
Proceedings of the 16th International IEEE Annual Conference on

Intelligent Transportation Systems (ITSC 2013), The Hague, The

Netherlands, October 6-9, 2013

WeB9.3

Modular Framework for Simulation Modelling of Interaction-Rich

Transport Systems

Michal Jakob1 and Zbynek Moler1

Abstract- The increasing pervasiveness of information and
communication technology (ICT) in transport systems changes
the requirements on techniques and tools for transport simula­

tion modelling. Novel ICT-powered responsive mobility services,
such as real-time on-demand transport, are interaction-rich in
a sense that they rely on frequent, ad hoc interactions between
various entities of the transport system. These interactions have
to be properly captured in the model if it is to accurately
represent the dynamics of the modelled transport system.
Unfortunately, existing modelling tools are not well suited for
modelling interaction-rich transport systems. We have therefore
developed a novel modular simulation framework designed
specifically for modelling transport systems in which ad hoc
interactions and decision making play an important role. The
framework provides an extensible library of modelling elements
based on a unifying ontology of agent-based modelling abstrac­
tions, a high-performance discrete-event simulation engine and
suite of tools supporting real-world deployment and utilization
of implemented models. By fully leveraging the conceptual
foundation of multiagent systems, our framework provides
flexibility and extensibility that is difficult to achieve by existing
approaches. We demonstrate the applicability of the framework

on the models of five distinct interaction-rich transport systems.

I. INTRODUCTION

The increasing deployment of ubiquitous location-aware

and internet-connected devices is changing the way transport

is organized and managed. Novel ICT-powered mobility

services, such as real-time on-demand transport, peer-to-peer

car sharing or dynamically priced taxis, are on the rise.

A common feature of these services is the intensive use

of (semi-)automated, electronic communication for coordi­

nation, in order to improve the efficiency and convenience

and to reduce the financial and environmental costs of the

service. In the case of shared collective taxi services, for

example, the explicit, real-time coordination between the

riders and the service provider allows using fewer vehicles

and, consequently, road space compared to when the same

demand was served in an uncoordinated fashion. The newly

introduced coordination interactions, however, increase the

complexity of the transport system and, consequently, make

its operation more difficult to analyse and foresee.

Simulation modelling is an established approach for

analysing the behaviour of complex socio-technical systems

and is therefore also applicable for analysing transport sys­

tems employing ICT-powered services. Unfortunately, ex­

isting simulation toolkits do not support the simulation of

ICT-powered transport systems well - in particular, they

l{jakob, moler}@agents.fel.cvut.cz, Agent Technology
Center, Dept. of Computer Science and Engineering, Faculty of Electrical
Engineering, Czech Technical University, Praha, Czech Republic.

lack the support for modelling anytime, ad hoc interactions

among the entities of the transport system and the just­

in-time decision making required for participating in such

interactions. Capturing both well is essential for accurately

modelling the behaviour of ICT-powered systems and, in

fact, of the wider class of interaction-rich transport systems,
i.e., systems whose overall behaviour is strongly affected by

ad hoc interactions among their constituent entities.

In our work, we aim to remedy this situation by provid­

ing a simulation modelling framework, termed AgentPolis' ,
designed from its inception to support the modelling of

interaction-rich transport systems. Key to achieving this

objective is the use of the concept of multiagent systems[12]
as the basis of the framework's design. Multiagent systems

capture the interaction-centricity of ICT-powered transport

systems very well - putting them in the core of the mod­

elling framework therefore minimizes the structural and

behavioural gap between the target interaction-rich system

and its model.

In this paper, we present the main results of our research,

describing the four pillars of the AgentPolis framework -

the ontology of modelling abstractions, library of ready-to­

use modelling elements, discrete-event simulation engine and

simulation tools - along with our experience of employing

the framework to implement models of five distinct instances

of interaction-rich transport systems.

II. RELATED WORK

In the last decade, simulation modelling has become

an indispensable tool for studying the behaviour of ICT­

powered, interaction-rich transport systems. In [8], the au­

thors employed an agent-based simulation, developed com­

pletely from scratch, to study operational characteristics of

a multimodal transport system integrating scheduled and

flexible on-demand services. Demand-responsive transport

systems were also studied in [13].
Taxi operations were also evaluated using simulations,

both in their standard form (e.g. [4]) or employing a real­

time taxi sharing scheme (e.g. [10], [7]). In all three cases,

model-specific simulation tools had to be developed and

used, with [4] explicitly stating that existing simulation

toolkits, including MATSim and SUMO, were not suitable

for the task. Another type of transport systems evaluated

using simulations are car sharing services. In [3], the authors

evaluated a car sharing scheme under real-world conditions

'The AgentPolis framework can be obtained from http: / /
agentpolis.org.

