLSConfig2DEVS_Phase(ph)),
deltaInt <- hsystem.transitions->collect(dInt|thisModule.HiLLSTrans2DEVSdeltaInt(dInt)),
deltaExt <-hsystem.transitions->collect(dExt|thisModule.HiLLSTrans2DEVSdeltabExt(dExt)),
deltaConf <-hsystem.transitions->collect(dConf|thisModule.HiLLSTran2DEVSdeltaConf(dCont))

)
¥
(a) Mapping a HiLLS HSystem without components to DEVS Atomic Model
lazy rule HilLLSPort2DEVSInput { lazy rule HiLLSPort2DEVSOutput {
from from
hillsPort : HiLLS!Port hillsPort : HilLLS!Port
to --HilLLS port -»> DEVS input port to --HilLLS port -> DEVS output port
devs_input : DEVS!IPort ( devs_output : DEVS!OPort (
portId <- hillsPort.portDecl.name, portId <- hillsPort.portDecl.name,
portType <- hillsPort.portDecl.htype portType <- hillsPort.portDecl.htype
) )
} ¥
(b) HiLLS port =DEVS IPort (¢) HiLLS port —DEVS OPort
lazy rule HilLLSVar2DEVSVar { lazy rule HilLLSConfig2DEVS_ Phase{
from from
hillsVar : HillLS!Declaration hillsConfig : HilLLS!Configuration
to --HilLLS Declaration->DEVS state vars to --HiLLS configuration -> DEVS phase
. devsPhase : DEVS!Phase (
devsvar :.DEVSlVarlable ( stateID <- hillsConfig.label,
name <- hillsVar.name, property <- hillsConfig.properties,
domain <- hillsVar.htype timeAdvance <- hillsConfig.sojournTime
) )
h }
(d) HIiLLS declaration —DEVS variable (e) HIiLLS configuration —=DEVS phase

Figure 7.3Mapping rules of HiLLS concepts to Atomic DEVS concepts [AMT16]
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Figure 7.3(a) shows the semantics mapping rules to obtain an AfomicDEVS from a given
HSystem with an empty hComponents (set of components). The elements of AfomicDEVS as
described in the DEVS metamodel are shown on the left-hand side of the rule with the
corresponding HSystem elements on the right-hand side.

The —azy rules” in Figure 7.3(b) and Figure 7.3(c) provide the rules mapping individual HiLLS
input and output ports to DEVS input and output ports with HiLLS port declaration name and
type mapping to DEVS port id and type, respectively. These —azy” rules are invoked from the
AtomicDEVS and CoupledDEVS rules to obtain their input and output ports. In Figure 7.3(d) and
Figure 7.3(e), we show the mapping rules to obtain DEVS state variables and phases from
HiLLS state variables and configurations, respectively.

Similarly, individual HiLLS’ InternalTransition, ExternalTransition and ConfluentTransition are
mapped to DEVS’ Deltalnt, DeltaExt and DeltaConf respectively by the rules in Figure7.4. It is
important to state here that the imperative HiLLS computations that accompany the transitions
cannot be explicitly accounted for in this declarative mapping. However, we can use a Model-to-
Text transformation technique, with one of the DEVS-based M&S tools as target, to generate
codes with such details for the target platform.

lazy rule HilLLSTrans2DEVSdeltaInt { lazy rule HilLLSTrans2DEVSdeltaExt {
from --InternalTransition-»> Deltalnt from --ExternalTransition-3> DeltaExt
intTrans: HiLLS!InternalTransition outTrans: HiLLS!ExternalTransition
to to
deltaInt : DEVS!DeltaInt ( deltaInt : DEVS!DeltakExt
sourcePhase <- intTrans.source, sourcePhase <- outTrans.source,
targetPhase <- intTrans.target, targetPhase <- outTrans.target,
outputs <- intTrans.outputEvents inputs <- outTrans.triggers
) )
1 h
(a) Mapping internal transitions (b) Mapping external transitions
lazy rule HillLSTrans2DEVSdeltaConf {
from --ConfluentTransition-> DeltaContf
confTrans: HilLLS!ConfluentTransition
to

deltalnt : DEVS!DeltaConft (
sourcePhase <- confTrans.source,
targetPhase <- confTrans.target,
inputs <- confTrans.triggers,
outputs <- confTrans.outputEvents

(¢) Mapping confluent transitions

Figure7.4Mapping HiLLS configuration transitions to DEVS phase transitions [AMT16]
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In Figure 7.5, we show the correspondences between aHSystem with a nonempty #Components
and CoupledDEVS concepts. While Figure 7.5(a) provides the rules to obtain the different sets,
Figure 7.5(b - d) show the rules for obtaining individual EIC, IC and EOC, respectively. The
rules for obtaining individual input and output ports have been presented previously in Figure
7.3(b) and Figure 7.3(¢).

rule HSystem2CoupledDEVS {
from --An HSystem with components -»> Coupled DEVS
hsystem : HiLLS!HSystem(hsystem.hcomponents->notEmpty())
to
coupledDEVS : DEVS!CoupledDEVS (
name <- hsystem.name,
iports <- hsystem.inputs->collect(p|thisModule.HilLSPort2DEVSInput(p)),
oports <- hsystem.outputs->collect(q|thisModule.HiLLSPort2DEVSOutput(q)),
subModels <- hsystem.hcomponents->collect(comp | comp.target.name),--model references
eics <- hsystem.couplings->collect(eic|thisModule.HilLLSInputCoupling2DEVS_EIC(eic)),
ics <- hsystem.couplings->collect(ic|thisModule.HiLLSInternalCoupling2DEVS IC(ic)),
eocs <- hsystem.couplings->collect(eoc|thisModule.HilLSOutputCoupling2DEVS_EOC(eoc))

(a) Mapping of HILLS HSystem to DEVS Coupled Model

lazy rule HiLLSInputCoupling2DEVS EIC { 1lazy rule HilLSInternalCoupling2DEVS_IC {
from --HilLLS Inputcoupling -> DEVS EIC from --HilLLS InternalCoupling -»> DEVS IC

inCoupling: HilLLS!InputCoupling peerCoupling: HiLLS!InternalCoupling
to to
devsEIC : DEVS!EIC ( devsEIC : DEVS!IC (
influencer <- inCoupling.sender, influencer <- peerCoupling.sender,
influencee <- inCoupling.receiver influencee <- peerCoupling.receiver
) )
} ¥ _
(b) HIiLLS InputCoupling to DEVS EIC (¢) HIiLLS InternalCoupling to DEVS IC

lazy rule HilLLSOutputCoupling2DEVS_EOC {
from --HiLLS OutputCoupling -»> DEWVS EIC
outCoupling: HiLLS!OutputCoupling
to
devsEQC : DEVSI!EOC (
influencer <- outCoupling.sender,
influencee <- outCoupling.receiver
)
¥
(d) HiLLS OutputCoupling to DEVS EOC

Figure 7.5Mapping rules of HiLLS concepts to Coupled DEVS concepts part [AMT16]
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7.2.3 Correspondences between the HiLLS and DEVS Specifications of the
BVS

As a proof of concept, we place the HILLS and DEVS specifications of the BVS case study to
illustrate how the different elements of a DEVS specification can be derived from a given HiLLS
model.

We begin with the models of BVM in Figure 7.6below; we use arrows to link elements of the
HiLLS model (on the left) with their corresponding constructs in the DEVS specification (on the
right). The input (X) and output (Y) sets of the DEVS specification can be derived from the
input and output interfaces respectively of the HILLS model.

The light blue arrows show that DEVS' state set (S) is derived from the state schema and
configurations of the HiLLS model. The declarations in the state schema, the containment
references to HClasses (if any) and the labels of the configurations produce the variables in S
while its (S's) predicates are derived from the conjunction of the predicates in the HiLLS state
schema and the properties of the configurations. DEVS' ta() function is derived by scanning the
sojourn times of all configurations. In this case, only charge and dispense have explicitly defined
sojournTime, all other configurations have implicit values of sojournTime.

The red arrows link the HiLLS transitions to their corresponding specifications in the DEVS
model; we use solid, dashed and dotted-dashed arrows for internal, external and confluent
transitions respectively. For instance, the internal transition between configurations reject
(source) and charge (target) produces the equation charge: (badC = null),if ¢ = reject in the
8in: function in the DEVS specification.

Each of the four paths of the external transition triggered by [inC?x] from configuration charge
constitutes an equation in the §,,, function of the DEVS specification. For example, the path that
targets configuration reject produces the equation reject: (badC = in), if ¢ = charge Ap =
inC Av(in) = 0 in the function. In this case, the components of predicate ¢ = charge Ap =
inC Av(in) =0 are derived as follows: ¢ = charge is equivalent to the source of the
transition, p = inC is he associated port of the trigger and v(in) = 0 is equivalent to the test
condition valid(x) in the HiLLS transition. The equivalent constructs of the confluent transitions
can be read in similar manners with reference to the &, function in the DEVS specification.

Finally, we can extract the output operations associated with the configuration transitions to
build the DEVS A function. In each case, the source configuration of the associated transition is
read along with the output operation. For instance, the output operation outC!<badC>;
preceding the internal transition from reject to charge yields the equation outC = {bad(C},
if ¢ =rejectinthe DEVS A function.
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The correspondences described in Figure 7.6above typify the synthesis of a DEVS atomic model
from a HiLLS' HSystem that has no components. Figure 7.7 illustrates how a coupled DEVS
model can be derived from a composite HILLS HSystem (one with hComponent references). The
DEVS specification of BVS is shown on top of the diagram with the HiLLS model at the bottom.
The empty input and output interfaces of the HILLS model correspond to the empty sets X and Y
respectively.

We can derive the set D in the DEVS specification from the #Component references bvm and
user of BVM in the HILLS model. Finally, the DEVS coupling relations can be obtained from
the coupling expressions defined in the comnect operation. For example, the expression
bvm.code = user.request translates into the pair ((U,request), (BVM, code)) in the DEVS
IC relations. Note that U is the name of the DEVS model of the BVM's user in the DEVS
specification presented in Section 3.2.3.2.

BVS =< X,Y,D,{My}4cp, EIC,EOC,IC >

—* ={}k
Y= {}:
D ={§w~f,§}

1€ = {[(U,request), (BVM, code))|((U, outC), (BVM, inC)},[(BVM, cup), (U, drink))|
((.\5*VM,ou:c'),(u,mc‘)}}= L Iy Y

EIC = {}
EoC ={}
| BVS |
| bvm.code==User.request; bvm.inC =F user.outC; k
-L user.drink==pvm.cup; user.inC=Fbwvm.outC;
—connect] ]II]
bvm.code=User.requesti; pbvm.inC = user.outC}
— user.drink=bvm.cup] pser.inC=0vm.out”]
—_
| working
connect()
true
bvmg usersy
1.1 11
[ BVM I BVNMUser ]l
|l=- creditr; = Billr; =
inC:Cain price:r; = inC:[Coin] | [advance:r; outC:Coin
= current: f outcég‘l_c oin] dﬁnk_lgéverags choice: r E=_-| pa4s
pode:d1.2,3,4.5} [Brice=[0. 100. 80, 120, 130}; fup:Beverage ' request:{1.2,3.4.5)

current 0. 1. 2, 3. 4. 5};

choicee {0, 1, 2, 3, 4, 5);

Figure 7.7Correspondences between HiLLS and DEVS models of BVS

7.3 LOGICAL SEMANTICS

In this section, we present the mapping rules to translate a HiLLS system models to Z
specification for formal analysis. To begin with, we present a metamodel that describes the
essential elements of the Z formalism, which are most required for this translation.
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7.3.1 Z Metamodel
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Figure 7.8 Simplified Z metamodel
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Figure 7.8presents a simplified metamodel extracted from the grammar-based specification of
Z's syntax in [Spi92]. It is simplified in the sense that it does not capture the entire language's
vocabulary; rather, it describes the Z concepts that are essential for the presentation of the
translation of HiLLS to Z.

As described previously in Section3.2.4, a Z specification is made up of paragraphs. A
paragraph can be a basic type definition, a free type definition, an axiomatic definition, a
stateschema, an operationschema. In addition, using schema calculus, we can combine schemas
for hierarchical construction of complex schemas from simpler ones. These minimal concepts are
described in Figure 7.8.

Essentially, a state schema consists of zero or more declarations and zero or more predicates that
define constraints on the declared variables. Each declaration has a name, declName, which is an
identifier, and a type, declarationType, which is defined by an expression. dec/Name consists of
a unique word and an optional decoration. A decoration is a special character at the end of a
variable name to provide certain information about the purpose of the variable or its status at
different moments. There are three kinds of decoration as described in enumeration Stroke: the
question (?) indicates that a variable serves as an input in an operation schema, exclamation (!)
denotes an output variable while the prime () decoration denotes the post-execution value of the
variable. An axiomatic definition is similar to the state schema except that it does not have a
name.

In an operation schema, each predicate serves one of two purposes: pre-condition and post-
condition. A pre-condition specifies the constraints that must be satisfied by certain variables
before the operation can be executed while a post-condition specifies a constraint that must be
satisfied after the execution.

7.3.2 HiLLS to Z Mapping

In this subsection, we present the mapping rules to map HiLLS concepts to Z concepts. Like the
HiLLS-to-DEVS mapping rules presented in the previous section, the HiLLS-to-Z mapping rules
are specified using the ATL.

7.3.2.1 Mapping HClass to Z specification

Figure 7.9 presents the top-level transformation rule to translate an instance ~#Class of HClass in
HiLLS to a Z specification. In the optional "using" section, we define two local variables, which
are used in subsequent sections of the rule. The "to" section specifies that ~2Class is maps to an
instance zSpec of ZSpecification in the Zed. The stateSchema, localDef and operations of hClass
map respectively to a stateSchema, an axiomaticDef and operations in zSpec.

Each of the mappings is achieved by calling the rules that map the individual elements; the called
rules will be presented subsequently.
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10= rule hClass2zedSpecification { -- Map a HilLLS HClass to a Zed Specification containing

11 from --the elements of the h(lass' state schema, localDef, and/or operations

12 hClass : HilLL5!HClass-- whichever ones are specified are mapped to the corresponding z constructs
13 using { --local variables used in the "do"section of the rule to refine the mapping

14 hClassRef:HilLLS!HReference = OclUndefined;

15 complexVarDeclaration:Zed!Declaration = OclUndefined;

16 1

17 to

18 zbpec : Zed!ZSpecification (--HilLL5 state & operation schemas ans axiomatic defs -» 7 equivs.

19 stateSchema <- hClass.stateSchema->collect(sch|thisModule hClassStateSpace2zedStateSchema(sch)),
20 axiomaticDef <- h(lass.localDef-scollect(localDef|thisModule.hlocalDef2zAxiomaticDef(localDef)),
21 operationSchemas <- hClass.operations->collect(ops|thisModule.hOperation2zOperationSchema(ops))
22 )

23 do {--imperative statements to refine the mappings in the rule

24 for (hRef in hClass.hReferences) { --map containement references to other classes to 7 declaratns
25 hClassRef<-hRef;

26 complexVarDeclaration.decllame.word <- hClassRef.name;

27 complexVarDeclaration.declationType <- h(lassRef.target.name,

28 zSpec.stateSchema.declarations. append(complexVarDeclaration);

29 }

38 }

1}

Figure 7.9 HiLLS HClass to Z specification

In the "do" section, we specify some imperative statements to refine the translation specified in
the "to" section. Particularly, each composition reference from iClass to another HClass is
translated into a Z declaration with the reference's name and the name of the referenced HClass
mapping to the Z declaration's name and type respectively (lines 24-27). Then, in line 28, we add
the new declaration to the list of declarations in zSpec's state schema.

7.3.2.2 Mapping HClass'state schemas and operations to Z schemas

Figure 7.10 (lines 32-44) presents the mapping rules to translate the state schema AState of a
given HClass to a Z state schema. Recall that in the HiLLS metamodel, the concept of state
schema is shared between HClass and HSystem through HClassifier. The precondition
"hState.owner.ocllsTypeOf HiLLS!HClass)" in line 34 specifies that this rule applies only to a
HiLLS state schema that is owned by an HClass.

