
1

Net Centric Modelling and Simulation Using ActorDEVS

F. Cicirelli, A. Furfaro, A. Giordano, L. Nigro
Laboratorio di Ingegneria del Software (www.lis.deis.unical.it)

Dipartimento di Elettronica Informatica e Sistemistica
Università della Calabria
87036 Rende (CS) – Italy

Extended Abstract

Summary Under the perspectives of the DEVS-World project, whose goal is the development of a net-centric
modelling and simulation (NCMS) infrastructure having the net as the computer, thus favouring different levels
of interoperability among research groups operating world wide, this paper proposes an architecture based on
web services for NCMS using ActorDEVS. ActorDEVS is a lean and efficient agent-based framework in Java
supporting modelling of Parallel DEVS systems under both centralized and distributed simulation. A key point
of ActorDEVS is its support of application-dependent control engines. The paper discusses some architectural
scenarios for wrapping ActorDEVS in the DEVS-World infrastructure, opening to interoperability with other
DEVS or (possibly) non-DEVS systems. The proposal clearly separates model and simulation concerns. An
entire model is partitioned among a number of simulation nodes with web services, in a case, which act as the
transport layer for inter-node message exchanges. A global coordinator with a minimal interface of operations
governs the “in-the-large” simulation aspects.

Key words: M&S using the Internet, agent-based DEVS, web services, interoperability, separation of
concerns

Introduction
The DEVS-World project [9] aims at developing a world-wide standard platform for modelling and simulation
(M&S), promoting collaborative research and experimentation in the engineering, i.e. design, evaluation,
implementation, deployment and execution of complex, scalable, dynamic structure systems [10] belonging to
diverse and significant problem domains like biology and bioinformatics, environment systems, traffic
simulation etc. The project has its strength in the use of DEVS [16] as the unifying M&S formalism and an
exploitation of nowadays software technologies and middleware such as agents [1,17,3] and services [13,6],
which are a key for software interoperability. The main goal is enabling the exchange of both models and
experiments among researchers and developers operating in academic or industry labs, thus favouring
cooperation.
In this paper the ActorDEVS [4,5,7] framework is put under the perspective of DEVS-World in order to identify
possible extensions and cooperation scenarios. ActorDEVS (see Fig. 1) is a lean and efficient agent-based
framework in Java supporting modelling of Parallel DEVS systems under both centralized and distributed
simulation. The approach clearly separates modelling from simulators, middleware and hardware.

Fig. 1. Actor/Theatre architecture for ActorDEVS

m2

LocalActorTable ControlMachine

NetworkClassLoader

ControlMachine

TransportLayer

LocalActorTable

Theatre1 Theatre2

NetworkClassLoaderTransportLayer

a1 a2 proxy of a4a3 a4 proxy of a2 a5

m1

m1 m1

m2

m2

msg logical message exchange msg actual message exchange

2

Both simulation and real-time execution modes are supported for model continuity which rests on the
possibility of changing the control engine and ultimately the time notion regulating the evolution of the
application. The approach is control-centric, in the sense that it allows customizing the control machine (Fig. 1)
which offers basic scheduling and dispatching message services to actor components.
Key factors underlying ActorDEVS are the adoption of actors [1,8] as programming in-the-small building
blocks, and of theatres [3] as programming in-the-large execution loci (see Fig. 1). Adopted actors are thread-
less reactive objects which encapsulate an internal data state (which include acquaintances, i.e. known actors
which can be contacted by messages), have a behaviour patterned as a finite state machine, and
communicate to one another by asynchronous message passing. Actors can migrate dynamically from a
theatre to another for reconfiguration purposes.
ActorDEVS is supported by a minimal API in Java. Typed input/output ports are mapped on to actor
messages. Configuration operations correspond to updating receiver information in output ports, also during
the runtime. More in general, changing actor’s acquaintance network, a concept which is often referred to as
link mobility, is a natural way to achieve model structure dynamism [3,8,7]. Good execution performance is
ensured by having a DEVS model is flattened from the point of view of the simulation engine.
The paper is structured as follows. Subsequent section introduces the DEVS-World project and its objectives
and key features. After that, a description is provided of how Theatre/ActorDEVS architecture can be extended
for supporting NCMS. Last section discusses some issues relevant to a pragmatic use of the resultant
architecture. Finally, future and on-going work is summarized.