978-1-4799-2914-613/$31.00 ©2013 IEEE 2152

of a Californian resort community, again employing a sim­

ulation tool developed internally from scratch.

A very interesting approach is presented by Wainer in

[14]. The author developed a general language for describing

simulation models that allows decoupling the model descrip­

tion from the simulation engine used for model execution.

The objectives of Wainer's work - flexibility and ability

to rapidly develop simulation models - are close to our

goals. His approach is, however, based on discrete-event

cellular automata and directed towards vehicle-centric low­

level traffic simulations.

A common attribute of the majority of simulations of ICT­

powered transport systems is that these simulations were

developed from scratch using general-purpose programming

languages (most often C++ or Java). There are exceptions -

[5] and [6] used the MAT Sim simulation framework [1] for

evaluating car sharing and collective taxi schemes, respec­

tively. Furthermore, in [11] the authors used the general­

purpose Any Logic simulation toolkit to model a taxi sharing

scheme in Lisbon. In all of the above cases, however,

model developers faced considerable difficulties expressing

and implementing required model behaviour using their

chosen toolkit; this resulted in long development times and/or

reduced fidelity of implemented models.

III. BACKGROUND AND MOTIVATION

Although there are many differences between services

such as collective taxis and car sharing, there are also

many elements (e.g. the concept of road networks, vehicles,

passenger demand, or coordination protocols) that are similar

and can be shared between the models of all such transport

systems and services. Judging from the observed low use of

general toolkits for the simulation modelling of interaction­

rich transport systems, it seems that such similarities have

not been sufficiently exploited. We believe - and, as we shall

see, this belief has been confirmed by our results so far - that

the difficulties in employing general simulation toolkits, and

the consequent lack of reuse in modelling interaction-rich

transport systems, stems from the fact that existing toolkits

do not take into account the multi agent nature of the ICT­

powered transport systems sufficiently and, consequently,

fail to provide abstractions for modelling such systems in

a direct, natural way.

Before explaining how we have solved the problem, let us

briefly introduce the very concept of multi agent systems (see

e.g. [12] for an in-depth discussion). With an acceptable level

of simplification, the multiagent system can be defined as a

system composed of multiple autonomous entities, termed

agents, situated in a shared environment. The environment
represents the physical space surrounding the agents and the

agents can interact with it in two ways. First, agents perform

actions that modify the state of the environment; second, in

the opposite direction, agents are informed about the state

of the environment through perceptions. We assume that the

agents are endowed with intelligence that allows the agents

to select and execute actions that bring them closer to their

goals. However, as the environment is one and the agents are

Fig. 1: High-level conceptual model of a multiagent system.

many, the actions of individual agents can mutually interact

and produce results that, for better or worse, cannot be

achieved by individual agents alone. In addition to implicit

interaction through the environment, agents can also interact

directly, i.e., bypassing the environment, through message­

based communication. See Figure 1 for a scheme relating

the above concepts in a high-level conceptual model of a

multi agent system.

In transport systems, a large number of autonomous enti­

ties, such as passengers, drivers or transport operators, pursue

their transport-related objectives within the context of a

shared and capacity-constrained transport infrastructure. The

individual entities interact among themselves and with the

transport infrastructure (e.g. queuing on junctions), and pro­

duce complex, emergent global behaviours (e.g. congestion).

In traditional transport systems, interactions among entities

are mostly implicit, mediated by the transport environment.

In ICT-powered transport systems, implicit interactions are

complemented by explicit ICT-mediated interactions that are

often central to driving the overall system behaviour.

Due to their structural and dynamic properties, ICT­

powered, interaction-rich transport systems therefore es­

sentially are multi agent systems. Consequently, to model

them, the (multi)agent-based modelling paradigm should be

employed as it offers the most direct conceptual mapping

between the model and the system. Unfortunately, existing

transport modelling toolkits support the agent-based mod­

elling paradigm only to a limited extent. Although MAT Sim

[1], for example, uses individual-level modelling, it treats

individuals as passive data structures whose state can only

be updated synchronously by central modules at infrequent,

predefined points in time. Despite some practical advantages,

such a centralized approach contradicts the nature of mul­

tiagent systems and consequently introduces a significant

modelling gap - in reality, agents in transport systems make

just-in-time decisions asynchronously at different occasions

throughout a day, often in reaction to external observations

or communication.

To eliminate the modelling gap and issues it creates, our

AgentPolis framework employs the agent-based modelling

approach fully. AgentPolis does not impose constraints on

when and how decision making, activities and interactions

can occur in the model, and it is therefore suitable for

modelling ICT-powered transport systems with ad hoc in­

teractions and just-in-time decision making.