The local variable className declared in the "using" section holds the name of the HClass that
owns AState. This is used in line 40 to define the name of the zStateSchema created from hState.
In a direct translation, all declarations and predicates in the source are mapped, respectively, to
declarations and predicates in the target. Each declaration mapping calls the rule that constructs
the target declaration. Expectedly, a similar rule should exist for the predicates; this requires the
details of the structures of all predicates. It will be specified in our future work on the mapping.
We present the mapping of an operation, #Opn, in HiLLS to a Z operation schema, zOpSchema,
in Figure 7.10 (lines 54-83).
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32= lazy rule hClassStateSpace2zedStateSchema {--map HillS state schema elements to corressponding 7 constructs
33 from

34 hState : HilLS!State(hState.owner.oclIsTypeOf (HiLLS!HC1ass))

35 using { --local variables used in the "do"section of the rule to refine the mapping

36 classhame:5tring = h5tate.owner.name;--name of HClassifier that owns the schema

37 i

38 to

39 7StateSchema : Zed!StateSchema (

40 name <- className.concat('State'),--schema name = HClass name concatinated with "State”
41 declarations <- hState.stateVariables->collect(var|thisMedule.hillsDecl2ZedDecl(var)),
42 predicates <- hState.axioms

43 )

44 3}

45#% lazy rule hlocalDef2zAxiomaticDef {[]
54=lazy rule hOperation2zOperationSchema {

55 from

56 hOpn : HilLLS!Operation

57 using {--local variables used in the "do"section of the rule to refine the mapping

58 decl:7ed!Declaration=0clUndefined;

59 inputVariable: Zed!Declaration=0clUndefined,

66 outputVariable: Zed!Declaration=0clUndefined,

6l returnType:Zed!Expression = OclUndefined;

62 T

63 to

64 z0pSchema : Zed!OperationSchema (

65 name <- hOpn.opnllame,

66 declarations <- hOpn.auxVariables-»collect(var|thisModule.hillsDec12ZedDecl(var)),
67 preConditions <- hOpn.preConditions,

63 postConditions <- hOpn.postConditions

69 )

70 do {--imperative statements to refine the mappings in the rule

71 for (param in hOpn.parameters) {--map HilLLS operation params to input variables in Z schema
72 inputVariable <- param;

73 inputVariable.decllName.decoration <- #questionMark;

74 z0pSchema.declarations.append(inputVariable);

75 1

76 if (hOpn.type<>0clUndefined) { --map HillS operation return type to output vars in Z schema
77 returnType <- hOpn.type;

78 outputVariable.decllName.word <- 'out’;--outVariablellame;

79 outputVariable.declName.decoration <- #exclamation;

80 z0pSchema.declarations.append(outputVariable);

8l 1

82 T

83 1}

Figure 7.10 Mapping rules for translating HiLLS HClass' state schema to Z state

schema and HiLLS operation to Z operation schema
As declared in the "to" section, the name, variables, pre-conditions and post-conditions in the
source are translated respectively to the same concepts in the target model. The target model so
generated in "to" section is further refined in the "do" section. In lines 71-75, each parameter (if
any) of #Opn translates to an input variable (with decoration "?") in the target model. Similarly,
if hOpn defines a return type, it is translated (lines 76-82) an output variable (with decoration
"I") in the target model.
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7.3.2.3 Mapping HSystem to Z specification

85 rule atomicHSystem2zedSpecification {

86
87
88
89
98
91
92
a3
94

111
112
113
114
115
116
117

118
119
128
121
122
123
124
135
126
127
128
129
138
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147

from
aHSystem : HilLLS!HSystem (aHSystem.hComponents-»isEmpty())
using {--local variables used in the "do"section of the rule to refine the mapping
transitionOperation:Zed!0OperationSchema =0clUndefined;
complexVarDeclaration:Zed!Declaration = OclUndefined;
outVar: Zed!Declaration=0clUndefined;
outPred: Zed!Predicate = OclUndefined;
outputVariables: Set(Zed!Declaration) = OclUndefined;
outputPredicates: Set(Zed!Declaration) =0clUndefined;
outputOperation:Zed!OperationSchema = OclUndefined;
¥
to
zSpec : Zed!ZSpecification (--HilLlLS axiomatic def, state and operation schemas -»> I equivalents
stateSchema <- aHSystem.stateSchema-3>collect(sch|thisModule.hSystemStateSpace2zedStateSchema(sch)),
axiomaticDef <- aHSystem.localDef->collect(localDef|thisModule.hlocalDef2zAxiomaticDef(localDef)),
operationSchemas <- aHSystem.operations->collect(ops|thisModule.hOperation2zOperationSchema(ops))
)
do {--imperative statements to refine the mappings in the rule
for (hRef in aHSystem.hReferences) {--map class refernces to declarations in the Z state schema
complexVarDeclaration.decllName.word <- hRef.name;
complexVarDeclaration.declationType <- hRef.target.name;
zSpec.stateSchema.declarations.append(complexVarDeclaration);

3

--translate all transitions to Z operation schemas, see called rules for details of translations

for (intTrans in aHSystem.transitions-»fiter(HiLLS!InternalTransition)) {
transitionOperation= thisModule.hInternalTransition2zOperationSchema(intTrans);
zSpec.operationSchemas.append(transitionOperation);
if (intTrans.outputEvents->notEmpty()){--if intTrans is preceded by output(s)
for (msg in intTrans.outputEvents){ --create an output variable & predicate for each output
outVar.decllName «<- msg.port.portDecl.decllName;
outVar.decllame.decoration <- #exclamation;
outVar.declationType <- msg.port.portDecl.type;
outputVariables-»including(outVar);
outPred<-thisModule. composeQutputPredicate(outVar.declName, outMessage.value, intTrans.source.label);
outputPredicates->including(outPred);
}
}
¥

for (extTrans in aHSystem.transitions-»fiter(HiLLS!ExternalTransition)) {
transitionOperation= thisMedule.hExternalTransition2zOperationSchema(extTrans);
zSpec.operationSchemas. append(transitionOperation);
}
for (confTrans in aHSystem.transitions->fiter(HiLLS!confluentTransition)) {
transitionOperation= thisModule.hConfluentTransition2z0perationSchema(confTrans);
zSpec.operationSchemas.append(transitionOperation);
if (confTrans.outputBEvents->notEmpty()){--if confTrans is preceded by output(s)
for (msg in confTrans.outputEvents){ --create an output variable & predicate for each output
outVar.declName <- msg.port.portDecl.decllame;
outVar.decllame.decoration <- #exclamation;
outVar.declationType <- msg.port.portDecl.type;
outputVariables-»including(outVar);
outPred<-thisModule. composeQutputPredicate(outVar.declName, outMessage.value, intTrans.source.label);
outputPredicates->including(outPred);
}
}
}
outputOperation.declarations.union(outputVariables);
outputOperation.postConditions.union{outputPredicates);
outputOperation.name <- aHSystem.name.concat( 'Outputs');
zSpec.operationSchemas. append(outputOperation);

Figure 7.11 Mapping rule for translating HiLLS atomic HSystem to Z specification
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Figure 7.11 presents the mapping rule between an atomic HSystem aHSystem and its equivalent
Z specification zSpec. Like in the case of HClass, the state space, local definitions and operations
of aHSystem translate into Z state schema, axiomatic definition and operation schemas
respectively in zSpec. While the mapping rules for local definitions and operations are the same
for HClass and HSystem, the mapping rule, ASystemStateSpace2zStateSchema (line 99), for
HSystem's state space is different from that of HClass. This rule will be presented in the next sub
subsection.

The "do" section specifies the imperative statements to extract the data required for the synthesis
of equivalent Z artifacts for three categories of HiLLS constructs as follows:

A. Lines 104-108 specify the translation of hreferences originating from aHSystem into Z
declarations and add them (the synthesized declarations) to the declaration part of the state
schema created for zSpec.

B. All internal, external and confluent configuration transitions in aHSystem are translated into Z
operation schemas and added to the set of operation schemas in zSpecs within line groups 110-
112, 124-127 and 128-130 respectively. In each case, a transition-to-operation schema mapping
rule, e.g., hinternalTransition2zOperationSchema() in line 111, is called to do the translation.
We will discuss these mapping rules in subsequent sub subsections.

C. In the process of translating internal and confluent configuration transitions to their equivalent
operation schemas, if any of them is accompanied by an output specification (see lines 113-122
for internal transitions and 131-140 for confluent transitions ), then an output variable and an
output predicate are created and stored in sets outputVariables and outputPredicates
respectively. Sets outputVariables and outputPredicates have been declared as local variables in
the "using" section. Before exiting the "do" section, the two sets are used to build an operation
schema, which is added to the set of operation schemas in zSpec as specified in lines 142-145.

7.3.2.4 Mapping HSystem's state space to Z schemas

We present, in Figure 7.12, the mapping rule to translate the state space, AState, of a HiLLS
HSystem to a state schema, zStateSchema, in Z. As the "to" section (lines 158-163) describes, the
name attribute of the HSystem that owns AState is extracted and concatenated with string "State"
to provide a name for the target zStateSchema. As usual, the variable declarations and predicates
in hState translate directly to declarations and predicates in zStateSchema.

However, the state space of a HSystem is jointly specified by its state schema and configuration
diagrams. Hence, there is need to capture the state information specified by the configuration
diagrams in the target zStateSchema; this aspect is specified in the "do" section of the rules (lines
164-177).
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148- lazy rule hSystemStateSpace2zedStateSchema {--translate HSystem's state schema and configuration predicates

149 from -- to a Z state schema

150 hState : HiLLS!State(hState.owner.oclIsTypeOf (HiLLS!HSysten))

151 using {--local variables used in the "do"section of the rule to refine the mapping

152 systemilame:String = hState.owner.name;--name of HClassifier that owns the schema

153 configurationlabelsSet: Set(String) = OclUndefined;

154 confDerivedVariable:7ed!Declaration = OclUndefined;

155 aSimplePredicate:Zed!SimplePredicate = OclUndefined;

156 configurationPredicate:Zed!ComplexPredicate = OclUndefined,

157 1

158 to

159 zStateSchema ; Zed!StateSchema (

168 name <- systemlame.concat('State'),--schema name= HSystem name concatenated with "State”

161 declarations <- hState.stateVariables-»>collect(var|thisModule.hillsDec12ZedDecl(var)),

162 predicates <- hState.axioms

163 )

164 do {--imperative statements to refine the mappings in the rule

165 for (conf in thisModule.getHSystemBylame(systemllame).configurations) {

166 configurationlabelsSet. append(conf.label); --create a set of all configuration labels, then create a

167 1 -- declaration with this set as its type. declaration name is
168 confDerivedVariable. dec1Name<-systenllame. concat('Configs'); --HSystem name concatinated with "Configs”
169 confDerivedVariable.declationType<-configurationlabelsSet;

178 z5tateSchema. declarations.append(confDerivedVariable);

171 for (conf in thisModule.getHSystemByName(systemlame).configurations){--extract the predicate of each

172 -- configuration in the source model & use it to construct a predicate in the target

173 aSimplePredicate <- thisModule.composeSimpleEqualityPredicate(confDerivedVariable.decllame, conf.label);
174 configurationPredicate <thisModule.composeEquivalencePredicate(aSimplePredicate, conf.property.predicate);
175 75tateSchema. predicates.append(configurationPredicate);

176 }

177 }

178 '}

Figure 7.12 Mapping rule to translate the state space of a HiLLS HSytem to a Z

state aschema
First, the labels of all configurations are extracted into a set configurationLabelSet (lines 165-
167), then a Z declaration is created with this set as its type and the HSystem's name
concatenated with string "Configs" as the declaration name. This new declaration is added to the
declaration part of zStateSchema (see lines 168-170). Finally, in line 171-176, the property of
each of the configurations is extracted and used to construct a predicate that is added to the
predicate part of zStateSchema.

To illustrate the meaning of this rule, we present the translation of the state space of the BVM's
HiLLS model to its Z state schema (see Section 3.2.4.4) in Figure 7.13.

In Figure 7.13, we use arrows to match corresponding elements between the source and target
model elements when the mapping rule presented in Figure 7.12 is applied to the BVM's HiLLS
model.
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Figure 7.13BVM example of translation of HSystem's state space to Z state schema

The green arrow on the top of the figure indicates that the name of the Z state schema produced
is obtained from the name of the HSystem whose state space is been mapped. The orange and
sky blue arrows match the declarations and predicates in the BVM's state schema with
declarations and predicates in the BVMState. Declarations vault, escrow and badC in BVMState
are derived from the references from BVM to the corresponding HClasses as described in the
previous chapter.

The purple arrows indicate that the type {idle, charge,dispense,cancel,return,reject}of
declaration ¢pin BVMState match with the set of labels of all configurations specified in BVM. If
this were generated automatically with the rule, the declaration name would be "BVMConfigs".
Finally, the red arrows match the configuration labels and their properties with the corresponding
predicates in BVMState.
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7.3.2.5 Mapping HSystem's internal configuration transitions to Z operation schemas

179= lazy rule hInternalTransition2zOperationSchema {

180
181
182
183
184
185
186
187
188
189
19@
191
192

}

from
hIntTrans :
using {--local variables used in
sourceConfiguration:String
targetConfiguration:String

--translate internal transition to Z operation schema
HiLLS!InternalTransition

the "do"section of the rule to refine the mapping
hIntTrans.source.label;
hIntTrans.target.label;

Zed!OperationSchema (--schema name =

source_label2target_labelINT

name <- sourceConfiguration.concat( 2').concat(targetConfiguration).concat{ INT"),

¥
to
z0perationSchema :
preConditions <- hIntTrans.source.property.predicate,
postConditions <- hIntTrans.target.property.predicate
)

Figure 7.14Mapping rule to translate HiLLS internal transition to Z schema

We present, in Figure 7.14, the mapping rules to translate a given HiLLS internal configuration
transition AlntTrans to a Z operation schema, zOperationSchema. Looking into the "to" section
of the rule (lines 188-190); zOperationSchema gets its name from the concatenation of the labels
of the source and target configurations of 4/ntTrans in the format: sourceLabel?targetLabelINT.
The properties of the source and target configurations of 4lntTrans translate to the pre- and post-
conditions respectively of zOperationSchema.
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Figure 7.15 BVM example of the translation of HiLLS internal transition to Z
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As an example to illustrate the mapping rules in Figure 7.14, Figure 7.15 presents the
correspondences between the HiLLS and Z specifications of the internal transition from dispense
to idle in the BVM. The concatenation of the labels of the source and target configurations in the
format prescribed in the rule gives the name of the operation schema on the right of the figure.
The precondition of the schema is the same as the property of configuration dispense, which is
the source and the post condition is the property of the target configuration idle.

7.3.2.6 Mapping HSystem's external configuration transitions to Z operation schemas

-

193=lazy rule hExternalTransition2zOperationSchema{--translate external transition to Z operation schema
194 from

195 hExtTrans : HilLLS!ExternalTransition

196 using {--local variables used in the "do"section of the rule to refine the mapping
197 sourceConfiguration:String = hExtTrans.source.label,

198 targetConfiguration: String = hExtTrans.target.label,

199 inputMessage:HilLLS!Message = OclUndefined;

208 inputVariable: Zed!Declaration=0clUndefined;

201 inputPredicate: Zed!Predicate = OclUndefined;

2082 }

283 to

204 z0perationSchema : Zed!OperationSchema (--schema name = source label2target labelEXT
205 name <- sourceConfiguration.concat('2").concat(targetConfiguration).concat('EXT"),
206 preConditions <- hExtTrans.source.property.predicate,

207 postConditions <- hExtTrans.target.property.predicate

208 )

209 do {--imperative statements to refine the mappings in the rule

218 for (trigger in hExtTrans.triggers){--translate triggers to input Z input variables
211 inputVariable.decllame <- trigger.port.portDecl.declName;

212 inputVariable.declName.decoration <- #questionMark;

213 inputVariable.declationType <- trigger.port.portDecl.type;

214 z0perationSchema.declarations.append(inputVariable);

215 inputPredicate <-thisModule.composeSimpleEqualityPredicate(inputVariable.decllame, trigger.value);
216 z0perationSchema.preConditions.append(inputPredicate);

217 }

218 }

219 }

Figure 7.16Mapping rule to translate HiLLS external transition to Z schema

Figure 7.16 presents the rule to translate a HiLLS external transition #ExtTrans to a Z operation
schema zOperationSchema. The "to" section of the rule is similar to that of the internal
transition. The present rule, however, specifies a "do" section (lines 209-218) in which the
triggers of the transition are extracted to refine the synthesized zOperationSchema.

For each trigger of hExtTrans, the name and type of the associated input port are extracted to
declare an input variable, which is added to the set of declarations of zOperationSchema(lines
211-214). The input variable so created, together with the received message, is also used to
compose a predicate, which is added to the set of preconditions in the predicate part of
zOperationSchema (lines 215-216).
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We illustrate the application of this rule, in Figure 7.17, by using it to match the HiLLS and Z
specifications of the external transition from charge to cancel in the BVM. The trigger [code?x]
in the HiLLS specification translates into the input variable code? CODE in the Z specification.
The input variable "code?", together with the received value (5) constitutes the precondition

code?=5 in addition to the precondition synthesized from the property of the source
configuration.
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Figure 7.17 BVM example of the translation of HiLLS external transition to Z

7.3.3 HiLLS Requirement to Temporal Logic

In the integration of the different concepts in the HILLS metamodel in the previous chapter, the
concepts for expressing requirements were incorporated into the metamodel by interfacing with
the metamodel of the TL patterns as a whole. Technically, HiLLS adopts the constructs of the
pattern as is and provides HiLLLS-based graphical notations to express them in a more user-
friendly format. Hence, there is a bijective mapping between the requirement constructs in
HiLLS and the metamodel of TL patterns presented in Section 6.2.3.
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Consequently, we expect that given any tool for expressing TL constructs, we can define the
templates for the various patterns in the tool and automatically synthesize the required
parameters for such templates from a given HiLLS-based requirement specification. We intend
to explore this aspect in our future work.

7.4 ENACTMENT (EXECUTION) SEMANTICS

In the section, we present the mapping of the concepts described in the metamodel HiLLS to the
enactment framework presented in Chapter 5. The framework provides Java-based templates to
create models of coupled and atomic systems for enactment in the framework. Therefore, the
semantics mapping from HiLLS to the framework is a model-to-text (M2T) transformation to
generate codes based on the framework's templates from a given HiLLS model. We get the
actual enactment semantics of the HILLS model when the generated codes are executed.

