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Abstract- The increasing pervasiveness of information and 
communication technology (ICT) in transport systems changes 
the requirements on techniques and tools for transport simula­

tion modelling. Novel ICT-powered responsive mobility services, 
such as real-time on-demand transport, are interaction-rich in 
a sense that they rely on frequent, ad hoc interactions between 
various entities of the transport system. These interactions have 
to be properly captured in the model if it is to accurately 
represent the dynamics of the modelled transport system. 
Unfortunately, existing modelling tools are not well suited for 
modelling interaction-rich transport systems. We have therefore 
developed a novel modular simulation framework designed 
specifically for modelling transport systems in which ad hoc 
interactions and decision making play an important role. The 
framework provides an extensible library of modelling elements 
based on a unifying ontology of agent-based modelling abstrac­
tions, a high-performance discrete-event simulation engine and 
suite of tools supporting real-world deployment and utilization 
of implemented models. By fully leveraging the conceptual 
foundation of multiagent systems, our framework provides 
flexibility and extensibility that is difficult to achieve by existing 
approaches. We demonstrate the applicability of the framework 

on the models of five distinct interaction-rich transport systems. 

I. INTRODUCTION 

The increasing deployment of ubiquitous location-aware 

and internet-connected devices is changing the way transport 

is organized and managed. Novel ICT-powered mobility 

services, such as real-time on-demand transport, peer-to-peer 

car sharing or dynamically priced taxis, are on the rise. 

A common feature of these services is the intensive use 

of (semi-)automated, electronic communication for coordi­

nation, in order to improve the efficiency and convenience 

and to reduce the financial and environmental costs of the 

service. In the case of shared collective taxi services, for 

example, the explicit, real-time coordination between the 

riders and the service provider allows using fewer vehicles 

and, consequently, road space compared to when the same 

demand was served in an uncoordinated fashion. The newly 

introduced coordination interactions, however, increase the 

complexity of the transport system and, consequently, make 

its operation more difficult to analyse and foresee. 

Simulation modelling is an established approach for 

analysing the behaviour of complex socio-technical systems 

and is therefore also applicable for analysing transport sys­

tems employing ICT-powered services. Unfortunately, ex­

isting simulation toolkits do not support the simulation of 

ICT-powered transport systems well - in particular, they 
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lack the support for modelling anytime, ad hoc interactions 

among the entities of the transport system and the just­

in-time decision making required for participating in such 

interactions. Capturing both well is essential for accurately 

modelling the behaviour of ICT-powered systems and, in 

fact, of the wider class of interaction-rich transport systems, 
i.e., systems whose overall behaviour is strongly affected by 

ad hoc interactions among their constituent entities. 

In our work, we aim to remedy this situation by provid­

ing a simulation modelling framework, termed AgentPolis' , 
designed from its inception to support the modelling of 

interaction-rich transport systems. Key to achieving this 

objective is the use of the concept of multiagent systems[12] 
as the basis of the framework's design. Multiagent systems 

capture the interaction-centricity of ICT-powered transport 

systems very well - putting them in the core of the mod­

elling framework therefore minimizes the structural and 

behavioural gap between the target interaction-rich system 

and its model. 

In this paper, we present the main results of our research, 

describing the four pillars of the AgentPolis framework -

the ontology of modelling abstractions, library of ready-to­

use modelling elements, discrete-event simulation engine and 

simulation tools - along with our experience of employing 

the framework to implement models of five distinct instances 

of interaction-rich transport systems. 

II. RELATED WORK 

In the last decade, simulation modelling has become 

an indispensable tool for studying the behaviour of ICT­

powered, interaction-rich transport systems. In [8], the au­

thors employed an agent-based simulation, developed com­

pletely from scratch, to study operational characteristics of 

a multimodal transport system integrating scheduled and 

flexible on-demand services. Demand-responsive transport 

systems were also studied in [13]. 
Taxi operations were also evaluated using simulations, 

both in their standard form (e.g. [4]) or employing a real­

time taxi sharing scheme (e.g. [10], [7]). In all three cases, 

model-specific simulation tools had to be developed and 

used, with [4] explicitly stating that existing simulation 

toolkits, including MATSim and SUMO, were not suitable 

for the task. Another type of transport systems evaluated 

using simulations are car sharing services. In [3], the authors 

evaluated a car sharing scheme under real-world conditions 

'The AgentPolis framework can be obtained from http: / / 
agentpolis.org. 
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of a Californian resort community, again employing a sim­

ulation tool developed internally from scratch. 

