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Abstract—All engineering disciplines are founded and rely on models, although they may differ on purposes and usages of modeling.
Among the different disciplines, the engineering of Cyber Physical Systems (CPSs) particularly relies on models with dynamic
behaviors (i.e., models that exhibit time-varying changes). The Simulink modeling platform greatly appeals to CPS engineers since it
captures dynamic behavior models. It further provides seamless support for two indispensable engineering activities: (1) automated
verification of abstract system models via model simulation, and (2) automated generation of system implementation via code
generation.
We identify three main challenges in the verification and testing of Simulink models with dynamic behavior, namely incompatibility,
oracle and scalability challenges. We propose a Simulink testing approach that attempts to address these challenges. Specifically, we
propose a black-box test generation approach, implemented based on meta-heuristic search, that aims to maximize diversity in test
output signals generated by Simulink models. We argue that in the CPS domain test oracles are likely to be manual and therefore the
main cost driver of testing. In order to lower the cost of manual test oracles, we propose a test prioritization algorithm to automatically
rank test cases generated by our test generation algorithm according to their likelihood to reveal a fault. Engineers can then select,
according to their test budget, a subset of the most highly ranked test cases. To demonstrate scalability, we evaluate our testing
approach using industrial Simulink models. Our evaluation shows that our test generation and test prioritization approaches outperform
baseline techniques that rely on random testing and structural coverage.

Index Terms—Simulink models, search-based software testing, automotive systems, test generation, test prioritization, test oracle,
output diversity, signal features, structural coverage.
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1 INTRODUCTION

Modeling has a long tradition in software engineering. Software
models are particularly used to create abstract descriptions of
software systems from which concrete implementations are pro-
duced [27]. Software development using models, also referred
to as Model Driven Engineering (MDE) [27], is largely focused
around the idea of models for code generation [26] or models
for test generation [75], [101]. Code or test generation, although
important, is not the primary reason for software modeling when
software development occurs in tandem with control engineering.
In domains such as the Cyber Physical System (CPS) domain
where software closely interacts with physical processes and
objects, one main driving force of modeling is simulation, i.e.,
design time testing of system models. Simulation aims to identify
defects by testing models in early stages and before the system
has been implemented and deployed.

In the CPS domain, we are interested in models that
have dynamic behavior (i.e., models that exhibit time-varying
changes) [47], [39], [104]. These models can be classified based
on their time-base (i.e., time-discrete versus time-continuous) and
based on the values of their output variables (i.e., magnitude-
discrete versus magnitude-continuous). Specifically, these models
might be time-continuous magnitude-continuous, time-discrete
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Fig. 1. Four different modeling paradigms for Cyber Physical Systems.

magnitude-continuous, time-continuous magnitude-discrete, and
time-discrete magnitude-discrete [104], [20] (see Figure 1).

Models built for the purpose of simulation are heterogeneous,
encompassing software, network and physical parts, and are meant
to represent as accurately as possible the real world and its contin-
uous dynamics. These models may build on one or a combination
of the four different modeling paradigms shown in Figure 1.
But, most often, Simulation models include time-continuous or
magnitude-continuous abstractions to be able to capture plant
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models (i.e., environment) and the interactions between software
systems and plant models [104], [20]. On the other hand, models
built for the purpose of code generation capture software parts
only and are described using time-discrete magnitude-discrete
models [93], [44]. This is because the generated software code
from these models receives sampled input data in terms of discrete
sequences of events and has to run on platforms that support
discrete computations only.

CPS development often starts with building simulation mod-
els capturing both continuous and discrete behaviors of a sys-
tem [104], [20]. These models enable engineers to explore and
understand the system behavior and to start system testing very
early. Simulation models are then discretized by replacing contin-
uous calculations with their corresponding discrete approximation
calculations. This results in models from which software code can
be automatically generated. Simulation models may, in addition,
serve as test oracles (formal specifications) for testing and verifi-
cation of software code.

It is important to develop effective verification and testing
techniques to ensure correctness of both simulation and code
generation models in the CPS domain. In our work, we focus
on models developed in Matlab/Simulink/Stateflow (or Simulink
for short) [96]. Simulink is an advanced platform for developing
both simulation and code generation models and is prevalently
used by the CPS industry. In the past years, we have been
studying existing verification and testing techniques developed for
Simulink models within the context of a research collaboration
with Delphi Automotive. Drawing on our combined experiences
and knowledge from research and practice, we have identified
three key challenges concerning existing testing and verification
techniques for Simulink models. We discuss these challenges
below.

The Incompatibility Challenge. The existing approaches to
testing and verification of Simulink models entirely focus on
magnitude-discrete time-discrete models, i.e., code generation
models [117], [73], [76], and are not compatible, and hence not
applicable, to Simulink models with continuous behaviors (i.e.,
simulation models). This is because these techniques often require
to translate Simulink models into an intermediate discrete behavior
model to be analyzed by model checkers (e.g., DiVine [11],
KLEE [18] and JavaPathFinder [42]) or by SAT/Constraint/SMT
solvers (e.g., PVS [69], Prover [77]). The incompatibility chal-
lenge sometimes extends to some features that are commonly used
in the Simulink code generation models [82], [117]. Specifically,
existing techniques have difficulties to handle library code or sys-
tem functions (implemented as Matlab S-Functions). For example,
Simulink Design Verifier (SLDV) [97], a commercial Simulink
testing tool that is a product of Mathworks and a Simulink toolbox,
can handle only some restricted forms of S-Functions. Finally,
due to limitations of existing constraint/SAT/SMT solvers [46],
techniques that rely on these solvers to verify or test Simulink [97],
[35], [8], [40], [24] often fall short when the underlying model
contains floating point and non-linear math operators (e.g., square
root or trigonometry functions).

The Oracle Challenge. The second challenge mostly has to
do with unrealistic assumptions about test oracles for Simulink
models (both simulation and code generation ones) in practical
settings. Several existing techniques rely on automatable test
oracles described as assertions (specified test oracles [12], [60])
or runtime errors (implicit test oracles [12], [60]) to identify faults
in Simulink models [66], [67]. However, formal specifications

from which assertions can be derived are expensive and are often
not available in practice. Runtime errors such as integer over-
/underflows are not sufficient as many faults may not lead to
runtime crashes. Even in the presence of formal requirements
and runtime errors, engineers tend to inspect system outputs
manually to identify unforeseen failures. As a result, test oracles
for Simulink models are to a great extent manual.

In the absence of automatable test oracles, existing approaches
seek to reduce the manual oracle cost by generating small test
suites that achieve high structural coverage [98], [99]. Such test
suites are able to execute most of the source code or the model
under test, suggesting that the code or the model is unlikely
to contain undetected bugs. Further, when test suites are small,
their outputs can be inspected manually without requiring a lot
of effort. However, several studies demonstrate that structural
coverage criteria alone may not be effective at finding faults in
software models and programs [41], [91], [65], [32].

A further limitation is that test oracles in the literature are
largely focused on verifying discrete system properties (e.g.,
invariants or reachability). Several important CPS requirements
concern continuous dynamic aspects [16], [37], [73]. For example,
these requirements may constrain the time it takes for a controlled
variable to stabilize sufficiently close to a reference value (set-
point), or they may constrain the frequency and the amount
of changes of a controlled variable over a continuous period
of time. Note that these requirements concern both simulation
and code generation models. There is little work on verifying
or testing Simulink models against CPS continuous dynamics
requirements [16], [37], [73], [76].

The Scalability Challenge. There is almost no study that
demonstrates scalability of existing testing and verification
Simulink tools to large industrial models. Even commercial tools
such as SLDV do not scale well to large and complex models,
an issue explicitly recognized by Mathworks [35]. Further, as
models grow larger and become more complicated, they are more
likely to contain features or mathematical operations not supported
by existing tools (the incompatibility challenge). In addition,
existing tools may fail to effectively identify faults in practical
settings due to their unrealistic assumptions about test oracles (the
oracle challenge). Hence, scalability remains an open problem for
Simulink testing and verification.

In this article, we provide automated techniques to generate
effective test suites for Simulink models. Our goal is to alle-
viate the above three challenges. First, in order to deal with
the incompatibility challenge, we address both continuous and
discrete behaviors in Simulink models by generating test in-
puts as signals, i.e., functions over time, in an entirely black-
box manner. Our strategy attempts to maximize chances to find
unacceptable worst-case behavior by building on a combination
of a single-state search optimizer [52] and the whole test suite
generation approach [29], [28].