978-1-4799-2914-613/$31.00 ©2013 IEEE 2153

IV. FRAMEWORK OVERVIEW

The proposed AgentPolis framework provides abstrac­

tions, code libraries and software tools for building and using

agent-based models of interaction-rich transport systems.

More specifically, the framework consists of the following

four components:

1) Modelling abstraction ontology which provides a uni­

fying set of concepts for expressing agent-based simu­

lation models. The abstractions refine the more general

multiagent systems concepts and make them express­

ible in object-oriented programming languages.

2) Modelling element library which contains concrete

implementations of the modelling abstractions chosen

so as to represent the elements frequently used in real­

world transport models.

3) Simulation engine, based on the discrete event simula­

tion approach, which provides the runtime functional­

ity for simulating AgentPolis models.

4) Simulation tools which support the deployment and

use of AgentPolis models in real-world conditions by

providing data import, scenario configuration and sim­

ulation result analysis and visualization capabilities.

In the following two sections, we describe the framework

components in more detail.

V. MODELLING ABSTRACTIONS AND ELEMENT S

In designing the AgentPolis framework, our aim was

to provide a framework that provides maximum ready-to­

use transport modelling functionality out of the box while

offering enough flexibility to adapt to initially unforeseen

requirements. A key tool for achieving this objective was

the explicit separation between well-defined modelling ab­

stractions, based on the multiagent conceptual model (see

Section III), and concrete modelling elements for building

specific application models. By requiring that any modelling

element is an instance of one of the modelling abstractions,

we enforce design and implementation decisions that pro­

mote interoperability among different elements and facilitate

addition of new application-specific modelling elements.

The AgentPolis framework currently has eight modelling

abstractions (see Figure 2) and several tens of modelling

elements - these evolved through several iterations during

which the abstractions were used to define concrete mod­

elling elements that were, in turn, used to build specific

simulation models.

In the rest of the section, we describe individual modelling

abstractions along with the corresponding modelling ele­

ments. Due to limited space, we omit some technical details

and focus on the features that best convey the overall idea of

the framework. Also note that due to circular dependencies

between concepts and elements, we sometimes refer to

concepts or elements that will only be defined later.

A. Agents

Agents are the central entities of agent-based models

and are the main drivers of model dynamics. Somewhat

surprisingly, the concept of the agent is only loosely defined

,--------------

i Abstraction

L ______ _____ _

Fig. 2: Modelling abstractions of the AgentPolis framework.

The concepts in the white, dashed-outline boxes only provide

grouping and are not used as modelling abstractions.

in the AgentPolis framework. This is primarily because of the

large variation in the behaviour of agents between different

models, which makes standardization of agent behaviour

difficult and, in fact, counterproductive. Each agent in the

AgentPolis framework is therefore only required to have

defined its lifecycle, which is a top-level activity governing

the agent's behaviour.

Two predefined Iifecycles are nevertheless provided in the

framework and can be utilized for defining new agents. The

P TO rive r lifecycle represents the top-level behavioural

loop of the agent serving as a public transport vehicle driver;

the UrbanTraveller lifecycle can be used to implement

an agent generating and executing basic activity-driven travel

patterns2.

B. Activities

Activities provide the abstraction for defining agent be­

haviour. Technically, activities are reactive control structures

implementing the logic determining which actions or nested

activities the agent executes at a certain point in time or in

response to sensor information or messages received from

other agents.

For example, the Dr i veVehicle activity moves a ve­

hicle along a predefined route. The route to follow, ex­

pressed as a sequence of nodes of an underlying transport

network, is given as an input parameter of the activity. The

Dr i veVehicle activity then sequentially, for each edge of

the transport network, invokes the MoveVehicle action to

change the location of the vehicle (as well the driver and

any passenger inside the vehicle) on the network. After the

vehicle reaches the final waypoint, the activity notifies the

caller about its successful conclusion and finishes. The list

of activities currently provided by the AgentPolis framework

is given in Table I.

C. Actions

Actions provide the abstraction for modelling how agents

manipulate the environment. Each action defines the logic

2Because of their defining role in specifying agent behaviour, we some­
times refer to agents by the name of their assigned lifecycIe, e.g., calling
an agent employing the PTDri ver lifecycle as a PTDri ver agent.

978-1-4799-2914-613/$31.00 ©2013 IEEE 2154

Activity Description
Walk The agent walks between locations according to a

specified journey plan.
RidelnVehicle The agent travels as a passenger of an individual

transport vehicle according to a journey plan.
RideOnPT The agent travels by public transport according to

a journey plan.
DriveVehicle The agent drives a vehicle according to a journey

plan.
ParkVehicle The agent parks a vehicle at or near a specified

location.
Wai t The agent spends a specified time waiting.