A very interesting approach is presented by Wainer in 

[14]. The author developed a general language for describing 

simulation models that allows decoupling the model descrip­

tion from the simulation engine used for model execution. 

The objectives of Wainer's work - flexibility and ability 

to rapidly develop simulation models - are close to our 

goals. His approach is, however, based on discrete-event 

cellular automata and directed towards vehicle-centric low­

level traffic simulations. 

A common attribute of the majority of simulations of ICT­

powered transport systems is that these simulations were 

developed from scratch using general-purpose programming 

languages (most often C++ or Java). There are exceptions -

[5] and [6] used the MAT Sim simulation framework [1] for 

evaluating car sharing and collective taxi schemes, respec­

tively. Furthermore, in [11] the authors used the general­

purpose Any Logic simulation toolkit to model a taxi sharing 

scheme in Lisbon. In all of the above cases, however, 

model developers faced considerable difficulties expressing 

and implementing required model behaviour using their 

chosen toolkit; this resulted in long development times and/or 

reduced fidelity of implemented models. 

III. BACKGROUND AND MOTIVATION 

Although there are many differences between services 

such as collective taxis and car sharing, there are also 

many elements (e.g. the concept of road networks, vehicles, 

passenger demand, or coordination protocols) that are similar 

and can be shared between the models of all such transport 

systems and services. Judging from the observed low use of 

general toolkits for the simulation modelling of interaction­

rich transport systems, it seems that such similarities have 

not been sufficiently exploited. We believe - and, as we shall 

see, this belief has been confirmed by our results so far - that 

the difficulties in employing general simulation toolkits, and 

the consequent lack of reuse in modelling interaction-rich 

transport systems, stems from the fact that existing toolkits 

do not take into account the multi agent nature of the ICT­

powered transport systems sufficiently and, consequently, 

fail to provide abstractions for modelling such systems in 

a direct, natural way. 

Before explaining how we have solved the problem, let us 

briefly introduce the very concept of multi agent systems (see 

e.g. [12] for an in-depth discussion). With an acceptable level 

of simplification, the multiagent system can be defined as a 

system composed of multiple autonomous entities, termed 

agents, situated in a shared environment. The environment 
represents the physical space surrounding the agents and the 

agents can interact with it in two ways. First, agents perform 

actions that modify the state of the environment; second, in 

the opposite direction, agents are informed about the state 

of the environment through perceptions. We assume that the 

agents are endowed with intelligence that allows the agents 

to select and execute actions that bring them closer to their 

goals. However, as the environment is one and the agents are 

Fig. 1: High-level conceptual model of a multiagent system. 

many, the actions of individual agents can mutually interact 

and produce results that, for better or worse, cannot be 

achieved by individual agents alone. In addition to implicit 

interaction through the environment, agents can also interact 

directly, i.e., bypassing the environment, through message­

based communication. See Figure 1 for a scheme relating 

the above concepts in a high-level conceptual model of a 

multi agent system. 

In transport systems, a large number of autonomous enti­

ties, such as passengers, drivers or transport operators, pursue 

their transport-related objectives within the context of a 

shared and capacity-constrained transport infrastructure. The 

individual entities interact among themselves and with the 

transport infrastructure (e.g. queuing on junctions), and pro­

duce complex, emergent global behaviours (e.g. congestion). 

In traditional transport systems, interactions among entities 

are mostly implicit, mediated by the transport environment. 

In ICT-powered transport systems, implicit interactions are 

complemented by explicit ICT-mediated interactions that are 

often central to driving the overall system behaviour. 

Due to their structural and dynamic properties, ICT­

powered, interaction-rich transport systems therefore es­

sentially are multi agent systems. Consequently, to model 

them, the (multi)agent-based modelling paradigm should be 

employed as it offers the most direct conceptual mapping 

between the model and the system. Unfortunately, existing 

transport modelling toolkits support the agent-based mod­

elling paradigm only to a limited extent. Although MAT Sim 

[1], for example, uses individual-level modelling, it treats 

individuals as passive data structures whose state can only 

be updated synchronously by central modules at infrequent, 

predefined points in time. Despite some practical advantages, 

such a centralized approach contradicts the nature of mul­

tiagent systems and consequently introduces a significant 

modelling gap - in reality, agents in transport systems make 

just-in-time decisions asynchronously at different occasions 

throughout a day, often in reaction to external observations 

or communication. 