Second, instead of focusing on structural coverage alone as
done in most existing approaches, we propose a test genera-
tion approach that aims to maximize diversity in output signals
of Simulink models. Our intuition is that by diversifying test
output signals we are more likely to find cases where there
are large discrepancies between expected and actual signals,
thus making it more likely for engineers to detect failures. We
introduce a new notion of diversity for output signals that is
defined based on a set of representative and discriminating signal
feature shapes. We show how this notion guides our heuristic
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search-based test generation algorithm to generate test suites
with diversified output signals.

We propose a test prioritization algorithm to automatically
rank test cases generated by our test generation algorithm accord-
ing to their likelihood to reveal a fault. Engineers can then select,
based on their time constraints, a subset of the most highly ranked
test cases. This is expected to lead to more failure detections
within time and resource constraints. Existing test prioritization
techniques mainly rely on dynamic test coverage information to
prioritize test cases [122], [115]. As a result, test cases that achieve
higher structural coverage are likely to be prioritized higher. In our
work, to rank test cases, we use a combination of test coverage
and fault-revealing probabilities of test cases. Specifically, we use
the degree of output diversity of a test suite as a proxy for the
fault-revealing probabilities of test cases in that test suite. We note
that a number of recent studies performed in different contexts
have shown that test suites generating diverse outputs are more
effective in fault finding [38], [2], [3].

Third, we evaluate our test generation and our test prioritiza-
tion algorithms using two industrial Simulink models. We assess
the effectiveness of these algorithms and systematically compare
them with baseline techniques that rely on random testing and the
decision coverage criterion.

Contributions. This article extends a conference paper [58]
and a tool paper [59] both published at the 38th International
Conference on Software Engineering (ICSE’16). In this article, we
present a consolidated Simulink model testing approach by putting
all our existing findings together in a coherent form. Further, as
specified below, we refine and extend ideas from our previous
work and provide a number of new contributions in this article:
(1) We propose a test generation algorithm for both simulation

and code generation Simulink models. Our approach does not
rely on automatable test oracles and is guided by heuristics
that build on a new notion of diversity for output signals. We
demonstrate that our approach outperforms random baseline
testing, coverage-based testing and an earlier notion of signal
output diversity proposed in our previous work [54].
Contribution (1) extends our earlier work [58] as follows:
(1) We provide new experimental results comparing our test
generation algorithm with coverage-based testing based on
the decision coverage criterion. (2) Our earlier test generation
approach was applied to single-output Simulink models [58].
This can be seen as a limitation since Simulink models
often contain several outputs, each of which can be tested
and evaluated independently. To eliminate this limitation, we
adapted and refined the formal notations and concepts to deal
with multiple outputs in Simulink models. This extension
significantly increased the amount of data we had to gather
in our experiments and the time it took to carry out those
experiments.

(2) We propose a test prioritization algorithm that combines
test coverage and test suite output diversity to rank test
cases. Our algorithm generalizes the existing coverage-based
test prioritization based on total and additional structural
coverage [115], [122]. We show that our test prioritization
algorithm outperforms random test prioritization and a state-
of-the-art coverage-based test prioritization [122].
Contribution (2) is completely new.

(3) We describe our Simulink testing tool (SimCoTest) and report
on three real faults that we were able to identify in industrial
Simulink models.

Contribution (3) extends the earlier work [59] as follows:
The new version of SimCoTest presented here supports test
case prioritization. The discussion on the real faults identified
in industrial Simulink models is new.

We have made the SimCoTest tool available online [79]. The
results of our experiments are also available online [81]. We are
not able to make the industrial models available due to a non-
disclosure agreement.

Organization. This article is structured as follows. Section 2
presents examples of simulation and code generation models and
motivates our output diversity approach by comparing it with
test generation driven by structural coverage. Section 3 provides
background on Simulink models and Simulink test inputs, and
defines our formal notation. Sections 4 and 5 describe our test
generation and our test case prioritization algorithms, respectively.
Section 6 explicates test oracle assumptions in our approach.
Our test generation and prioritization tool, called SimCoTest, is
presented in Section 7. Sections 8 and 9 present our experiments
setup and experiments results, respectively. Section 10 reports on
the three real faults we identified in industrial Simulink models,
and further discusses limitations of some existing Simulink testing
tools when they are used to reveal these faults. Section 11
compares our work with related work. Section 12 concludes the
article.

2 MOTIVATION

In this section, we provide examples of simulation and code gener-
ation models. We then motivate our output diversity test generation
approach by contrasting it with the test generation approach based
on structural coverage using an illustrative example.

2.1 Simulation and code generation models

We motivate our work using a simplified Fuel Level Controller
(FLC) which is an automotive software component used in cars’
fuel level management systems. FLC computes the fuel volume in
a tank using the continuous resistance signal that it receives from
a fuel level sensor mounted on the fuel tank. The sensor data,
however, cannot be easily converted into an accurate estimation of
the available fuel volume in a tank. This is because the relationship
between the sensor data and the actual fuel volume is impacted by
the irregular shape of the fuel tank, dynamic conditions of the
vehicle (e.g., accelerations and braking), and the oscillations of
the indication provided by the sensors. Hence, FLC has to rely on
complex filtering algorithms involving algebraic and differential
equations to accurately compute the actual fuel volume [95].

Simulation models. Figure 2(a) shows a very simplified sim-
ulation model for FLC adopted from the book of Zander et.
al. [117] and implemented in Simulink. This model captures
the behavior of a software component that receives continuous
resistance signals from a fuel level sensor and computes the level
of fuel in the tank. The model in Figure 2(a) exhibits time-discrete
magnitude-continuous behavior. More specifically, this model re-
ceives continuous signals from sensors. However, since the model
represents a piece of software, signal values should be sampled
at discrete time steps and the sampled values are passed to the
model in Figure 2(a). As shown in the figure, this model contains
a (continuous) integral operator (

∫
) to accurately compute the fuel

level. The Simulink model in Figure 2(a) is executable. Engineers
can run the model for any desired input signal and inspect the
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Fig. 2. A Fuel Level Controller (FLC) example: (a) A simulation model of
FLC; (b) a code generation model of FLC; (c) an input to FLC simulation
model; (d) an input to FLC code generation model; (e) output of (a) when
given (c) as input; (f) output of (b) when given (d) as input.
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Fig. 3. Comparing outputs of (a) continuous integral
∫

and (b) discrete
integral sum from models in Figures 2 (a) and (b), respectively.

output. Examples of input and output signals for this model are
shown in Figures 2(c) and (e), respectively. Note that both signals
represent continuous functions sampled at discrete time steps.
Automotive engineers often rely on their knowledge of mechanics
and control theory to design simulation models. These models,
however, need to be verified or systematically tested as they are
complex and may include several hundreds of blocks.

Code generation models. Figure 2(b) shows an example FLC

code generation model, (i.e., the model from which software
code can be automatically generated). The code generation model
is time-discrete and magnitude-discrete. Further, note that the
continuous integrator block (

∫
) in the simulation model is replaced

by a discrete integrator (sum) in the code generation model.
Examples of input and output signals for the code generation
model are shown in Figures 2(d) and (f), respectively. Both signals
represent discrete functions sampled at discrete time steps. Due
to the conversion of magnitude-continuous signals to magnitude-
discrete signals, the behavior of code generation models may
deviate from that of simulation models. Typically, some degree of
deviations between simulation and code generation model outputs
are acceptable. The level of acceptable deviations, however, have
to be determined by domain experts.

Simulation and code generation model behaviors. Figure 2(c)
shows a continuous input signal for the simulation model in
Figure 2(a) over a 10 sec time period. Figure 2(d) shows the
discrete version of the signal in Figure 2(c) that is used as input for
the code generation model in Figure 2(b). Models in Figures 2(a)
and (b) produce the outputs in Figures 2(e) and (f) once they are
provided with the inputs in Figures 2(c) and (d), respectively. As
shown in the figures, the percentages of fuel level in the continuous
output signal (Figure 2(e)) differ from those in the discrete output
signal (Figure 2(f)). For example, after one second, the output of
the simulation model is 91.43, while that of the code generation
model is 88.8. As is clear from this example, we lose precision as
we move from simulation models (with continuous behavior) to
code generation models (with discrete behavior). For our specific
FLC example, we explain the loss of precision using the diagrams
in Figure 3. The grey area in Figure 3(a) shows the value computed
by the continuous integral (

∫
) used in the FLC simulation model

after three seconds, while the value computed by the discretized
sum operator used in the FLC code generation model corresponds
to the grey area in Figure 3(b).

Conclusion. As the FLC example shows, due to discretization,
simulation and code generation models of the same component
are likely to exhibit different behaviors. It is important to have
verification and testing techniques that are applicable to both kinds
of models because (1) verifying one kind does not necessarily
imply correctness of the other kind, and (2) for non-software
components (e.g., physical components), only simulation models
are available. In this article, we provide a testing technique that is
applicable to both simulation and code generation models.

