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Abstract—We propose a novel machine learning-based archi-
tecture for smart sensing of the spectrum for Cognitive Radio
(CR) networks. A Multi-resolution Correlation Deep Sensing
Network (MrCorr-DSNet) is designed to extract signal energy
and Cyclic Prefix (CP) similarities in OFDM-based signals as well
as other non-explainable spatial-temporal features to enrich the
extracted information needed for PU occupancy classification. By
forming a 3D matrix for each observation vector using In-phase
(I) an Quadrature (Q) samples in multi-antenna system, MrCorr-
DSNet can fully exploit the temporal-spatial correlations with 3D
CNNs. Furthermore, by adopting ensemble learning for several
MrCorr-DSNets trained for different Signal-to-Noise Ratio (SNR)
sub-ranges, the performance is significantly enhanced and the
SNR-wall problem is resolved due to the synergy between weak
and strong learners. The performance of the proposed structure
is shown in terms of Receiver Operating Characteristics (ROC),
confusion matrix, Area Under Curve (AUC), P-value, loss and
the detection probability.

Index Terms—Internet-of-Things, Latency, NOMA, Random
Access, Reliability.

I. INTRODUCTION

THE demand for radio spectrum has been contagiously
growing due to the emergence of new wireless technolo-

gies, such as the Internet of Things, Cyber-Physical Systems,
etc. This increase in demand is becoming a serious challenge
since the spectrum is a limited resource. This scarcity has
made the spectrum an invaluable asset. However, research has
shown that licensed radio spectrum is under-utilized by the
traditional ways of spectrum assignment. [1].

To efficiently utilize the spectrum, Dynamic Spectrum Ac-
cess (DSA) under the concept of Cognitive Radio (CR) has
been proposed [2]. This concept allows the Secondary Users
(SUs) to opportunistically access the licensed band of the
Primary User (PU). To this aim, SUs have to detect the
presence of PU by sensing the spectrum in order to access the
spectrum without interfering with the PU [3], [4]. Therefore,
the performance of Spectrum Sensing (SS) directly affects
the performance of co-existence between networks since mis-
detection of a PU will result in a SU attempting to use the
spectrum during PU’s transmission [5], causing interference
with the licensed users. Hence, designing a robust spectrum
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sensing module with high detection performance is vital in
CR systems. Many SS methods have been proposed in the
literature. Generally speaking, SS has been classified into two
main categories, blind SS and non-blind SS. Cyclostationary
feature detection [6]–[8] and matched filter detection [9] are
the main examples of non-blind SS which exploit the signal
information to detect it. Blind methods are of interest as
they do not need any prior information of the PU signal.
They include Energy Detection (ED) [10], [11], Phase type
model [12] Maximum Eigenvalue Detection (MED) [13], and
Covariance Absolute Value (CAV) [14]. Such techniques have
shown their advantages over decades. However, since they are
model-based, they need some environmental information in
their models such as statistical noise distribution to operate
optimally. Therefore, they suffer from mismatches between
estimated model and real life model which causes performance
degradation.

Recently, Deep Learning (DL) has been increasingly applied
in the area of signal processing [15]–[17]. DL has been also
exploited in SS recently. As an example, [18] used Convo-
lutional Neural Networks (CNNs) to detect PU signal. The
authors proposed a covariance matrix-aware CNN (CM-CNN)-
based spectrum sensing in which sample covariance matrix is
fed as input to a CNN for signal detection. The results show
that the performance of the proposed method is very close
to that of optimal detector. A Stacked Autoencoder- based
spectrum sensing (SAE-SS) method was designed in [19] to
extract features from PU signal. To improve the detection
performance, The authors used time-frequency domain signals
(SAE-TF) as input observations. Long Short-Term Memory
(LSTM) was used after CNN layers in [20] to extract the
temporal features as well as other features of the PU signal
to improve the detection performance. CNN-LSTM approach
was also used in [21]. The authors first used a CNN to extract
the energy-correlation features from the sample covariance
matrix, then the output is fed to a series of LSTM layers
so that the PU activity pattern can be learned, improving
the detection performance further. Another architecture for
SS via DL was proposed in [22] in which LSTM and CNN
were used in parallel to detect modulation type and the PU
signal. In [23], instead of using raw signal samples, short-time
Fourier transform CNN (STFT-CNN) of samples were used
as observations for training and online detection. To mention
a salient work, DLSenseNet was proposed in [24] in which
different CNNs along with LSTM were designed in parallel to
extract spatial and temporal features of PU signal. The authors
in [25] attempted to exploit Bi-LSTM and self-attention layers
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to extract local features and global correlations for sensing the
PU occupancy.