We use Acceleo Model Transformation Language (MTL) to write the code generators with the
HiLLS metamodel as source and the enactment model templates as the targets. Acceleo MTL'" is
an Eclipse-based code generator, which implements the OMG's MOF M2T specification'®.

In the rest of this section, we present each of the two template models and follow it with the code
generator, which generates the codes for its unimplemented methods as well as Java methods for
user-defined operations in the HiLLS model. As proofs of concept, we will illustrate the
generators of essential model components with correspondences between the HiLLS model of
the BVS and its enactment model. We also present a code generator to generate conventional
Java classes for HiLLS HClass models.

7.4.1 Enactment Semantics of HiLLS Composite HSystem

The enactment semantics of a HiLLS' composite HSystem is given by the execution of an
equivalent coupled enactment model in the enactment framework. Hence, we specify a
translational semantics to generate the enactment code from the HiLLS model. To begin with, we
present, in Figure 7.18, the template for creating coupled DES models for execution in the
enactment framework. Thus, we have to define a code generator that generates, from a given
coupled HSystem, the appropriate codes for the unimplemented methods in the template. To
facilitate the reader's understanding, we present the code generator in three fragments to generate
codes for different elements of the template in Figure 7.18.

Phttps://wiki.eclipse.org/Acceleo
"http://www.omg.org/spec/MOFM2T/1.0/
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| AnAtomicSystem_java m ACoupledSystem java =2

package example;

1
2
= dmport enactment.AbstractCoupledSystem;

4 dmport enactment.designExceptions.DuplicateldException;

5 dmpeort enactment.designExceptions.InvalidCouplingException;
6 dmport enactment.designExceptions.NoSuchPortExistsException;
7
8
=]

public class ACoupledSystem extends AbstractCoupledSystem {
S/ TODD declare components here
public ACoupledSystem{(String name) {

super{name) ;

S/ TODOD instantiate the components here

@0verride
protected woid registerInputOutputPorts() throws DuplicateIldException {

SS TODO register I/0 ports with addInputPor() and addOutputPort() functions
¥

@0verride
protected woid registerComponents() throws DuplicateldException {
ff TODO register each component with the addComponent() function

@0wverride
protected woid registerPortCouplings{) throws InvalidCouplingException,
NoSuchPortExistsException {
ff TODO register coupling relations with connectEI(), connectIC() and connectEOC()

Figure 7.18 Template for creating coupled DES models for enactment

7.4.1.1 Code generator fragment for required packages,componentsand constructor

| coupledSystem.mitl 22 | |51 atomicSystenn. mit =1 hClass mil

1 [comment enceding = UTF-8 /]

2 [**M2T Template to generate CoupledSystem enactment class from a given HSystem™/]
3 [module coupledSystem('http://hills/2.8")]

4= [template public generateCoupledSystem(cHSystem : HSystem) 2 ((cHSystem. hComponents->notEmpty())]
5 [file {cHSystem.name.toUpperFirst(}, false, "UTF-8")]

6 Jf/f[protected ('generate imported packages')]

import enactment.AbstractCoupledSystem;

import enactment.designExceptions.DuplicateldException;

9 dmport enactment.designExceptions.InvalidCouplingException;

18 import enactment.designExceptions.MNoSuchPortExistsException;

11 [/protected]

12 public class [cHSystem.name.toUpperFirst()/] extends AbstractCoupledSystem{

14 J/[protected ('generate component declarations®)]

15 [for (hComponent : HComponentRefence | cHSystem.hComponents)? (upperBound=(1))]

16 private [hComponent.target.name.toUpperFirst()/] [hCompenent.name/s];

17 [/for]

18 [for (listComponent : HComponentRefence | cHSystem.hComponents)? (upperBound<>{1)}]

19 private ArraylList<[listComponent.target.name.toUpperFirst()/]> [listComponent.name/];
28 [/for]

21 [/protected]

22

23 J/[protected ( 'generate constructor’)]

24 public [cHSystem.name.toUpperFirst()/]{5tring name) {

25 super(name) ;

26 [for (component : HComponentRefence | cHSystem.hComponents)? (upperBound=(1))]

27 [compenent.name/] = new [component.target.name.toUpperFirst()/]1({"[component.name/]™);
23 [/for]

29 [for (listComp : HComponentRefence | cHSystem.hComponents)? (upperBound<>({1))]

38 [listComp.name/] = ArrayList<[listComp.target.name.toUpperFirst()/]>("[1listComp.namef]™"};
31 [/for]

32 ¥

33 [/protected]

Figure 7.19 Code generator for coupled system class, its ports and components
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Figure 7.19 presents the fragment of the code generator that generates the codes for the class
template in Figure 7.18 from the beginning to the constructor.

Line 4 (in Figure 7.19) specifies that this code generator is applicable only to a HILLS HSystem,
cHSystem, which has some hComponentReferences to other HSystems. Lines 7-11 generate the
code to import the default-required packages specified in the target template. The generation of
the class begins in line 12; the class's name is generated from the name attribute of cHSystem
based on Java naming convention.

In lines 14-21, we generate the declarations of components of the system as private attributes.
Recall from the HiLLS metamodel in Section 6.2 that an HComponentReferece has name,
lowerBound and upperBound attributes and a reference, target, to an HSystem. In lines 14-21 of
the code generator segment above, an hComponentReference with upperBound equal to 1 is
declared as a complex attribute with name extracted from the name of h7ComponentReference
and type extracted from the name of the HSystem referenced by the targetreference. If
upperBound is greater than 1, however, we generate an array list instead.

Lines 23-33 generate the class constructor. We generate the codes to instantiate, within the
constructor, all components declared in the previous lines.

7.4.1.2 Code generator fragment for ports and components registrations

35 /fSf[protected ('generate IO ports”)]

36 @override

37 protected woid registerInputOutputPorts() throws DuplicateIdException {

38 [for (iPort: Port | cHSystem.inputs) separator (''n')]

39 super.<[iPort.portDecl.type/]>addInputPort("[iPort.portDecl.decllName/]™);
48 [/for]

41 [for (cPort : Port | cHSystem.cutputs) separator {"\n")}]

42 super.<[cPort.portDecl.type/]raddOutputPort (" [cPort.portDecl.declName/]™);
43 [/for]

44 ¥

45 protected

46

47 fS[protected ('generate components registration codes’)]

48 @override

49 protected woid registerComponents() throws DuplicateIldException {

5@ [for (hComponent : HComponentRefence | cHSystem.hComponents) separator ("%n')]
51 addComponent ([ hComponent.name/]);

52 [/far]

53 }

54 [/protected

Figure 7.20 Code generator for ports and components registrations

Figure 7.20 presents the segments of the code generator that generate the code to register input
and output ports and components of the coupled system. Lines 35-45 generate the method
registerlnputOutputPorts(). To register any port in this method, the port's name and type are
required. In the HILLS metamodel, a port refers to a declaration, which has a name and type. The
code generator extracts these informations from the input model to implement the method.

Similarly, lines 47-54 generates method registerComponents() and its implementation.
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7.4.1.3 Code generator fragment for coupling registrations

55 //[protected ('generate coupling registration codes')]
56 @verride

57 protected void registerPortCouplings() throws InvalidCouplingException,NoSuchPortExistsException {
58 [for (ic : InternalCoupling | cHSystem.couplings-»filter(InternalCoupling)) separator ('\n')]
59 connectIC([ic.sender.outOwner.name/], "[ic.sender.portDecl.decIName/]",

58 [ic.receiver.inOwner.name/],"[ic.receiver.portDecl.decIName/]");
61 [/for]

62

B3 [for (eic : InputCoupling | cHSystem.couplings->filter(InputCoupling)) separator ('\n')]

B4 connectEIC([cHSystem.name/], “[eic.sender.portDecl.declName/]",

65 [eic.receiver.inOwner.name/],"[eic.receiver.portDecl.declName/]"};
BE [/for]

67

68 [for (eoc : OutputCoupling | cHSystem.couplings-»filter(OutputCoupling)) separator ('\n')]

69 connectEOC([ecc.sender.outOwner.name/], "[ecc.sender.portDecl.decIName/]",

78 [cHSystem.name/]," [eoc. receiver. portDecl. decIName/]"};
71 [/for]

72 }

73 [/protected]

74 }

75 [/ffile]

76 [/template]
Figure 7.21 Code generator for coupling registrations

Finally, Figure 7.21 presents the segment of the code generator that generate the method
registerPortCouplings() and its implementation. Each statement in the method is a call to one of
methods connectIC, connectEIC and connectEOC each of which requires four parameters in the
order: sending system's name, sending port's name, receiving system's name, receiving port's
name. Each of these parameters is extracted from the input HiLLS model as specified in the
generator template.

7.4.1.4 Relations between the elements of the HiLLS and enactment models of the BVS

As proof of concept, we present, in Figure 7.22, the correspondences between the HiLLS model
of the BVS and its enactment model (see Section 5.5.1.3) to demonstrate that the latter can be
fully generated from the former.

The brick-red arrow shows a correspondence between the names of the two models. The green
arrows indicate that the hComponentReferencebvm in the HiLLS model is linked to the
declaration, instantiation and registration of component bvm in the enactment code. The same
also applies to component user.

The red arrowfrom the empty output interface of the HIiLLS BVS to the
registerInputOutputPorts() function of the enactment code indicates that both models have no
input or output ports. Finally, the red and purple arrows pointing to the function
registerportCouplings() show that each of the parameters of the connect methods has a
corresponding construct in the HiLLS model.
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1 package bvs.enactment;
2% impert enactment.AbstractCoupledSystem;[]

7# = ByS dJaval]

13 publiec class BVS extends AbstractCoupledSystem {
14 frrxrzixrxss doaclare instances of BVM and BVMUser as components FT**ssizszssssy
15— ®private BYM bvm;

16 private BVMUser user;

17

18 public BVS(String name) {

19 super(name);

28" bvm = new BVM({"BVM");

21 user = new BVMUser("User™);

22 }

23 B0verride
24 protected woid registerInputOutputPorts() throws DuplicdteldException {
25 // BVS is a closed system; it hag no I/0 ports
26 } o

27 @0verride

28 protected woid registerComponents() throws DuplicateldException {
29 addComponent (user) ;

3@ ——p addComponent (bvm) ;

31 ¥

32 g0verride

33 protected void registerPortCouplings() throws InvalidCouplingException,NoSuchPoartE
34 connectIC{user, "request”, bwvm, "code"4— [ foutpul] "request™ -3 1r|p.1t "code”
35 connectIC(user, "outC”, bvm, "inC"); Jfoutput] "owtC" -> input "inC"

36 g connectIC(bvm, “cup", user, “"drink"); ffouvtput "cdp™ -2 input "drink"

37 connectIC({bvm, "outl", user, "inC"); fVoutput "odtC™ -> input "inC"

38 } 1

o |3l [ BVS ]

| bvm.code==user.request; bvm.inC == user.outC;
user.drink==bvm.cup; user.inC==bvm.outC;
I—cnnno-ct[ ]!
bmwmg_ummuﬂjbvm inC = user.outC:
— Ser.ann cupy user.inC=bvm.outC;
-
working
. connect()
true
bw user
1.9

[ BV
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Figure 7.22 Correspondences between HiLLS and enactment models of the

BVS

7.4.2 Enactment Semantics of HILLS Atomic HSystem

The equivalent atomic system model, based on the enactment framework, when executed,
provides the enactment semantics of a given atomic HSystem. As a reminder, we first present, in
Figure 7.23, the AtomicSystemtemplate, which defines the structure of an atomic system model.
Note that in addition to the methods inherited from the framework, the user may define some
special-purpose methods, which are called from the implementations of the inherited methods to
perform some specific functions.
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coupledSystem.mtl 1 atomicSystem.mitl 1 hiClas s i |I| AnAtomicSystem java &2

1 package example;
2= import jawva.util.Arraylist;
3 dmport enactment.AfAbstractAtomicSystem;
4  import enactment.Port;
5 dimport enactment.designExceptions.DuplicateldException;
B
7 public class AnAtomicSystem extends AbstractAtomicSystem {
r= SEE
9 * Declare state wvariables here
1a =S
11 public AnAtomicSystem(String name) {
12 super(name) ;
13 SO TODD Auto-generated constructor stub
14 1
15E @override
16 protected wvoid registerInputQutputPorts() throws DuplicateldException {
17 S TODO register IO ports here
18 T
19= @override
26 protected long computeTimelAdvance() {
21 ff TODD specify the time adwvance of each state here
22 return 8;
23 1
24 @0verride
25 protected woid doInternalTranssition() {
26 S TODO specify internal transition operations here
27 1
28= @override
29 protected wvoid doExternalTransition{ArrayList<Port<?>> eventBag,
38 long elapsedTime) {
31 S TODD specify external transition operations here
3z 1
33 @0verride
34 protected woid doConfluentTransition{ArrayList<Port<2?>> eventBag) {
35 fF TODD specify ceonfluent transitions here
36 1
37 @override
e protected woid doOutputOperation() {
39 fF TODD specify output gpearations here
a8 T
41= @verride
A2 protected void runfictivities() {
jaz i TODD specify state activities here
44 }
45z @verride
A6 protected void initializeStateVariables() {
a7 Ff TODO initialize the state variables here
45 T
43 3}

Figure 7.23 Template for creating atomic system models for enactment

Therefore, we define the enactment semantics of an atomic HSystem by generating from it, the
implementations of the unimplemented methods in this template. We present the code generator
in fragments to generate different parts of the class to facilitate the reader's understanding.

We will use the correspondences between different parts of the HILLS model of the BVM and its
enactment code for illustrations in this section; thus, we re-present the HiLLS model in Figure
7.24 to optimize our numerous references to it.
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— [playWelcomel 1I[ ]

— [- ]setPrice[code:[ ][ ]—

Then out! = true;
Else out! = frue;

If c.getValue() = {100, 80, 120, 130}

While true{
Print “Welcome! Press button to choose a beverage™;
Print “1-=Cocoa, 2->Coffee, 3-=0range, 4-=Apple”;

code = (1,2 3. 4};
If code==
Then price’ = 100;

Endif } Else If code==
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Figure 7.24HiLLS specification of the BVM
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7.4.2.1 Code generator fragment for an atomic system class, its state space and required
packages

1 [comment encoding = UTF-8 /]

2 [**M2T Template to generate AtomicSystem enactment class from a given HSystem®/]
[module atomicSystem{ http://hills/2.8")]

= [template public generateAtomicSystem(aHSystem : HSystem)? (aHSystem.hComponents-:>isEmpty())]
[file (aHSystem.name.toUpperFirst().concat('.java"), false, 'UTF-8"}]
f/[protected ('generate imported packages')]
import java.util.Arraylist;
import enactment.AbstractAtomicSystem;
import enactment.Port;

18 import enactment.designExceptions.DuplicateldException;

11 //[/protected]

12

13 public class [aHSystem.name.toUpperFirst()/] extends AbstractAtomicSystem{

14 //[protected ('generate state wvariables')]

Wooa sl @ W

15 [Let myStateSpace : State = aHSystem.stateSchema]

16 [for (statevar : Declaration | myStateSpace.stateVariables) separator (''n')]

17 private [stateVar.type/] [stateVar.declName/];

18 [/for]

19 [/Llet]

2@ [for (complexVar : HReference | aHSystem.hReferences)separator (''.n')? (upperBound=({1))]
21 private [complexVar.target.name.toUpperfirst()/] [complexVar.name/];

22 [/for]

23 [for (listvar : HReference | aHSystem.hReferences)separator (''n')? (upperBound<>{1))]
24 private ArrayList<[listVar.target.name.toUpperFirst()/]> [listVar.name/];

25 [/for]

26 [Let enumID : String = aHSystem.name.concat( State')]

27 private enum [enumID/] {[for (label : String| aHSystem.configurations.label)

28 separator (',')][label.tcUpperCase()/][/for]};
29 private [enumID/] state;

3@ [/Let]

31 J//[/protected]
32 //[protected ('generate global parameters and constants')]

33 [Let localDef : AxiomaticDef = aHSystem.localDef]
34 [for (var : Declaration | localbef.wars)]

35 private [wvar.typef] [var.declName/];

36 [/for]

37 [/Let]

38 Jf/[/protected]
39 /J[f[protected ("generate constructor’)]

4 public [aHSystem.name.toUpperFirst()/](S5tring name) {

41 super(name);

4z [for (complexvVar : HReference | aHSystem.hReferences)? (upperBound=(1})}]
43 [complexVar.namef] = new [complexVar.target.name.toUpperFirst()/]1();
Z [/for]

45 [for (listVar : HReference | aHSystem.hReferences)? (upperBound<>({1}}]

46 [listVar.name/] = ArrayList<[listVar.target.name.tolpperFirst{)/]1>();
a7 [/for]

48 1

49 [/protected]
5@ [/[protected ('generate function to compute state based on predicates of configurations®)]

51 private woid setState(){

52 [for (config : Configuration | aHSystem.configurations) separater (''n')]

53 if ([config.property.predicate/]) state = [config.label.tcUpperCase()/];
54 [/for]

55 1

56 [/protected]
Figure 7.25 Code generator segment for an atomic system and its state space
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Figure 7.25above presents the segment of the generator that creates a Java class (and class the
file) for an atomic HSystem and generates the enactment codes for its state space.

