
A Generalized Notion of Platforms for Model

Driven Development

Colin Atkinson1 and Thomas Kühne2

1 University of Mannheim, 68161 Mannheim, Germany colin.atkinson@ieee.org
2 Darmstadt University of Technology, 64289 Darmstadt, Germany
kuehne@informatik.tu-darmstadt.de

1 Introduction

Model driven development (MDD) is based on the principle of separating the
description of an application’s abstract properties and logic from a description
of its platform specific implementation, and of automating the transforma-
tion of the former into the latter using advanced Model Transformation Tools
(MTTs). The most mature formulation of this vision at present is the OMG’s
“Model Driven Architecture” (MDA) which refers to a high-level description
of an application as a platform independent model (PIM) and a more concrete
implementation-oriented description as a platform specific model (PSM). Fig-
ure 1, taken from the OMG’s MDA Guide [OMG03] provides a “suggestive”
picture of the MDA vision by illustrating how PIM’s are automatically trans-
formed into PSMs with the help of additional input describing the properties
and services offered by the target “platform”. While this is undoubtedly a
very powerful and elegant metaphor for software development, there are some
significant issues which need to be sorted before this vision becomes a reality
in mainstream software engineering. Chief among them is the question of what
precisely a platform is and what a platform model looks like. Of the three fun-
damental ingredients of MDA referred to in Fig. 1, “model”, “transformation”
and “platform”, “platform” is currently the vaguest and least well-defined.
This may be because most of the research on MDA to date has focused on
the “transformation” challenge [Met05, GGZ+05, SPGB03]. There are few
explicit definitions of the notion of “platform” or platform model in the MDA
literature and those that do exist are rather vague and high level. However,
without a precise and concrete definition of what a platform is and what a
platform model looks like it is impossible to formulate a precise notion of
PIMs, PSMs and the additional “input” depicted in Fig. 1.

The most explicit definition of the concept of a platform in the MDA
context is probably to be found in the MDA Guide [OMG03], which states:

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

2 Colin Atkinson and Thomas Kühne

Platform

M od e l(s)

…

Fig. 1. Core Principle of MDA

“A platform is a set of subsystems and technologies that provide a
coherent set of functionality through interfaces and specified usage
patterns, which any application supported by that platform can use
without concern for the details of how the functionality provided by
the platform is implemented.”

Although this is a very high-level definition which leaves a lot of scope for
interpretation, it does make it clear that a platform is intended to be viewed
as a vehicle for the execution of a software application. This is reinforced by
the “flagship” text that accompanies the MDA logo on the OMG’s website3:

“Platform-independent applications built using MDA and associated
standards can be realized on a range of open and proprietary platforms,
including CORBA, J2EE, .NET and Web Services or other Web-based
platforms.”

This is no accident of course, because the word “platform” is generally
used in the IT industry to refer to machines or systems that are built to
support the execution of software applications in their end-user environment.
In addition to the platforms already mentioned, examples include hardware
such as the Intel Pentium or Power PC processors, operating systems such as
Linux or Windows, and virtual machines such as the Java Virtual Machine
and the .NET Common Language Runtime. If one views a platform as an
execution infrastructure, it seems self evident that a “platform model” is a
“model of an execution infrastructure”. However, this is as concrete a defi-
nition as one can extract from the OMG’s MDA literature, which is clearly
unsatisfactorily vague to drive the transformation from PIMs to PSMs. The
most concrete definition of “platform model” available today comes from the
school of thought that characterizes MDA in terms of transformation between

3 http://www.omg.org/mda/

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 3

domain specific languages (DSLs) [CKM+99, CK03, GS03]. According to this
school of thought, the essential difference between the input and output mod-
els in the MDA transformation illustrated in Fig. 1 is that they are written
in different languages (or languages dialects). In other words, the information
that has to be input into the MTT to effect the transformation is a descrip-
tion of the languages that the models are written in. Therefore, although it is
not stated explicitly, language definitions essentially play the role of platform
models in the DSL view of MDA. Thus, if one takes a DSL interpretation
of Fig. 1, the PIM is written in one DSL, the PIM in another DSL, and the
platform model(s) input to the MTT is a description of one or both of these
DSLs. In this chapter we challenge both of these implicit assumptions that
underpin the generally accepted notions of “platform” and “platform model”,
namely the “platform = execution infrastructure” assumption and the “plat-
form model = language definition” assumption. In the next section we start
by discussing the traditional view of a platform as an execution vehicle and
identify the various elements from which a platform is typically constructed.
Section 3 follows with a description of the traditional ways in which these
platform elements are described. In Sect. 4 we then present a more general
notion of “platform” which is sufficient to provide a sound foundation for
MDA. Finally, in Sec. 5 we discuss the ramifications of this model for the
MDA transformation approach depicted in Fig. 1 and the model transforma-
tion tools which are expected to enact them.