To eliminate the modelling gap and issues it creates, our 

AgentPolis framework employs the agent-based modelling 

approach fully. AgentPolis does not impose constraints on 

when and how decision making, activities and interactions 

can occur in the model, and it is therefore suitable for 

modelling ICT-powered transport systems with ad hoc in­

teractions and just-in-time decision making. 
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IV. FRAMEWORK OVERVIEW 

The proposed AgentPolis framework provides abstrac­

tions, code libraries and software tools for building and using 

agent-based models of interaction-rich transport systems. 

More specifically, the framework consists of the following 

four components: 

1) Modelling abstraction ontology which provides a uni­

fying set of concepts for expressing agent-based simu­

lation models. The abstractions refine the more general 

multiagent systems concepts and make them express­

ible in object-oriented programming languages. 

2) Modelling element library which contains concrete 

implementations of the modelling abstractions chosen 

so as to represent the elements frequently used in real­

world transport models. 

3) Simulation engine, based on the discrete event simula­

tion approach, which provides the runtime functional­

ity for simulating AgentPolis models. 

4) Simulation tools which support the deployment and 

use of AgentPolis models in real-world conditions by 

providing data import, scenario configuration and sim­

ulation result analysis and visualization capabilities. 

In the following two sections, we describe the framework 

components in more detail. 

V. MODELLING ABSTRACTIONS AND ELEMENT S 

In designing the AgentPolis framework, our aim was 

to provide a framework that provides maximum ready-to­

use transport modelling functionality out of the box while 

offering enough flexibility to adapt to initially unforeseen 

requirements. A key tool for achieving this objective was 

the explicit separation between well-defined modelling ab­

stractions, based on the multiagent conceptual model (see 

Section III), and concrete modelling elements for building 

specific application models. By requiring that any modelling 

element is an instance of one of the modelling abstractions, 

we enforce design and implementation decisions that pro­

mote interoperability among different elements and facilitate 

addition of new application-specific modelling elements. 

The AgentPolis framework currently has eight modelling 

abstractions (see Figure 2) and several tens of modelling 

elements - these evolved through several iterations during 

which the abstractions were used to define concrete mod­

elling elements that were, in turn, used to build specific 

simulation models. 

In the rest of the section, we describe individual modelling 

abstractions along with the corresponding modelling ele­

ments. Due to limited space, we omit some technical details 

and focus on the features that best convey the overall idea of 

the framework. Also note that due to circular dependencies 

between concepts and elements, we sometimes refer to 

concepts or elements that will only be defined later. 

A. Agents 

Agents are the central entities of agent-based models 

and are the main drivers of model dynamics. Somewhat 

surprisingly, the concept of the agent is only loosely defined 

,--------------

i Abstraction 

L ______ _____ _ 

Fig. 2: Modelling abstractions of the AgentPolis framework. 

The concepts in the white, dashed-outline boxes only provide 

grouping and are not used as modelling abstractions. 

in the AgentPolis framework. This is primarily because of the 

large variation in the behaviour of agents between different 

models, which makes standardization of agent behaviour 

difficult and, in fact, counterproductive. Each agent in the 

AgentPolis framework is therefore only required to have 

defined its lifecycle, which is a top-level activity governing 

the agent's behaviour. 

Two predefined Iifecycles are nevertheless provided in the 

framework and can be utilized for defining new agents. The 

P TO rive r lifecycle represents the top-level behavioural 

loop of the agent serving as a public transport vehicle driver; 

the UrbanTraveller lifecycle can be used to implement 

an agent generating and executing basic activity-driven travel 

patterns2. 

B. Activities 

Activities provide the abstraction for defining agent be­

haviour. Technically, activities are reactive control structures 

implementing the logic determining which actions or nested 

activities the agent executes at a certain point in time or in 

response to sensor information or messages received from 

other agents. 