As specified in line 4, this code generator template is applicable to a HSystem aHSystem that has
no components; i.e., an atomic HSystem. First, in line 5, it extracts the name aHSystem and uses
it to name a new Java file based on Java file naming convention.

Lines 6-11 generate the default-required packages as suggested by the template in Figure 7.23.
The AtomicSystem class is generated in line 13; the class' name is derived from the name of
aHSystem based on Java naming convention.

The /et blocks in lines 15-25 map all variables declared in the state schema of aHSystem and all
its hReferences to private attributes of the class. The /et block in lines 26-30 maps the labels of
all configurations defined in aHSystem into an enumeration, which is used as the type of another
state variable named "state". In lines 33-37, all declarations in the /ocalDef (axiomatic schema)
of aHSystem are mapped to private attributes.

The constructor of the class is generated in lines 40-48; all non-primitive attribute declarations
generated in the previous lines are instantiated within the constructor block.

We generate user-defined method setState() in lines 51-55, especially to complete the definition
of the state space of aHSystem. Within setState, we map the property of every configuration
defined in aHSystem to the condition of an "if statement", and in the conditional statement, we
assign the configuration's /abel to the variable "state" generated previously in line 29.

To illustrate the expected result of applying this generator segment to the HILLS model of BVM
(see Figure 7.24.), we present the corresponding segment of the enactment code to discuss the
relationships between their elements. We can see that the variables credit, price and current
declared in the former's state schema as well as its #RefrencesbadC, escrow and vault translate
into private attributes in the latter. According to the code generation rules in line 26-30 (Figure
7.25), the labels of all configurations defined in the HiLLS model translate into an enum type,
BVMState, in the enactment code and this type is used to declare an attribute szate.

Following the code generation rules in lines 39-49, the constructor of the enactment model class
creates instances of all non-primitive attributes generated from the /References of the HiLLS
model.

Finally, in accordance to code generation rules in lines 50-56, we see that for each configuration
in the HiLLS model, there is an "if statement" in the setState() function of the enactment code,
which has the configuration's property as condition while its label is assigned to attribute state.
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BVSjava | [ BWjava 2 | [ BMUserjava [J] Coinjava [J] Beverage java

1 package bvs.enactment;

2= import java.util.Arraylist;

3 import java.util.Random;

4 import enactment.AbstractAtomicSystem;

5 import enactment.Port;

& import enactment.designExceptions.DuplicateIdException;
8% * BUM.javal]

14 public class BVM extends AbstractAtomicSystem {

15 private int credit;

16 private int price;

17 private int current;

18 private Coin badC;

19 private ArrayList<Coin» vault;

B private ArraylList<Coin> escrow;

1 private enum BVMState {IDLE, CHARGING, DISPENSING, RETURNING, REJECTING, CANCELING};
2 private BVMState state;

3

4= public BVM(String name) {

5 super(name);

6 vault = new ArrayList<Coinx()

:
escrow = new Arraylist<Coin»();
badC = new Coin();

private void setState(){
if (credit==8 28 price==0 && current==0 && badC == null &% escrow.isEmpty())
state = BVWMState.IDLE;
if((current==1||current==2||current==3||current==4) && price>d && credit<price && badC == null)
state = BWMState.CHARGING;

L Y R S N~
Woka @ WD o

T

35 if((current==1||current==2| |current==3||current==4) && price>®d && credit==price && escrow.isEmpty() && badC == null)
36 state = BWMState.DISPENSING;
37 if((current==1| |current==2| |current==3||current==4) && price»d && credit>price && escrow.isEmpty() && badC == null)
38 state = BVMState.RETURNING;
39 if ((current==1||current==2||current==3| |current==4) && badC!=null)
44 state = BVMState.REJECTING;
41 if (current==5 8& credit<price)
2 state = BVMState. CANCELING;
43 .}
44 @override
45 protected void registerInputOutputPorts() throws DuplicateldException {
46 super.<CoinraddInputPaort{"inC");
47 super.<IntegerraddInputPort("code");
8 super.<{BeverageraddfutputPort{“cup");
449 super.<ArrayList<Coinz>addOutputPort("outC");
58 3

Figure 7.26 A sample state space and port registration code of an atomic system
model for enactment

7.4.2.2 Code generator fragment for port registration in an atomic system

The generator fragment that generates the code for the implementation of method
registerInputQOutputPorts() in atomic systems is the same as described previously for coupled
system in Section 7.4.1.2; we only present an example of its result in this section.

In accordance to the code generator rules, Figure 7.25above (lines 44-50) presents an example of
the correspondences between the port specifications in the HILLS model and port registration in
the enactment model. For each of input ports inC and code specified in the HILLS model, its
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name and type provides the parameter for a call to the addInputPort() method in the enactment
code. Similarly, each of HiLLS' output port cup and outC provides the parameters required to
invoke the addOutputPort() method.

7.4.2.3 Code generator fragment for time advance and system initialization in an atomic
system

//protected ('generate the function to initialize the system for enactment')
@verride
protected void initializeStateVariables() {
[for (varInitialization:Expression|aHSystem.initialConfig.initializations)]
[varInitialization/];
[/for]
setStatel);
¥

fprotected]

f/[protected ('generate time advance operation')
@verride
protected long computeTimefdvance() {
switch (state) {
[for (config : Configuraticon | aHSystem.configuraticons) separator ("'wn')]
case [config.label.toUpperCase()f]:[iFf (config.ocllsTypeldf(TransientConfiguration))]
return @;
[elseif (config.oclIsTypeldf(PassiveConfiguration})}]
return Long.MaX_WVALUE;
[else] return [config.sojournTime/];

[7if]

(=T TR s PR W R S WY R e IV T N S W Y WY SR P e

[/for]
default: return @3

WOOWD D W0 0D 00 G0 00 000D 000D R0 Cca
(WU A ]

o
=
=1

Figure 7.27 Code generator fragment for initialization and time advance in atomic

system
Figure 7.27 presents the segments of the code generator that generate the implementations codes
for methods initializeStateVariables() and computeTimeAdvance() from a given atomic
HSystem. Lines 70-78 specify the implantation of the former; each of the expressions specified
on the transition from the initial state notation to the starting configuration in the HiLLS model
translates into a statement in the method. A statement to invoke the method sezStar() is included
at the end of the method.

To implement the method computeTimeAdvance() (lines 79-94), we generate a switch statement
with class attribute state as its case. Within the switch, we iterate over all the configurations
defined in the HILLS model and extract their labels and sojourn Times to build each case of the
switch statement. Only finite configurations are queried for their sojournTime expressions; zero
and Long.Max VALUE are generated for instances of transient and passive configurations
respectively.

We illustrate the expected result of applying these rules to the HiLLS model of BVM in Figure
7.28.
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@override

protected long computeTimefdvance() {
switch (state) {
case IDLE: return Long.MAX_ VALUE;
case CHARGING: return 26818868 ;
case DISPENSING: return 1*68 * 1888 ;
case RETURNING: return &3
case REJECTING: return @;
case CANCELING: return @;
default: return 8

¥

o=l MWk =

¥

@verride

protected woid initializeStateVariables() {
credit = @8; price = 8; current = @; badC = null;
setsStatel )

sy Ry Iy RN RN Y R RS IR RN RN, ) |

bk
]

[y j]
=

¥

Figure 7.28 Sample enactment code for time advance and initial state specifications

For the computeTimeAdvance() method, note that returning, rejecting and canceling are transient
while idle is a passive configuration. For charging and dispensing, the specified sojourn times
are 2 and 1 minutes respectively.

In Figure 7.24, the arrow from the initial state notation terminates on configuration idle
initialization expressions credit = 0; price = 0; current =0; badC = null. According to the code
generation rules, these translate to the implementation of method initializeStateVariables() as
shown above.

7.4.2.4 Code generator segments for state transition functions of an atomic system class

We present the code generation segments for the implementations of methods
dolnternalTransition(), doExternalTransition() and doConfluentTransition() in Figure 7.29.

Lines 95-115 generate the implementation of method dolnternalTransition(). First, the set of all
internal configuration transitions in the input HILLS model are collected in a local variable
intTrans. Then, a Java switch statement is created, again with class attribute state as its case
variable. In lines 101-109, for each configuration defined in the model, create a case for its label
and then search for a transition in intTrans, whose source configuration is the current
configurations; if any is found, print the sequence of expressions that define its computations.
Print the command "break;" before taking the next configuration in the loop. Then, print default:
break; and then setState() after exiting the loop. The implementations of the other two transition
methods follow similar patterns as specified in Figure 7.29.

For this generator to be efficient, however, there is need to define a mechanism for the generator
to identify branching of transition paths along condition nodes in the configuration transition
diagram and to generate appropriate "if" statements. The present solution is most effective for
transitions paths without such branches. We intend to address this limitation in our future work.
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132
133
134
135
136
137
138
148
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
168
161
162

ff[protected ('generate internal transition operations')]

@0verride
protected woid doInternalTranssition() {
[Let intTrans:sequence(InternalTransition) = aHSystem.transitions-»filter(

InternalTransition)->asSequence()]
switch (state) {
[for (config : Configuration | aHSystem.configurations) separator ('%n')]
case [config.label.toUpperCase()/]:
[For (trans: InternalTransition| intTrans)]
[iFf (trans.source=self)]

[Ffor {(comput : Expression | trans.computations) separator ('‘\n')}][comput/];[/Ffor]
[FiF]
[/For]
break;
[#for]

default: break;

¥
[FLet]
setState();
¥
[fprotected]
ff[protected ('generate external transition operations')]

@0verride
protected void doExternalTransition(Arrayvlist<Port«<2»> eventBag, long elapsedTime){
[Let extTrans:Sequencel(ExternalTransition) = aHSystem.transitions-»

filter(ExternalTransition)->asSequence()]
switch (state) {
[Ffor (config : Configuration | aHSystem.configuratiens) separator ('\n')]
case [config.label.toUpperCase()/f]:
[for (trans: ExternalTransition| extTrans)]
[iFf (trans.source=self)]

[for {comput : Expression | trans.computaticns) separator ('\n')]
[comput/];
[/for]
[rirf]
[/for]
break;

[/for]
default: break;

T
[fLet]
setState();

[fprotected]

ff[protected ('generate confluent transition operations')]

@override
protected woid doConfluentTransition{ArraylList<Port«<2>> eventBag) {
[Let confTrans:Sequence({ConfluentTransition) = aHSystem.transitions->

filter{ConfluentTransition)->assequence()]
switch (state) {
[for (config : Configuration | aHSystem.configurations) separator ('\n')]
case [config.label.tolUpperCase()f]:
[For (trans: ConfluentTransition| confTrans)]
[iF (trans.source=self)}]

[for (comput : Expression | trans.computations) separator ('\n'}]
[comput/];
[/for]
[£iF]
[/for]
break;

[/for]
default: break;

H
[fLet]

setState();
b

[fprotected]

Figure 7.29 Code generatorsegments for state transition functions
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Figure 7.30 shows the correspondences between the HIiLLS model of BVM and the
implementation of method dolnternalTransition() in its enactment code to illustrate the expected
result of executing these rules on the HiLLS model. The arrows show equivalences of the
computations accompanying internal transitions in the two models.
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Figure 7.30Relations between the enactment code for internal state transitions in
BVM and its HiLLS model

7.4.2.5 Code generator segments for output and activity functions of an atomic system class

Figure 7.31 presents the segments of the code generator that synthesize the implementations of
methods doOutputOperation() (lines 164-186) and runActivities() (lines 186-203) from a given
HiLLS atomic HSystem.

To implement the doOutputOperation(), the generator creates a switch statement with attribute
state as case variable and collects all transitions with associated output operations in a local
variable transWithOutput (line 170-171). For each configuration config in the HiLLS model, a
switch case is created. Then, a search is made if there is an element of trans WithOutput, which
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has config as its source configuration; if found, then the value of each message and its associated
output port name are used to invoke the framework method sendMessage(). Every iteration of
configurations terminates with the printing of "break;"

164 J/[protected ('generate output operation'}]

165 @0verride

16A protected void doOutputOperation() {

167 switch (state) {

168 [tet intTrans : Sequence(InternalTransition) = aHSystem.transitions-:

169 filter(InternalTransition)->asSequence()]
178 [Let transkithOutput @ Sequence(InternalTransition) = intTrans-:

171 collect(t2:InternalTransition|t2.cutputEvents->notEmpty()}]
172 [for (config : Configuration | aHSystem.configurations) separator ("n')]

173 case [config.label.tolpperCase()if]:

174 [Let trans : InternalTransition = transWithOutput-»

175 anyit:InternalTransition|t.source=config)]
176 [for (outEvent : Message | trans.cutputEvents) separator ('\n')]

177 sendMessage("[outEvent.port.portDecl.decllame/]", [outEvent.valuef]);
178 [/for]

179 [/Llet]

188 break;

181 [/for]

182 [/let]

183 [/let]

184 default: break;

185 }

186 [/protected]
187 [//[protected ('generate activity function')]

188 @verride

189 protected void runActivities() {

19a switch (state) {

191 [for (config : Configuration | aHSystem.configurations) separator {'\n'}]
192 case [config.label.tolpperCase()/]:

193 [if (config.activities-»notEmpty())]

194 while (state==[config.label.tolpperCase()/]){

1495 [for (activity : Expression | config.activities)][activity/];[/for]
196 }

137 [/if]

198 break;

199 [/for]

268 default: break;

201 }

282 }

283 [/protected]

Figure 7.31 Code generator segments for output and activity functions

For the implementation of method runActivities(), a switch statement is created with szate as its
case variable as usual and a case is created with the label of each HiLLS configuration. In each
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case, if the activity field of the associated configuration is not empty, a while loop is created
within which the activity expressions are printed. The exit condition of the loop is set to make it
continue while the configuration persists.

Figure 7.32 presents the correspondences between the implementation of doQutputOperation()
for the BVM and the output operations specified in its HILLS model to illustrate the expected
output if the generator were applied.
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Figure 7.32Correspondences between the enactment code of output operations in
BVM and its HILLS model

7.4.2.6 Code generator segments for output and activity functions of an atomic system class

Finally, on atomic HSystem, Figure 7.33 presents the segment of the code generator that
translates a HiLLS operation to a Java method for special-purpose operations. Given HiLLS
operation op, lines 206-207 define the signature of a Java method with the same visibility as op.
the type of op, if defined, is extracted to define the type of the generated method; otherwise, type
void is generated before extracting the name of op to generate the name of the method being
synthesized. Line 207 retrieves the parameters of op, if any, to generate a comma-separated list
of parameters in a parenthesis before opening the curved bracket for the method's body.
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If op has preconditions, they are extracted to generate the condition of an "if" statement that
encloses the method's body as specified in lines 208-214.

284 [protected ('generate user-defined operations')]
2@5 [for (op : Operation | aHSystem.operations)]

286 [op.visibility/] [if (op.type<roclIsUndefined())][op.type/][else]lvoid[/if] [op.opniame/]

287 {[for (par:Declaraticn|op.parameters) separator (',')][par.type/] [par.declName/][/for]){

288 [if (op.preConditions-»notEmpty())]

2@9 if ([for (preCond: Predicate| op.preConditions) separator ('&%')][preCond/1[/for]){

218 [for(localVar : Declaration | op.suxVariables)] [localVar.type/] [localVar.declName/];[/for]
211 [for (exp : Expressiecn | op.expressions) separator ('\n')][exp/];[/for]

212 [for (postCond: Predicate| op.postConditions) separator ('\n')][postCond/];[/for]

213 1

214 [else]

215 [for{localVar : Declaration | op.suxVariables)] [localVar.type/] [localVar.declName/];[/for]
216 [for (exp : Expressiecn | op.expressions) separator ('\n')][exp/];[/for]

217 [for (postCond: Predicate| op.postConditions) separator ('\n')][postCond/];[/for]

218 [/if]

219 1

228 [[ffor]
221 [/protected]

FA
223 [/file]
224 [/template]

Figure 7.33 Code generator segment for translating HiLLS operations to methods

7.4.3 Enactment Semantics of HiLLS HClass

Intuitively, the enactment semantics of a HiLLS HClass is obtained by executing its software
equivalent, which is a class. This provide support for the synthesis of appropriate program codes
for the enactment (and simulation) of non-primitive input and output elements specified in
HiLLS.

Since our enactment framework is Java-based, we generate an equivalent Java class for every
HClass in a HiLLS specification. We do not need a special template to generate the class; the
structure of the conventional Java class is sufficient.