2.2 Limitations of Existing Simulink Testing Tools

A number of commercial tools are available to verify or test
Simulink models. The most notable ones are SLDV and Re-
actis [97], [84]. These tools typically have two usage modes
corresponding to two different assumptions about test oracles:
(1) The first usage mode is essentially a verification activity. To
verify a given Simulink model, formal properties (i.e., automatable
test oracles) must be provided (e.g., in the form of assertions
or runtime errors). The tools then attempt to generate test cases
that can reveal violations of assertions or formal properties. Some
tools such as SLDV can further generate a proof of correctness,
e.g., through SMT-based model checking [35], demonstrating that
given assertions or formal properties can never be violated. (2) The
second usage mode assumes that automatable test oracles are not
available. In this case, these tools generate test suites that achieve
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(a) Faulty FLC Model Output (TC1) (b) Faulty FLC Model Output (TC2)
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Fig. 4. (a) A test output of a faulty version of model in Figure 2(a); and
(b) another test output of the same faulty model.

some notion of structural coverage (i.e., Decision, Condition, and
MC/DC) [98].

In order for our approach to be widely applicable, our goal
in this paper is to provide a Simulink model testing technique
that does not rely on automatable test oracles. Hence, our work
is comparable in objective to approaches that are guided by struc-
tural coverage i.e., the second usage mode described above. As
discussed in Section 1, one main limitation of existing Simulink
testing tools is that they typically have incompatibility issues
with continuous blocks of Simulink, floating point and non-linear
arithmetic operations and S-Functions. Focusing on the subset
that is supported by existing Simulink testing tools, the main
difference between our approach and existing tools lies in their
underlying test generation algorithms. Typically a test generation
algorithm has two main dimensions: (1) The test objective, and
(2) a mechanism for test input generation. Below, we contrast our
work with test generation algorithms used in Simulink testing tools
along these two dimensions1:
• Low effectiveness of structural coverage criteria for test-

ing Simulink models. Many existing Simulink testing tools
(e.g. Reactis and SLDV) attempt to generate test cases that
achieve high structural coverage. Recent studies show that,
for Simulink models, test cases generated based on structural
coverage criteria exhibit low fault finding abilities [58], [54],
[32]. This is because, in Simulink models, structural coverage
criteria such as MC/DC are defined on a “block level”, and
hence, the test cases focus on covering individual intermedi-
ary conditional blocks. However, covering conditional blocks
individually may not impact the observable model outputs in
a visible manner [32], [107]. In addition, effectiveness of test
cases driven by structural coverage is likely to worsen further
for Simulink models containing a large number of numerical
computations such as lookup tables, integrator blocks, unit
convertors and trigonometry and logarithmic functions. This
is because faulty or wrong outputs of intermediary blocks
may be masked or their magnitude may be modified by
subsequent numeric computations. As a result, observable
model outputs are unlikely to exhibit visible and sufficiently
large deviations from their expected behaviors.

1. We note that the MathWorks license prevents publication of empirical
results comparing our test generation approach with the test generation
approach of SLDV. Further, we were not able to automate large experiments as
our version of Reactis lacks APIs allowing such automation, hence preventing
us comparing our test generation approach with that of Reactis.

• Lack of diversity in test inputs generated by model check-
ing. Many Simulink testing tools (e.g. SLDV) rely on
SMT/SAT/constraint solvers to generate test inputs. As ob-
served in recent studies and based on our experience, SMT-
based model checkers tend to generate test inputs by leaving
all non-essential inputs at some default values and only
changing what is absolutely necessary [32]. In particular, in
our earlier experience, we noticed that model checkers mostly
change the values of the generated test input signals during
the very first simulation steps, and then, the input signals
remain constant for the most part and until the end of the
simulation time [58]. In other words, test inputs generated
by model checkers lack diversity, and many of them look
almost identical. The outputs generated by similar test inputs
are likely to be similar as well and may not help engineers
detect faults.

To alleviate the above two limitations, in this paper, we
propose a test generation approach for Simulink that (1) aims to
maximize diversity among test output signals, and (2) generates
test input signals in a randomized way using search algorithms.

In the remainder of this section, we use an example to contrast
test generation based on structural coverage and output diversity
for Simulink models. Consider a faulty version of the simulation
model in Figure 2(a) where the line starting from point A is
mistakenly connected to point B. We generate a test case (TC1)
that achieves full structural coverage for this faulty model. Since
the model in Figure 2(a) does not have any conditional behavior,
a single test case can execute all the model. Figure 4(a) shows the
output of TC1 along with the expected behavior where the actual
output is shown by a solid line and the correct one by a dashed
line. As shown in the figure, the output of TC1 is very close to the
expected behavior, making it very difficult for engineers to notice
any failure since, in practice, they only have a rough idea about
what to expect. Further, given that in this domain small deviations
from oracles are expected, engineers are unlikely to identify any
fault when they use TC1.

Now suppose we use our proposed output diversity approach
to generate test cases. In our work, the test suite size is not
determined by structural coverage and is an input set by the
engineer. Suppose we choose to generate three test cases for the
given faulty model. Figure 4(b) shows the output of one of the
generated test cases (TC2). As shown in the figure, the output of
TC2 drastically deviates from the expected behavior, making the
presence of a fault in the model quite visible to the engineer. When
the goal is to achieve maximum structural coverage, TC1 and TC2
are equally desirable as they both achieve full structural coverage.
But TC2 is more fault-revealing than TC1. Our approach attempts
to generate a set of test cases that yield diverse output signals to
increase the probability of divergence from the expected result,
and hence, the chance of revealing latent faults.

3 BACKGROUND AND NOTATION

This section provides background on our test generation approach
for Simulink models. We further define our formal notation in this
section.

3.1 Models and Signals

Let M = (I,N ,O) be a Simulink/Stateflow model where
I = {i1, . . . , in} is a set of input variables,N = {n1, . . . , nb}
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is a set of nodes (i.e., Simulink blocks or Stateflow states), and
O = {o1, . . . , ol} is a set of output variables.

Each input/output variable of M , irrespective of M being a
simulation or a code generation model, is a signal, i.e., a function
of time. Assuming that the simulation time is T , we define a signal
sg as a function sg : [0..T ]→ R where R is the signal range. The
signal range R is bounded by its min and max values denoted by
minR and maxR, respectively.

In our test generation approach, in order to be able to generate
input signals and to analyze output signals, we assume that signals
are discretized based on a sampling rate (or time step) ∆t. This
allows us to convert a signal with a continuous domain and a
continuous range into a vector of values. Note that in order to
analyze signals, it is common to discretize them based on a
sampling rate. At the end of this subsection, we discuss how we
choose the sampling rate in our experiments. Let k be the number
of time steps in the simulation time interval [0..T ]. A discretized
signal sg can be specified using the values of sg at time points 0,
∆t, 2 × ∆t ,. . . , k × ∆t. We denote these values by sg0, sg1,
sg2, . . . , sgk, respectively.

For simulation models, every signal segment between sgi to
sgi+1 is a linear function, while for code-generation models, every
signal segment between sgi to sgi+1 is a constant function. For
example, Figure 2(e) represents a signal for a simulation model,
while Figure 2(f) represents a signal for a code generation model.
For signals in Figures 2(e) and (f), we have ∆t = 1s. The
signals for code-generation models take their values from a finite
(discrete) set (i.e., the signal range is finite), while the signals for
simulation models take their values from an infinite (continuous)
set (i.e., the signal range is infinite). For example, the range for
the signal in Figure 2(e) is an interval [50..100] of real numbers,
while the range for the signal in Figure 2(f) is the set of fixed point
values specified in the figure.

For the models used in our evaluation in Section 8, based on
the guidelines provided by engineers, we set ∆t = 1ms and the
simulation time T = 2s. That is, each (discretized) signal is a vec-
tor of 2000 points. According to the Nyquist-Shannon sampling
theorem [33], with a sampling rate of 1ms, we can discretize
continuous signals with a frequency of up to 500 HZ without any
information loss. If signals appear to have very high frequencies
(� 500HZ), then the sampling rate may have to be much smaller
to not lose any data. However, we note that, in the automotive
domain, we mostly deal with input signals that are aperiodic, e.g.,
driver’s commands, and do not have high frequencies. Further,
in this domain, in contrast to the telecommunication domain for
example, engineers are not typically interested in sampling rates
lower than 1ms, and they consider any potential loss of data due
to the 1ms sampling rate negligible.