An Overview of DEVS-World
Novel in the DEVS-World project is the definition of a development methodology for supporting world-scale
distributed open systems of systems M&S [9]. Openness is a fundamental property which expands along
different directions with different levels of integration and interoperability.
A first level of integration is relevant to model interoperability. Many different implementations of DEVS
simulators currently exist, and usually each of them uses a built-in modelling language often tied to a specific
programming language like Java or C++. To cope with this problem, specific conversion tools capable of
translating a DEVS model from a language to another can be realized. A more general solution would be that
of adopting emerging DEVS standard language such as DEVSML [9].
Another direction of integration concerns interoperability at architectural level. In [9] but also in [12] the
proposed world-wide architecture is aimed at harmonizing heterogeneous models based on special-case
DEVS tools, programming languages and engines, through the use of Web Services and SOAP dependent
messages and other DEVS concepts (ports, simulators, coordinator etc.). Web Services are viewed as a
world-wide glue enabling interoperation through DEVS/SOA mechanisms, with WSDL used for web services
interface specification.
Besides standardization of models and simulation infrastructure, the definition of a standard simulation
protocol [14] is mandatory. The protocol (see Fig. 2) describes how a DEVS model should be simulated and
how service/simulation engines should coordinate each other. Such a protocol opens also to a scenario in
which both DEVS and non-DEVS simulators may (possibly) participate in a simulation.

Coordinator

Atoimc1

Non-DEVS
Simulator

Atoimc2

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("

Coordinator

DEVS
Model

1

simulators.tellAll("initialize“)

simulators.AskAll(“nextTN”)

simulators.tellAll("computeInputOutput“)

simulators.tellAll("sendMessages")

simulators.tellAll("ApplyDeltFunc”)

putContentOnSimulator

2

?

DEVS
Simulator

CoupledSimulatorInterface

DEVS
Model

DEVS
Simulator

CoupledSimulatorInterface CoreSimulatorInterface

S
im

ulation C
ycle

Figure 2. Simulation protocol in a federation of DEVS and non-DEVS simulators

3

CoreSimulatorInterface is the common interface to simulators. The term “core” means “essential” in that as
long as a simulator implements this interface, it can participate in a simulation driven by a DEVS coordinator.
In the case of DEVS-simulators, the CoupledSimulatorInterface is considered. This interface extends the core
interface by providing other functionalities e.g. for adding/removing couplings among DEVS models.
The coordinator is in charge of synchronizing the activities of the various simulators guiding them through the
simulation control cycle. Basic steps of the simulation cycle are shown in Table 1.

Step Description
nextTN the coordinator requests that each simulator sends its time of next event and

takes the minimum of the returned values to obtain the global time of next event
computeInputOutput each of the simulators applies its computeInputOutput method to produce/gather

an output that consists of a collection of Contents (i.e. port/value pairs)
sendMessages each simulator partitions its output into messages intended for recipient

simulators and sends these messages to these recipient simulators. Send a
message imply to call the recipient’s putContentOnSimulator for any target
simulator

applyDeltFunc each of the simulators executes its ApplyDeltFunc method which computes the
combined effect of the received messages and internal scheduling on its state, a
side effect is in producing the time horizon gives back at the nextTN

Table 1. Simulation cycle steps

CoordinatorInterface must be implemented by the coordinator. In handling simulation of hierarchical coupled
models, a coordinator orchestrates a set of controlled simulators within it and, at the same time, can
participate with peers in a coupled model above it. To allow such downward/upward facing interfaces, the
CoupledCoordinatorInterface is introduced which extends both the CoordinatorInterface and the
CoupledSimulatorInterface.