For example, the Dr i veVehicle activity moves a ve­

hicle along a predefined route. The route to follow, ex­

pressed as a sequence of nodes of an underlying transport 

network, is given as an input parameter of the activity. The 

Dr i veVehicle activity then sequentially, for each edge of 

the transport network, invokes the MoveVehicle action to 

change the location of the vehicle (as well the driver and 

any passenger inside the vehicle) on the network. After the 

vehicle reaches the final waypoint, the activity notifies the 

caller about its successful conclusion and finishes. The list 

of activities currently provided by the AgentPolis framework 

is given in Table I. 

C. Actions 

Actions provide the abstraction for modelling how agents 

manipulate the environment. Each action defines the logic 

2Because of their defining role in specifying agent behaviour, we some­
times refer to agents by the name of their assigned lifecycIe, e.g., calling 
an agent employing the PTDri ver lifecycle as a PTDri ver agent. 
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Activity Description 
Walk The agent walks between locations according to a 

specified journey plan. 
RidelnVehicle The agent travels as a passenger of an individual 

transport vehicle according to a journey plan. 
RideOnPT The agent travels by public transport according to 

a journey plan. 
DriveVehicle The agent drives a vehicle according to a journey 

plan. 
ParkVehicle The agent parks a vehicle at or near a specified 

location. 
Wai t The agent spends a specified time waiting. 

TABLE I: Core activities in the AgentPolis framework. 

Action Description 
MoveVehicle Moves a vehicle across an edge of the road net­

work, taking possible congestion in the account. 
MoveAgent Moves an agents across an edge of the road 

network. 
TeleportAgent Moves an agent instantly to a specified location 

(used e.g. for initializing agent's position). 
GetlnVehicle Moves a passenger into a vehicle (the passenger 

will be linked with the vehicle and move auto­
maticaUy whenever the vehicle moves). 

GetOffVehicle Removes a passenger from a vehicle (unlinks the 
passenger from the vehicle). 

Wai tForVehicle Waits until a specified vehicle arrives. 

TABLE II: Core actions in the AgentPolis framework. 

determining action duration and the logic defining which 

state attributes of which environment objects should be 

modified as the effect of executing the action. 

For example, the MoveVehicle action moves a vehicle 

along a transport network edge by changing the vehicle's 

location from one transport network node to another, adjacent 

network node. The MoveVehicle action interacts with the 

queuing logic implemented by the TransportNetwork 

environment object. The state of the TransportNetwork 

object can affect the duration of the MoveVehicle action 

and can even make the action fail if the queue associated 

with the traversed network edge is full. The list of actions 

currently provided by the framework is given in Table II. 

D. Sensors 

Sensors process percepts from the environment and allow 

agents (and their activities) to be informed about events in 

the course of simulation, in particular about the changes of 

the environment state and the execution of action and ac­

tivities. Together with messages received from other agents, 

sensor notifications can provide the main triggers for starting, 

terminating or changing activities executed by agents. 

For example, the P os it ionUpdate sensor notification 

is sent to the DriveVehicle activity after the vehicle 

has reached a new position; after receiving the notification, 

the DriveVehicle activity decides where to move the 

vehicle next and invokes the next MoveVehicle action 

accordingly. The list of all sensors implemented in the 

framework is given in Table III. 

E. Environment Objects 

The environment models the physical context in which 

agents are situated and perform their activities. In the Agent-

Sensor Description 
PositionUpdated Informs about a new position of a specific 

agent or an environment object. 
NextVehicleLoc. Informs about the upcoming next location of a 

vehicle. 
DrivingFinished Informs that a vehicle driver has reached the 

destination specified by the plan. 
WaitingFinished Informs that a specified waiting time has 

elapsed. 
VehicleArrived Informs that a vehicle arrived to a given node. 

TABLE III: Core sensors in the AgentPolis framework. 

Environ. Object Description 
TransportNetwork A network of roads, railways, cycle paths and/or 

pedestrian pathways with the associated queu­
ing logic. 

PTStops A list of public transport stops or stations. 
Attractor A location acting as a destination for trips with 

specific purpose (i.e. schools, offices, shops 
etc.). 

Vehicle A vehicle that can move along a transport 
network (car, bus, tram, train etc.). 

TABLE IV: Core environment objects in the AgentPolis 

framework. 

Polis framework, the environment is decomposed into and, 

consequently, represented as a collection of environment 
objects. Each environment object represents a fragment of the 

modelled physical reality and its associated state. The state 

of an environment object is represented by its attributes and 

it can only be changed by actions or by the object's internal 

update logic. Environment objects notify agents through 

sensors about changes in their state. 