3.2 Test Inputs and Outputs

Simulink models typically have multiple outputs. For a given test
case, engineers may inspect signal values for some or all of the
outputs to assess the model behavior. Our goal is to generate
test cases that diversify output signals as much as possible.
In our work, we focus on diversifying signal values for each
output individually and independently from other model outputs.
Specifically, we generate one test suite TS for each Simulink
model output o such that the test cases in TS generate diverse
output signals for o. In total, for a Simulink model with l outputs,
we generate l test suites TS 1 to TS l such that each test suite

(a)

1 i. . . . . . kj. . .

sg0
sg i

sg i+1 sgj

sgj+1 sgk

(b)

1 i. . . . . . kj. . .

sg0
sg i

sg i+1 sgj

sgj+1 sgk

(c)

1 i. . . . . . kj. . .

sg0

sg i

sgj

sgk

(d)

1 i. . . . . . kj. . .

sg0

sg i

sgj

sgk

Fig. 5. Different patterns for input signals: (a) a piece-wise constant
signal for simulation models; (b) a piece-wise constant signal for code-
generation models; (c) a piece-wise linear signal for simulation models;
and (d) a piece-wise linear signal for code-generation models. The
number of pieces for all the four signal examples is three.

TS i focuses on diversifying output signals for oi. In our work,
we consider the size of test suites TS 1 to TS l to be the same and
be equal to q.

Each test suite TSi contains q test inputs I1 to Iq such that
each test input Ij is a vector (sgi1 , . . . , sgin) of signals for
the input variables i1 to in of M . To test the model behavior
with respect to output oi, engineers simulate M using each test
input Ij ∈ TSi and inspect the signals generated for output oi.
Typically, all input and output signals generated during testing a
model M share the same simulation time interval and simulation
time steps, i.e., the values of ∆t, T , and k are the same for all of
the signals.

To generate test inputs for Simulink models, we need to
generate signals sgi1 to sgin . As discussed in Section 3.1, each
signal sg ij is characterized by a set of values for sg0

ij
, sg1

ij
, sg2

ij
,

. . . , sgkij specifying the values of signal sg ij at time steps 0, ∆t,
2 × ∆t, . . . , k × ∆t, respectively. Therefore, we can generate
arbitrary complex input signals by generating random values
for sg0

ij
, sg1

ij
, sg2

ij
, . . . , sgkij . However, automotive engineers

typically test Simulink models using input signals with specific
shapes. Further and as we will discuss in Section 6, checking
the correctness of test outputs for signals with arbitrary shapes is
difficult.

In our work, we consider two types of input signals: piece-
wise constant signals and piece-wise linear signals. A signal
specified by a sequence sg0, sg1, . . . , sgk is piece-wise constant
(linear respectively) if it can be partitioned into a sequence of
constant (linear respectively) signals. Figure 5 illustrates piece-
wise constant signals and piece-wise linear signals for simulation
and code generation models. The four signals shown in Figure 5
consist of three pieces each.

Generally speaking, input signals with fewer pieces are easier
to generate but they may fail to cover a large part of the underlying
Simulink model. By increasing the number of pieces in input
signals, structural coverage may increase, but the outputs gen-
erated by such test inputs become more complex, and engineers
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may find it difficult to predict expected outputs (test oracles). In
our test generation algorithm discussed in Section 4.3, we ensure
that, for each input variable, the generated input signals achieve
high structural coverage while the number of pieces in each signal
remains lower than a limit provided by domain experts.

Abbas et. al. [1] provide a detailed and formal characterization
for most commonly used input signals for control systems. Their
characterization includes the piece-wise constant and piece-wise
linear signals exemplified in Figure 5 as well as spline and sine-
shaped input signals. Our approach can be easily extended to
spline and sine-shaped input signals using the characterization
provided by Abbas et. al. [1].

Finally, we note that as we will discuss in Section 6, for
our case study models, we generate piece-wise constant input
signals for code generation models (i.e., signals similar to the
one in Figure 5(b)). This is because our case study models are
all code-generation models. Further, according to our domain
experts, due to difficulties of predicting expected output signals
(test oracles), engineers typically use piece-wise constants signals
to test their models. We intend to consider simulation models and
more complex input signals such as piece-wise linear signals in
our future experiments.

4 TEST GENERATION ALGORITHMS

We propose a search-based test generation algorithm, following
the whole test suite strategy [29], for Simulink models. We
define two notions of diversity among output signals: vector-based
and feature-based. We first introduce our two notions of output
diversity and will then describe our test generation algorithm.
In this section, we focus on generating a test suite for a single
output of M . For a model with multiple outputs, we apply our
test generation algorithm to each output of the model separately
to generate a test suite for each model output.

4.1 Vector-based Output Diversity
This diversity notion is defined directly over output signal vectors.
Let sgo and sg′o be two signals generated for output variable o
by two different test inputs of M . In our earlier work [54], we
defined the vector-based diversity measure between sgo and sg′o
as the normalized Euclidean distance between these two signals.
We define the vector-based diversity between sgo and sg′o as
follows:

ˆdist(sgo, sg
′
o) =

√
k∑

i=0
(sgo(i·∆t)−sg′

o(i·∆t))2

√
k+1×(maxR−minR)

(1)

where minR and maxR are the min and max values of the range
of signals sgo and sg′o. Note that sgo and sg′o are both generated
for output o, and hence, they have the same range. It is easy to see
that ˆdist(sgo, sg

′
o) is always between 0 and 1.

Our vector-based notion, however, may have a drawback.
A search driven by vector-based distance may generate several
signals with similar shapes whose vectors happen to yield a
high Euclidean distance value. For example, for two constant
signals sgo and sg′o, ˆdist(sgo, sg

′
o) is relatively large when sgo is

constant at the maximum of the signal range while sg′o is constant
at the minimum of the signal range. A test suite that generates
several output signals with similar shapes may not help with fault
finding.

4.2 Feature-based Output Diversity

In machine learning, a feature is an individual measurable and
non-redundant property of a phenomenon being observed [113].
Features serve as a proxy for large input data that is too ex-
pensive to be directly processed, and further, is suspected to be
highly redundant. In our work, we define a set of basic features
characterizing distinguishable signal shapes. We then describe
output signals in terms of our proposed signal features, effectively
replacing signal vectors by feature vectors. Feature vectors are
expected to contain relevant information from signals so that the
desired analysis can be performed on them instead of the original
signal vectors. To generate a diversified set of output signals,
instead of processing the actual signal vectors with thousands of
elements, we maximize the distance between their corresponding
feature vectors with tens of elements.

Figure 6(a) shows our proposed signal feature classification.
Our classification captures the typical, basic and common sig-
nal patterns described in the signal processing literature, e.g.,
constant, decrease, increase, local optimum, and step [72]. The
classification in Figure 6(a) identifies three abstract signal features:
value, derivative and second derivative. The abstract features are
italicized. The value feature is extended into: “instant-value” and
“constant-value” features that are respectively parameterized by
(v) and (n, v). The former indicates signals that cross a specific
value v at some point, and the latter indicates signals that remain
constant at v for n consecutive time steps. These features can be
instantiated by assigning concrete values to n or v. Specifically,
the “constant-value(n, v)” feature can be instantiated as the “one-
step constant-value(v)” and “always constant-value(v)” features
by assigning n to one and k (i.e., the simulation length), respec-
tively. Similarly, specific values for v are zero, and max and min
of signal ranges (i.e., maxR and minR).

The derivative feature is extended into sign-derivative and
extreme-derivative features. The sign-derivative feature is param-
eterized by (s, n) where s is the sign of the signal derivative
and n is the number of consecutive time steps during which
the sign of the signal derivative is s. The sign s can be zero,
positive or negative, resulting in “constant(n)”, “increasing(n)”,
and “decreasing(n)” features, respectively. As before, specific
values of n are one and k. The extreme-derivatives feature is non
parameterized and is extended into one-sided discontinuity, one-
sided discontinuity with local optimum, one-sided discontinuity
with strict local optimum, discontinuity, and discontinuity with
strict local optimum features.

The second derivative feature is extended into sign-second-
derivative parameterized by (s, n) where s is the sign of the
second derivative, and n is the number of consecutive steps during
which the sign of the second derivative remains s. The sign s can
be zero, positive or negative, resulting in “derivative-constant(n)”,
“derivative-increasing(n)”, and “derivative-decreasing(n)” fea-
tures, respectively. We set n to k to instantiate these features to
“always derivative-constant”, “always derivative-increasing”, and
“always derivative-decreasing” features, respectively. Note that the
second derivative is undefined over a signal with one time-step
length and, hence, n = 1 does not yield a signal feature.