All of the mentioned structures show superiority over tradi-
tional approaches. However, they suffer from SNR-wall prob-
lem at which the detection probability decreases significantly
when SNR falls below a certain threshold1.

To make the sensing performance more robust to noise
uncertainty, we propose a Multi-resolution Correlation Deep
Sensing Network (MrCorr-DSNet) to sense OFDM-based sig-
nals. MrCorr-DSNet uses a signal-dependent 3 dimensional-
CNN (3D-CNN) in its first layer to perform multi-scale auto-
correlation in order to extract explainable features such as
Cyclic Prefix (CP) similarities and signal energy as well
as other non-explainable spatial and temporal features. To
exploit In-phase (I) and Quadrature (Q) components of the
received signal in a multi-antenna structure, each input obser-
vation is formed as a 3D matrix, providing efficient spatial-
temporal feature extraction. To further improve the detection
performance of MrCorr-DSNet, ensemble MrCorr-DSNet is
proposed. By training several MrCorr-DSNets within different
SNR sub-ranges and fusing their outputs, ensemble MrCorr-
DSNet manifests its robustness to noise uncertainty, resolving
the SNR-wall problem. The final structure is shown to be
superior to those existing in the literature.

The main contributions of this work are summarized below.
• Designed and implemented a MrCorr-DSNet through

which signal energy and CP similarities of OFDM signal
as well as other non-explainable spatial and temporal
features are extracted via performing multi-resolution
auto-correlations

• Formed a 3D matrix for each observation by sorting the
signal samples of In-phase and Quadrature from different
antennas. Then, a 3D signal dependent CNN with 3D
kernels is employed to fully extract the spatial-temporal
correlations of OFDM signal in a multi-antenna system.

• Enhanced detection performance and resolved the SNR-
wall problem by adopting ensemble learning for several
MrCorr-DSNets trained for different SNR sub-ranges.
By employing ensemble learning, each MrCorr-DSNet
extracts fine features in SNR sub-range for which it is
well-trained (acting as a strong learner) and extracting
coarse features in other SNR-ranges (acting as a weak
learner).

The rest of this paper is organized as follows. Section
II describes the system model and the proposed DL struc-
ture. Furthermore, data set generation, offline training, online
detection, and performance evaluation for MrCorr-DSNets
are explained in this section. Section III discusses ensemble
MrCorr-DSNets and illustrates its performance. Finally, some
conclusions are provided in Section IV.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a multi-antenna spectrum sharing scenario in
which cognitive users (secondary users) co-exist with an
OFDM-based primary network. Let Y = [Y1, Y2, · · · , YM ]T

1Cooperative SS (CSS) shows to be very robust to this problem. However,
CSS might not be applicable in many communication scenarios.

denote the received OFDM signals at the SU receiver, where
Ym

(
m ∈ {1, · · · ,M}

)
is the received signal from the mth

antenna. Furthermore, Ym consists of B OFDM blocks, that is
Ym = [Y

(1)
m , Y

(2)
m , · · · , Y (B)

m ] in which Y
(b)
m

(
b ∈ {1, · · · , B}

)
is the bth OFDM block of Ym. Each OFDM block of the
received signal contains Nd data symbols plus Nc extra
symbols as cyclic prefix, i.e.,

Y b
m = [y(b)m (1), y(b)m (2), · · · , y(b)m (Nd +Nc)]. (1)

Note that y
(b)
m (n)

(
n ∈ {1, 2, · · · , Nd + Nc}

)
contains I

and Q components that can be extracted as y
(b)
m,I(n) =

Imag(y
(b)
m (n)) and y

(b)
m,Q(n) = Real(y

(b)
m (n)). Such I and Q

components can form 3D observations to be utilized later for
training purpose. More specifically, Ŷ is a 3D observation vec-
tor which is defined as Ŷ(i, j, 1) ≜ YI and Ŷ(i, j, 2) ≜ YQ(
∀i, j i ∈ {1, · · · ,M} , j ∈ {1, · · · , B(Nd + Nc)}