Wrapping ActorDEVS in DEVS-World
This section highlights a service-based approach extending the Theatre/ActorDEVS architecture in order to
meet requirements of DEVS-World project. Provided extensions support architectural interoperability among
heterogeneous DEVS simulators. The approach adopts previously described DEVS simulation protocol. At the
moment, interoperability at modelling language level is not addressed. Each DEVS model is assumed to be
implemented as a Java class complying with the ActorDEVS API [7].
The main idea is to wrap a whole ActorDEVS system, which can span from a single atomic model to a
complex coupled model, as a Web Service (i.e. a logical node) and associated simulation engine. A
Coordinator service is introduced in order to coordinate the evolution of the overall simulation. System
components are made available as Web Services by means of specific objects called Wrappers. Client-side
interactions are instead mediated by means of specific Proxy objects. It is worthy of note that in a service
oriented architecture the roles of client and provider are not univocally defined, in particular the same node
may act as client/provider on the basis of the required/offered functionalities.
Wrappers and Proxies are transparently used. As a consequence, would e.g. Java RMI be used in place of
Web-Services based protocols, only Wrappers and Proxies would be accordingly changed. Figure 3 shows the
architecture of a resultant Theatre/ActorDEVS system.

4

Fig. 3. Architecture of a Theatre/ActorDEVS system.

The Theatre nodes, the Configurator and Code Server nodes are not exclusive to a DEVS simulation, they are
common to all Actor-based applications. The Coordinator node, instead, is tightly related to DEVS-World
prospective and is in charge of implementing the DEVS simulation cycle. The Configurator makes it possible to
configure the whole simulation system and start simulation. Configuration consists of four steps.
The first step is devoted to setting-up the Theatre nodes by specifying the control machine, the code server
and the transport layer to use. This is accomplished by exploiting the Configuration and Management Web
Services (see the C&M-WS in Fig. 3). A specific DEVSControlMachine has been developed in order to work in
pair with the Coordinator and be compliant with the DEVS simulation protocol. This control machine
implements a CoupledSimulationInterface–like and behaves as a DEVS simulator. When the control machine
is instantiated its functionality is made available as a Web Service which is automatically published (see the
Simulator-WS in Fig. 3). The DEVSControlMachine oversees message exchange with other simulators. As a
consequence, the transport layer (see the TL-WS in Fig. 3) in this scenario is used only to manage inter-
theatre control messages.
The second step consists in assigning to each Theatre the specific DEVS model to simulate. A model may
correspond to a single atomic or coupled DEVS component. A model corresponds to a Java class whose
name requires to be specified. This step is carried out by exploiting the C&M-WS and completes when each
model gets assigned to the target Theatre, i.e. downloaded from the code server and instantiated.
The third step consists in establishing the necessary bindings among coordinator and simulator services (i.e.
acquaintance relationships). In particular, a CoordinatorInfo object is provided to each simulator and a list of all
SimulatorInfo objects, relevant to simulators involved in the federation, is furnished to each simulator and to
the coordinator. An info object contains the name of the service and the relevant service endpoint address
which is necessary to contact and use it.
The fourth step consists in defining couplings among deployed models in order to build the entire simulation
model. This is achieved by invoking the method addCoupling onto a simulator. Coupling information mainly
contains a couple of names, identifying the two ports to be connected. The first name is relevant to an output
port of a DEVS component local to the simulator. The second name is relevant to an input port of a DEVS
component residing on a remote simulator. Along with coupling information, the name of the remote simulator
is also provided. At runtime, couplings get actualized by means of the so called RelayPort objects. Making a
coupling implies linking an output port of a DEVS component to a relay port which, in turn, is logically
connected to a remote input port. All of this makes the DEVS Component unaware of network partitioning.
At configuration end, the Configurator may launch the simulation by calling the method simulate on the
Coordinator which in turn triggers into execution the simulation control loop.

5

An Example
[Full version of the paper will include details about a modelling and simulation example using the achieved
implementation of WS-based Theatre/ActorDEVS.]

Conclusions
A prototype version of the Theatre/ActorDEVS architecture based on Web Services was realized. The
implementation relies on Java technology. In particular, the SOAP engine Axis [2] is used for managing WS
related aspects. The following are some points which deserve some discussion within the community of
DEVS-World.
• The DEVS simulator protocol appears “too much synchronous” for a networked context. Many interactions

among the simulation-protocol participants are required for each simulation step independently from the
complexity of the simulated model. A systematic exploitation of a kind of “lookahead” could alleviate the
problem. By exploiting lookahead the coordinator could give a granted time to each simulator thus allowing
a more independent evolution of local simulation.