For example, the TransportNetwork environment ob­

ject represents a transport network (road, cyclepath, footpath 

or railway). It consists of a graph of junctions and connect­

ing network segments with associated queues and update 

logic for modelling congestion. The queue is used by the 

MoveVehicle action to determine how much time a vehi­

cle needs to move along the respective network segment. The 

list of the environment objects provided by the AgentPolis 

framework is given in Table IV. 

F Queries 

Queries are used by agents to obtain information about the 

state of the environment. Queries read, filter or aggregate 

but do not change the state of any environment objects. 

In contrast to sensors, queries are invoked by the agents 

(or, typically, by activities)3. Although not strictly necessary 

- calls to queries could be replaced with direct calls to 

respective environment objects - queries improve encapsu­

lation by providing a layer that hides environment's internal 

implementation from agents. 

For example, given an agent identifier, the 

AgentP osition query returns the position of the 

agent as the identifier of the transport network node on 

which the agent is located. The list of queries implemented 

in the framework is given in Table V. 

3Queries can therefore be viewed as information pull requests, while 
sensors correspond to information push requests. 
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Query Description 
AgentPosition Returns the current position of an agent or an 

environment object. 
PTStopPosition Returns the position of a (public transport) stop 

or station. 

TABLE V: Core queries in the AgentPolis framework 

Action 
'­

Query 

, 
Environment object 

Fig. 3: Simplified architecture of AgentPolis models. 

G. Communication Protocols 

Communication protocols are the abstraction for mod­

elling inter-agent communication by means of message pass­

ing. At the moment, the framework core only provides 

simple protocols: I-to-l messaging and I-to-many 

messaging. Additional, more complex protocols (e.g., 

tendering and auctions) have, however, been implemented 

as part of application-specific models (see Section VII). 

H. Reasoning Modules 

As part of their behaviour, agents may need to make 

decisions that require executing complex algorithms. In the 

AgentPolis framework, such algorithms can be encapsulated 

into reasoning modules and reused in different activities. 

At the moment, the only reasoning module provided in 

the framework core is the ]ourneyPlanner module encap­

sulating the fully multimodal journey planner developed in 

[9]. The module, given an origin and destination location 

and time constraints, finds a shortest-duration journey plan 

that can subsequently be executed by agent activities. Addi­

tional reasoning modules have been implemented as part of 

application-specific models (see Section VII). 

Figure 3 shows how all modelling abstraction relate to 

each other in AgentPolis simulation models. 

VI. SIMULATION ENGINE AND TOOLS 

The library of modelling elements and the underlying 

ontology of modelling abstractions form the fundamental 

part of the AgentPolis framework. Additional functionality 

is, however, required for practically using developed models 

as part of simulation-based evaluation and decision support 

processes. To this end, the AgentPolis framework comprises 

software components that support the whole modelling life­

cycle from importing real-world data, executing simulation 

models and analysing and visualizing simulation results. 

A. Data Import Tools 

To facilitate the incorporation of real-world data into 

AgentPolis models, the framework provides data importers 

for converting external datasets into framework's internal 

data models. At the moment, the framework supports import­

ing data in the OpenStreetMap (OSM)4 and General Transit 
Feed Specification (GTFS)5 formats, including automated 

cross-referencing between both formats (e.g., mapping the 

corresponding public transport stops between OSM and 

GTFS files). Through the importers information about road, 

cyclepath and footpath networks, public transport routes and 

timetables and basic land use can easily be incorporated 

in AgentPolis models. Files imported by the framework 

tools are checked for consistency in order to prevent the 

hard-to-trace errors caused by invalid data during simulation 

execution. 

AgentPolis models can incorporate additional categories of 

data, such as socio-demographic data or origin-destination 

matrices representing travel flows. However, as no estab­

lished standards exist for these data categories, importers for 

such datasets are scenario-specific and need to be developed 

or customized for each model. 

B. Simulation Engine 

The simulation engine for executing AgentPolis simulation 

models is an essential part of the framework. The AgentPolis 

framework employs the discrete event simulation (DES) 
approach [2] in which the operation of the target system 

is modelled as a discrete sequence of events in time. Each 

event occurs at a particular instant in time and marks a 

change of state of the system. Between consecutive events, 

no change in the system is assumed to occur; thus the 

simulation can directly jump in time from one event to the 

next, which makes it computationally more efficient than 

the time-stepped approach that is mostly used in transport 

models. 