Figures 6(b) to (f) respectively illustrate the “instant-
value(v)”, the “increasing(n)”, the “one-sided discontinuity with
local optimum”, the “discontinuity with strict local optimum”, and
the “derivative-decreasing(n)” features. Specifically, the signal in
Figure 6(b) takes value v at point A. The signal in Figure 6(c) is
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Fig. 6. Signal Features: (a) Our signal feature classification, and (b)–(f) Examples of signal features from the classification in (a).

increasing for n steps from B to C. The signal in Figure 6(d) is
right-continuous but discontinuous from left at point D. Further,
the signal value at D is more than the values at its adjacent
point, hence making D a local optimum. The signal in Figure 6(e)
is discontinuous from both left and right at point E. It is also
decreasing on one side of E and increasing on the other side,
making E a strict local optimum. Finally, the derivative of the
signal in Figure 6(f) is decreasing, i.e., the second derivative is
negative, for n steps from G to H.

We define a function Ff for each (non-abstract) feature f in
Figure 6(a). We refer to Ff as feature function. The output of
function Ff when given signal sg as input is a value that quantifies
the similarity between shapes of sg and f . More specifically, Ff

determines whether any part of sg is similar to feature f .

We provide two feature function examples related to the signal
features in Figures 6(b) and (c). Specifically, the feature function
Ffb related to the signal feature “instant-value(v)” in Figure 6(b)
is defined as follows:

Ffb (sg, v) =
k

min
i=0
|sg(i ·∆t)− v)|

This function computes the minimum difference between a
given value v and the values of signal sg at every simulation
step. The lower Ffb , the closer the shape of sg to the feature in
Figure 6(b). Particularly, if Ffb becomes zero for some v, it implies
that signal sg exhibits the feature instant-value(v).

As another example, the feature function Ffc related to the

signal feature “increasing(n)” in Figure 6(c) is defined as follows:

Ffc (sg, n) =
k

max
i=n

(
i∑

j=i−n+1
lds(sg, i))

where lds(sg, i) denotes the sign of the left derivative of sg at
step i. Specifically, lds(sg, i) is zero when sg is constant at step i
when compared with its left point at step i−1, one when its value
at i is more than its value at i−1, and -1 when its value at i is less
than its value at i − 1. Function Ffc computes the largest sum of
the left derivative signs of sg over any segment of sg consisting
of n consecutive simulation steps. The higher the value of Ffc ,
the more likely that sg exhibits the increasing(n) feature (i.e., the
more likely that sg contains a segment of size n during which its
values are increasing). The formal definitions for all the features
in Figure 6 are available online [81].

Having defined features and feature functions, we now de-
scribe how we employ these functions to provide a measure of
diversity between output signals sgo and sg′o. Let f1, . . . , fm be
m features that we choose to include in our diversity measure. We
compute feature vectors F v(sgo) = (Ff1(sgo), . . . , Ffm(sgo))
and F v(sg′o) = (Ff1(sg′o), . . . , Ffm(sg′o)) corresponding to
signals sgo and sg′o, respectively. Since the ranges of the feature
function values may vary widely, we standardize these vectors
before comparing them. Specifically, we use feature scaling
which is a common standardization method for data process-
ing [113]. Having obtained standardized feature vectors F̂ v(sgo)
and F̂ v(sg′o) corresponding to signals sgo and sg′o, we compute
the normalized Euclidean distance between these two vectors,
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(i.e., ˆdist(F̂ v(sgo), F̂ v(sg′o))), as the measure of feature-based
diversity between signals sgo and sg′o. In the next section, we
discuss how our diversity notions are used to generate test suites
for Simulink models.

4.3 Whole Test Suite Generation Based on Output Di-
versity

We propose a meta-heuristic search algorithm to generate a test
suite TS = {I1, . . . , Iq} for a given model M to diversify
the set of output signals generated by TS for a specific output
of M . As discussed in Section 3.2, we generate a separate test
suite containing q test inputs for each output of M . We will then
apply our test prioritization algorithm (see Section 5) to generate
a ranking of all the generated test inputs to help engineers identify
faults by inspecting a small number of test outputs.

We denote by TSO = {sg1, . . . , sgq} the set of output
signals generated by TS for an output o of M . We capture the
degree of diversity among output signals in TSO using objective
functions Ov and Of that correspond to vector-based and feature-
based notions of diversity, respectively:

Ov (TSO) =

q∑
i=1

MIN∀sg∈TSO\{sgi}
ˆdist(sgi,sg)

q (2)

Of (TSO) =

q∑
i=1

MIN∀sg∈TSO\{sgi}
ˆdist(Fv(sgi),F

v(sg))

q (3)

Function Ov computes the average of the minimum distances of
each output signal vector sgi from the other output signal vectors
in TSO. Similarly, Of computes the average of the minimum
distances of each feature vector F v(sgi) from feature vectors of
the other output signals in TSO . Our test generation algorithm
aims to maximize functions Ov and Of to increase diversity
among the signal vectors and feature vectors of the output signals,
respectively.

Our algorithm adapts the whole test suite generation ap-
proach [29] by generating an entire test suite at each iteration
and evolving, at each iteration, every test input in the test suite.
The whole test suite generation approach is a recent and preferred
technique for test data generation specially when, similar to Ov

and Of , objective functions are defined over the entire test suite
and aggregate all testing goals. Another benefit of this approach
for our work is that it allows us to optimize our test objectives
while fixing the test suite size at a small value due to the cost of
manual test oracles.

Our algorithm implements a single-state search optimizer
that only keeps one candidate solution (i.e, one test suite) at
a time, as opposed to population-based algorithms that keep a
set of candidates at each iteration [52]. This is because our
objective functions are computationally expensive as they require
to simulate the underlying Simulink model and compute distance
functions between every test input pair. When objective functions
are time-consuming, population-based search may become less
scalable as it may have to compute objective functions for several
new or modified members of the population at each iteration.

Figure 7 shows our output diversity test generation algorithm
for Simulink models. We refer to it as OD. The core of OD is based
on an adaptation of the Simulated Annealing search algorithm [52].
Specifically, the algorithm generates an initial solution (lines 2-
3), iteratively tweaks this solution (line 11), and selects a new

Algorithm. The test generation algorithm applied to output o of a Simulink
model M .

1. P ← 1
2. TS ← GENERATEINITIALTESTSUITE(q, P ) /*Test suite size q */
3. TSO ← signals obtained for output o by simulating M for every test input in TS
4. BestFound ← O(TSO)
5. Pmax ← maximum number of signal pieces permitted in test inputs
6. whole-test-suite-coverage← coverage achieved by test cases in TS over M
7. initial-coverage← whole-test-suite-coverage
8. accumulative-coverage← initial-coverage
9. σ ← σ-exploration /*Tweak parameter σ ∈ [σ-exploitation . . . σ-exploration] */
10. repeat
11. newTS = TWEAK(TS, σ, P) /* generating new candidate solution */
12. TSO← signals obtained for output o by simulating M for every test input in newTS
13. whole-test-suite-coverage← coverage achieved by test cases in newTS over M
14. accumulative-coverage← accumulative-coverage + whole-test-suite-coverage
15. if O(TSO) > highestFound :
16. highestFound = O(TSO)
17. TS = newTS
18. if accumulative-coverage has reached a plateau at a value less than %100 :
19. if P < Pmax :
20. P = P + 1
21. Reduce σ proportionally from σ-exploration to σ-exploitation as

accumulative-coverage increases over initial-coverage
22. until maximum resources spent
23. return TS

Fig. 7. Our output diversity (OD) test generation algorithm for Simulink
models.

solution whenever its objective function is higher than the current
best solution (lines 15-17). The objective function O in OD is
applied to the output signals in TSO that are obtained from test
suites. The objective function can be either Of or Ov , respectively
generating test suites that are optimized based on feature-based
and vector-based diversity notions.

Like the simulated annealing search algorithm, our OD algo-
rithm in Figure 7 is more explorative at the beginning and becomes
more exploitative as the search progresses. In the simulated
annealing search, the degree of exploration/exploitation is adjusted
using a parameter called temperature. Typically, the temperature
is set to a high value at the beginning of the search, making the
search behaves similarly to a random explorative search. As time
passes, the temperature is lowered, eventually to zero, turning
the search into an exploitative search algorithm such as Hill
Climbing [52]. We take a similar approach in our OD algorithm
where the parameter σ acts like the temperature parameter in
simulated annealing. The difference is that the value of σ in
our algorithm is adjusted based on the accumulative structural
coverage achieved by all the generated test suites.