2 What is a Platform?

In the context of MDD, as mentioned above, a platform is regarded as “a set of
subsystems and technologies” that provide the capabilities needed to support
the execution of a software application. Because of their complexity, modern
execution platforms are generally visualized and organized as a hierarchy of
layers.

Hardware

Operating System

Virtual Machine

Language Runtime

Libraries

Framework

Fig. 2. Typical Platform Layers

Fig. 2 gives a schematic view of the layers that one typically finds in an
execution platform. A software application may have access to all the layers

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

4 Colin Atkinson and Thomas Kühne

in this hierarchy or some of the layers may completely hide layers below them.
For instance, an operating system may make some aspects of the underlying
hardware completely transparent (as in the “DirectX” video driver scheme),
or a virtual machine may completely abstract away the choice of an operating
system (as accomplished in Smalltalk [GR83]). The notion of a platform that
is relevant for a particular application depends on the set of layers that it
makes use of. For instance, if a virtual machine is not able to completely hide
the idiosyncrasies of an operating system’s file system or scheduling policy,
and these features are utilized by an application, then these aspects of an op-
eration system need to be part of the application’s perception of its execution
platform. In the following we consider each of these elements in turn.

2.1 Hardware

Computer hardware is the most basic kind of platform on which a computer
application can run, and forms the base of the hierarchy of layers. A hardware
platform makes a set of basic capabilities available to applications in terms of
a set of machine language instructions, memory, and various assisting com-
ponents, such as a floating point arithmetic unit, etc. Thanks to compiler
technology, these rarely if ever have to be considered in application develop-
ment. However, sometimes the performance criteria of a platform may only
be met if certain special-purpose hardware (such as a digital signal processor)
is used. In such cases, these hardware capabilities have to be included in the
platform model.

2.2 Operating System

The second layer in the hierarchy of platform elements is usually regarded
as being the operating system. This provides a whole host of additional ca-
pabilities such as file systems, processes, threads, etc. Operating systems are
rarely regarded as covering or hiding the underlying hardware because they do
not reproduce the execution capabilities offered by the hardware, but rather
augment it with many additional services. It is quite common for software
applications to depend on the specific capabilities offered by an operating
system just as much as on the underlying hardware. For example, one often
speaks informally of the “Wintel” platform. Thus an operating system also
needs to be part of an application’s perception of its platform.

2.3 Virtual Machine

Not all platforms have a virtual machine layer, but if present, this layer is
typically regarded as being on top of the operating system layer. The role
of a virtual machine is to make the actual choice of operating system and
hardware transparent. By doing so it obviates the need to compile all parts

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 5

of the application down to the layer of the operating system and hardware.
A virtual machine may completely hide the underlying layers from the layers
above, or it may let some of the underlying layer’s functionality or properties
shine through.

2.4 Language Support

Any layer above the virtual machine layer, or in its absence the operating
system layer, assumes a certain language which library, framework or appli-
cation are expressed in. While most of the support for executing the language
is provided by the virtual machine or hardware, the compiler adds important
functionality in the form of a language runtime system that is a part of the ex-
ecution platform. Also, high-level language constructs made available to layers
above are expressed as templates of low-level byte code or machine code. In
addition, predefined values available to programmers may be supported by
an underlying virtual machine but are part of, and are typically generated
by, the corresponding language support. The classic “runtime” system that
compilers bundle with their application hence also needs to be counted as
“language support”.

2.5 Libraries

Object-oriented programming languages like Java, C++ or Smalltalk typically
come with a rich set of libraries providing additional, predefined functionality.
Some of these libraries are regarded as standard, and must be present in
any platform that aims to support the language, while other are “optional”
and provide solutions only for specific domains or purposes. Libraries are the
basic mechanism by which middleware technologies that form the foundation
of distributed platforms are realized. All of the main capabilities associated
with middleware technologies, ranging from “remote message interchange”
and “transaction support” to “components and services” are made available
to developers in the form of so called “Application Programming Interfaces”
(API’s) as libraries. Thus, the libraries upon which an application depends
form an essential part of its perception of its platform.