TABLE I: Core activities in the AgentPolis framework.

Action Description
MoveVehicle Moves a vehicle across an edge of the road net­

work, taking possible congestion in the account.
MoveAgent Moves an agents across an edge of the road

network.
TeleportAgent Moves an agent instantly to a specified location

(used e.g. for initializing agent's position).
GetlnVehicle Moves a passenger into a vehicle (the passenger

will be linked with the vehicle and move auto­
maticaUy whenever the vehicle moves).

GetOffVehicle Removes a passenger from a vehicle (unlinks the
passenger from the vehicle).

Wai tForVehicle Waits until a specified vehicle arrives.

TABLE II: Core actions in the AgentPolis framework.

determining action duration and the logic defining which

state attributes of which environment objects should be

modified as the effect of executing the action.

For example, the MoveVehicle action moves a vehicle

along a transport network edge by changing the vehicle's

location from one transport network node to another, adjacent

network node. The MoveVehicle action interacts with the

queuing logic implemented by the TransportNetwork

environment object. The state of the TransportNetwork

object can affect the duration of the MoveVehicle action

and can even make the action fail if the queue associated

with the traversed network edge is full. The list of actions

currently provided by the framework is given in Table II.

D. Sensors

Sensors process percepts from the environment and allow

agents (and their activities) to be informed about events in

the course of simulation, in particular about the changes of

the environment state and the execution of action and ac­

tivities. Together with messages received from other agents,

sensor notifications can provide the main triggers for starting,

terminating or changing activities executed by agents.

For example, the P os it ionUpdate sensor notification

is sent to the DriveVehicle activity after the vehicle

has reached a new position; after receiving the notification,

the DriveVehicle activity decides where to move the

vehicle next and invokes the next MoveVehicle action

accordingly. The list of all sensors implemented in the

framework is given in Table III.

E. Environment Objects

The environment models the physical context in which

agents are situated and perform their activities. In the Agent-

Sensor Description
PositionUpdated Informs about a new position of a specific

agent or an environment object.
NextVehicleLoc. Informs about the upcoming next location of a

vehicle.
DrivingFinished Informs that a vehicle driver has reached the

destination specified by the plan.
WaitingFinished Informs that a specified waiting time has

elapsed.
VehicleArrived Informs that a vehicle arrived to a given node.

TABLE III: Core sensors in the AgentPolis framework.

Environ. Object Description
TransportNetwork A network of roads, railways, cycle paths and/or

pedestrian pathways with the associated queu­
ing logic.

PTStops A list of public transport stops or stations.
Attractor A location acting as a destination for trips with

specific purpose (i.e. schools, offices, shops
etc.).

Vehicle A vehicle that can move along a transport
network (car, bus, tram, train etc.).

TABLE IV: Core environment objects in the AgentPolis

framework.

Polis framework, the environment is decomposed into and,

consequently, represented as a collection of environment
objects. Each environment object represents a fragment of the

modelled physical reality and its associated state. The state

of an environment object is represented by its attributes and

it can only be changed by actions or by the object's internal

update logic. Environment objects notify agents through

sensors about changes in their state.

For example, the TransportNetwork environment ob­

ject represents a transport network (road, cyclepath, footpath

or railway). It consists of a graph of junctions and connect­

ing network segments with associated queues and update

logic for modelling congestion. The queue is used by the

MoveVehicle action to determine how much time a vehi­

cle needs to move along the respective network segment. The

list of the environment objects provided by the AgentPolis

framework is given in Table IV.

F Queries

Queries are used by agents to obtain information about the

state of the environment. Queries read, filter or aggregate

but do not change the state of any environment objects.

In contrast to sensors, queries are invoked by the agents

(or, typically, by activities)3. Although not strictly necessary

- calls to queries could be replaced with direct calls to

respective environment objects - queries improve encapsu­

lation by providing a layer that hides environment's internal

implementation from agents.

For example, given an agent identifier, the

AgentP osition query returns the position of the

agent as the identifier of the transport network node on

which the agent is located. The list of queries implemented

in the framework is given in Table V.

3Queries can therefore be viewed as information pull requests, while
sensors correspond to information push requests.

978-1-4799-2914-613/$31.00 ©2013 IEEE 2155

Query Description
AgentPosition Returns the current position of an agent or an

environment object.
PTStopPosition Returns the position of a (public transport) stop

or station.

TABLE V: Core queries in the AgentPolis framework

Action
'­

Query

,
Environment object

Fig. 3: Simplified architecture of AgentPolis models.