)
. Note

that by forming such a 3D vector, the deep sensing structure
can fully exploit temporal and spacial correlations between
different antennas, I-Q components, and signal samples. Fi-
nally, spectrum sensing is a classification problem and can be
formulated as the following binary hypothesis testing problem,{

H0 : y
(b)
m (n) = wb

m(n),

H1 : y
(b)
m (n) =

∑P
p=1 hpx

(b)(n− δp) + wb
m(n),

(2)

where H0 and H1 represent the hypotheses of PU being absent
and present, respectively. wb

m(n) is the complex Additive
White Gaussian Noise (AWGN) with zero-mean and variance
σ2, x(b)(n−δp) is the transmitted signal by PU, δp is the delay
of the pth multi-path component of the channel between the
PU and SU, and hp represents the channel gain of the pth

path which is assumed constant during the sensing process. It
is assumed that there is no prior knowledge of PU signal at
SU location, thus, the signal samples xb(n) can be assumed
to follow an independent and identically distributed (i.i.d)
circularly symmetric complex Gaussian (CSCG) with zero
mean and variance σ2

x. For a typical sensing method such as
basic energy detector, the test statistic T is written as,

T =
1

MB(Nd +Nc)

M∑
m=1

B∑
b=1

Nd+Nc∑
n=0

|y(b)m (n)|2. (3)

Two performance metrics for spectrum sensing process are
the probabilities of false-alarm (Pfa) and detection (Pd) (or
equivalently miss-detection) which are described as,

Pfa = Pr(T > γ | H0),

Pd = Pr(T > γ | H1),
(4)

where γ is the sensing threshold calculated based on the noise
variance. To design a data driven test statistic, a DL approach
is exploited to sense the PU occupancy instead of using
traditional approaches. A general procedure for performing
deep sensing is shown in Figure 1. It consists of two main
steps, offline training and online detection. In the following,
the mentioned steps are introduced.
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Fig. 1: General approach For Deep Sensing

A. Multi-resolution Correlation Deep Sensing Network
(MrCorr-DSNet)

The main metric in spectrum sensing is the energy of the
received signal. Signal energy can be extracted according
to (3). To sense OFDM signal efficiently without any prior
knowledge of the signal, one can think about designing a
deep neural structure to extract explainable features of OFDM
signal. In addition to non-explainable OFDM signal features,
the proposed structure is designed to extract both the energy of
the signal samples and the similarity between different parts
of the observed signal. Since CP is added between OFDM
symbols, extracting the similarity of different signal parts helps
improve the sensing performance as the CP makes OFDM
signal more distinguishable and unique from noise. Note that
energy of the signal y(n) can be extracted by the convolution
operator (⊛) as,

Ey = [y(n)⊛ y(−n)]n=0 . (5)

Furthermore, cross-correlation is a measure of computing
the similarity between the samples of the signals x(n) and
y(n) (or between different parts of the same signal) which
can be represented by convolution operation as,

Rx,y(n) = x(n)⊛ y(−n). (6)

In case of extracting the similarities between the signal and
its parts, we exploit partial auto-correlation as,

Rx,xp
(n) = x(n)⊛ xp(−n) (7)

where xp(n) is the part of the signal x(n). Since CNNs
can perform convolution operation, the question is that how
they can be used to extract signal energy and the induced
autocorrelation in PU signal that is a result of CP. To do
this, CNNs must be modified to perform convolution operation
in different scales or resolutions. Furthermore, CNN kernels