2.6 Framework

In contrast to libraries, which can be regarded as passive building blocks for
the assembly of software, frameworks contain active control code. They pre-
structure applications built using them according to some standard control
scheme and provide standard solutions for a family of applications. A middle-
ware solution featuring services like “transaction control” or cleverly managed
persistence which embodies certain standard usage styles, is much more akin
to a framework than a library. The special utility of a framework in providing

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

6 Colin Atkinson and Thomas Kühne

an execution infrastructure over and above a library is not only the generic
control code but also the design of how to use parts of the framework (or a
library) in a generic way across a family of applications. Technically, one could
subsume frameworks under “Libraries” as well, since they also represent stan-
dard, predefined code. However, if we want to characterize the purpose and
nature of the predefined code, it makes sense to distinguish between library
and framework layers.

3 Describing Platforms

Having discussed the various elements that comprise a modern execution plat-
form, in this section we now discuss what information needs to be captured
to fully characterize a platform from the perspective of an application.

3.1 Hardware

A hardware platform is characterized by the set of instructions, memory model
and further functionality that it supports. In general, some form of assembler
language plus a description of available hardware components is sufficient to
formally capture the properties of a particular type of hardware platform.

3.2 Operating System

An operating system is characterized by the set of services or so-called “sys-
tem calls” that it makes available to applications. Although these services are
ultimately realized in terms of routines implemented in the underlying hard-
ware platform, application programmers, or users interacting directly with the
operating system, invariably invoke them using a high-level linguistic represen-
tation. Therefore, the definition of the system calls supported by an operating
systems usually involves the use of a language to describe the signatures of
the calls that can be invoked. For instance, in the case of the Unix operating
system this interface (and implementation) language is “C”. Furthermore, an
operating system generally offers standard instances which applications can
use. UNIX , for example, offers instances such as /dev/null, /dev/zero, or a
system timer.

3.3 Virtual Machine

The description of a virtual machine is usually more complex than that of an
operating system because it involves the definition of some of the programming
language features as well as the predefined system calls that the language
environment provides. In other words, it needs to cover both hardware and
operating system layers plus an additional language support layer (see below).

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 7

3.4 Language Support

The description of a (programming) language is generally captured in terms
of four main elements:

1. Abstract Syntax
2. Concrete Syntax
3. Static Semantics (or well-formedness rules)
4. Dynamic Semantics (or behavior semantics)

Usually the static semantics (3) is checked prior to execution (e.g., by a com-
piler), so it is not normally necessary to include it in the description of the
runtime infrastructure, i.e., the platform model. Likewise, the concrete syntax
(2) typically plays no role at runtime, as it will have been compiled to byte
code, or machine code prior to execution. In some cases, one might rely on
runtime interpretation or compilation of (program generated) source code, in
which case 2 & 3 become relevant again for a complete platform description.

3.5 Library and Framework

Apart from “native classes”, which are really part of the underling language
cast in terms of library elements, the library and framework aspects of a
platform are invariably expressed using the features of the language support
by the language support and virtual machine layers.

4 Platforms and Platform Models for MDA

Having discussed how platforms are typically structured and described in
traditional IT technology, we are now in a position to explain how we believe
these approaches should be generalized to support the notions of “platform”
and “platform model” in MDD. In doing this we have four goals in mind. We
want to provide a notion of platform and platform model that –

• is consistent with OMG MDA terminology
• accommodates the approaches describes in the previous two sections
• is complete
• is composed of orthogonal concepts, avoiding redundancy and overlap

To achieve these goals we need to move away from two of the fundamental
assumptions which implicitly underpin the notions of platform and platform
models in the MDA literature today, namely the assumptions that

1. platform = execution infrastructure
2. platform model = language definition

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

8 Colin Atkinson and Thomas Kühne

Although platforms are most commonly thought of as execution infrastruc-
ture in the IT industry, this is not always the case. In general, a platform can
be viewed as any system capable of supporting the fulfillment of some goal
with respect to a software application. Executability is certainly one impor-
tant goal, but it is not the only one. Next to execution, useful goals to support
are checking, presentation and even the creation of models, i.e., model devel-
opment. Thus, the concept of a platform in its full generality also embraces
what is typically viewed as the development environment as well the execution
environment. In this sense, a system which supports the model-based repre-
sentation of an application as part of development is just as much a platform
as systems that support its execution, testing, validation (see [GTS05]) or
benchmarking for example. Generalizing the concept of “platform” to encom-
pass both deployment and development environment brings several benefits as
explained below. Ideally, a model of a platform should provide a complete and
accurate description of that platform, so that any application that is consis-
tent with the platform model is guaranteed to be processable by that platform.
Although language definition is an important element of such a platform def-
inition, as discussed in the previous section it is not by itself enough. There
are aspects of a platform that are not captured using the classic language
description techniques, such as the functionality provided as system calls and
libraries. Thus, the concept of a platform model needs to be extended to
include other elements.