G. Communication Protocols

Communication protocols are the abstraction for mod­

elling inter-agent communication by means of message pass­

ing. At the moment, the framework core only provides

simple protocols: I-to-l messaging and I-to-many

messaging. Additional, more complex protocols (e.g.,

tendering and auctions) have, however, been implemented

as part of application-specific models (see Section VII).

H. Reasoning Modules

As part of their behaviour, agents may need to make

decisions that require executing complex algorithms. In the

AgentPolis framework, such algorithms can be encapsulated

into reasoning modules and reused in different activities.

At the moment, the only reasoning module provided in

the framework core is the]ourneyPlanner module encap­

sulating the fully multimodal journey planner developed in

[9]. The module, given an origin and destination location

and time constraints, finds a shortest-duration journey plan

that can subsequently be executed by agent activities. Addi­

tional reasoning modules have been implemented as part of

application-specific models (see Section VII).

Figure 3 shows how all modelling abstraction relate to

each other in AgentPolis simulation models.

VI. SIMULATION ENGINE AND TOOLS

The library of modelling elements and the underlying

ontology of modelling abstractions form the fundamental

part of the AgentPolis framework. Additional functionality

is, however, required for practically using developed models

as part of simulation-based evaluation and decision support

processes. To this end, the AgentPolis framework comprises

software components that support the whole modelling life­

cycle from importing real-world data, executing simulation

models and analysing and visualizing simulation results.

A. Data Import Tools

To facilitate the incorporation of real-world data into

AgentPolis models, the framework provides data importers

for converting external datasets into framework's internal

data models. At the moment, the framework supports import­

ing data in the OpenStreetMap (OSM)4 and General Transit
Feed Specification (GTFS)5 formats, including automated

cross-referencing between both formats (e.g., mapping the

corresponding public transport stops between OSM and

GTFS files). Through the importers information about road,

cyclepath and footpath networks, public transport routes and

timetables and basic land use can easily be incorporated

in AgentPolis models. Files imported by the framework

tools are checked for consistency in order to prevent the

hard-to-trace errors caused by invalid data during simulation

execution.

AgentPolis models can incorporate additional categories of

data, such as socio-demographic data or origin-destination

matrices representing travel flows. However, as no estab­

lished standards exist for these data categories, importers for

such datasets are scenario-specific and need to be developed

or customized for each model.

B. Simulation Engine

The simulation engine for executing AgentPolis simulation

models is an essential part of the framework. The AgentPolis

framework employs the discrete event simulation (DES)
approach [2] in which the operation of the target system

is modelled as a discrete sequence of events in time. Each

event occurs at a particular instant in time and marks a

change of state of the system. Between consecutive events,

no change in the system is assumed to occur; thus the

simulation can directly jump in time from one event to the

next, which makes it computationally more efficient than

the time-stepped approach that is mostly used in transport

models.

In AgentPolis models, events provide the low-level causal

link between actions, model updates and sensor invocations.

Whenever an agent executes an action, the action inserts an

event into the event queue; the event has a state update logic

attached specifying which environment objects should be up­

dated as the effect of action execution. The state update logic

is executed only after the simulation time corresponding to

the duration of the action has elapsed. The modification of

the environment state caused by the update logic triggers

sensor notifications which are received by agents (activities);

the agents (activities) can consequently react by invoking

further actions, thus closing the model update loop.

The AgentPolis uses the discrete event-queue implementa­

tion provided by Alite6, a general purpose lightweight toolkit

for building multiagent systems. A screenshot of a running

AgentPolis simulation is given in Figure 4.

4http: / / openstreetmap.org
5https: / / developers.google.com / transit / gtfs /

reference
6http: / /alite.agents.cz

978-1-4799-2914-613/$31.00 ©2013 IEEE 2156

Fig. 4: High-level view of a running AgentPolis simulation

model. Road (black), pedestrian (grey), tram (yellow) and

metro (red) networks and UrbanCitizen (green) and PTDriver

(yellow) agents are shown. Simulation events are depicted in

the overlay window.

C. Result Reporting, Analysis and Visualization Tools

Recording simulation progress and results is a necessary

part of simulation execution. AgentPolis provides a cus­

tomizable logging mechanism employing the Java event bus

programming concept that allows detailed recording of low­

level simulation events (e.g. the start and end of the execution

of activities and actions). From the recorded events, higher­

level, aggregate performance metrics can be calculated and

visualized using a customizable reporting pipeline. The

pipeline is based on the open-source GIS software stack

employing the PostGIS7 spatially enabled database and the

OpenGe08 interactive geovisualization framework. Powerful

aggregation and filtering functions can easily be specified

using the spatial extension of the SQL language supported

by PostGIS. In addition to OpenGeo, export to Google Earth

is also supported and is particularly useful for interactively

exploring temporal geospatial data. Together, the above tools

allow analysing and browsing simulation results at different

spatial and temporal resolution.