In AgentPolis models, events provide the low-level causal 

link between actions, model updates and sensor invocations. 

Whenever an agent executes an action, the action inserts an 

event into the event queue; the event has a state update logic 

attached specifying which environment objects should be up­

dated as the effect of action execution. The state update logic 

is executed only after the simulation time corresponding to 

the duration of the action has elapsed. The modification of 

the environment state caused by the update logic triggers 

sensor notifications which are received by agents (activities); 

the agents (activities) can consequently react by invoking 

further actions, thus closing the model update loop. 

The AgentPolis uses the discrete event-queue implementa­

tion provided by Alite6, a general purpose lightweight toolkit 

for building multiagent systems. A screenshot of a running 

AgentPolis simulation is given in Figure 4. 

4http: / / openstreetmap.org 
5https: / / developers.google.com / transit / gtfs / 

reference 
6http: / /alite.agents.cz 
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Fig. 4: High-level view of a running AgentPolis simulation 

model. Road (black), pedestrian (grey), tram (yellow) and 

metro (red) networks and UrbanCitizen (green) and PTDriver 

(yellow) agents are shown. Simulation events are depicted in 

the overlay window. 

C. Result Reporting, Analysis and Visualization Tools 

Recording simulation progress and results is a necessary 

part of simulation execution. AgentPolis provides a cus­

tomizable logging mechanism employing the Java event bus 

programming concept that allows detailed recording of low­

level simulation events (e.g. the start and end of the execution 

of activities and actions). From the recorded events, higher­

level, aggregate performance metrics can be calculated and 

visualized using a customizable reporting pipeline. The 

pipeline is based on the open-source GIS software stack 

employing the PostGIS7 spatially enabled database and the 

OpenGe08 interactive geovisualization framework. Powerful 

aggregation and filtering functions can easily be specified 

using the spatial extension of the SQL language supported 

by PostGIS. In addition to OpenGeo, export to Google Earth 

is also supported and is particularly useful for interactively 

exploring temporal geospatial data. Together, the above tools 

allow analysing and browsing simulation results at different 

spatial and temporal resolution. 

VII. EXAMPLE MODELS 

We have successfully used the AgentPolis framework to 

implement several simulation models. The models cover a 

wide range of interaction-rich transport systems that differ in 

a number of important characteristics, including the type and 

number of agents, the complexity of agent decision making, 

the type and number of transport modes present and the com­

plexity of agent-to-agent interactions. The basic information 

about the implemented models is given in Table VI - below 

we describe each model in more detail. In Table VII, we 

then list the main modelling elements used in each of the 

models. 

7http: / / postgis.net 
8http: / / opengeo.org 

Model # agents Types of agents 
Multimodal mobility 105 - 10' Urban citizen, PT driver, 

Ridesharing 
Dynamic pricing 
Fare inspection 
Parcel logistics 

102 
_ 103 

102 
104 

_ 105 
102 

Driver 
Passenger, Driver, Dispatcher 
Passenger, Driver 
Passenger. Inspector 
Dispatcher, Van driver 

TABLE VI: List of implemented AgentPolis models with the 

overall number and the types of agents used. 

A. Multimodal Urban Mobility 

The multimodal urban mobility model is the most com­

prehensive and the largest model built using the AgentPo­

lis framework, covering areas up to thousands of square 

kilometres and simulating populations of up to millions 

of inhabitants. Employing the activity-centric approach, the 

model aims to reproduce travel in a multimodal urban 

transport system. The model is similar in purpose and scope 

to other activity-based mobility models but it is internally 

implemented in the fully agent-based way - this gives 

it the benefits associated with the agent-based approach, 

in particular the ability to model within-the-day decision 

making and to include ICT-powered mobility services relying 

on ad hoc inter-agent interactions in the activity model. 

Technically, the model utilizes most of the core AgentPolis 

modelling elements with the UrbanTraveller lifecycle being 

the basis of the agents representing the population of the 

modelled region. 