4.1 Generalized MDD Platform Model

Analyzing the various platform elements and description techniques discussed
in Sects. 2 & 3 we can identify four basic facets through which information
about the capabilities and rules of an object-oriented platform is conveyed.

Language The first facet is a language facet which describes the basic con-
cepts with which applications designed to use the platform can be con-
structed. This of course, corresponds to the language support element of
the platform description techniques discussed in Sec. 3.

Predefined Types The second facet consists of a set of predefined types
(e.g., classes) which augment the core language capabilities with addi-
tional services. This corresponds roughly to the library element in tradi-
tional platforms, but includes predefined types coming from the language
support layer (e.g., class “Object” in Java).

Predefined Instances The third facet consist of a set of predefined in-
stances (e.g., objects), which are ready to be used out of the box. This facet
contains the pre-instantiated objects that are found in some libraries such
as Java’s standard I/O streams “in, out, err” or Smalltalk’s “true” and
“false” instances, but also preexisting system timers, etc. Furthermore,
if predefined operations are thought of as belonging to a single unified
system (in the sense of systems calls) this is the facet which contains the
system as a pre-instantiated object ready to receive system calls.

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 9

Patterns This fourth facet consists of the additional concepts and rules that
are needed to use the capabilities found in the previous facets in a mean-
ingful fashion. We use the terms “patterns”, but in general any “usage
rules”, such as those that characterize a framework, are found in this
facet. Typically, software may be used in many contexts and ways and
displays different properties accordingly. In order to achieve exactly the
functionality and properties intended for a particular standard platform,
one must associate the corresponding usage patterns with the platform.
A complete platform description therefore not only needs to specify the
available parts but also the intended ways in which to use these parts. This
knowledge can be expressed in a variety of ways, including as patterns in
the style of design patterns [GHJV94].

In Fig. 3 we represent all the facets including their role by representing pat-
terns as an oval covering the three other facets. The language facet sits above
“Types” and “Instances”, since it is the defining layer for both. Layer “Lan-
guage” corresponds to language-definition, whereas “Types” and “Instances”
correspond to language-usage. We refer to this view of a platform as the Gen-
eral Platform Model (GPM). We only show two logical metalevels (types and
instances) in this picture since most mainstream languages do not offer more
then two levels of language use. In general, Fig. 3 may feature further facets
below “Language”, such as “Metatypes”, etc.

Language

Types Instances

Fig. 3. General Platform Model

An important point about the general platform model illustrated in Fig. 3
is that it is not intended to correspond to a cumulative collection of plat-
form model elements as discussed in Sect. 2, but rather is intended to provide
a way of characterizing each element. Each element may place a different
emphasis on the different platform facets, but can nevertheless be expressed
using the same overall notion of platform. For example, an operating system,
which offers most of its capabilities in the form of system calls, will have a
platform model that is predominantly centered on the instance facet. On the
other hand, a virtual machine, which offers a large proportion of its capa-
bilities in the form of a language, will naturally have a platform model that
is predominantly centered on the language facet. It is our contention that

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

10 Colin Atkinson and Thomas Kühne

any kind of platform can be modeled through the appropriate combination of
these facets, and in fact, is typically incomplete if one more of the facets are
ignored. In Fig. 4 we illustrate this by showing how each of the traditional
platform notions discussed in Sect. 2 can be represented in terms of the GPM.

Fig. 4. Full Platform Description

4.2 Stack Example

To illustrate that these four facets are indeed sufficient and minimal let us
consider how a small example would be modeled using the GPM. Figure 5
shows a highly simple Stack class written in Java.

According to our approach, this Stack is written based on a model of
the platform that is going to execute it – namely the Java Virtual Machine
and its predefined execution environment – after compilation by the standard
JDK compiler. To ascertain what aspects of the platform are important for
this application we simply have to ask whether a potential change to the
way in which the application is represented would render it non-executable
by the target platform. Clearly the features of the core Java language are
important (language facet), because if we were to use any non-Java features
the program would no longer compile. In the extreme case we could write
the code in another language like C++, but then the application would be
targeted to a different platform and would not be executable on the Java
platform. Another important feature of the stack class is its use of the utility
class “Vector” from the predefined Java library (types facet). This is clearly
another dependency on the Java platform, since if this class were not available,
or were given a different semantics to that expected, the application would not
run or would not run as expected. This dependency has nothing to do with
the basic language (language facet), however. It would be perfectly possible
to define another platform based on the same Java core language but with a
different library of predefined classes. Another dependency of the stack class