must be chosen based on signal samples. Therefore, by setting
CNN kernels equal to signal samples and by adopting different
kernel sizes from the order of CP length to the order of
whole signal duration, signal-dependent CNN is implemented,
through which Multi-resolution Correlation Deep Sensing Net-
work (MrCorr-DSNet) is achieved. Fig. 2 shows the proposed
deep sensing structure. The mentioned 3D observations are
firstly entered into the signal-dependent 3D-CNN and then
pass through three 3D-CNNs each with ReLu activation
function. For the signal-dependent CNN, four kernels are
considered with different sizes that are equal to CP length2,
OFDM minimum symbol size (based on minimum FFT size),
OFDM maximum symbol size (based on the maximum FFT
size), and whole signal length (three OFDM symbols herein).
To have the same size output, the kernels are zero-padded
and the stride length is set to one for all dimensions. Its
output passes through three 3D-CNNs with ReLu activation
function. A batch normalization layer is used after each of the
mentioned three CNNs along with a max-pooling layer for the
first two. The batch normalization module removes the internal
covariate shift and thus ensures a faster training process [26].
It also regularizes the structure and improves extracting local-
feature. The max-pooling layer utilizes the maximum value
from neuron clusters in the previous layer. This also adjusts the
effect of overfitting. The flattened layer along with two fully
connected (FC) layers is used after CNNs. Finally, a softmax
layer is used to obtain normalized output scores. To avoid
overfitting, an early stopping algorithm is employed to stop
the training process if the validation loss does not decrease
within 8 successive epochs. The model hyperparameters are
summarized in Table I.

B. Offline Training
To train the proposed deep sensing network, the labeled

samples are collected to construct the training set (Y,Z) =

2Usually, two sizes are defined for CP in many standards, normal CP and
extended CP. Shorter is set to 10% and longer is set to 20% of OFDM symbol
size
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Fig. 2: The proposed structure for Deep Sensing

TABLE I: Hyperparameter Settings
Parameter Value

MiniBatchSize 25
MaxEpochs 30

Kernel size (conv1) 2× 15× 2

Kernel size (conv2 & conv3) 2× 3× 2
# Kernels (conv1) 64
# Kernels (conv2 & conv3) 32

Optimizer SGD
Learning rate 0.002
Max-Pooling size (first) 1× 10× 1
Max-Pooling size (second) 1× 5× 1

Stride (All CNNs) 1× 1× 1

{
(Ŷ(1),Z(1)), · · · , (Ŷ(K),Z(K))

}
in which K is the total

number of observations and Z(k) belongs to the set {1, 0}
with z = 0 and z = 1 for H0 and H1 hypothesis, respectively.
Therefore, for the classification purpose, one-hot coding is
used to label output as,

Z(k) =

{
[0 1]T for H0,

[1 0]T for H1

(8)

Correspondingly, the output of deep sensing structure for the
kth observation is a two-class score vector which is normalized
by softmax function [27] expressed as,

Z(k) =

{
ζH0

(Ŷ(k) | θ) for H0,

ζH1
(Ŷ(k) | θ) for H1

(9)

where ζHi
(Ŷ(k) | θ) ≜ Pr(Ŷ(k) | Hi, θ) and θ denotes

the deep sensing model parameter. Thus, ζH0
(Ŷ(k) | θ) +

ζH1
(Ŷ(k) | θ) = 1. Normally, the decision rule is to compare

the two output scores and select the hypothesis with the
maximum score which means,

ζH1
(Ŷ(k) | θ)

H1

≷
H0

ζH0
(Ŷ(k) | θ). (10)

However, the optimum spectrum senor is the one who con-
sider the distribution of H0 and H1 in its decision, making
maximum a posteriori probability estimator (MAP) rather than
a Maximum Likelihood (ML) one. However, it is assumed
that the prior knowledge (distributions) on PU traffic is not

available. On the other hand, the training goal in spectrum
sensing is to maximize the detection probability under some
false-alarm constraint (the detection probability is the main
metric should be met). Therefore, a threshold γ is set to give
us a degree of freedom to run a trade-off between false-alarm
and detection probabilities as L(Ŷ(k)) =

ζH1
(Ŷ(k)|θ)

ζH0
(Ŷ(k)|θ) ≷ γ.

The objective function for the training problem can be written
as maximizing the following likelihood function [28], [29].

L(θ) =
K∏

k=1

(
ζH1

(Ŷ(k))
)z(k)(

ζH0
(Ŷ(k))

)1−z(k)

. (11)

Equivalently, based on the log likelihood function of (11),
the optimization problem related to the training process can
be written as the minimization of cross-entropy between the
actual PU state and the output score of all observations as
[29],

E(θ) = − 1

K
log(L(θ)) = − 1

K

K∑
k=1

z(k) log
(
ζH1

(
Ŷ(k)

))
+

(1− zk) log
(
1− ζH0

(
Ŷ(k)

))
.