B. Real-time Ridesharing 

The real-time ridesharing model has been implemented 

for studying the performance of ridesharing services under 

different deployment conditions. The model comprises three 

types of agents: vehicle drivers (corresponding to drivers of 

collective taxis, flexible buses or shared private vehicles), 

passengers of the ridesharing service, and the dispatcher, 

who matches passengers with drivers and vehicles. While the 

dispatcher agent is new, the driver and the passenger agents 

largely reuse the core AgentPolis activities. New, model­

specific logic consists of the negotiation protocol used to 

arrange shared rides and the associated decision logic on the 

side of participating agents. Extension on lower-level of the 

model, i.e. actions and sensors, were not required. 

In its basic configuration, the ridesharing model only 

employs hundreds of agents directly participating in the 

modelled ridesharing service. Thanks to its fully agent-based 

design, it is, however, possible to combine the ridesharing 

model with the multimodal urban mobility model and to 

study interactions between ridesharing services and other 

mobility modes and services. 

C. Auction-based Dynamic Taxi Pricing 

The dynamic taxi pricing model has been implemented for 

studying the effect of auction-based dynamic pricing of taxi 

services. In contrast to the previous model, the modelled 

dynamic taxi pricing scheme relies on peer-to-peer inter­

actions and only contains two types of agents: passengers 

978-1-4799-2914-613/$31.00 ©2013 IEEE 2157 



Abstraction 

Activities 

Env. Objects 

Actions 

Sensors 

Queries 

Protocols 

Reasoning 
modules 

Element 
Walk 
RidelnVehicle 
RideOnPT 
DriveVehicle 
ParkVehicle 
Wait 
DriveTaxi 

PatrolInStation 

PatrolInVehicle 

TransportNetwork 
PTStops 
Attractor 
Vehicle 

Warehouse 

DeliveryPoint 

VehicleInspectArea 

StationInspectArea 

MoveVehicle 
MoveAgent 
TeleportAgent 
GetlnVehicle 
GetOffVehicle 
WaitForVehicle 
RideInTaxi 

TaxiWaitForJob 

LoadParcel 

UnLoadParcel 

UnLoadParcel 

InspectPassengers 

ExistInspectArea 

EnterInspectArea 

PositionUpdated 
NextVehicleLoc. 
DrivingFinished 
WaitingFinished 
VehicleArrived 
Passenger InSight 

InspectorInSight 

GetAgentPosition 
GetPTStopPosition 
l-to-l Messaging 
Auction 
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TABLE VII: The use of modelling elements in the example 

AgentPolis models. Core elements printed using normal font; 

newly added in italics. ( . reused core element, 0 modified 

core element, + newly added modelling element). 

and taxi drivers. Similarly to the ridesharing model, the 

taxi pricing model reuses a large part of framework's core 

modelling elements, with the majority of newly developed 

code concerning the auction protocol and the associated 

decision logic. In contrast to the ridesharing model, new 

activities related to travelling by taxi were added. Again, 

the taxi pricing model can be combined with the multimodal 

urban mobility model to study mutual interactions. 

D. Urban Parcel Logistics 

The urban parcel logistics model has been implemented 

for studying the performance of parcel delivery services. 

The model comprises two types of agents: van drivers and 

dispatchers. Because of its focus on the transport of goods 

rather than people, the model lies outside the main focus 

of the AgentPolis framework and, consequently, provided an 

interesting test of the flexibility of the framework's design. 

The framework has passed the test successfully - although 

the model required the implementation of several model­

specific elements at the environment level, these elements 

could be expressed using the AgentPolis abstractions. Specif­

ically, we added depots and delivery locations as new types 

of environment objects together with actions and sensors 

related to parcel loading and unloading. 

E. Public Transport Fare Inspection 

Finally, the fare inspection model has been implemented 

for studying the effectiveness of different strategies for con­

ducting ticket inspection patrols in public transport networks. 

The model takes travel demand, ticket options and inspector 

patrol schedules as the input and produces inspection and 

fare evasion statistics as the output. Different passenger and 

fare evasion strategies, including the ability of passengers to 

avoid inspection through learning and communication, are 

modelled. The model uses two types of agents: passengers 

and ticket inspectors. The implementation of the model 

reused a significant portion of the core AgentPolis elements 

but also required the addition of a number of elements related 

to performing ticket inspections. 