• Another (obvious) issue concerns simulation performance achievable by the use of WSs. This is not only
tied to the use of verbose XML for SOAP messaging but mainly to the management of network
connections. Simulation experiments confirmed that network resources (connections) of operating system
may be wasted considerably during simulation and need in general careful control.

On-going work is directed at:
• improving the Configurator component by providing a friendly GUI for visual system configuration, model

composition, deployment and simulation control
• replacing Axis by other Web Service infrastructure e.g. related to latest J2EE
• introducing a model repository service, enabling model reuse and sharing
• adopting standard formalisms like DEVSML for supporting DEVS modelling
• favouring model and experiments interchange by developing translation tools allowing model

transformation from a high-level implementation-independent formulation into the terms of a specific DEVS
setting (e.g. ActorDEVS and Java) and vice versa

• experimenting with Theatre/ActorDEVS architecture in an heterogeneous environment where diverse
DEVS simulators have to cooperate

• developing tools for visual modelling.

References
[1] Agha G., Actors: A model for concurrent computation in distributed systems, Cambridge, MIT Press, 1986.
[2] Axis website. http://ws.apache.org/axis/index.html. Accessed on May 2008.
[3] Cicirelli F., A. Furfaro, A. Giordano, L. Nigro. An agent infrastructure for distributed simulations over HLA

and a case study using unmanned aerial vehicles. In Proc. of 40th Annual Simulation Symposium, IEEE
Computer Society Press, pp. 231-238, March, Norfolk (VA), 2007.

[4] Cicirelli F., A. Furfaro and L. Nigro. A DEVS M&S framework based on Java and actors. In Proc. of 2nd

European Modelling and Simulation Symposium (EMSS 2006), pp. 337-342.
[5] Cicirelli F., A. Furfaro, L. Nigro. Conflict management in PDEVS: an experience in modelling and

simulation of time Petri nets. In Proc. of Summer Computer Simulation Conference (SCSC'07), pp. 349-
356.

[6] Cicirelli F., A. Furfaro, L. Nigro. Integration and interoperability between Jini services and web services. In
Proc. of IEEE Int. Conf. on Services Computing (SCC'07), pp. 278-285, July 2007.

[7] F. Cicirelli, A. Furfaro, L. Nigro. Actor-based Simulation of PDEVS Systems over HLA. In Proc. of 41st

Annual Simulation Symposium (ANSS'08), Ottawa, Canada, April 14-16, 2008, pp. 229-236.
[8] Cicirelli F., A. Furfaro, L. Nigro, F. Pupo. A component-based architecture for modelling and simulation of

adaptive complex systems. In Proc. of 21st European Conference on Modelling and Simulation (ECMS’07),
4-6 June, Prague.

[9] DEVS_WORLD: A platform for developing advanced discrete-event simulation at worldwide scale, Internal
document, December 2007.

6

[10] Hu X., B.P. Zeigler, S. Mittal. Variable structure in DEVS component-based modelling and simulation.
Simulation, vol. 81(2):91-102, 2005.

[11] Hu X., B.P. Zeigler. Model continuity to support software development for distributed robotic systems: A
team formation example, J. of Intelligent and Robotic Systems, vol. 39(1):71-87, 2004.

[12] Mittal S., B.P. Zeigler, J.L.R. Martin, F.Sahin, M. Jamshidi. Modeling and simulation for systems of
systems engineering, Book chapter, System of Systems – Innovations for the 21st Century, Wiley, 2008 (in
press).

[13] Papazoglou M.P., D. Georgakopulos. Service Oriented Computing. Communication of the ACM, vol.
46(10):25-28, 2003.

[14] Xiaolin H., B.P. Zeigler. A Proposed DEVS Standard: Model and Simulator Interfaces, Simulator Protocol,
Internal document, January 2008.

[15] Yu Y. H., G. Wainer. eCD++: an engine for executing DEVS models in embedded platforms. In Proc. of
SCS Summer Simulation Multiconference, pp. 323-330, 2007.

[16] Zeigler B.P., H. Praehofer, T.G. Kim. Theory of modeling and simulation. 2nd edition, New York, NY,
Academic Press, 2000.

[17] Wooldridge M. An introduction to multi-agent systems. John Wiley & Sons, Ltd., 2002.