Figure 7.34 presents the code generator to synthesize a Java class from a given HiLLS HClass
hClass. The different segments are self-explanatory as they use the same constructs and
structures presented previously in this section. Lines 12-31 generate the class' attributes and
global variables if any, lines 32-41 generate the constructor while lines 42-59 generate the
methods before closing the class at line 60.
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[comment encoding = UTF-8 /]

[*#** M2T template to generate a Jawva class from a given HilLLS HClass*/]
[module hClass('http://hills/2.8"')]

[template public generateHClass(hClass : HClass)]

[file (hClass.name, false, "UTF-8"')]

//[protected ('generate imported packages')]

import java.util.Arraylist;

//[/protected]

public class [hClass.name.tolUpperFirst()/]
[iFf (hClass.parentClass<>null)] extends [hClass.parentClass.name.toUpperFirst()}/1[/iF1{
//[protected ('generate class attributes')]

[Let myStateSpace : State = hClass.stateSchemal
[fer (stateVar : Declaration | myStateSpace.stateVariables) separator ('\n')]
private [stateVar.typef] [stateVar.declMamef];
[/for]
[/Let]
[for (complexVar : HReference | hClass.hReferences)separator ('\n')? (upperBound=(1))]
private [complexVar.target.name.toUpperFirst()/] [complexVar.name/];
[/Ffor]
[Ffor (listVar : HReference | hClass.hReferences)separator ('\n')? (upperBound<>(1))]
private Arraylist<[listVar.target.name.toUpperFirst()/]1> [listVar.name/];
[/fer]
f/[/protected]
f/[protected ('generate global parameters and constants')]

[Ltet localDef : AxiomaticDef = hClass.localDef]
[for (var : Declaration | localDef.wvars)]
private [var.type/] [var.declName/];
[/for]
[/Let]
/[ /protected]

/[protected ('generate constructor')]
public [hClass.name.toUpperFirst()/1() {

[for (complexVar : HReference | hClass.hReferences)? (upperBound=(1))]
[complexVar.name/] = new [complexVar.target.name.toUpperFirst()/]();
[/for]
[for (listVar : HReference | hClass.hReferences)? (upperBound<>(1))]
[listVar.name/] = ArraylList¢[listVar.target.name.toUpperFirst()/]>();
[/for]
}
/protected]
protected ('generate methods')]

[for (op : Operation | hClass.operations)]
[op.visibility/] [if (op.type<snull)][op.type/][else]void[/if] [op.opnName/]
([for (par:Declaration|op.parameters) separator (',')][par.type/] [par.declllame/][/for]){
[if (op.preConditions-»notEmpty())]
if ([for (preCond: Predicate| op.preConditions) separator ('2&')][preCond/][/for]){
[for (localVar : Declaration | op.auxVariables) separator ('\n')][localVar.type/] [localVar.decllame/];[/fer]
[for (exp : Expression | op.expressions) separator ('\n')][exp/]1;[/for]
[for (postCond: Predicate| op.postConditions) separator (°'\n')][postCond/];[/for]
¥
[else]
[for (localVar : Declaration | op.auxVariables) separator ('\n')][localVar.type/] [localVar.decllame/];[/for]
[for (exp : Expression | op.expressions) separator ('\n')][exp/];[/for]
[for (postCond: Predicate| op.postConditions) separater ('\n')][postCond/];[/fer]
[/if]

1
[/for]
/protected]

Jfile]
/template]

Figure 7.34 Code generator to translate HILLS HClass to Java class
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7.5 CONCLUSION

We have presented the HiLLS semantics in this chapter. As envisioned in the architecture of
SimStudio II framework in Chapter 4, HiLLS has four semantics domains: DEVS for simulation-
based analysis, Z and Temporal Logic for logic-based formal analysis and the enactment
framework presented in Chapter 5 for enactment. Using model transformation techniques, we
defined, in this chapter, the semantics mappings of HiLLS' abstract syntax onto the different
semantics domains to take benefit of their respective semantics and supporting tools.

We used ATL, a model-to-model transformation language to define the HiLLS-to-DEVS and
HiLLS-to-Z semantics mappings by defining model transformation rules between HiLLS
metamodel and their respective metamodels. The DEVS-based enactment framework provides
Java-based templates to write enactment models for DES; thus, we use the Acceleo MTL, a
model-to-text transformation language to define the code generators that synthesize enactment
codes, based on the framework's templates from a given HiLLS model.

The HiLLS model editor is not yet available to enable us validate the automated synthesis of the
artifacts for simulation, formal analysis and enactment from a given HiLLS model as envisioned
in the SimStudio II manifesto. Nevertheless, in accordance to the semantics mapping rules
specified in each case, we demonstrated its feasibility by showing the correspondences between
the elements of the HiLLS model of the running example of the thesis - the beverage vending
system - and its manually written DEVS, Z and enactment models. These correspondences
justify largely, our hypothesis in the beginning of the thesis that it is possible to have a unified
high-level language, which will be expressive enough to integrate the essential concepts required
for the three analysis methodologies. Hence, we believe that further research in this direction will
be worthwhile in the end.

In addition to the development of a HILLS model editor around which can be built the SimStudio
II MDSE environment, we intend to address some of the limitations of the current semantics
mapping rules in our future work. The two main limitations are: 1) the mapping rules can
efficiently translate only simple predicates and expressions to the appropriate constructs in the
target semantics domains; there may be the need for some transformation libraries that will
recognize the pattern of a given predicate or expression and map it to the appropriate construct(s)
in the target domain. 2) The transformation rules, in their current forms, cannot efficiently
translate conditional branching in the HiLLS configuration transition diagrams to the appropriate
data structures in the synthesized models. They are, however efficient in translating non-
branching transitions. More work is required on this aspect to let the model transformers
recognize the transition patterns and take appropriate actions.
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8 GENERAL CONCLUSIONS

8.1 SUMMARY OF THE THESIS

This thesis explores the integration of Model-Driven Systems Engineering (MDSE) theories and
technologies along three dimensions of design, analysis, and verification methodologies for
Discrete Event Systems (DES): Simulation, Formal Methods (FM) and Enactment. The goal is to
harness the synergy of diverse theories, tools, and expertise for complementary analyses of static
and dynamic properties of complex DESs.

The design and development of a complex system may require an iterative process of modeling,
performance evaluation, logical analysis for requirement verifications, and prototype
implementation for run-time testing [HKO06]. Such iterations of analysis processes are often
necessary for early revelations of subtle knowledge about the systems, which are, in most cases,
beyond intuition. An undesired behavior discovered in the analysis of a system can be a signal of
a fundamental flaw in the system's design; such discovery must be made at an early stage of
development to forestall costly errors in the final system.

Depending on the questions to be answered about the system under study, suitable MDSE
approaches based on theoretically sound analysis methodologies like simulation, FM or
enactment are employed in the iteration loops to mine the desired knowledge from models of the
system. More than one of the three methodologies - simulation, FM, and enactment - are often
required for complementary studies of different aspects of complex systems; in such cases, the
combined methodologies are used to reason about the system's models from divergent
viewpoints to provide answers that complement one another. This thesis aims to exploit the
benefits of MDSE techniques and tools to put the three methodologies together under the
umbrella of a unified high-level viewpoint to make them accessible to non-experienced users as
well as ease the tasks of experienced users.

MDSE is a discipline that applies Model-Driven Engineering (MDE) practices to automate
processes in the Model-Based Systems Engineering (MBSE) paradigm [MM13]. MBSE is "the
formalized application of modeling to support system requirements, design, analysis,
verification, and validation activities beginning in the conceptual design phase and continuing
throughout development and later life cycle” [Est07]. MDSE, particularly, aims at concretizing
the envisioned benefits of MBSE through the applications of metamodeling and automated
model transformations for more productive and effective uses of models in the systems
engineering domain [BD14].

In recent years, the systematic combinations of disparate MDSE approaches to maximize the
synergy between the different disciplines have been growing in importance both in industry and
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in academia; this is evidenced by the volume of work published on the topic within the last
decade. Examples (non-exhaustive) of such work, with preference for DEVS-based simulation
methodology and FM with Z and Temporal Logic, include [Tra08, TTHI11, Toul2, Shul1,TH14,
BD14, Cri07, Cri08, TFH09, MWB+13, MDL+14,TB15].Nevertheless, much research efforts
are still needed to bring this idea and its benefits to the fore.

8.1.1 Problems Addressed and Research Questions

8.1.1.1 Lack of requisite logic and mathematical skills to deal with most formalisms

The problem of lack of requisite mathematical skills to deal with the underlying formalisms of
the different analysis methodologies on the part of domain experts, which has always been an
inhibitor to the wide adoption of each of the methodologies, is being continuously addressed
with MDSE approaches. Essentially, this involves the provision of high-level notations for model
creation, and the automated synthesis, from high-level models, of the low-level artifacts required
by the analysis tools. However, this problem is often solved for each methodology in isolation;
little progress has been made in addressing the problem collectively for different methodologies.

8.1.1.2 Little chances of portability of models between computational analysis methodologies

Apparently, due to the disparate purposes for which their underlying formalisms have been
created, and the difference in the sets of concepts expressed in such formalisms, there are usually
little chances of portability of models between different analysis methodologies. The implication
of this situation is that a complementary application of multiple methodologies to study different
aspects of a system will require manual, or at best semi-automated, creation and updating of
separate models, in different formalisms, of yet the same system to answer the different
questions of the different stakeholders. This task can be herculean and error-prone.

8.1.1.3 Little coexistence of disparate methodologies in the same environment

In most cases, a computational analysis environment is built to support a specific analysis
methodology; as such, extending it to accommodate other methodologies can be very difficult, if
not impossible. Unfortunately, none of the methodologies is guaranteed to provide answers to all
questions about the different aspects of a system. Thus, for an exhaustive analysis of system's
properties, the analyst must face the challenge of maintaining consistencies between the different
models, having multiple disconnected views of the same system, in separate MDSE
environments. The authors of [BSD+12] have acknowledged that this kind of situation has the
potential to create miscommunication among the different teams involved in the development of
a system.

In our attempt to propose solutions to these problems, we formulated the following research
questions, to which we tried to provide answers in this thesis:
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RQI. s it possible to build an integrative framework that can be continuously populated with
best practices in MDSE for simulation, formal methods and enactment such that the various
components are federated through a seamless sharing of high-level system model?

RQ2.  Which formalism should we adopt to write the shared model?

RQ3. How can the disparate concerns of the different methodologies be captured in the so-
called unified model

RQA4.  In what order should the process of the different methodologies be executed?

By these research questions, we envisioned an integrative MDSE framework that has the
infrastructure to accommodate legacy tools for simulation, formal analysis, and enactment such
that the disparate tools get their synthesized artifacts from one unified and consistent model of
the system under study. Another important requirement is that the framework must provide high-
level notations to create and edit the shared model as well as communicate it among the
stakeholders.

8.1.2 Contributions of the Thesis

The main contributions of the thesis to provide answers to the research questions and by
extension, proffer solutions to the identified problems are:

8.1.2.1 A multi-layered framework that emulates the Model-Driven Architecture (MDA) by
defining a unified model specification layer on top of the layers containing the
specific analysis methodologies:

In Chapter 4, we proposed a methodological framework, called SimStudio II, as an answer to
answering RQ1. SimStudio II has a multi-level architecture, which emulates a cascaded MDA,
with MDSE tools and artifactsat the different layers. Following the MDA principle, SimStudio II
architecture can be described as a cascade of two MDA-like architectures.

The architecture at the top has two layers for Methodology-Independent Model (MIM) and
Methodology-Specific Model (MSM). MIM refers to a model of the system under study and its
requirements, which is not specifically dedicated to any of the three target analysis methodology
but contains the information necessary to synthesize the artifacts required by the tools for each
methodology. The MSMs consists of the models of the system under study and its requirements,
which are target specific analysis methodologies and must be synthesized from the MIM at the
topmost layer. The essence is to ensure that only MIM is specified manually and used to drive
the syntheses of the MSMs.

The MDA-like architecture at the bottom of the cascaded architectures takes the system models
among the MIMSs as the conventional MDA's PIMs (Platform-Independent Model) and the
requirement model among them as conventional MDA's CIMs (Computational-Independent
Model). From there, it generates the PSMs (Platform-Specific Model) for the different analysis
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tools available. This architecture makes it possible to share system models among new and
legacy tools of the same and different analysis methodologies.

The architecture of the proposed framework is accompanied by a process model, as an answer to
RQ4, which describes the workflow to be followed as a guide to using the framework.

8.1.2.2 A preliminary framework for the enactment of DES

Enactment methodology has yet to permeate significantly into the MDSE practice with DES
unlike simulation and formal analysis which both have well established formalisms and
operational/logical protocols that are accepted by considerably large communities. The current
practices of enactment for DES are mostly based on UML and SysML (System Modeling
Language) and their profiles.

In Chapter 5, we proposed a DEVS-based enactment framework for DES. The framework adopts
and extends the DEVS syntax to express DESs but uses the behavior of the object-oriented
observer design pattern to define enactment protocol for the analysis of functional and
operational properties of a DES through the execution of its software prototype using the
physical clock time for the scheduling and execution of events.

8.1.2.3 A high level language whose syntax uniformly combines the DES concepts for
simulation, FM and enactment to support the specification of unified models for the
three methodologies

To the best of our knowledge, no formalism existed in the literature that could be used to model
the MIM described in Section 8.1.2.1above to serve as the kernel of the SimStudio II
architecture. Hence, we proposed the High Level Language for System Specification (HiLLS)
which must be expressive enough to subsume the formalisms of the three methodologies and
provide high level notations for the users to create and edit models.

In Chapter6, we proposed the abstract and concrete syntaxes of HiLLS to provide answers to
research questions RQ2 and RQ3.

To define the HIiLLS' abstract syntax, we used metamodel integration techniques for a
disciplined integration of DES concepts adopted from considerably universal formalisms
namely: DEVS, Object-Z, UML and Temporal Logic (TL) into one unified language, which is
suitable to create and edit the MIM as describe previously.

We adopted and extended some notations from the UML family of languages and the Z schema
to define the HiLLS concrete syntax to facilitate its learning by prospective users.

In addition to high-level notations for system modeling, the HiLLS' concrete syntax also
provides high-level notations, which are similar to the notations for expressing system behavior,
to express the temporal properties that must hold in the system model. We believe that using
similar high level notations to model systems and their logical requirements will enhance the
adoption of FM by simulation practitioners to complement their simulation results. We have not
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found in the literature a related that combines DEVS-based simulation with logic-based
modeling in the same manner at the time of writing this thesis. We hope this will stimulate
further research that direction.

8.1.2.4 Formal mappings of HILLS concepts to simulation, FM and enactment semantics
domains

To consolidate the previous contributions, we proposed, in Chapter 7, the semantics of HiLLS. In
accordance with the vision of the SimStudio II framework, we provided a set of three
translational semantics for HiLLS, using model transformation techniques. Given a HiLLS
model of a system, we defined the model transformation rules to automate the synthesis of
DEVS models for simulation, Z specifications for formal analysis, and Java-based enactment
codes for enactment, using the enactment framework we proposed.

8.2 PERSPECTIVES

We believe that the results obtained from this thesis sufficiently demonstrate the feasibility of
our vision for an integrative framework within which simulation-, FM-, and enactment-based
analysis methodologies, can co-exist and co-evolve for complementary analyses of different
aspects of DESs. However, there is still a long road ahead to project the main ideas into the reach
of potential users. Nevertheless, we are motivated by the potential benefits of the work, in the
long term, to continue the efforts to deal with unresolved issues as well as new ones that may
arise.

First, we are aware that a concrete software environment that implements the SimStudio II
architecture is necessary to enable potential users try the framework and provide feedbacks for
further improvements. There is an ongoing work, in our research group, towards the formal
specification of both the textual and the graphical elements of the HILLS' concrete syntax, and
eventually, the development of an Eclipse-based drag-and-drop editor for the language. With
that, we intend to take advantage of the MDE infrastructure in the Eclipse platform to integrate
HiLLS with the other artifacts specified in the SimStudio II architecture.

We identified some areas that need refinements in the semantics mapping rules we presented in
Chapter 7. Particularly, the HiLLS to Z mapping in Section 7.3.2and the code generator in
Section7.4, in their current states, cannot recognize the formats of different kinds of predicates
and expressions in the HiLLS model to generate the most suitable constructs in the target
models. Similarly, the mapping rules to translate HiILLS configuration transitions in both cases
need to be improved to recognize the condition nodes along the transition paths and generate the
most suitable constructs in the target models. We intend to address these limitations in our future
work.
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The TL concepts in the HiLLS metamodel were adopted as is from the metamodel we proposed
for the TL property patterns in Section 6.2.3. Hence, we did not provide explicit mapping rules to
generate the properties from a HiLLS requirement model since the relations between them is
bijective. We intend to identify suitable TL-based tools to define the low-level artifacts for the
different TL patterns and generate the codes directly from HiLLS.