VII. EXAMPLE MODELS

We have successfully used the AgentPolis framework to

implement several simulation models. The models cover a

wide range of interaction-rich transport systems that differ in

a number of important characteristics, including the type and

number of agents, the complexity of agent decision making,

the type and number of transport modes present and the com­

plexity of agent-to-agent interactions. The basic information

about the implemented models is given in Table VI - below

we describe each model in more detail. In Table VII, we

then list the main modelling elements used in each of the

models.

7http: / / postgis.net
8http: / / opengeo.org

Model # agents Types of agents
Multimodal mobility 105 - 10' Urban citizen, PT driver,

Ridesharing
Dynamic pricing
Fare inspection
Parcel logistics

102
_ 103

102
104

_ 105
102

Driver
Passenger, Driver, Dispatcher
Passenger, Driver
Passenger. Inspector
Dispatcher, Van driver

TABLE VI: List of implemented AgentPolis models with the

overall number and the types of agents used.

A. Multimodal Urban Mobility

The multimodal urban mobility model is the most com­

prehensive and the largest model built using the AgentPo­

lis framework, covering areas up to thousands of square

kilometres and simulating populations of up to millions

of inhabitants. Employing the activity-centric approach, the

model aims to reproduce travel in a multimodal urban

transport system. The model is similar in purpose and scope

to other activity-based mobility models but it is internally

implemented in the fully agent-based way - this gives

it the benefits associated with the agent-based approach,

in particular the ability to model within-the-day decision

making and to include ICT-powered mobility services relying

on ad hoc inter-agent interactions in the activity model.

Technically, the model utilizes most of the core AgentPolis

modelling elements with the UrbanTraveller lifecycle being

the basis of the agents representing the population of the

modelled region.

B. Real-time Ridesharing

The real-time ridesharing model has been implemented

for studying the performance of ridesharing services under

different deployment conditions. The model comprises three

types of agents: vehicle drivers (corresponding to drivers of

collective taxis, flexible buses or shared private vehicles),

passengers of the ridesharing service, and the dispatcher,

who matches passengers with drivers and vehicles. While the

dispatcher agent is new, the driver and the passenger agents

largely reuse the core AgentPolis activities. New, model­

specific logic consists of the negotiation protocol used to

arrange shared rides and the associated decision logic on the

side of participating agents. Extension on lower-level of the

model, i.e. actions and sensors, were not required.

In its basic configuration, the ridesharing model only

employs hundreds of agents directly participating in the

modelled ridesharing service. Thanks to its fully agent-based

design, it is, however, possible to combine the ridesharing

model with the multimodal urban mobility model and to

study interactions between ridesharing services and other

mobility modes and services.

C. Auction-based Dynamic Taxi Pricing

The dynamic taxi pricing model has been implemented for

studying the effect of auction-based dynamic pricing of taxi

services. In contrast to the previous model, the modelled

dynamic taxi pricing scheme relies on peer-to-peer inter­

actions and only contains two types of agents: passengers

978-1-4799-2914-613/$31.00 ©2013 IEEE 2157

Abstraction

Activities

Env. Objects

Actions

Sensors

Queries

Protocols

Reasoning
modules

Element
Walk
RidelnVehicle
RideOnPT
DriveVehicle
ParkVehicle
Wait
DriveTaxi

PatrolInStation

PatrolInVehicle

TransportNetwork
PTStops
Attractor
Vehicle

Warehouse

DeliveryPoint

VehicleInspectArea

StationInspectArea

MoveVehicle
MoveAgent
TeleportAgent
GetlnVehicle
GetOffVehicle
WaitForVehicle
RideInTaxi

TaxiWaitForJob

LoadParcel

UnLoadParcel

UnLoadParcel

InspectPassengers

ExistInspectArea

EnterInspectArea

PositionUpdated
NextVehicleLoc.
DrivingFinished
WaitingFinished
VehicleArrived
Passenger InSight

InspectorInSight

GetAgentPosition
GetPTStopPosition
l-to-l Messaging
Auction

.d
c

S

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

• •

•

•

+

JourneyPlanner • •

EuclideanAStar

DistanceTripFinder

•

o

•

+

•

•

•

•

•

•

•

+

+

•

•

•

•

•

•

•

•

•

•

•

+

+

•

•

+

+

+

•

•

•

•

•

+

+

•

•

•

•

+

+

•

•

•

+

+

•

•

•

•

•

+

+

+

•

•

•

•

•

+

+

•

TABLE VII: The use of modelling elements in the example

AgentPolis models. Core elements printed using normal font;

newly added in italics. (. reused core element, 0 modified

core element, + newly added modelling element).

and taxi drivers. Similarly to the ridesharing model, the

taxi pricing model reuses a large part of framework's core

modelling elements, with the majority of newly developed

code concerning the auction protocol and the associated

decision logic. In contrast to the ridesharing model, new

activities related to travelling by taxi were added. Again,

the taxi pricing model can be combined with the multimodal

urban mobility model to study mutual interactions.