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 11

import java.util.Vector;

public class Stack {

protected int max, elems;

protected Vector entries;

public Stack (int maxValue) {

max = 10; elems = 0;

entries = new Object[max];

}

public void push (Object o) throws Exception {

if (elems < max) {

entries.addElement(o);

elems++;

} else {

System.out.print ("Stack is full")

throw new Exception("FullStackException");

}

}

public Object pop () throws Exception {

if (elems >= 0) {

return entries.lastElement();

} else {

System.out.print ("Stack is empty")

throw new Exception("EmptyStackException");

}

}

}

Fig. 5. Java Stack Example

on the Java runtime environment is its use of the standard output stream
“out” to output messages (instances facet). Although the stream is accessed
via the library class System, in effect, “out” references a predefined stream
object. As with the predefined classes such as Vector, the absence of the
standard output stream, or a change to its semantics, would change the Stack’s
ability to execute on the platform, or would change its intended effect.

Fig. 6 illustrates how the various elements of the standard Java platform
can be represented according to the GPM approach. For simplicity we have
refrained from extending the example to feature a full application of a “Handle
Body” pattern, such as the Bridge pattern [GHJV94], and therefore left out
the patterns facet. As illustrated by this example, a platform changes if any
one of the facet elements in the GPM changes. Thus, a change to the types
or to the instances results in a different platform even if the core language
remains the same. In fact, this is precisely how Java, as a general technology

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

12 Colin Atkinson and Thomas Kühne

Language
(Java)

Types
(e.g., Object,
Vector, etc.)

Instances
(e.g., "in",
"out", etc.)

(e.g., Iterator,
Decorator, etc.)

Fig. 6. GPM Representation of the Java Platform

foundation, has been adapted by Sun to support the many middleware and
enterprise technologies that it is now known for. The core Java language re-
mains untouched whenever possible, but the set of predefined set of types and
instances is extended or changed. Figure 7 shows how the J2EE platform is
defined by adding additional predefined types and instance features to those
available in the basic J2SE platform, leaving Java as the base language in the
language facet. In addition, the platform contains a well-defined set of new
patterns which describe how these types and instances should be used.

Java

Java std.
classes

&

J2EE interfaces
(e.g., EJBHome)

Java std
I/O streams

&

J2EE instances
(e.g., JMS Queue,

Application Container)

&

Fig. 7. J2EE Platform

An advantage of explicitly separating the distinct aspects of a platform in
a GPM is that the relationship between high-level and intermediate-level rep-
resentations of applications is clarified. Java technology, for example, actually
defines two platforms: The high-level language platform in which application
code is represented in the Java high-level language (like the Stack class in
Fig. 5), and the byte code platform in which application code is represented
in Java byte code. Thus, a full model of standard Java (J2SE) technology
would include two GPMs: One describing the capabilities used by application
developers based on the Java high-level programming language and the other
describing the capabilities of a Java virtual machine in terms of Java byte
code. A Java compiler can then be understood as a very specialized model
transformation tool which maps models written according to one GPM into

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 13

models written according to another. As a more complex example we consider
how the GPM might be used to model the various language and capabilities
in the “.NET” Platform. The generic term .NET encapsulates a wide range
of development technologies ranging from enterprise servers to web services.
However, the core of the technology is the so called .NET framework which
provides a variety of different execution platforms. The basic architecture of
this family of platforms is described in an ECMA standard, known as the
Common Language Infrastructure (CLI) [CLI02]. One of the key goals of this
standard is to make it possible for code written in different languages to in-
teroperate. To achieve this, the CLI defines a language-spanning type system,
known as the Common Type System (CTS) and a core set of features (the
Common Language Specification (CLS)) that all compliant languages must
support. Code written in a language that is compliant with the CLS is referred
to as managed code and is guaranteed to be able to execute all .NET features
and to interoperate with all other managed code, regardless of the managed
language used to write it. Figure 8 illustrates how the GPM can be used to
represent the family of platforms encapsulated by the .NET framework.