Finally, the aforementioned limitations and plans for future work are just some of those that are
obvious now. We expect that more questions will still arise, leading to the discovery of some
interesting research directions as we go deeper into the different aspects of the work.
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Appendix A: Java Implementation of the DEVS-Based
Enactment Framework

This appendix documents the Java implementation of the DEVS-based enactment framework
presented in Chapter 5. As a reminder, we re-present the design package diagram of the
implementation. Next, we will document the implementations of the elements of packages
desginException, and enhancedObserverPattern under separate headings. We have presented the
elements of package enactment in Section5.4.3.Package java.lang refers to the actual Java
packages, which we re-use; hence, we provide no implementation for that.

designExceptions |

NoSuchPortExistsException| InvalidCouplingException

java.lang
%7 5 Exception

SystemDesignException ’—{>

Z% «interface»
Runnable

InvalidTimeAdvanceException| |DuplicateldException

+run() : void

o o =

I l l

| 1 |

________________________ J 1 1

| 1 |
enactment | : e I __
I I [
— ' Clock |
Activity | ____________ I
¢ i
I
AbstractSystem| — — - - - - - - - = | I
- | enhancedObserverPattern | !
inputs | |

| :____ S «interface» Notifier
IT———————, Observer
AbstractAtomicSystem Port 1--=2 L _ _ i~ {Hf+updateq)
outputs| ©°
I EnhancedSubject
AbstractCoupledSystem
D+notify0bservers{)
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A.1 Package "enhancedObserverPattern "

Class EnhancedSubject

package enhancedlbserverPattern;
import java.util Arrayliat;
import java.util.concurrent.Executors;
import java.util.concurrent.ExecutorService;
B e e e e e g
* Enhanced3ubject.java
This class iz similar to the 'Subject' class of the conwentional observer pattern
except that the notification of observerz iz delegated to concurrent asynchronous
'Notifier' threads
Rauthor H. 0. ALIYU

L g e e e L P e P S e e
public class EnhancedSubject {

private Arraylist<Observer® observerzs = new ArrayList<Observer>();

P

private boolean changedFlag;
protected final void notifyObservera(){
if (hasChanged()){
ExecutorService postMaster = Executors.newCachedThreadPool();
for(Observer chs:observers){
postMaster.execute({new Notifiar{thi=z, oba)};
} postMaster.shetdown();
unsetChanged () ;
1
1
public final void addObserver(Obzerver observer){
obzervers.add{obzerver);
1
public final void dropObserver{Obzerver ohserver){
obzervers.remove{observer);
}
protected final void setChanged(}{
changedFlag = true;
1
private void unsetChanged(){
i changedFlag = falze;
1
private boolean hasChanged(){
return changedFlag;
1
}
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Interface Observer

package enhancedlbserverPattern;

R e e Rl e s e
* [bserver.java

# This interface declares the abatract method "update" that takes an EnhancedSubject

* gbject as argument.

* Qanthor H. 0. ALIYU
B e e e

public interface Observer I

public abstract void update(EnhancedSubject subject];

Class Notifier

1 package enhanced(bserverPattern;
f’****t**t*t**t****tﬂtJkt*t**t****t**t*t**t****t**t*t*Jkt****t**t*t**t****t**t*t**t****t**t*t
* Notifier. java
* This class implements the asynchronous notification of an observer
#* @author H. 0. ALIYU
i * **t*t**t****t**t*t**t****t**t*t**t****t*Jkt*t**t****t**t*t**t****t**t*t**t****t**t*tﬂtk/
r public class Notifier implements Runnable{

private EnhancedSubject subject;

private (Observer observer;

i1 public Notifier(EnhancedSubject subject, Observer observer){
12 this.subject = subject;

13 this.observer = observer;

14 }

15 @0verride

1 public void run() {

17 observer.update(subject);

18 }
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A.2 Package "desginException "

Class SystemDesignException

1 package enactment.designExceptions;

f*******************************************R****R***************************************
* SystemDesignException. java

* Abstract Exception for the framework

* Qauthor H. 0. ALIYU

* ****t***********************k************k****k****k****k**********t****t****t****t**l
public abstract class SystemDesignException extends Exception {

private static final long serialVersionUID = 1L;

private String errorMessage;

11 public SystemDesignException(String errMsg) {
errorMessage = errlsg;
}
public String getErrorMessage(){
return errorMessage;

}
}

Class DuplicateldException

1 package enactment.designExceptions;

/************R****R***************R******k***************R******k********R***************

*

DuplicateldException. java

* Exception thrown when an enactment model attempts to do any of the following

* 1. Register multiple input/output port with duplicate port names in the same system

* 2. Register multiple components with duplicate names in a coupled system model

* @author H. 0. ALIYU
*******K****R***************R*****************K****R***************R*****************/
public class DuplicateldException extends SystemDesignException {

private static final long serialVersionUID = 1L;

*

iz public DuplicateIdException(String msg) {
super (msg) ;

}
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Class InvalidTimeAdvanceException

1 package enactment.designExceptions;
/************K********************R*k**********k*R**********K**********************k*****
* InvalidTimeAdvanceException. java
* Exception thrown when a negative time advance is computed for/assigned to a state
#* @author H. 0. ALIYU
* **K*K**H************H*********H**H*******H*H**H****K**H*H**********H*H**********H*H**/
public class InvalidTimeAdvanceException extends SystemDesignException {

private static final long serialVersionUID = 1L;

public InvalidTimeAdvanceException(String msg) {
¥ super (msg) ;

iz}

Class InvalidCouplingException

1 package enactment.designExceptions;
/****k**k*k*******k**k*k**k*********k**k****k**k*********k**k*k**k*******k*k**k****k**k**
* InvalidCouplingException. java
* Exception thrown when a coupling specification vioclates any of the coupling
constraints
* @author H. 0. ALIYU
* *************************R*****************R**R*****************R**R*****************/
public class InvalidCouplingException extends SystemDesignException {
private static final long serialVersionUID = 1L;

public InvalidCouplingException(String msg) {
1 super (msg) ;

=}

Class NoSuchPortExistsException

| package enactment.designFxceptions;
f*****************k*******k*************************************************************1
* NoSuchPortExistsException. java
* Exception thrown when a reference is made to a port name that does not exist
* @author H. 0. ALIYU
s sk ko o o S of o ook e ofe R S o o S e ol ol o e e e Sf s ok ofe B o ofe s S ok S ook el R SR oS S o o e e e Sp o sk o o ol R o R o e R ol R ok ok /
public class NoSuchPortExistsException extends SystemDesignException {

private static final long serialVersionUID = 1L;

public NoSuchPortExistsException(String errMsg) {
11 super (errMsg) ;

iz}
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Appendix B: Enactment traces of the BVS

@ Javadoc @ Declaration | Bl Console &2 | £ Properties

% %| G LE

<terminated> BVSEnactment [Java Application] C:\Program Files\Java\jreT\bin\javaw.exe (Sep 24, 2016, 11:21:22 PM)

23:21:23:144:;
23:21:23:144:
23:21:23:153:
23:21:23:153:

23:21:23:156:
23:21:53:158:
23:22:23:158:
23:22:53:159:
23:23:23:154:
23:23:23:154:

23:23:23:160:
23:23:23:162:
23:23:23:162:
23:23:23:162:

23:23:23:168:
23:23:23:168:
23:23:23:168:

23:23:23:170:
23:23:38:168:
23:23:38:170:
23:23:38:170:

23:23:38:178:
23:23:38:178:
23:23:38:179:

23:23:38:182:
23:23:43:172:
23:23:53:179:
23:23:53:181:
23:23:53:182:

23:23:53:190:
23:23:53:19@:
23:23:53:190:

23:23:53:198:
23:23:53:198:
23:23:53:198:

23:23:53:285:
23:23:53:205:
23:23:53:206:
23:23:53:206:

23:23:58:182:

23:24:3:173:
23:24:8:211:
23:24:8:213:
23:24:8:213:

USER: Initialized to state: AWAY

USER: [choice= B, bill= 8, advance= @, cupIshull= true, walletSize= 20, walletValue= 663, purseSize= 8, purseValue= 8]
BVM: Initialized to state: IDLE

BVM: [current= B, price= 8, credit= @, bad(IsNull= true, vaultSize= 38, vaultValue= 872, escrowSize= 8, escrowValue= 8]

BVM:
BVM:

### Welcome.
#H#H# Welcome,

Choose a beverage code to start a transaction:
Choose a beverage code to start a transaction:
BVM: ### Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2-»Coffee, 3->Orange, 4->Apple #H

BVM: ##H Welcome. Choose & beverage code to start a transaction: 1->Cocoa, 2-»Coffee, 3->0range, 4-»Apple #H

USER: [choice= 3, bill= 8, advance= 8, cupIshlull= true, walletSize= 28, walletValue= 663, purseSize= 8, purseValue= @]
USER: AWAY -> ORDERING

1->Cocoa,
1->Cocoa,

2-»Coffee,
2-»Coffee,

3-»0range,
3-»0range,

4->Apple #H
4->Apple #H

BVM: ##H Welcome. Choose & beverage code to start a transaction: 1->Cocoa, 2-»Coffee, 3->0range, 4-»Apple #H

USER: Sent request code 3

USER: [choice= 3, bill= 128, advance= 8, cupIshull= true, walletSize= 28, walletValue= 663, purseSize= 8, purseValue= @]
USER: ORDERING -» INSERTING

BVM: Received transaction code 3

BVM: [current= 3, price= 128, credit= 8, badCIsNull= true, vaultSize= 38, vaultValue= 872, escrowSize= 8, escrowValue= 8]
BVM: IDLE --» CHARGING

BVM: ### Chosen beverage: Orange, Insert coins: 128 cents ###
USER: Sent a coin of wvalue 50

USER: [choice= 3, bill= 128, advance= 58,
USER: INSERTING -»> INSERTING

cupIshull= true, walletSize= 19, walletValue= 613, purseSize= @, purseValue= 8]

BVM: Received a coin of value: 5@ cents
BWM: [current= 3, price= 120, credit= 5@,
BVM: CHARGING --» CHARGING

badCIshull= true, vaultSize= 3@, vaultValue= 872, escrowSize= 1, escrowValue= 58]

coins: 7@ cents ###
coins: 7@ cents #H

Insert
Insert

BVM: ## Chosen beverage: Orange,
BWM: ## Chosen beverage: Orange,
USER: Sent a coin of value 5
USER: [choice= 3, bill= 128, advance= 55,
USER: INSERTING -» INSERTING

cupIshull= true, walletSize= 18, walletValue= 688, purseSize= B, purseValue= 8]

BVM: Received a coin of value: 5 cents

BWM: [current= 3, price= 120, credit= 58, bad(IsNull= false, vaultSize= 38, vaultValue= 872, escrowSize= 1, escrowValue= 58]
BVM: CHARGING --> REJECTING

BWM: Rejected a coin of value 5

BWM: [current= 3, price= 120, credit= 58, badCIsNull= true, vaultSize= 38, vaultValue= 872, escrowSize= 1, escrowValue= 58]
BVM: REJECTING -» CHARGING

USER: Received coin(s) of total value 5
BUM: ### Chosen beverage: Orange, Insert
USER: [choice= 3, bill= 120, advance= 5@,
USER: INSERTING --» INSERTING

coins: 70 cents #H
cupIshull= true, walletSize= 18, walletValue= 608, purseSize= 1, purseValue= 5]

BVM: ## Chosen beverage: Orange, Insert coins: 78 cents ###

BVM: ### Chosen beverage: Orange, Insert coins: 79 cents ##ﬁ

USER: Sent a coin of value 20

USER: [choice= 3, bill= 128, advance= 78, cupIshull= true, walletSize= 17, walletValue= 588, purseSize= 1, purseValue= 5]
USER: INSERTING -» INSERTING
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23:24:8:221: BWM: Received a coin of value: 20 cents
23:24:8:222: BVWM: [current= 3, price= 128, credit= 78, badCIsNull= true, vaultSize= 3@, vaultValue= 872, escrowSize= 2, escrowValue= 78]
23:24:8:222: BWM: CHARGING --» CHARGING

23:24:8:226: BVM: ### Chosen beverage: Orange, Insert coins: 5@ cents #H

23:24:13:206: BVM: ## Chosen beverage: Orange, Insert coins: 5@ cents #H

23:24:18:182: BVM: ### Chosen beverage: Orange, Insert coins: 50 cents ###

23:24:23:174: BVM: ### Chosen beverage: Orange, Insert coins: 5@ cents ###

23:24:23:220: USER: Sent a coin of value 100

23:24:23:222: USER: [choice= 3, bill= 128, advance= 178, cupIshull= true, walletSize= 16, walletValue= 488, purseSize= 1, purseValua= 5]
23:24:23:222: USER: INSERTING -> WAITING

23:24:23:229: BWM: Received a coin of value: 108 cents
23:24:23:238: BWM: [current= 3, price= 120, credit= 178, bad(IsNull= true, vaultSize= 33, vaultValue= 1842, escrowSize= 8, escrowValue= 0]
23:24:23:238: BVM: CHARGING --» RETURNING

23:24:23:234: BVM: ### Take your balance #H

23:24:23:237: BVM: Returned a balance of 50

23:24:23:237: BWM: [current= 3, price= 120, credit= 128, bad(IsNull= true, vaultSize= 32, vaultValue= 992, escrowSize= 8, escrowValue= 8]
23:24:23:242: BVM: RETURNING -» DISPENSING

23:24:23:250: BVM: ## Your cup of Orange is being prepared; it will be ready shortly #H

23:24:23:258: USER: Received balance coin(s) of total value 58

23:24:23:251: USER: [choice= 3, bill= 128, advance= 128, cupIshull= true, walletSize= 17, walletValue= 538, purseSize= 1, purseValue= 5]
23:24:23:252: USER: WAITING --» WAITING

23:24:38:251: BVM: ### Your cup of Orange is being prepared; it will be ready shortly #H

23:24:53:251: BVM: ### Your cup of Orange is being prepared; it will be ready shortly ###

23:25:8:251: BVM: Dispensed a cup of orange

23:25:8:252: BWM: #H# Your cup of Orange is being prepared; it will be ready shortly #i##

23:25:8:252: BVM: [current= @, price= 0, credit= 8, badCIsNull= true, vaultSize= 32, vaultValue= 992, escrowSize= 8, escrowValue= 8]
23:25:8:252: BVM: DISPENSING -» IDLE

23:25:8:259: BUM: ### MWelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»Orange, 4-»Apple ##
23:25:8:259: USER: Received a cup of orange

23:25:8:259: USER: [choice= 8, bill= @, advance= 8, cupIshull= false, walletSize= 17, walletValue= 538, purseSize= 1, purseValue= 5]
23:25:8:26@: USER: WALTING --» AWAY

23:25:38:259: BUM: ### Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3-»Orange, 4->Apple ###
23:26:8:260: BUM: ### lWelcome. Choose a beverage code to start a transaction: 1-»>Cocoa, 2->Coffee, 3-»Orange, 4->Apple ###
23:26:38:261: BUM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»Orange, 4-»Apple ##
23:27:8:261: BUM: ### UWelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»Orange, 4-»Apple ###
23:27:8:265: USER: [choice= 2, bill= @, advance= 8, cupIshull= true, walletSize= 17, walletValue= 538, purseSize= 1, purseValue= 5]
23:27:8:266: USER: AWAY -> ORDERING

23:27:8:273: USER: Sent request code 2

23:27:8:274: USER: [choice= 2, hill= 8@, advance= @, cupIshull= true, walletSize= 17, walletValue= 538, purseSize= 1, purseValue= 5]
23:27:8:274: USER: ORDERING -» INSERTING

23:27:8:281: BWM: Received transaction code 2

23:27:8:281: BWM: [current= 2, price= 88, credit= @, bad(IsNull= true, vaultSize= 32, vaultValue= 992, escrowSize= B, escrouValue= 8]
23:27:8:282: BWM: IDLE --> CHARGING

23:27:8:286: BUM: ### Chosen beverage: Coffee, Insert coins: 88 cents ##
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23:27:23:279:
23:27:23:281:
23:27:23:281:

23:27:23:288:
23:27:23:289:
23:27:23:286:

23:27:23:296:
23:27:23:297:
23:27:23:297:

23:27:23:363:
23:27:23:363:
23:27:23:383:
23:27:23:303:

23:27:28:286:
23:27:38:308:
23:27:38:310:
23:27:38:310:

23:27:38:317:
23:27:38:318:
23:27:38:318:

23:27:38:325:
23:27:38:325:
23:27:38:326:

23:27:38:333:
23:27:38:333:
23:27:38:333:
23:27:38:334:

23:27:43:304:
23:27:48:287:
23:27:53:336:
23:27:53:338:
23:27:53:338:

23:27:53:344:
23:27:53:344:
23:27:53:344:

23:27:53:358:
23:27:53:358:
23:27:53:350:

23:27:53:356:
23:27:53:356:
23:27:53:356:
23:27:53:356:

USER: Sent a coin of value 2
USER: [choice= 2, bill= 80, advance= 2, cupIslull= true, walletSize= 16, walletValue= 536, purseSize= 1, purseValue= 5]
USER: INSERTING -» INSERTING

BWM: Received a coin of value: 2 cents
BVM: [current= 2, price= 8@, credit= 8, bad(IsNull= false, vaultSize= 32, vaultValue= 992, escrowSize= 8, escrouValue= 8]
BVM: CHARGING --»> REJECTING

BWM: Rejected & coin of value 2
BVM: [current= 2, price= 8@, credit= 8, bad(Islull= true, vaultSize= 32, vaultValue= 992, escrowSize= @, escrowValue= 8]
BVM: REJECTING -» CHARGING

USER: Received coin(s) of total value 2

BWM: ##H Chosen beverage: Coffee, Insert coins: 80 cents ###

USER: [choice= 2, bill= 88, advance= 8, cupIshull= true, walletSize= 16, walletValue= 536, purseSize= 2, purseValue= 7]
USER: INSERTING --» INSERTING

BWM: ### Chosen beverage: Coffee, Insert coins: 80 cents ###

USER: Sent a coin of value 2

USER: [choice= 2, bill= 88, advance= 2, cupIshull= true, walletSize= 15, walletValue= 534, purseSize= 2, purseValue= 7]
USER: INSERTING -» INSERTING

BWM: Received a coin of value: 2 cents
BVWM: [current= 2, price= 88, credit= @, badCIsNull- false, vaultSize= 32, vaultValue= 992, escrowSize= @, escrowValue= 8]
BVM: CHARGING --» REJECTING