D. Urban Parcel Logistics

The urban parcel logistics model has been implemented

for studying the performance of parcel delivery services.

The model comprises two types of agents: van drivers and

dispatchers. Because of its focus on the transport of goods

rather than people, the model lies outside the main focus

of the AgentPolis framework and, consequently, provided an

interesting test of the flexibility of the framework's design.

The framework has passed the test successfully - although

the model required the implementation of several model­

specific elements at the environment level, these elements

could be expressed using the AgentPolis abstractions. Specif­

ically, we added depots and delivery locations as new types

of environment objects together with actions and sensors

related to parcel loading and unloading.

E. Public Transport Fare Inspection

Finally, the fare inspection model has been implemented

for studying the effectiveness of different strategies for con­

ducting ticket inspection patrols in public transport networks.

The model takes travel demand, ticket options and inspector

patrol schedules as the input and produces inspection and

fare evasion statistics as the output. Different passenger and

fare evasion strategies, including the ability of passengers to

avoid inspection through learning and communication, are

modelled. The model uses two types of agents: passengers

and ticket inspectors. The implementation of the model

reused a significant portion of the core AgentPolis elements

but also required the addition of a number of elements related

to performing ticket inspections.

Because of their strong reliance on modelling ad hoc

interactions and just-in-time decision making, security mod­

els, such as this one, are another important category of

interaction-rich transport systems that can benefit from the

fully agent-based modelling supported by the AgentPolis

framework.

F Additional Models

We are currently considering the implementation of

models of other ICT-powered transport systems, including

demand-responsive fleets of driverless cars, smart parking

schemes and electrical vehicles sharing services. We believe

that in their implementation, similarly to the models already

implemented, it would be possible to reuse a large number

of AgentPolis core modelling elements and that the exten­

sions and additions required would be expressible using the

abstractions of the modelling ontology.

VIII. DISCUSSION

The positive experience with the development of several

models confirmed the viability of the fully agent-based

approach, and the AgentPolis framework in particular, to

modelling interaction-rich transport systems. The five models

implemented represent a diverse set of models, each testing

the flexibility of the framework in a different way. The

framework proved capable of supporting models with a low

number of computationally intensive agents (e.g. ridesharing

or parcel logistics) as well as models with millions of

lightweight agents (multimodal urban mobility). The latter is

important because it shows that the higher flexibility of the

978-1-4799-2914-613/$31.00 ©2013 IEEE 2158

fully agent-based approach does not come at the expense of

degraded runtime performance of fully agent-based models.

Furthermore, despite the diversity of the implemented mod­

els, the ratio between the reused and the newly developed

code remained good, with the newly developed code mostly

focusing on the logic specific to each model. Although

in some cases significant extensions were necessary (in

particular for parcel logistics and fare inspection models),

they were easily accommodated by the framework.

There are still a number of open issues, though. The

development of AgentPolis models remains a non-trivial task

and requires model developers with good software design

and implementation skills. In some cases, there are multiple

ways in which a certain behaviour can be expressed in the

framework but only some of them allow the model to fully

leverage the strengths of the framework and its tools. At

the moment, the modeller can refer to the example models

for guidance on which abstractions should be employed for

which purposes; in the future, we plan to make such guidance

explicit in a set of model design patterns.

The above issue is also related to the fact that the simula­

tion logic concerning a certain fragment of the modelled phe­

nomena typically cuts across several modelling abstractions

(in particular activities, actions, sensors and environment

objects); the implementations of these abstractions thus need

to be kept consistent, which is not easy. Although such

a mutual dependency problem cannot be fully solved and

affects all extensible simulation platforms, there are ways in

which the burden on the modeller can be reduced and which

we consider for the future versions of the framework. A usual

way to address the dependency problem would be to provide

a set of well-defined and encapsulated extensions points,

which would reduce the need to modify core modelling

elements and consequently shield the developer from having

to understand their exact interdependencies. This approach

would be particularly efficient if the scope of the framework

is narrowed. Focusing, e.g., solely on modelling on-demand

mobility services (such as ridesharing) would allow fixing

the majority of lower-level modelling elements; the model

developer would then only implement higher-level model

logic governing the arrangement of rides but not their actual

execution. In a longer run, the maintainability and extensibil­

ity of the framework could be improved by employing more

modular programming abstractions - such as traits or lambda

expressions - available in some progressive programming

languages now and coming to Java in a near future.