Visual Basic

VB Types
.NET FW
Classes

Console IO
Debug
Asserts

VB Types
.NET FW
Classes

Console IO
Debug
Asserts

C#

C# Types
.NET FW
Classes

Console IO
Debug
Asserts

Managed C++

C++ Types
.NET FW
Classes

Console IO
Debug
Asserts

C++ Types
.NET FW
Classes

Console IO
Debug
Asserts

.NET
Intermediate

Language

Common
Types

Console IO
Debug
Asserts

Fig. 8. .NET Platform Family

The GPM at the top of Fig. 8 represents the low-level execution plat-
form defined by the Common Language Infrastructure in terms of the Com-
mon Type System and the intermediate language. This is implemented as the
Common Language Runtime. The lower three GPM’s in Fig. 8 represent some
of the different managed language environments currently implemented. The
only aspect that differs in these GPMs is the base language in the language
facet and the availability of extra language-specific types, such as Visual Basic
specific types in the second GPM, C++ specific types in the third GPM, etc.
Several of the GPMs in addition contain specific features in their instance

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

14 Colin Atkinson and Thomas Kühne

facet. For example, the C++ GPM contains the system instances as an ab-
straction of the underlying runtime system responsible for realizing system
calls, the J# GPM contains the usual standard I/O instance objects such as
“in” and “out”, etc. Furthermore, each of the platforms in the platform fam-
ily defines a set of patterns (usage guidelines) for the use of the common and
specialized features.

Most of the “.NET” features are wrapped up in the predefined type library
captured in the type facet of the GPM. In the case of .NET, the framework
library contains a vast collection of classes which provide a wide range of
capabilities ranging from basic network and middleware services through to
features for database access, dynamic web page generation, GUI development
and web service creation.

5 Model Transformation Tools

In the previous section we introduced the concept of the General Platform
Model, and explained how it can be used to model all of the different kinds of
execution platforms encountered in MDD. We also introduced the notion that
all environments which perform some useful function with respect to a software
application should be regarded as platforms and characterized using GPMs,
not just execution platforms. In this section we discuss the ramifications of
these ideas on the MDD vision, and explain how they help resolve the issues
identified in the introduction.

The MDA literature usually presents the core transformation concept as
if platform specificity or independence of the input and output models were
a binary property. For example, in Fig. 1, the input model is referred to as
“platform independent” and the output model as “platform specific”, but
there are two reasons why it is inappropriate to think of platform indepen-
dence/specificity in this black or white manner given the current “platform =
execution infrastructure” assumption of MDA:

First, it only makes sense to speak of platform independence and platform
specificity as binary properties in such a situation if one has an “ideal” MTT
which can perform the transformation from complete platform independence
to complete platform specificity in one step. Otherwise, the many steps re-
quired to arrive at the bottommost platform specific model, starting from
a high-level platform independent model, automatically introduce shades of
platform specificity. However, such an ideal tool is a long way from realization.

Second, even if such an ideal MTT were available it might still be desirable
to produce the models at intermediate levels of abstraction which highlight
a particular aspect of the architecture or reveal a certain aspect of the ap-
plication [Ham05, Wai05, AK03]. Thus, for the foreseeable future, the MDA
transformation step illustrated in Fig. 1 is likely to be applied in the context
of a chain of transformation steps, each creating a model of the application
which is closer to the final execution platform than the previous model. Only

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 15

the first and last application models in such a chain would then be character-
izable as either (fully) platform independent or (fully) platform specific, and
the intermediate models would have a certain degree of platform indepen-
dence/specificity which lies somewhere between. This view is in fact explicitly
acknowledged in the MDA Guide which states that:

“Platform independence is a quality, which a model may exhibit. This
is the quality that the model is independent of the features of a platform
of any particular type. Like most qualities, platform independence is
a matter of degree.”

Given this situation, therefore, Fig. 9 represents the currently prevailing
view of how MDA transformation technology will be used in practical software
engineering scenarios.

……

X80% independent of Z

Y60% independent of Z

W100% independent of Z

Platform Z0% independent of Z

Model of A
based on W

Model of A
based on X

Model of A
based on Y

Model of A
based on Z

Fig. 9. Existing View of the MDA Transformation Chain

Several aspects of Fig. 9 are worthy of note. First, although all of the
application models in the chain are “based on” (i.e. represented in terms of)
something, only the bottom model is based on an actual executable platform.
According to the “platform = execution infrastructure” assumption, X, Y
and Z upon which the other models are based are not platforms, since the
associated models are not yet executable. The question is: If they are not
platforms, what are they? The DSL school of MDA would answer that these
are DSLs. However, as explained in the previous sections, DSLs described us-
ing the traditional language definition techniques are not in general sufficient
to describe all the characteristics/facets which such models might need. In
particular, they do not capture type libraries, instances and patterns.