The reason that we opt for such search solution is that,
based on our existing experience of applying search algorithms
to continuous controllers [56], a purely explorative or a purely
exploitative search strategy is unlikely to lead to desirable optimal
solutions. Given that the search space of input signals is very large,
if we start by a purely exploitative search (e.g., σ = 0.01), our
result will be biased by the initial randomly selected solution. To
reduce this bias, we start by performing a more explorative search
(e.g., σ = 0.5). However, if we let the search remain explorative,
it may not converge fast enough to desired solutions. Hence, we
reduce σ iteratively in OD such that the amount of reduction in
σ is proportional to the increase in the accumulative structural
coverage obtained by the generated test suites (line 21).

While being a Simulating Annealing search in essence, OD
proposes two novel adaptations: (1) Our input signal generation
mechanism. Our algorithm initially generates input signals that
contain a small initial number of signal pieces P (e.g., one piece).
It then increases P as needed while ensuring that P always
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(a)

1 i. . . . . . kj. . .

Tweak Case-1

(b)

1 i. . . . . . kj. . .

Tweak Case-2

Fig. 8. Illustrating our tweak operator (line 11 of the algorithm in Figure 7)
on an example constant piecewise signal for simulation models from
Figure 5(a): (a) shifting the signal based on a randomly selected value
(Case-1), and (b) shifting the signal and increasing the number of signal
pieces (Case-2).

remains less than the limit provided by the domain expert Pmax .
Recall that, on one hand, increasing input signal pieces makes
the output more difficult to analyze, but on the other hand, input
signals with few pieces may not reach high model coverage. In
OD, we initially generate test inputs with one piece (lines 1-2).
We increase P only when the accumulative structural coverage
achieved by the existing generated test suites reaches a plateau at
a value less than %100. In other words, we increase P only when
we are not able to improve structural coverage using the current
test input signals that have P pieces (lines 19-20). After increasing
P on line 20, the tweak operator on line 11 increases the number
of pieces in the newly generated signals. Further, although not
shown in the algorithm, we do not increase P if the last increase
in P has not improved the accumulative coverage.

(2) Our tweak operator for input signals. In Figure 8, we
illustrate our tweak operator (line 11 of the algorithm in Figure 7).
We distinguish two cases.

Case-1: When the number of pieces in signals generated by the
tweak operator does not need to be increased: In this case, the
tweak operator is similar to that used in (1+1) EA [52]. The
operator simply shifts input signals by a small value selected
from a normal distribution with mean µ = 0 and variance
σ × (maxR − minR) where R is the range of the signal
being tweaked. Our tweak operator for Case-1 is shown in
Figure 8(a).

Case-2: When the number of pieces in signals generated by the
tweak operator should be increased: This means that the
structural coverage achieved by the current set of signals
has not increased over the past few iterations (see Lines 18–
20). In this case, the operator first increases the number of
pieces in signals, and then similar to Case-1, the operator
shifts the signals. Our tweak operator for Case-2 is shown in
Figure 8(b).

To conclude this section, we discuss the asymptotic time
complexity of individual iterations of the OD algorithm when
we use Ov and Of functions, respectively. Let q be the size of
the generated test suites, k be the number of simulation steps,
and TM be the time it takes to simulate the underlying Simulink
model for k steps. In general, TM depends on the size of the
model, the number of model inputs and outputs, and the number
of simulation steps. The time complexity of one iteration of OD

with Ov is O(q × TM ) +O(q2 × k)2.
The time complexity of one iteration of OD with Of is O(q×

TM ) + O(q ×m× k) + O(q2 ×m) where m is the number of
signal features that we use to compute feature vectors. Note that
the time complexity of computing features in Figure 6 is O(k).
This is mainly because in those features we consider the parameter
n to be either one or k. In our problem, k is considerably larger
thanm and larger than q. For example, in our experiment, we have
k = 2000, while we use 23 features (m = 23), and we typically
choose q to be less than 10. In Section 9, we will provide the
average time for model simulations (TM ) and for executing one
iteration of the OD algorithm using Ov and Of functions based
on our empirical evaluation.

5 TEST PRIORITIZATION ALGORITHM

Our OD test generation algorithm discussed in Section 4 generates
a test suite (with q test cases) for each model output. To help
engineers effectively inspect model behavior with respect to all
the generated test cases, we provide a test prioritization technique.
The goal of our prioritization algorithm is to generate a ranked
list of test cases such that the most fault-revealing test cases are
ranked higher in the list, helping engineers identify faults faster
by inspecting a few test cases.

We take a dynamic test prioritization approach based on greedy
algorithms to rank test cases. This choice is driven based on
the following two main considerations: First, in our work, test
prioritization occurs after the test generation step where all the
test cases are already executed. Hence, test coverage information
is already available. Therefore, to prioritize test cases, we do not
need to resort to static techniques that, due to unavailability of
test coverage information, are restricted to static analysis of code
or other artifacts [78], [100]. Second, based on our experience,
typical industrial Simulink models have less than 50 outputs, and
in our work, we consider to generate less than 10 test cases
for each output. Hence, the total number of test cases that we
need to rank is relatively small (less than 500). Therefore, we
chose to consider greedy-based prioritization algorithms. These
algorithms iteratively compare all the test cases with one another
to identify the best locally optimal choice at each iteration.
Other implementation alternatives include adaptive random test
prioritization and search-based test prioritization [78]. These are
mainly proposed to improve efficiency by comparing only a subset
(not all) of test cases or test case rankings at each iteration. Neither
of these approaches, however, outperform the greedy approach in
terms of the ability to find faults faster [49], [78].

Our test case prioritization algorithm is shown in Figure 9.
The algorithm generates an ordered list Rank of test cases in T C
where T C is the union of all the generated test suites for a given
Simulink model M = (I,N ,O). In addition to the aggregated
test suite T C and the model M , the algorithm receives the fol-
lowing three functions as input and uses them to compute the test
case ranking: (1) The test coverage information for each individual
test case tc ∈ T C, denoted by function covers : T C → 2N .
(2) The fault-revealing probability of test cases in T C, denoted by
FRP : T C → [0..1]. (3) The faultiness probability of individual
Simulink nodes of M , denoted by faultiness : N → [0..1].

Our algorithm aims to reward and prioritize test cases that
are likely to find more faults in models. To achieve this, it relies

2. Note that the O here refers to the bigO time complexity and should not
be mistaken by objective function O used in the OD algorithm.
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on functions FRP (fault-revealing probability of test cases) and
faultiness (faultiness probability of individual Simulink nodes).
In reality, however, we do not have any a priori knowledge about
the fault-revealing ability of a test case (FRP ), and we do not
know the likelihood of a node being faulty (faultiness) at the time
of test prioritization. Therefore, similar to existing approaches on
test case prioritization, our reward functions can only be based
on surrogate criteria [115]. Most test prioritization techniques
primarily use test coverage as the surrogate for fault-revealing
ability of test cases. Given that test coverage alone may not
be a good indicator for fault-revealing ability, in our algorithm
(Figure 9), we define functions FRP and faultiness based on a
combination of test coverage and other criteria described below.

For faultiness , initially we assume that the nodes are all
equally probable of containing a fault. So, we initialize the
faultiness probability of each node with one. This is just to ensure
that all the nodes have the same relative faultiness probability at
the beginning. The faultiness probabilities are then iteratively
reduced depending on the selected test cases and their FRP
values. We note that our decision to initialize the faultiness values
by one is consistent with the test prioritization algorithm presented
by Zhang et. al. [122].

We use the output diversity functions defined in Section 4
as a proxy for test case fault-revealing ability (FRP ). We note
that output diversity (i.e., output uniqueness) has been shown
to correlate to fault finding [2], [3], [54], [58] and to act as an
effective complement to test coverage [2], [3]. Recall that we
defined output diversity functions over test suites generated by
our test generation algorithm in Figure 7, and that T C in Figure 9
is the union of all these test suites. Indeed output diversity is a
property of individual test suites, and not a property of test cases
inside test suites. However, based on our previous results [54],
[58], we know that if a test suite TS has a high output diversity,
it likely contains some test cases that are effective in fault finding.
Of course, we have no way of telling apart the more effective test
cases in TS from the less effective ones. But since TS is typically
small (less than 10 elements), by giving a prioritization boost to
all test cases in TS including both effective and ineffective test
cases, we are still likely to have some effective test cases to be
ranked high. Hence, we assume all the test cases in TS have the
same fault-revealing ability equal to the output diversity of TS .
More specifically, given a test case tc such that tc ∈ T C ∩ TS ,
we set FRP(tc) to be equal to O(TS ) where O can be either
the vector-based Ov or the feature-based Of output diversity
functions described in Equations 2 and 3, respectively.