BWM: Rejected a coin of value 2
BWM: [current= 2, price= 88, credit= 8, badCIsNull= true, vaultSize= 32, vaultValue= 992, escrowSize= 8, escrowValue= 8]
BVM: REJECTING -> CHARGING

USER: Received coin(s) of total value 2

BVM: ##H# Chosen beverage: Coffee, Insert coins: 80 cents #H

USER: [choice= 2, bill= 88, advance= B, cupIsull= true, walletSize= 15, walletValue= 534, purseSize= 3, purseValue= 9]
USER: INSERTING --» INSERTING

BVM: ### Chosen beverage: Coffee, Insert coins: 80 cents #HH

BVM: ##H# Chosen beverage: Coffee, Insert coins: 80 cents #H

USER: Sent a coin of value 1

USER: [choice= 2, bill= 88, advance= 1, cupIsull= true, walletSize= 14, walletValue= 533, purseSize= 3, purseValue= 9]
USER: INSERTING -> INSERTING

BVM: Received a coin of value: 1 cents
BWM: [current= 2, price= 88, credit= 8, bad(IsNull= false, vaultSize= 32, vaultValue= 992, escrowSize= @, escrowValue= 8]
BVM: CHARGING --> REJECTING

BVM: Rejected a coin of value 1
BWM: [current= 2, price= 88, credit= @, badCIsNull= true, vaultSize= 32, vaultValue= 992, escrowSize= 8, escrowValue= 8]
BVM: REJECTING -> CHARGING

BVM: ### Chosen beverage: Coffee, Insert coins: 80 cents #H

USER: Received coin(s) of total value 1

USER: [choice= 2, bill= 88, advance= 8, cupIsull= true, walletSize= 14, walletValue= 533, purseSize= 4, purseValue= 18]
USER: INSERTING --»> INSERTING
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23:27:58:333: BWM: ### Chosen beverage: (offee, Insert coins: 8@ cents HH
BVM: ### Chosen beverage: Coffee, Insert coins: 8@ cents #HH
BWM: ### Chosen beverage: Coffee, Insert coins: 80 cents #H

23:28:3:304:
23:28:8:288:
23:28:8:360;
23:28:8:361:
23:28:8:362:

23:28:8:366:
23:28:8:366:
23:28:8:366:

23:28:8:371:
23:28:8:371:
23:28:8:371:

23:28:8:374:
23:28:8:375:
23:28:8:376:
23:28:8:376:

23:28:13:357:
23:28:18:334:
23:28:23:305:
23:28:23:380:
23:28:23:381:
23:28:23:382:

23:28:23.388:
23:28:23.388:
23:28:23.389:

23:28:23:392:
23:28:28:288:
23:28:28:374:
23:28:33:358:
23:28:38:335:
23:28:38:388:
23:28:38:391:
23:28:38:391:

23:28:38.400:
23:28:38.400:
23:28:38:400:

23:28:38:405:
23:28:43.305:
23:28:43:392:
23:28:48.288:
23:28:48:374:
23:28:53:358:
23:28:53:397:
23:28:53:399:
23:28:53:400:

USER:
USER:
USER:

BVM:
BVM:
BVM:

BVM:
BVM:
BM:

Sent a coin of value 1
[choice= 2, bill= 8@, advance= 1, cupIshull= true, walletSize= 13, walletValue= 532, purseSize= 4, purseValue= 18]
INSERTING -» INSERTING

Received a coin of value: 1 cents
[current= 2, price= 88, credit= 8, bad(Ishull= false, vaultSize= 32, vaultValue= 992, escrouSize= 8, escrowValue= 8]
CHARGING --» REJECTING

Rejected a coin of value 1
[current= 2, price= 88, credit= @, bad(Islull= true, vaultSize= 32, vaultValue= 992, escrouSize= 8, escrowValue= 8]
REJECTING -> CHARGING

BWM: ### Chosen beverage: Coffee, Insert coins: 80 cents #H

USER:
USER:
USER:

BVM:
BVM:
BVM:

Received coin(s) of total value 1
[choice= 2, bill= 8@, advance= 8, cupIslull= true, walletSize= 13, walletValue= 532, purseSize= 5, purseValue= 11]
INSERTING --» INSERTING

### Chosen beverage: (offee, Insert coins: 88 cents H
#H Chosen beverage: Coffee, Insert coins: 80 cents HH
#HH Chosen beverage: (offee, Insert coins: 8@ cents HH

USER: Sent a coin of value 5@
USER: [choice= 2, hill= 88, advance= 58, cupIslull= true, walletSize= 12, walletValue= 482, purseSize= 5, purseValue= 11]
USER: INSERTING -» INSERTING

BM:
BM:
BM:

BVM:
BVM:
BM:
BM:
BM:

Received a coin of value: 58 cents
[current= 2, price= 88, credit= 58, bad(IsNull= true, vaultSize= 32, vaultValue= 992, escrowSize= 1, escrowValue= 50]
CHARGING --» CHARGING

### Chosen beverage: Coffee, Insert coins: 3@ cents ##H
### Chosen beverage: Coffee, Insert coins: 3@ cents ##H
### Chosen beverage: Coffee, Insert coins: 3@ cents #H#
### Chosen beverage: Coffee, Insert coins: 3@ cents #H#
### Chosen beverage: Coffee, Insert coins: 3@ cents #H#

USER: Sent a coin of value 18
USER: [choice= 2, bill= 8@, advance= 6@, cupIshull= true, walletSize= 11, walletValue= 472, purseSize= 5, purseValue= 11]
USER: INSERTING -» INSERTING

BM:
BM:
BVM:

BVM:
BM:
BM:
BM:
BVM:
BVM:

Received a coin of value: 18 cents
[current= 2, price= 88, credit= 68, bad(IsNull= true, vaultSize= 32, vaultValue= 992, escrowSize= 2, escrowValue= 60]
CHARGING --»> CHARGING

### Chosen beverage: Coffee, Insert coins: 20 cents ##H
### Chosen beverage: Coffee, Insert coins: 20 cents #H#
### Chosen beverage: Coffee, Insert coins: 20 cents #H#
### Chosen beverage: Coffee, Insert coins: 20 cents #H#
### Chosen beverage: Coffee, Insert coins: 20 cents ##H
### Chosen beverage: Coffee, Insert coins: 20 cents ##H

USER: Sent a coin of value 28
USER: [choice= 2, bill= 8@, advance= 88, cupIshull= true, walletSize= 18, walletValue= 452, purseSize= 5, purseValue= 11]
USER: INSERTING -» WAITING
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23:28:53:408: BVM: Received a coin of value: 2@ cents
23:28:53:408: BW: [current= 2, price= 88, credit= 80, bad(IsNull= true, vaultSize= 35, vaultValue= 1072, escrowSize= @, escrowValue= 8]
23:28:53:408: BVM: CHARGING --> DISPENSING

23:28:53:412: BW: #H# Your cup of Coffee is being prepared; it will be ready shortly #iH

23:29:8:413: BWM: ## Your cup of Coffee is being prepared; it will be ready shortly ##

23:29:23:414: BW: #H# Your cup of (offee is being prepared; it will be ready shortly ###

23:29:38:415: BWM: #H Your cup of Coffee is being prepared; it will be ready shortly #HH

23:29:38:415: BWM: Dispensed a cup of coffee

23:29:38:415: BW: [current= @, price= 8, credit= 8, bad(IsNull= true, vaultSize= 35, vaultValue= 1872, escrowSize= @, escrowValue= B]
23:29:38:415: BVM: DISPENSING -»> IDLE

23:29:38:423: BWM: #H# Uelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3->Orange, 4->hpple ###
23:29:38:424: USER: Received a cup of coffee

23:29:38:424: USER: [choice= @, bill= 8, advance= @, cupIshull= false, walletSize= 18, walletValue= 452, purseSize= 5, purseValue= 11]
23:29:38:424: USER: WAITING --> AWAY

23:30:8:424: BUM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»Orange, 4->Apple #HiH
23:30:38:424: BWM: #H lelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3->Orange, 4->hpple ###
23:31:8:425: BVM: ### Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2-»Coffee, 3-Orange, 4->Apple #HH
23:31:38:425: BWM: ### Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2-»Coffee, 3->Orange, 4->Apple ###
23:31:38:428: USER: [choice= 1, bill= 8, advance= @, cupIshull= true, walletSize= 18, walletValue= 452, purseSize= 5, purseValue= 11]
23:31:38:428: USER: AWAY -> ORDERING

23:31:38:436: USER: Sent request code 1
23:31:38:436: USER: [choice= 1, bill= 108, advance= 8, cupIshull= true, walletSize= 18, walletValue= 452, purseSize= 5, purseValue= 11]
23:31:38:437: USER: ORDERING -> INSERTING

23:31:38:443: BVM: Recelved transaction code 1
23:31:38:444: BWM: [current= 1, price= 100, credit= 8, bad(Isull= true, vaultSize= 35, vaultValue= 1872, escrowSize= 8, escrowValue= 8]
23:31:38:444: BVM: IDLE --> CHARGING

23:31:38:448: BWM: ### Chosen beverage: (ocoa, Insert coins: 100 cents ###

23:31:53:443; USER: Sent a coin of value 180

23:31:53:445; USER: [choice= 1, bill= 108, advance= 108, cupIsNull= true, walletSize= 9, walletValue= 352, purseSize= 5, purseValue= 11]
23:31:53:445: USER: INSERTING -» WAITING

23:31:53:453: BVM: Recelived a coin of value: 188 cents
23:31:53:454: BWM: [current= 1, price= 100, credit= 108, bad(Ishull= true, vaultSize= 36, vaultValue= 1172, escrowSize= @, escrowValue= @]
23:31:53:454: BVM: CHARGING --» DISPENSING

23:31:53:458: BWM: ### Your cup of Cocoa is being prepared; it will be ready shortly ###

23:32:8:458: BWM: ##H# Your cup of Cocoa is being prepared; it will be ready shortly ###

23:32:23:459; BWM: ### Your cup of Cocoa is being prepared; it will be ready shortly ###

23:32:38:459: BVM: ### Your cup of Cocoa is being prepared; it will be ready shortly ###

23:32:38:461: BVM: Dispensed a cup of cocoa

23:32:38:461; BWM: [current= @, price= 8, credit= 8, bad(IsNull= true, vaultSize= 36, vaultValue= 1172, escrowSize= 8, escrowValue= 6]
23:32:38:461: BVM: DISPENSING -> IDLE

23:32:38:468: BWM: ### lelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3-»Orange, 4-»Apple ###
23:32:38:468: USER: Received a cup of cocoa

23:32:38:468: USER: [choice= @, bill= 0, advance= 8, cupIshull= false, walletSize= 9, walletValue= 352, purseSize= 5, purseValue= 11]
23:32:38:468: USER: WAITING --» AWAY
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23:33:8:468: BVM: ### lWelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3->Orange, 4->Apple ###
23:33:38:468: BVM: ### MWelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-3Orange, 4->Apple ##
23:34:8:469: BVM: ### lWelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3->Orange, 4->Apple ###
23:34:38:469: BVM: ### MWelcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3-3>Orange, 4->Apple ##
23:34:38:473: USER: [choice= 4, bill= 8, advance= 8, cupIshull= true, walletSize= 9, walletValue= 352, purseSize= 5, purseValue= 11]
23:34:38:473: USER: AWAY -» ORDERING

23:34:38:483: USER: Sent request code 4
23:34:38:483: USER: [choice= 4, bill= 138, advance= 8, cupIslull= true, walletSize= 9, walletValue= 352, purseSize= 5, purseValue= 11]
23:34:38:483: USER: ORDERING -» INSERTING

23:34:38:492: BWM: Received transaction code 4
23:34:38:492: BW: [current= 4, price= 138, credit= 8, bad(IsNull= true, vaultSize= 36, vaultValue= 1172, escrowSize= 8, escrowValue= 0]
23:34:38:492: BWM: IDLE --»> CHARGING

23:34:38:497: BVM: ### Chosen beverage: Coffee, Insert coins: 130 cents ###

23:34:53:498: USER: Sent a coin of value 10

23:34:53:491: USER: [choice= 4, bill= 138, advance= 18, cupIshull= true, walletSize= 8, walletValue= 342, purseSize= 5, purseValue= 11]
23:34:53:492: USER: INSERTING -> INSERTING

23:34:53:499: BVM: Received a coin of value: 18 cents
23:34:53:499: BWM: [current= 4, price= 138, credit= 10, bad(IsNull= true, vaultSize= 36, vaultValue= 1172, escrowSize= 1, escrowValue= 10
23:34:53:499: BWM: CHARGING --> CHARGING

23:34:53:583: BVM: ### Chosen beverage: Coffee, Insert coins: 120 cents ###

23:34:58:498: BVM: ### Chosen beverage: Coffee, Insert coins: 120 cents ###

23:35:8:497: USER: Sent a coin of value 20

23:35:8:500: USER: [choice= 4, bill= 130, advance= 3@, cupIshull= true, walletSize= 7, walletValue= 322, purseSize= 5, purseValue= 11]
23:35:8:500: USER: INSERTING -»> INSERTING

23:35:8:568: BWM: Received a coin of value: 2@ cents
23:35:8:508: BVWM: [current= 4, price= 138, credit= 38, bad(Tslull= true, vaultSize= 36, vaultValue= 1172, escrowSize= 2, escrowValue= 38)
23:35:8:508: BVM: CHARGING --> CHARGING

23:35:8:512: BVM: ### Chosen beverage: (offee, Insert coins: 100 cents #H

23:35:13:504: BWM: ### Chosen beverage: Coffee, Insert coins: 100 cents ##H

23:35:18:499: BWM: ### Chosen beverage: Coffee, Insert coins: 100 cents HH

23:35:23:586: USER: Sent a coin of value 28

23:35:23:507: USER: [choice= 4, bill= 138, advance= 5@, cupIshull= true, walletSize= 6, walletValue= 302, purseSize= 5, purseValue= 11]
23:35:23:508: USER: INSERTING -» INSERTING

23:35:23:512: BWM: Received a coin of value: 26 cents
23:35:23:512: BVM: [current= 4, price= 130, credit= 50, bad(Ishull= true, vaultSize= 36, vaultValue= 1172, escrowSize= 3, escrouValue= 58]
23:35:23:513: BVM: CHARGING --> CHARGING

23:35:23:515: BWM: ### Chosen beverage: Coffee, Insert coins: 8@ cents #H

23:35:28:514: BWM: ### Chosen beverage: Coffee, Insert coins: 8@ cents #H

23:35:33:505: BVM: ### Chosen beverage: Coffee, Insert coins: 8@ cents #H

23:35:38:499: BWM: ### Chosen beverage: Coffee, Insert coins: 8@ cents #H

23:35:38:512: USER: Sent a coin of value 58

23:35:38:514: USER: [choice= 4, bill= 130, advance= 108, cupIshull= true, walletSize= 5, walletValue= 252, purseSize= 5, purseValue= 11]
23:35:38:515: USER: INSERTING -» INSERTING

23:35:38:523: BVM: Received a coin of value: 50 cents
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23:35:38:523; BVM: [current= 4, price= 130, credit= 100, bad(IsNull= true, vaultSize= 36, vaultValue= 1172, escrowSize= 4, escrowValue= 108]
23:35:38:523: BWM: CHARGING --» CHARGING

23:35:38:527: BWM: ### Chosen beverage: Coffee, Insert coins: 3@ cents #i#

23:35:43:516: BVM: ##H Chosen beverage: Coffee, Insert coins: 38 cents #H

23:35:48:515: BWM: ### Chosen beverage: Coffee, Insert coins: 3@ cents i

23:35:53:585: BWM: ### Chosen beverage: Coffee, Insert coins: 3@ cents Hi#

23:35:53:521: USER: Sent a coin of value 100

23:35:53:523: USER: [choice= 4, bill= 138, advance= 200, cupIsiull= true, walletSize= 4, walletValue= 152, purseSize= 5, purseValue= 11]
23:35:53:523: USER: INSERTING -» WAITING

23:35:53:531: BVM: Received & coin of value: 10@ cents
23:35:53:532; BVM: [current= 4, price= 130, credit= 208, bad(IsNull= true, vaultSize= 41, vaultValue= 1372, escrowSize= @, escrowValue= 8]
23:35:53:532: BWM: CHARGING --> RETURNING

23:35:53:536: BWM: ### Take your balance ###

23:35:53:54@: BWM: Returned a balance of 78

23:35:53:54@; BVM: [current= 4, price= 130, credit= 138, bad(IsNull= true, vaultSize= 39, vaultValue= 1302, escrowSize= @, escrowValue= 8]
23:35:53:54@: BWM: RETURNING -» DISPENSING

23:35:53:548: USER: Received balance coin(s) of total value 78

23:35:53:548: BWM: ### Your cup of Coffee is being prepared; it will be ready shortly #

23:35:53:548: USER: [choice= 4, bill= 138, advance= 138, cupIsliull= true, walletSize= 6, walletValue= 222, purseSize= 5, purseValue= 11]
23:35:53:549: USER: WAITING --> WAITING

23:36:8:550: BVM: ### Your cup of Coffee is being prepared; it will be ready shortly ###

23:36:23:551: BWM: ### Your cup of Coffee is being prepared; it will be ready shortly #