The AgentPolis framework currently provides the

strongest support for modelling the environment and agent­

to-environment interactions. The support for modelling agent

behaviour, on the other hand, is relatively basic, with activ­

ities and reasoning modules as the only supporting abstrac­

tions. This is partly intentional because of the diversity of

agent behaviours and the notorious difficulty to provide flex­

ible abstractions for programming general agent behaviour.

That said, we plan to improve the support for behaviour

modelling by providing simple yet proven behaviour pro­

gramming abstractions such as finite state machines.

IX. CONCLUSIONS

We have developed a modular framework for the im­

plementation, execution and analysis of simulation models

of interaction-rich transport systems. The framework fully

adopts the agent-based modelling paradigm, which makes it

very versatile and capable of modelling systems with com­

plex ad hoc interactions and just-in-time decision making.

We have used the framework to implement models of five

different transport systems. The positive experience obtained

has confirmed the effectiveness of the fully agent-based

approach in general, and of the AgentPolis framework in

particular, in quickly building models of different kinds of

interaction-rich transport systems.

ACKNOWLEDGMENT S

This work was funded by the Ministry of Education, Youth

and Sports of Czech Republic (grants no. TE0 1020 155 and

7E 12065) and by the European Union Seventh Framework

Programme FP712007-20 13 (grant agreement no. 289067).

REFERENCE S

[I] M. Balmer, K. Meister, M. Rieser, K. Nagel, and K. W. Axhausen.
Agent-based simulation of travel demand: Structure and computational
performance of MATSim·T. In TRB Conference on Innovations in

Travel Modeling, 2008.
[2] J. Banks, J. S. Carson, B. L. Nelson, D. M. Nicol, et at. Discrete­

event system simulation. Pearson Prentice Hall Upper Saddle River,
NJ,2005.

[3] M. Barth and M. Todd. Simulation model performance analysis of a
multiple station shared vehicle system. Transportation Research Part
C: Emerging Technologies, 7(4):237-259, 1999.

[4] S.·F. Cheng and T. D. Nguyen. Taxisim: A multiagent simulation
platform for evaluating taxi fleet operations. In Proceedings of the

201 1 lEEEIWICIACM lnternational Conferences on Web Intelligence
and Intelligent Agent Technology· Volume 02, pages 14-21, 2011.

[5] F. Ciari, M. Balmer, and K. W. Axhausen. Concepts for large­
scale carsharing system: Modeling and evaluation with agent-based
approach. In Transportation Research Board 88th Annual Meeting,
number 09-1888,2009.

[6] F. Ciari, M. Balmer, and K. W. Axhausen. Large scale use of collective
taxis. Technical report, ETH, Eidgenossische Technische Hochschule
ZUrich, IYT, Institut fUr Yerkehrsplanung und Transportsysteme, 2009.

[7] P. M. d'Orey, R. Fernandes, and M. Ferreira. Empirical evaluation
of a dynamic and distributed taxi-sharing system. In Proceedings of
the 15th lnternationallEEE Conference on lntelligent Transportation
Systems, pages 140-146. IEEE, 2012.

[8] M. Horn. Multi-modal and demand-responsive passenger transport
systems: a modelling framework with embedded control systems.
Transportation Research Part A: Policy and Practice, 36(2):167-188,
2002.

[9] J. HrnCir and M. Jakob. Generalised time-dependent graphs for fully
multimodal journey planning. In Proceedings of 15th International
IEEE Conference on Intelligent Transportation Systems. IEEE, 2013.

[10] E. Lioris, G. Cohen, and A. de La ForteUe. Overview of a dynamic
evaluation of collective taxi systems providing an optimal perfor­
mance. In Proceedings of lEEE Intelligent Vehicles Symposium, pages
1110-1115. IEEE, 2010.

[11] L. M. Martinez, G. Correia, and J. Viegas. An agent-based model
to assess the impacts of introducing a shared-taxi system in Lisbon
(Portugal). In Proceedings of the 7th International Workshop on
Agents in Traffic and Transportation, 2012.

[12] F. Michel, J. Ferber, A. Drogoul, et al. Multi-agent systems and
simulation: a survey from the agents community's perspective. Multi­
Agent Systems: Simulation and Applications, 2009.

[13] L. Quadrifoglio, M. M. Dessouky, and F. Ordonez. A simulation study
of demand responsive transit system design. Transportation Research

Part A: Policy and Practice, 42(4):718-737, 2008.
[14] G. Wainer. Developing a software toolkit for urban traffic modeling.

Software: Practice and Experience, 37(13):1377-1404, 2007.

978-1-4799-2914-613/$31.00 ©2013 IEEE 2159