In the remainder of this section, we first describe how the test
coverage function, covers , used in our algorithm is computed for
Simulink models. We then describe how our proposed prioritiza-
tion algorithm works. Recall from Section 4 that each test suite
TS generated by the OD algorithm is related to a specific output
o of the underlying Simulink model. Let tc ∈ TS be a test case
generated for an output o. We write test(tc, o) to denote that test
case tc is related to output o. Note that each test case is related
to exactly one output, but an output is related to a number of test
cases (i.e., q test cases). For Simulink models, test coverage is the
set of Simulink nodes (i.e., Simulink blocks or Stateflow states)
executed by a given test case tc to generate results for the output o
related to tc. Given a Simulink model M = (I,N ,O) and a test
case tc ∈ T C, we denote the test coverage of tc by covers(tc)
and define it as follows:
covers(tc) = {n | n ∈ static slice(o) ∧ test(tc, o) ∧ tc executes n}

Algorithm. Test case prioritization algorithm

Input: – M = (I,N ,O): Simulink Model
– T C: A test suite for M
– covers : T C → 2N : Test coverage of test cases
– FRP : T C → [0..1]: Fault-revealing probability of test cases
– faultiness : N → [0..1]: Simulink node faultiness probabilities

Output: – Rank : A ranked list of the test cases in T C

1. Rank = []
2. Ranked = 0
3. while (T C 6= ∅) do

/* Lines 4-5: For each test case tc, compute the summation of the probabilities that tc
can find a fault in a Simulink node that it covers.*/

4. for (tc ∈ T C) do
5. P(tc) = FRP(tc)×∑

n∈covers(tc) faultiness(n)

/* Select the test case tc that yields the highest aggregated fault-revealing probabilities*/
and add it to Rank*/

6. Let tc ∈ T C yield the largest P(tc)
7. Rank [Ranked ] = tc

/* Lines 8-10: Update the faultiness probability of Simulink nodes covered by tc
for the remaining unranked test cases*/

8. for (n ∈ covers(tc)) do
9. old = faultiness(n)
10. faultiness(n) = old × (1− FRP(tc))
11. T C = T C \ {tc}
12. Ranked + +
13. return Rank

Fig. 9. Our test prioritization algorithm for Simulink models.

where o ∈ O and static slice(o) is the static backward slice of
output o and is equal to the set of all nodes in N that can reach
output o via data or control dependencies.

Note that our notion of test coverage is specific to a model
output. The set covers(tc) includes only those nodes that are
executed by tc, and further, appear in the static backward slice
of the output related to tc. The nodes that cannot reach that output
(via Simulink control or data dependency links) are not included
in covers(tc) even if they happen to be executed by tc. Our notion
of test coverage is the same as the notion of test execution slices
defined in our previous work on fault localization of Simulink
models [51]. There, we provided a detailed discussion on how
the sets static slice(o) and covers(tc) can be computed for
Simulink models. Therefore, we do not discuss the implementation
details of these concepts for Simulink models in this article.

As discussed earlier, the algorithm in Figure 9 takes a greedy
approach to rank test cases. At each iteration, it identifies the
test case that yields the highest aggregated fault-revealing ability
among the unprioritized test cases and adds it to the top of
the ranked list Rank (lines 4–7). In particular, the algorithm
first computes the aggregated fault-revealing probabilities for
every unprioritized test case tc by multiplying the fault-revealing
probability of tc and the summation of faultiness probabilities of
the nodes that are covered by tc. Note that the fault-revealing
probability of a test case and the faultiness probability of a node
are independent, and their cross product indicates the probability
that a test case reveals a fault in a node. The test case that yields
the highest aggregated fault-revealing probability is added to the
ranked list Rank as the best locally optimal choice (line 7). After
that, the algorithm updates the faultiness probabilities of the nodes
covered by the test case that was just added to Rank (lines 8–
10). Specifically, the faultiness probabilities of each of the nodes
covered by that test case is multiplied by (1 − FRP), i.e., the
probability that the test case fails to reveal a fault. The algorithm
terminates when all the test cases in T C are ranked.

Our proposed test prioritization algorithm (Figure 9) gener-
alizes and extends the existing dynamic test prioritization tech-
niques [122], [115], [78]. These techniques rank test cases using
either total or additional structural coverages achieved by indi-
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vidual test cases. Specifically, in the case of total coverage, a
test case is ranked higher if it yields higher structural coverage
independently from other test cases. However, in the case of
additional coverage, a test case is ranked higher if it produces
larger additional structural coverage compared to the accumulative
structural coverage achieved by the already ranked test cases. Our
algorithm in Figure 9 turns into a test prioritization algorithm
based on additional coverage if we set FRP(tc) to one for every
tc ∈ T C. If, in addition, we remove lines 8 to 10 from our
algorithm in Figure 9 (i.e., the part related to updating faultiness
with respect to the already ranked test cases), the result will be a
test prioritization algorithm based on total coverage. In Section 9,
we compare our test prioritization algorithm in Figure 9 with
the test prioritization algorithms based on additional and total
coverage [122].

6 TEST ORACLE

In our work, we make three important assumptions about test
oracles: First, we assume that no automatable test oracle is
available, a common situation in practice. Second, test oracles
are typically inexact. In particular, during design time testing of
cyber-physical systems, small deviations between test outputs and
expected outputs are often tolerated and not considered failures.
Third, the correctness of a test output is not only determined by
evaluating discrete output values at a few discrete time instances,
but the correctness also depends on the frequency and the amount
of changes of output values over a period of time. Our assumptions
have the following two implications on our approach that we
discuss in this section.

First, since we assume that test outputs are evaluated manually,
we need to provide a way to estimate the oracle cost pertaining to
a test suite generated by a test generation technique. This is partic-
ularly important for comparing different test generation strategies.
Specifically, test suites generated by two different strategies can be
used as a basis for comparing the strategies only if the test suites
have similar test oracle costs, i.e., evaluating their test outputs
requires the same amount of effort. The oracle cost of a test suite
depends on the following:
• The total number of outputs that are generated by that test suite

and are required to be inspected by engineers. For example, our
test generation algorithm (Figure 7) generates a test suite TS
with size q to exercise a specific model output o. Let T C =⋃
TS be the union of all such test suites. Assuming that the

underlying modelM has l outputs, the number of output signals
that are generated by T C and need to be inspected is l × q.
Alternatively, another technique may generate a test suite TS ′

containing q test inputs for model M such that all the output
signals generated by each test input in TS ′ are expected to
be inspected by engineers. In this case, the number of output
signals that are generated by TS ′ and need to be inspected is
the same as that number for T C, i.e., l × q.

• The complexity of input data. Recall from Section 3 that test
input signals in our approach are piece-wise. The fewer pieces
the input signals have, the easier to determine whether their
outputs are correct or not. In the automotive domain, constant
signals are considered the least complex and the most common
test inputs for Simulink models. Moving from constant input
signals to linear signals or to piecewise constant signals causes
the resulting output signals to become more complex, and hence,
the cost of manual test oracles to increase. To ensure that test

suites TS = {I1, . . . Iq1} and TS′ = {I ′1, . . . I ′q2} have the
same input complexity, the input signals in TS and TS′ should
have the same number of pieces. That is, for every test input
Ii = (sg1, . . . , sgn) in TS (respectively TS′), there exists
some test input Ij = (sg ′1, . . . , sg

′
n) in TS′ (respectively TS)

such that sg l and sg ′l (for 1 ≤ l ≤ n) have the same number of
pieces.

In our experiments described in Section 8.5, we ensure that
the test suites used to compare different test generation algorithms
have the same test oracle costs, i.e., (1) the number of outputs
generated by these test suites and are required to be inspected by
engineers are the same, and (2) the signals related to their test
inputs have the same number of pieces.

Second, we define a heuristic test oracle function that has
these two characteristics: (1) To address the fact that test oracles
are inexact, we define our test oracle function as a quantitative
measure comparing test outputs and the expected results. (2) We
define the test oracle function over the entire vectors of signal
outputs to account for output changes over the entire simulation
time interval.

Let sgo be a test output signal. We define a (heuristic) test
oracle function, denoted by oracle , that maps a given output signal
to a value in [0..1]. The higher the value of oracle(sgo), the
more likely the signal sgo is to reveal a fault in the underlying
Simulink model. In our work, we compute oracle(sgo) as the
normalized Euclidean distance between sgo and the ground truth
oracle signal denoted by g. That is, oracle(sgo) = ˆdist(sgo, g)
(see Equation 1 for definition of ˆdist). The ground truth oracle is
a conceptual oracle that always gives the “right answer” [12]. In
practice, signal g is supposed to be created manually, while in our
experiments, we use fault-free models to automatically produce
the ground truth oracle signals (see Section 8.3).