(12)

Thus, the optimization problem is written as,

θ∗ = argmin
θ

E(θ) (13)

by adopting backpropagation algorithm and Stochastic Gra-
dient Decent (SGD) as the optimizer, the probabilities of
ζH0

(
Ŷ(k)

)
and ζH1

(
Ŷ(k)

)
are maximized under the labels

0 and 1, respectively3.

C. Data Set Generation

To train the proposed structure, a data set is needed. A
synthesized was used in (2). For the hypothesis H0, complex
AWGN samples with zero mean and different variances have
been generated. The noise variance must be set such that
different SNR values according to Table II are provided. To

3This is equivalent to entropy minimization between the actual PU state
and its score value.
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generate OFDM signal, random integers according to different
modulation types and modulation orders are generated. The
data set is augmented with different OFDM block sizes based
on different FFT sizes and CP lengths4. To exploit CP simi-
larities, at least two OFDM blocks are needed as observation
samples5. The channel is constructed as Rayleigh with random
number of path delays and path gains. To generate it, delay
and gain vectors are formed as shown in Table II. These vector
contains 9 entries. To have a random number of delays and
gains, each time a random integer between 1 and 9 is generated
and some values for path delays and gains are taken out of
the corresponding vectors.

TABLE II: Data set parameters
Parameter Value

# Antenna 2
Modulation Type PSK, QAM
Modulation Order [2, 4, 8, 16, 32, 64, 128, 256]

Type of signal In-Pahse & Quadrature
Sample length for training signals 3 OFDM Blocks
# Observations (Training +Validation) 108360

Validation Ratio 30%
SNR Range (dB) [-15, 0] (step size 0.2)
CP length 8% & 25% of OFDM symbol

FFT Size [64, 128, 256, 512,
1024, 2048, 4096]

Path Gain Vector (dB) [0, -1.5, -2.5, -3.5, -0.6,
-9, -7, -12, -16]

Path Delay Vector (Sec) [0, 30, 150, 310, 370, 710,
1090, 1730, 2510]*1e-9

D. Online Detection

After achieving the optimum parameter values (θ∗) in (13)
by SGD through backpropagation, the proposed structure is
well-trained. For online detection, the structure must be fine-
tuned according to the spectrum sensing performance metrics.
Since the last layer (softmax) outputs two score values for H0

and H1, one simple decision is to compare these two scores
and decide on the PU occupancy state according to the maxi-
mum output. However, to provide a degree of freedom to run a
trade-off between Pfa and Pd, a ratio L(Ŷ(k)) =

ζH1
(Ŷ(k)|θ∗)

ζH0
(Ŷ(k)|θ∗)

is calculated according to Neyman-Pearson theorem6 and is
compared with a detection threshold γ. Such a threshold can
be determined using the Monte Carlo method for a target Pfa

value. To choose a threshold value, empirical Pfa is calculated
based on the obtained L(Ŷ(k)) under optimum parameters
θ∗ and H0 hypothesis. More specifically, L(Ŷ(k); θ∗) for all
observations under the hypothesis H0 is sorted in a descending
order. Denoting Ŷ

(l)
s as the lth element of the sorted obser-

vation set and assuming that the total number of observations
under H0 hypothesis is NH0

then the detection threshold is
obtained as,

4We used popular FFT size and CP length for OFDM communication
scenarios such as 5G, LTE, IEEE802.11, and IEEE802.16.

5This is because no synchronization between secondary and primary
networks is assumed. Here we used three OFDM blocks.

6Since the prior distribution of the two Hypothesis obtained during the
training process is not optimum to be used in online detection, likelihood
ratio is applicable according to defined L(Ŷ(k)).