23:36:38:548: BVM: Dispensed a cup of apple

23:36:38:548: BWM: [current= 8, price= @, credit= 8, badCTsNull= true, vaultSize= 39, vaultValue= 1302, escrowSize= 8, escrowValue= 8]
23:36:38:549: BVM: DISPENSING -» IDLE

23:36:38:554: USER: Received a cup of apple

23:36:36:555: BVM: ##H# Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3-30range, 4->Apple HH
23:36:38:555: USER: [choice= 8, bill= B, advance= 8, cupIsMull= false, walletSize= 6, walletValue= 222, purseSize= 5, purseValue= 11]
23:36:38:555: USER: WAITING --» AWAY

23:37:8:556: BVM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3-30range, 4->Apple HH
23:37:38:556: BVM: ### Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3-30range, 4->Apple #HH#
23:38:8:557: BVM: ##H# Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3-»0range, 4->Apple HH
23:38:38:558: BVM: ##H Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»0range, 4->hpple #HH
23:39:8:558: BVM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»Orange, 4->Apple #HH
23:39:38:558: BWM: ##H# lWelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->(offee, 3-»0range, 4->Apple ###
23:39:38:558: USER: [choice= 3, bill= @, advance= @, cuplsMull= true, walletSize= 6, walletValue= 222, purseSize= 5, purseValue= 11]
23:39:38:558: USER: AWAY -»> ORDERING

23:39:38:564: USER: Sent request code 3

23:39:38:564: USER: [choice= 3, bill= 128, advance= 8, cupIshull= true, walletSize= 6, walletValue= 222, purseSize= 5, purseValue= 11]
23:39:38:564: USER: ORDERING -> INSERTING

23:39:38:568: BVM: Received transaction code 3

23:39:38:568: BWM: [current= 3, price= 120, credit= 8, badCTsNull= true, vaultSize= 39, vaultValue= 1382, escrouSize= @, escrowValue= 8]
23:39:3:568: BVM: IDLE --» CHARGING

23:39:38:571: BVM: ### Chosen beverage: Orange, Insert colns: 120 cents ###
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23:39:53:571;
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23:40:23:638:
23:40:23:638:
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23:40:38:644:
23:40:38:645:
23:40:38:645:

USER: Sent a coin of value 1
USER: [choice= 3, bill= 120, advance= 1, cupIshlull= true, walletSize= 5, walletValue= 221, purseSize= 5, purseValue= 11]
USER: INSERTING -» INSERTING

BVM: Received a coin of value: 1 cents
BVM: [current= 3, price= 128, credit= 8, badCIsNull= false, vaultSize= 39, vaultValue= 1382, escrowSize= @, escrowValue= 6]
BVM: CHARGING --> REIECTING

BWM: Rejected a coin of value 1
BVM: [current= 3, price= 120, credit= 8, bad(IsNull= true, vaultSize= 39, vaultValue= 1302, escrowSize= 8, escrowValue= 8]
BVM: REJECTING -» CHARGING

BWM: ##% Chosen beverage: Orange, Insert coins: 120 cents ###

USER: Received coin(s) of total value 1

USER: [choice= 3, bill= 128, advance= 8, cupIslull= true, walletSize= 5, walletValue= 221, purseSize= 6, purseValue= 12]
USER: INSERTING --» INSERTING

BVWM: ### Chosen beverage: Orange, Insert coins: 128 cents ###
USER: Sent a coin of value 1
USER: [choice= 3, bill= 120, advance= 1, cupIshlull= true, walletSize= 4, walletValue= 220, purseSize= 6, purseValue= 12]
USER: INSERTING -»> INSERTING

BUM: Received a coin of value: 1 cents

BVM: [current= 3, price= 120, credit= 8, bad(IsNull= false, vaultSize= 39, vaultValue= 1302, escrouSize= @, escrowValue= 0]
BVM: CHARGING --» REIECTING

BWM: Rejected a coin of value 1

BVM: [current= 3, price= 120, credit= 8, bad(Ishull= true, vaultSize= 39, vaultValue= 1302, escrowSize= @, escrouValue= 8]
BVM: REJECTING -> CHARGING

USER: Received coin(s) of total value 1

BWM: ### Chosen beverage: Orange, Insert coins: 120 cents ###

USER: [choice= 3, bill= 128, advance= 8, cupIshull= true, walletSize= 4, walletValue= 228, purseSize= 7, purseValue= 13]
USER: INSERTING --» INSERTING

BVM: ### Chosen beverage: Orange, Insert coins: 120 cents ###

BVM: ### Chosen beverage: Orange, Insert coins: 120 cents ###

USER: Sent a coin of value 100

USER: [choice= 3, bill= 120, advance= 100, cupIslull= true, walletSize= 3, walletValue= 120, purseSize= 7, purseValue= 13]
USER: INSERTING -> INSERTING

BWM: Received & coin of value: 10@ cents
BVM: [current= 3, price= 120, credit= 100, badCIsNull= true, vaultSize= 39, vaultVelue= 1302, escrowSize= 1, escrowValue= 168)
BVM: CHARGING --> CHARGING

BWM: ##H Chosen beverage: Orange, Insert coins: 20 cents ###

BWM: ##H Chosen beverage: Orange, Insert coins: 20 cents ###

BWM: ### Chosen beverage: Orange, Insert coins: 20 cents ##

BWM: ### Chosen beverage: Orange, Insert coins: 20 cents ##

USER: Sent a coin of value 50

USER: [choice= 3, bill= 128, advance= 158, cupIshull= true, walletSize= 2, walletValue= 78, purseSize= 7, purseValue= 13]
USER: INSERTING -» WAITING

254



23:40:38:652:
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23:40:38:657:
23:40:38:660:
23:40:35:660:
23:40:38:660:
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23:40:38:666:
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BVM: Received a coin of value: 50 cents
BWM: [current= 3, price= 120, credit= 150, badCIsNull= true, vaultSize= 41, vaultValue= 1452, escrowSize= 0, escrowValue= 8]
BVM: CHARGING --» RETURNING

BVM: #H Take your balance ###

BVM: Returned a balance of 30

BWM: [current= 3, price= 120, credit= 120, badCIsNull= true, vaultSize= 39, vaultValue= 1422, escrowSize= 0, escrowValue= 8]
BVM: RETURNING -» DISPENSING

USER: Received balance coin(s) of total value 30

BVM: #H Your cup of Orange is being prepared; it will be ready shortly ##H

USER: [choice= 3, bill= 128, advance= 120, cupIshull= true, walletSize= 4, walletValue= 10@, purseSize= 7, purseValue= 13]
USER: WAITING --> WAITING

BVM: #H Your cup of Orange is being prepared; it will be ready shortly ##H

23:41:8:667: BWM: ### Your cup of Orange is being prepared; it will be ready shortly ###
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23:40:38:666:
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BVM: #H Your cup of Orange is being prepared; it will be ready shortly #H

BVM: Dispensed a cup of orange

BWM: [current= @, price= @, credit= @, bad(IsNull= true, vaultSize= 39, vaultValue= 1422, escrowSize= @, escrowValue= 8]
BVM: DISPENSING -» IDLE

BVM: ##H lWelcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2->Coffee, 3-»0range, 4->Apple ###

UUSER: Received a cup of orange

USER: [choice= @, bill= @, advance= @, cupIshull= false, walletSize= 4, walletValue= 100, purseSize= 7, purseValue= 13]
USER: WAITING --» AWAY

BVM: Received a coin of value: 50 cents
BWM: [current= 3, price= 128, credit= 158, badCTsNull= true, vaultSize= 41, vaultValue= 1452, escrowSize= 0, escrowValue= @]
BVM: CHARGING --> RETURNING

BVM: ##H Take your balance #H#

BVM: Returned a balance of 30

BWM: [current= 3, price= 128, credit= 128, badCTslull= true, vaultSize= 39, vaultValue= 1422, escrowSize= 8, escrowValue= 0]
BVM: RETURNING -» DISPENSING

USER: Received balance coin(s) of total value 30

BVM: ### Your cup of Orange is being prepared; it will be ready shortly ##H#

USER: [choice= 3, bill= 128, advance= 128, cupIshull= true, walletSize= 4, walletValue= 100, purseSize= 7, purseValue= 13]
USER: WAITING --> WAITING

BVM: ### Your cup of Orange is being prepared; it will be ready shortly ###

23:41:5:667: BVM: ### Your cup of Orange is being prepared; it will be ready shortly #
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23:41: 23:677:
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BVM: ### Your cup of Orange is being prepared; it will be ready shortly ##H#

BVM: Dispensed a cup of orange

BWM: [current= 8, price= 8, credit= @, bad(IsNull= true, vaultSize= 39, vaultValue= 1422, escrouSize= 0, escrowValue= @]
BVM: DISPENSING -» IDLE

BVM: #H lelcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3->0range, 4->Apple #H

USER: Received a cup of orange

USER: [choire= B, bill= @, advance= @, cupIsllull= false, walletSize= 4, walletValue= 108, purseSize= 7, purseValue= 13]
USER: WAITING --> AWAY
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BWM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3->0range, 4->Apple ###

BWM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»0range, 4->Apple ##

BWM: ### MWelcome. Choose a beverage code to start a transaction: 1->Cocoa, 2-»Coffee, 3->0range, 4->Apple ###

BWM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-30range, 4->Apple ###

USER: [choice= 2, bill= @, advance= @, cupIshull= true, walletSize= 4, walletValue= 108, purseSize= 7, purseValue= 13]
USER: AWAY -» ORDERING

USER: Sent request code 2
USER: [choice= 2, bill= 80, advance= 8, cupIslull= true, walletSize= 4, walletValue= 108, purseSize= 7, purseValue= 13]
USER: ORDERING -> INSERTING

BWM: Received transaction code 2
BW: [current= 2, price= 88, credit= @, bad(IsNull= true, vaultSize= 39, vaultValue= 1422, escrowSize= 8, escrowValue= 8]
BVM: IDLE --» CHARGING

BWM: ### Chosen beverage: Coffee, Insert coins: 8@ cents ##

USER: Sent a coin of value 50

USER: [choice= 2, bill= 8@, advance= 58, cupIshull= true, walletSize= 3, walletValue= 58, purseSize= 7, purseValue= 13]
USER: INSERTING -» INSERTING

BWM: Received a coin of value: 50 cents
BWM: [current= 2, price= 88, credit= 58, badCIsNull= true, vaultSize= 39, vaultValue= 1422, escrowSize= 1, escrowValue= 58]
BVM: CHARGING --> CHARGING

BWM: ### Chosen beverage: Coffee, Insert coins: 3@ cents #H

BVM: ### Chosen beverage: (offee, Insert coins: 30 cents #H#
USER: Sent a coin of value 20

USER: [choice= 2, bill= 88, advance= 78, cupIshull= true, walletSize= 2, welletValue= 38, purseSize= 7, purseValue= 13]
USER: INSERTING -» INSERTING

BWM: Received a coin of value: 20 cents
BW: [current= 2, price= 88, credit= 78, bad(Ishull= true, vaultSize= 39, vaultValue= 1422, escrowSize= 2, escrowValue= 78]
BVM: CHARGING --»> CHARGING

BVM: ### Chosen beverage: Coffee, Insert coins: 10 cents #H#

BWM: ### Chosen beverage: Coffee, Insert coins: 10 cents ###

BVM: ### Chosen beverage: (offee, Insert coins: 18 cents ##H

USER: Sent a coin of value 20

USER: [choice= 2, bill= 88, advance= 98, cupIshull= true, walletSize= 1, walletValue= 10, purseSize= 7, purseValue= 13]
USER: INSERTING -» WAITING

BVM: Received & coin of value: 28 cents
BWM: [current= 2, price= 80, credit= 98, bad(Ishull= true, vaultSize= 42, vaultValue= 1512, escrowSize= 8, escrowValue= 8]
BUM: CHARGING --» RETURNING

BUM: ###  Take your balance #H

BWM: Returned a balance of 10

BVM: [current= 2, price= 88, credit= 88, bad(Islull= true, vaultSize= 41, vaultValue= 1502, escrouSize= @, escrowValue= 8]
BVM: RETURNING -»> DISPENSING

USER: Received balance coin(s) of total value 10
BVM: ##  Your cup of Coffee is being prepared; it will be ready shortly ###
USER: [choice= 2, bill= 88, advance= 8@, cupIslull= true, walletSize= 2, walletValue= 20, purseSize= 7, purseValue= 13]
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USER: WAITING --> WAITING

BWM: ### Your cup of Coffee is being prepared; it will be ready shortly ###

BWM: ### Your cup of Coffee is being prepared; it will be ready shortly ###

BWM: ### Your cup of Coffee is being prepared; it will be ready shortly #H

BWM: Dispensed a cup of coffee

BVWM: [current= 8, price= @, credit= @, bad(Ishull= true, vaultSize= 41, veultValue= 1502, escrowSize= 8, escrouValue= 8]
BVM: DISPENSING -» IDLE

USER: Received a cup of coffee

BUM: ### Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3->0range, 4->Apple ###

USER: [choice= @, bill= @, advance= @, cupIshull= false, walletSize= 2, walletValue= 28, purseSize= 7, purseValue= 13]
USER: WAITING --> AWAY

BWM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»Orange, 4-»Mpple #

BWM: ### Welcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3-»Orange, 4-»Mpple #

BWM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3-»Orange, 4-»Apple #

BWM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3->Orange, 4->Apple ###

BUM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»Coffee, 3->0range, 4->Apple ###

BUM: ### Welcome. Choose a beverage code to start a transaction: 1-»Cocoa, 2-»>Coffee, 3->0Orange, 4->Apple ###

USER: [choice= 1, bill= 8, advance= @, cupIshull= true, walletSize= 2, walletValue= 20, purseSize= 7, purseValue= 13]
USER: AWAY -> ORDERING

USER: Sent request code 1
USER: [choice= 1, bill= 100, advance= @, cupIsliull= true, walletSize= 2, walletValue= 20, purseSize= 7, purseValue= 13]
USER: ORDERING -» INSERTING

BVM: Received transaction code 1
BVM: [current= 1, price= 108, credit= 8, badCIsNull= true, vaultSize= 41, vaultValue= 1582, escrowSize= @, escrowalue= 8]
BVM: IDLE --» CHARGING

BVM: ### Chosen beverage: Cocoa, Insert coins: 100 cents ###

USER: Sent a coin of value 18

USER: [choice= 1, bill= 188, advance= 18, cupIshull= true, walletSize= 1, walletValue= 18, purseSize= 7, purseValue= 13]
USER: INSERTING -» INSERTING

BWM: Recelved a coin of value: 18 cents
BWM: [current= 1, price= 188, credit= 18, bad(IsNull= true, vaultSize= 41, vaultValue= 1502, escrouSize= 1, escrowValue= 18]
BWM: CHARGING --» CHARGING

BVM: ### Chosen beverage: Cocoa, Insert coins: 98 cents ###

BVM: ### Chosen beverage: Cocoa, Insert coins: 90 cents ###

USER: Sent a coin of value 10

USER: [choice= 1, bill= 180, advance= 20, cupIshull= true, walletSize= @, walletValue= @, purseSize= 7, purseValue= 13]
USER: INSERTING -»> INSERTING

BVM: Received a coin of value: 18 cents
BVM: [current= 1, price= 108, credit= 20, badCIsNull= true, vaultSize= 41, vaultValue= 1582, escrowSize= 2, escrowValue= 20]
BVM: CHARGING --» CHARGING

BWM: ### Chosen beverage: Cocoa, Insert coins: 80 cents #HH
BVM: ### Chosen beverage: Cocoa, Insert coins: 80 cents ###
BVM: ## Chosen beverage: Cocoa, Insert coins: 80 cents ###
USER [Ran out of coins]
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23:48:38:779: USER: [choice= 5, bill= 108, advance= 20, cupIsllull= true, walletSize= @, ualletValue= B, purseSize= 7, purseValue= 13]
23:48:38:780: USER: INSERTING -» CANCELING

23:48:38:788: USER: Sent request code 5
23:48:38:788: USER: [choice= @, bill= 108, advance= 20, cupIsllull= true, walletSize= @, walletValue= B, purseSize= 7, purseValue= 13]
23:48:38:788: USER: CANCELING -» WAITING

23:48:38:796: BVM: [current= 5, price= 160, credit= 20, bad(IsNull= true, vaultSize= 41, vaultValue= 1582, escrouSize= 2, escrawValue= 20]
23:48:38:796: BVM: CHARGING --» CANCELING

23:48:38:000; BWM: ## The transaction has been canceled. Remember to take your coins ###

23:48:38:804: BWM: Refunded a bag of coins of total value 20

23:48:38:804: BVM: [current= 8, price= 8, credit= 8, bad(TsNull= true, vaultSize= 41, vaultValue= 1502, escrowSize= 0, escrowValue= 8]
23:45:35:504; BVM: CANCELING -» IDLE

23:48:38:810: BWM: ##H lelcome. Choose a beverage code to start a transaction: 1->Cocoa, 2->Coffee, 3->0range, 4->Apple #H
23:48:38:812: USER: Received balance coin(s) of total value 20

23:48:38:812: USER: [choice= 8, bill= @, advance= 8, cuplshlull= true, walletSize= 2, walletValue= 26, purseSize= 7, purseValue= 13]
23:48:38:812: USER: WAITING --»> AWAY

23:49:5:810: BVWM: ### lWelcome. Choose a beverage code to start a transaction: 1->Cocos, 2->(offee, 3-30range, 4->Apple ###
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