Fig. 10 shows the alternative view of the model transformation chain based
on the proposals put forward in this chapter. The main point to note is that

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

16 Colin Atkinson and Thomas Kühne

……

Platform XX specific model
(80% independent of Z)

Platform YY specific model
(60% independent of Z)

Platform WW specific model
(100% independent of Z)

Platform ZZ specific model
(0% independent of Z)

W-based
model of A

X-based
model of A

Y-based
model of A

Z-based
model of A

Fig. 10. Proposed View of the MDA Transformation Chain

W, X and Y on the right hand side of the picture are now also viewed as plat-
forms, not just Z. They may not be platforms supporting execution but in our
approach they would nevertheless be considered platforms and would ideally
be represented as GPMs. This in turns means that all of the application mod-
els can be viewed in one sense as platform specific models because they are all
based on (and thus 100% specific to) the platform they are written in terms
of. It is still of course possible to assign each model a measure of independence
or specificity with respect to another particular platform, such as the ultimate
target platform model for the which the application is being developed. But
by requiring every model to be “based on” exactly one platform model, the
original terminology and intention of the fundamental MDA transformation
step once again becomes meaningful. Every model is specific to one platform
and (relatively) independent of all the others. The final question which needs
to be addressed is how the proposed model shapes the additional input that
drives the transformation. Because the MDA literature uses the phrases “in-
dependence” and “specificity” in relation to the output model of the basic
transformation step, there is an implication that MTT’s will be specific to the
input model platform but parameterized with respect to the output model
platform. Such an MTT might, for example, be tied to the UML platform as
the base for its input models but parameterized with respect to the platform
model of its output. This situation is illustrated in Fig. 11, which enhances
Fig. 10 with information about the input models driving the transformation
step.

In Fig. 10, it is the model of the platform upon which the output model
is based, that serves as the additional input to the transformation. This rep-
resents only one point on a spectrum of possible tool parameterization, how-
ever. Other tools which provide a different balance are also feasible. At one

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 17

……

Platform X

Platform Y

Platform WW-based
model of A

X-based
model of A

Y-based
model of A

Platform ZZ-based
model of A

Model of X

Model of Y

Model of Z

Model of W

Fig. 11. Parameterization by Ouptut Platform Models

extreme, there are MTTs which are specific to both the input and the output
platforms, and cannot handle models which are targeted to other platforms.
Today’s compilers are examples of this kind of MTT. At the other extreme,
one can envisage MTT’s which are fully parameterized with respect to both
the input and output platform models as illustrated in Fig. 12.

……

Platform X

Platform Y

Platform WW-based
model of A

X-based
model of A

Y-based
model of A

Platform ZZ-based
model of A

Model of X

Model of Y

Model of Z

Model of W

Fig. 12. Parameterization by Input & Output Platform Models

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

18 Colin Atkinson and Thomas Kühne

For the foreseeable future it is likely that we will see MTT’s which occupy
the full spectrum of genericity between these two extremes, as illustrated in
Fig. 13. Initially one can expect to see MTT’s that are similar to compilers
and are hardwired to transform between two specific platform models, but
gradually more generic tools will be developed which will be parameterized
with respect to increasingly more aspects of the target and source platforms.

pl
at

fo
rm

 m
od

el
 r

ic
hn

es
s

platform genericity

Compiler

General
MTT

Fig. 13. Spectrum of Transformation Tools

6 Summary

In this chapter we have identified two significant problems with the notion of
platform and platform model in the current vision of MDA technology and
have suggested a possible approach for solving them. The first problem is that
the concept of platform promoted in the MDA literature is strongly associated
with the notion of execution infrastructure, and thus implicitly rules out the
consideration of other kinds of environments as platforms. The second prob-
lem is that the prevailing vision of MDA as a vehicle for supporting families
of domain specific languages (DSLs) leads to a de facto way of representing
platforms (or descriptions that play the roles of platforms) that is not rich
enough to capture all the characteristics of platforms as they have tradition-
ally been viewed in the IT industry. Our proposed solution is to expand the
set of environments that are considered platforms to include those that of-
fer development time capabilities, such as model validation, and to generalize
the notion of a platform model to include all information that is needed to
capture the necessary features of platforms. Such General Platform Models
(GPMs) include information about the predefined types, predefined instances
and usage patterns that characterize a platform in addition to information
about the language features supported, as is currently the case.

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

A Generalized Notion of Platforms for Model Driven Development 19

7 Acknowledgements

The authors would like to thank Clemens Szyperski for clarifying discussions
on the “.NET” platform family.

References

[AK03] Colin Atkinson and Thomas Kühne. Aspect-oriented development with
stratified frameworks. IEEE Software, 20(1):81–89, 2003.