Because of their strong reliance on modelling ad hoc 

interactions and just-in-time decision making, security mod­

els, such as this one, are another important category of 

interaction-rich transport systems that can benefit from the 

fully agent-based modelling supported by the AgentPolis 

framework. 

F Additional Models 

We are currently considering the implementation of 

models of other ICT-powered transport systems, including 

demand-responsive fleets of driverless cars, smart parking 

schemes and electrical vehicles sharing services. We believe 

that in their implementation, similarly to the models already 

implemented, it would be possible to reuse a large number 

of AgentPolis core modelling elements and that the exten­

sions and additions required would be expressible using the 

abstractions of the modelling ontology. 

VIII. DISCUSSION 

The positive experience with the development of several 

models confirmed the viability of the fully agent-based 

approach, and the AgentPolis framework in particular, to 

modelling interaction-rich transport systems. The five models 

implemented represent a diverse set of models, each testing 

the flexibility of the framework in a different way. The 

framework proved capable of supporting models with a low 

number of computationally intensive agents (e.g. ridesharing 

or parcel logistics) as well as models with millions of 

lightweight agents (multimodal urban mobility). The latter is 

important because it shows that the higher flexibility of the 
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fully agent-based approach does not come at the expense of 

degraded runtime performance of fully agent-based models. 

Furthermore, despite the diversity of the implemented mod­

els, the ratio between the reused and the newly developed 

code remained good, with the newly developed code mostly 

focusing on the logic specific to each model. Although 

in some cases significant extensions were necessary (in 

particular for parcel logistics and fare inspection models), 

they were easily accommodated by the framework. 

There are still a number of open issues, though. The 

development of AgentPolis models remains a non-trivial task 

and requires model developers with good software design 

and implementation skills. In some cases, there are multiple 

ways in which a certain behaviour can be expressed in the 

framework but only some of them allow the model to fully 

leverage the strengths of the framework and its tools. At 

the moment, the modeller can refer to the example models 

for guidance on which abstractions should be employed for 

which purposes; in the future, we plan to make such guidance 

explicit in a set of model design patterns. 

The above issue is also related to the fact that the simula­

tion logic concerning a certain fragment of the modelled phe­

nomena typically cuts across several modelling abstractions 

(in particular activities, actions, sensors and environment 

objects); the implementations of these abstractions thus need 

to be kept consistent, which is not easy. Although such 

a mutual dependency problem cannot be fully solved and 

affects all extensible simulation platforms, there are ways in 

which the burden on the modeller can be reduced and which 

we consider for the future versions of the framework. A usual 

way to address the dependency problem would be to provide 

a set of well-defined and encapsulated extensions points, 

which would reduce the need to modify core modelling 

elements and consequently shield the developer from having 

to understand their exact interdependencies. This approach 

would be particularly efficient if the scope of the framework 

is narrowed. Focusing, e.g., solely on modelling on-demand 

mobility services (such as ridesharing) would allow fixing 

the majority of lower-level modelling elements; the model 

developer would then only implement higher-level model 

logic governing the arrangement of rides but not their actual 

execution. In a longer run, the maintainability and extensibil­

ity of the framework could be improved by employing more 

modular programming abstractions - such as traits or lambda 

expressions - available in some progressive programming 

languages now and coming to Java in a near future. 

The AgentPolis framework currently provides the 

strongest support for modelling the environment and agent­

to-environment interactions. The support for modelling agent 

behaviour, on the other hand, is relatively basic, with activ­

ities and reasoning modules as the only supporting abstrac­

tions. This is partly intentional because of the diversity of 

agent behaviours and the notorious difficulty to provide flex­

ible abstractions for programming general agent behaviour. 

That said, we plan to improve the support for behaviour 

modelling by providing simple yet proven behaviour pro­

gramming abstractions such as finite state machines. 

IX. CONCLUSIONS 

We have developed a modular framework for the im­

plementation, execution and analysis of simulation models 

of interaction-rich transport systems. The framework fully 

adopts the agent-based modelling paradigm, which makes it 

very versatile and capable of modelling systems with com­

plex ad hoc interactions and just-in-time decision making. 

We have used the framework to implement models of five 

different transport systems. The positive experience obtained 

has confirmed the effectiveness of the fully agent-based 

approach in general, and of the AgentPolis framework in 

particular, in quickly building models of different kinds of 

interaction-rich transport systems. 
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