γ = L
(
Ŷ(k)

s ⌊δfaNH0⌋; θ∗
)

(14)

where δfa is the false-alarm target value, i.e., Pfa ≤ δfa.
Upon collecting online samples Ŷonline, they are fed into the
proposed structure to obtain the two score values. Then, the
decision is made as,

L(Ŷonline) =
H1

≷
H0

γ (15)

E. Performance Evaluation of MrCorr-DSNet

To evaluate the performance of the proposed MrCorr-
DSNet, the model must be trained and validated before online
testing. Figs. 3 and 4 show the proposed network accuracy
and loss for both training and validation data, respectively. As
can be seen, the accuracy increases during the training process
and reaches the final value of 96%. Starting from 1, the loss
value decreases until it finds the final value of almost 0.1.
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Fig. 3: Training and validation accuracy of MrCorr-DSNet vs.
the number of iterations.

The probability of detection versus SNR for the MrCorr-
DSNet along with the most recent proposed structures in the
literature– namely CNN-LSTM [21], Detect-Net [20], and
DLSenseNet [24]– are plotted in Fig. 5. For fair comparison,
numerous simulations are performed for each model to find
the best hyperparameters. As can be seen, the proposed
MrCorr-DSNet achieves better detection performance than
the others. The proposed structure even outperforms other
models by achieving lower Pf . Particularly, the corresponding
false-alarm probabilities calculated after the training process
are Pf (CNN-LSTM) = 7.2%, Pf (DetectNet) = 5.6%,
Pf (DLSenseNet) = 3.4%, Pf (MrCorr-DSNet) = 2.3%

Interestingly, it is observed that MrCorr-DSNet has shifted
the SNR-wall down to -4dB which is 2 dB lower than other
models. Another observation is that the rate at which the
detection probability decreases for low SNRs is lower than
that of other models. This causes Pd to be higher than 80% for
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Fig. 4: Training and validation loss for MrCorr-DSNet vs.
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SNR ≥ −9 dB. This is due to the fact that the proposed struc-
ture is semi-blind since it exploits the CP similarities of OFDM
signals. Although the detection performance of MrCorr-DSNet
is superior to other models, it is still low under medium
noise uncertainty. For instance, Pd = 71% and Pd = 62%
under SNR=−12 dB and SNR=−15 dB, respectively. In next
section, the performance of the proposed model is significantly
improved by employing ensemble learning.

Another Problem with the current studies and mine !!Another Problem with the current studies and mine !!

The reason: the network is trained for a wide range of signal energy (SNRs). This avoids CNNs extracting 
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III. ENSEMBLE DEEP SPECTRUM SENSING

A. Ensemble Structure

In the previous section, a deep sensing network based on
multi resolution correlation concept to extract explainable
features from OFDM signals was proposed. Results showed
that the proposed architecture outperformed other state-of-the-
art solutions. Although the final validation accuracy of 96%

was achieved, similar to the existing structures in the literature
and due to the SNR-wall limitation, the performance of the
proposed structure is still low under high noise uncertainty7.
As an example, for the underlying data set, the accuracy at
-15 dB is 62% and 48% for MrCorr-DSNet and DLSenseNet,
respectively. After performing extensive simulations, we found
the reason for this phenomenon. Since MrCorr-DSNet and
others are trained for a wide range of SNR simultaneously,
the networks are failed to extract fine features for the worst
cases of observations, i.e., signals with very low energy (low
SNR). Indeed, CNNs tend to learn features for some straight-
forward observations. The problem will not be resolved even
by increasing the number of CNN filters, which would only
make the structure more complex. Therefore, the solution is to
have different MrCorr-DSNets for different SNR sub-ranges.
In such a way, each MrCorr-DSNet extracts fine features in
SNR sub-range for which it is well-trained (acting as a strong
learner) and extracting coarse features in other SNR-ranges
(acting as a weak learner). Hence, there exist several models
and the final decision is made by fusing their outputs. This
guides the final structure toward ensemble learning. Random
forest is selected to combine the output of parallel MrCorr-
DSNet with 6 SNR sub-ranges. The number of learning cycles
is 100 and the ensemble aggregation method is bagging.

B. Performance Evaluation of ensemble MrCorr-DSNet

The performance of the ensemble structure is evaluated
and compared with MrCorr-DSNet and other structures in
the literature. Ensemble MrCorr-DSNet is evaluated based
on different metrics such as, confusion matrix, Area Under
Curve (AUC) , P-Value, loss, ROC and detection probability
for different SNRs. Fig. 6 shows the confusion matrix for
both MrCorr-DSNet and ensemble MrCorr-DSNet. As can be
seen, detection probability improves from 93.1% to 98.8%
by training MrCorr-DSNet for different SNR sub-ranges and
employing random forest as ensemble method. There is a slight
reduction in false-alarm probability from 2.3% to 2.0%. This
is because scores related to H1 are considered as the input of
ensemble structure.