[CK03] Steve Cook and Stuart Kent. The tool factory. OOPSLA 2003 Workshop
on Generative Techniques in the context of Model Driven Architecture,
2003.

[CKM+99] Steve Cook, Anneke Kleppe, Richard Mitchell, Bernhard Rumpe, Jos
Warmer, and Alan Wills. Defining UML family members using prefaces.
In Christine Mingins, editor, Proceedings of TOOLS Pacific 1999. IEEE
Computer Society, 1999.

[CLI02] Standard ECMA-335, Common Language Infrastructure (CLI),
2nd edition, 2002. ISO/IEC 23271, http://www.ecma-
international.org/publications/standards/Ecma-335.htm.

[GGZ+05] Lars Grunske, Leif Geiger, Albert Zündorf, Niels Van Eetvelde,
Pieter Van Gorp, and Daniel Varro. Using graph transformation for prac-
tical model driven software engineering. In Sami Beydeda, Matthias Book,
and Volker Gruhn, editors, Model-driven Software Development – Volume
II of Research and Practice in Software Engineering. Springer, 2005.

[GHJV94] E. Gamma, R. Helm, R. E. Johnson, and J. Vlissides. Design Patterns:
Elements of Object-Oriented Software Architecture. Addison-Wesley, 1994.

[GR83] Adele Goldberg and David Robson. Smalltalk-80: The Language and its
Implementation. Addison-Wesley, Reading, MA, 1983.

[GS03] Jack Greenfield and Keith Short. Software factories: Assembling applica-
tions with patterns, models, frameworks and tools. OOPSLA 2003 Work-
shop on Generative Techniques in the context of Model Driven Architec-
ture, October 2003.

[GTS05] Aniruddha Gokhale, Gabriele A. Trombetti, and Douglas C. Schmidt. A
model-driven development environment for composing and validating dis-
tributed real-time and embedded systems: A case study. In Sami Beydeda,
Matthias Book, and Volker Gruhn, editors, Model-driven Software Devel-
opment – Volume II of Research and Practice in Software Engineering.
Springer, 2005.

[Ham05] Imed Hammouda. A tool infrastructure for model-driven development
using aspectual patterns. In Sami Beydeda, Matthias Book, and Volker
Gruhn, editors, Model-driven Software Development – Volume II of Re-
search and Practice in Software Engineering. Springer, 2005.

[Met05] Andreas Metzger. A systematic look at model transformations. In Sami
Beydeda, Matthias Book, and Volker Gruhn, editors, Model-driven Soft-
ware Development – Volume II of Research and Practice in Software En-
gineering. Springer, 2005.

[OMG03] OMG. MDA Guide Version 1.0.1, 2003. Version 1.0.1, OMG document
omg/03-06-01.

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

20 Colin Atkinson and Thomas Kühne

[SPGB03] S. Sendall, G. Perrouin, N. Guelfi, and O. Biberstein. Supporting model-
to-model transformations: The VMT approach. Workshop on Model
Driven Architecture: Foundations and Applications; Proceedings pub-
lished in Technical Report TR-CTIT-03-27, University of Twente, 2003.

[Wai05] Gabriel A. Wainer. A model-driven technique for development of embed-
ded systems. In Sami Beydeda, Matthias Book, and Volker Gruhn, editors,
Model-driven Software Development – Volume II of Research and Practice
in Software Engineering. Springer, 2005.

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

Index

.NET platform, 2, 13, 14

byte code, 12

class
Stack, 10

compiler, 12

deployment platform, 8
design pattern, 9
development platform, 8
domain specific language, 3, 15

execution infrastructure, 7, 8
execution platform, 13

framework, 5, 7

general platform model, 8, 9, 18

hardware, 4, 6

input model, 16

J2EE platform, 12

language definition, 7
language support, 5, 7
library, 5, 7

machine language, 4
measure of

platform independence, 16
platform specifity, 16

middleware, 5

operating system, 2, 4, 6
output model, 16

platform, 1, 18
.NET, 13
deployment, 8
development, 8
execution, 13
facet, 8

instances, 8
language, 8
patterns, 9
types, 8

family, 13
J2EE, 12
measure of

independence, 16
specifity, 16

model, 1
general, 8, 9, 18

platform independent, 14
platform model, 18
platform specific, 14
predefined

instances, 8
types, 8

runtime system, 5

Stack class, 10
system calls, 6

transformation chain, 15
transformation tool spectrum, 17

usage rules, 9

virtual machine, 2, 4, 6

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

Chapter in “Model-Driven Software Development, Volume II”, S. Beydeda and V. Gruhn editors, Springer Verlag