Confusion Matrix

Ensemble MrCorr-DSNet MrCorr-DSNet

18

Predicted Class Predicted Class

Fig. 6: Confusion Matrix for both MrCorr-DSNet and ensem-
ble MrCorr-DSNet.

Furthermore, Loss, P-Value, and AUC for MrCorr-DSNet
and ensemble MrCorr-DSNet is compared in Table III. It is
observed that employing ensemble strategy decreases loss by

7Note that cooperative sensing structures are shown to have a very low
SNR-wall. However, cooperative spectrum sensing is not the case in this work.
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10 fold. The AUC also increases from 0.9680 to 0.9899.
However, P-Value for both structures is zero.

TABLE III: Comparison of MrCorr-DSNet and ensemble
MrCorr-DSNet

DL Structure Loss P-Value AUC
MrCorr-DSNet 0.1192 0 0.9680

Ensemble MrCorr-DSNet 0.0101 0 0.9899

To investigate the performance of the ensemble structure,
the detection probability versus SNR is plotted in Fig. 7.
It is observed that in ensemble MrCorr-DSNet, the detec-
tion probability deceases at very lower rate when when the
SNR decreases, staying above MrCorr-DSNet and significantly
standing out of those in the literature. For instance, the
detection performance is 94.4% at −15dB which is remarkably
above that of the other solutions.

Parameter Value

Combiner Type Random Forest

# weak learners (learning cycle) 100

Ensemble Aggregation Method Bagging

Combiner Parameters
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Fig. 7: Detection probability vs. SNR.

The detection performance of the ensemble MrCorr-DSNet
is explored for different number of SNR sub-ranges in Fig. 8.
The SNR interval for each cases is listed in IV.

TABLE IV: SNR interval for different number of sub-ranges
# SNR sub-ranges Sub-range Intervals (dB)

1 [2,-15]
2 [2,-6.4] , [-6.6, -15]
4 [2,-2 ], [-2.2, -6.4], [-6.6, -10.8], [-11,-15]

6 [2,-1], [-1.2,-4], [-4.2,-7], [-7.2, -10]
[-10.2, -13], [-13.2,-15]

8 [2,0], [-0.2,-2.4], [-2.6,-4], [-4.2, -6.2]
[-6.4, -8.6], [-8.8,-10.8], [-11,-13], [-13.2, -15]

The lowest performance under high noise uncertainty is for
MrCorr-DSNet that is trained under one SNR sub-range. As
can be seen, the higher the number of sub-ranges, the better
the detection probability. However, the performance of the
structure seems to converge when the number of sub-ranges
increases.

Fig. 9 shows the ROC curve for MrCorr-DSNet and en-
semble MrCorr-DSNet. Employing ensemble structures within
different SNR sub-ranges helps improve the ROC for ensemble
MrCorr-DSNet and makes it superior to MrCorr-DSNet.
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Fig. 8: Detection probability for different number of SNR sub-
ranges vs. SNR.
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Fig. 9: ROC curve for both MrCorr-DSNet and ensemble
MrCorr-DSNet.

IV. CONCLUSIONS

A multi-resolution Correlation Deep Sensing Network
(MrCorr-DSNet) was designed and implemented in this paper
to capture the signal energy and Cyclic Prefix similarities in
OFDM-based signals as well as other non-explainable spatial-
temporal features. Furthermore, a 3D matrix for each obser-
vation was formed by using In-phase and Quadrature compo-
nents of OFDM signals in a multi-antenna scenario, helping
MrCorr-DSNet fully exploit the temporal-spatial correlations
among received samples. Furthermore, by adopting ensemble
learning for several MrCorr-DSNets trained for different SNR
sub-ranges, the detection performance was significantly en-
hanced and the SNR-wall problem was resolved. The final
structure shows significant performance in terms of detection
probability under noise uncertainty, Area Under Curve (AUC),
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confusion matrix, final validation loss, and receiver operating
characteristic (ROC).
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