In Section 8.3, we will use our heuristic oracle function,
oracle , to provide a metric to measure the fault-revealing ability of
test generation techniques. Our fault-revealing measure attempts to
capture impacts of faults on output signal vectors over the entire
simulation time interval as opposed to focusing on violation of
discrete properties over model outputs.

The alternative fault revealing metric used in existing research
on testing Simulink models (e.g., [121], [32]) is a binary mea-
sure assuming that correct test outputs should exactly match the
reference output and otherwise, they reveal a failure. Any slight
deviation without any regard to signal shapes or the deviation
degree is assumed to be sufficient enough to reveal a failure. We
believe a fault revealing metric should be quantitative and not
binary as engineers typically do not inspect test outputs in a binary
manner and tolerate small deviations.

Finally, we note that the oracle function is only used as a
heuristic to assess how easily engineers will be able to identify
failures while analyzing output signals. Although not studied in
this paper, the oracle function could also be defined as a measure
comparing the shapes of test output signals and the ground truth
oracle signals, for example using the signal feature taxonomy in
Figure 6. We leave to future work to develop a more comprehen-
sive fault revealing measure for Simulink testing approaches that
accounts for differences between both signal distances and signal
shapes.



13

Output diversity 
test generation
generates

2. Test Generation

Test suites list
(for l outputs)

Prioritization
algorithm

generates

3. Prioritization

Prioritized list 
of test cases

Inputs/params 
ranges

1. Data Extraction

extracts
TSo

Data extraction
procedure

Simulink/Stateflow
model

o1
ol

i1

in
1 TSol TC TC l   q1

M = (I, N , O)

Fig. 10. An overview of SimCoTest.

7 TOOL SUPPORT

We have implemented our approach in a tool
called Simulink Controller Tester (SimCoTest)
(https://sites.google.com/site/simcotesttool/) [59]. Figure 10 shows
an overview of SimCoTest. Specifically, SimCoTest takes a
Simulink/Stateflow model M as input. It, then, (1) automatically
extracts the information required for test generation from the
model including the names, data types and data ranges of the input
and output variables of the model (data extraction), (2) generates
one test suite for each output of model M using our output
diversity test generation algorithm in Figure 7 (test generation),
and (3) prioritizes the generated test cases obtained for different
model outputs based on our prioritization algorithm in Figure 9
(prioritization).

SimCoTest is implemented in Microsoft Visual Studio 2010
and Microsoft .NET 4.0. It is an object-oriented program in C#
with 92 classes and roughly 25K lines of C# code. In addition,
the key functions of SimCoTest, including the data extraction, test
generation and test prioritization, are partly implemented using
MATLAB script functions, which are called from SimCoTest
using the MLApp COM interface [94]. Specifically, 64 MATLAB
functions are implemented in roughly 7K lines of MATLAB
script and are called from SimCoTest. SimCoTest source code
is available online [81]. The main functionalities of SimCoTest
have been tested with a test suite containing more than 100 test
cases [81]. SimCoTest requires Matlab/Simulink to be installed
and operational on the same machine to be able to execute
Simulink/Stateflow models and generate test suites. We have tested
SimCoTest on Windows XP and Windows 7, and with Matlab
2011b and Matlab 2015b. Matlab 2011b was selected to ensure
backward compatibility of our tool with (legacy) industry models.
We have made SimCoTest available to Delphi, and have presented
it in a hands-on tutorial to Delphi function engineers. Finally, we
note that using SimCoTest, we were able to find three real faults
in Simulink models from Delphi, which had not been previously
found by manual testing based on domain expertise. We discuss
these faults in Section 10.

8 EXPERIMENT SETUP

In this section, we present the research questions and our study
subjects. We further describe metrics to measure fault-revealing
ability and effectiveness of our test generation and test prioritiza-
tion algorithms. Finally, we provide our experiment design.

8.1 Research Questions

RQ1 (Comparing Test Generation with State-of-the-art). How
does the fault-revealing ability of the OD test generation algorithm

compare with that of a random test generation strategy or a
coverage-based test generation strategy? How does the fault-
revealing ability of these test generation techniques compare with
their degree of structural coverage? We investigate whether OD
test generation is able to perform better than random testing,
which is a baseline of comparison, and a coverage-based test
generation strategy. For coverage-based test generation, we replace
the objective function O in our OD algorithm in Figure 7 with
an objective function that computes the accumulative dynamic
test coverages of all the test cases in TS . In both comparisons,
we consider the fault-revealing ability of the test suites gener-
ated by OD when used with each of the Ov and Of objective
functions. We further compare the degree of structural coverage
(more specifically decision coverage) achieved by OD, coverage-
based testing and random testing to investigate any relationship
between the fault-revealing ability and structural coverage for
these techniques.

RQ2 (Comparing Ov and Of ). How does the Of diversity
objective perform compared to the Ov diversity objective? We
compare the ability of the test suites generated by OD withOv and
Of in revealing faults in Simulink models. In particular, we are
interested to know if, irrespective of the size of the generated test
suites, any of these two diversity objectives is able to consistently
reveal more faults across different study subjects and different
fault types than the other.

RQ3 (Comparing Test Prioritization with state-of-the-art).
How does the effectiveness of our test prioritization algorithm
compare with that of a random test prioritization strategy? How
does the effectiveness of our test prioritization algorithm compare
with that of coverage-based test prioritization strategies? We
compare the effectiveness of our test prioritization technique with
a random test prioritization algorithm (baseline) and with the state-
of-the-art coverage-based test prioritization. Specifically, we in-
vestigate whether engineers can identify faults faster by inspecting
the test case rankings generated by our algorithm compared to
inspecting test case rankings generated randomly or by coverage-
based techniques. As for the coverage-based test prioritization, we
compare with both the additional and total coverage-based test
prioritization alternatives [122].

8.2 Study Subjects

We use two industrial Simulink models in our experiments: a
Clutch Position Controller (CPC) and a Flap Position Controller
(FPC) developed by Delphi Automotive Systems. Table 1 shows
the key characteristics of these models. CPC and FPC are repre-
sentative models from the automotive domain with many input
variables and blocks. In Table 1, we report the total number
of Simulink blocks and Stateflow states as well as input/output
variables and configuration parameters for each model.

We further report in Table 1 the total number of decision
goals in our study subjects. This is because in RQ1 and RQ3
we compare our approach with (baseline) coverage-based test
generation and test prioritization algorithms that work based on
decision coverage [98]. Specifically, the baseline algorithms aim
to cover each one of the decision goals in a model under analysis
at least once and thereby ensuring that all reachable blocks are
executed. Decision goals in Simulink models are data inputs to
switch blocks and conditional transitions emanating from the same
state in a Stateflow model.
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TABLE 1
Characteristics of our study subject Simulink models.

No. No. No. No. Blocks/ No. Decision
Name Inputs Configs Outputs States Goals

CPC 10 41 15 590 126
FPC 21 65 37 810 120

As discussed earlier, Simulink models have multiple output
variables. These outputs can be categorized based on their func-
tion into control, status, or diagnostic outputs. Control outputs
are commands applied to physical objects. These, for example,
include physical signals representing a voltage applied to a DC
motor to rotate a drive shaft in a car. Control outputs can be of
type float (e.g., representing an analogue voltage signal), integer
(e.g., representing a digital voltage signal) or enum/boolean (e.g.,
enabling or disabling a device). Status outputs report the system
state variables, e.g., if a gate is open or close. They can be of type
float (e.g., measurements such as estimated gas emission), integer
(e.g., timer) or enum/boolean (e.g., gate open or close). Diagnostic
outputs provide access to intermediary signal values and are used
solely for debugging purposes. They can be of type float, integer
or enum/boolean.

The CPC and FPC models are organized into five and six levels
of subsystems, respectively. Both models contain various types
of Simulink blocks including numerical and logical operations,
from and goto blocks, lookup tables and S-Functions. Most of
the computations are done by S-Functions which receive as input,
configurable parameters, outputs of lookup tables or results of
other computations. Both FPC and CPC are controller models
and do not include a plant model. CPC controls the status of a
clutch using a relatively large StateFlow including 13 states and
17 transitions. FPC implements five PIDs to control movements
of a flap.

In our earlier work [58], our experiments focused on one main
control output of CPC and FPC models. In this article, we account
for all outputs of the CPC and FPC models except for those of
type enum and boolean. The number of CPC and FPC outputs
(excluding enum/boolean outputs) are 15 and 37, respectively
(Table 1). We did not consider enum/boolean outputs because our
notion of oracle is not meaningful for them. For ordinal values
(i.e., enum values), the actual numerical quantities are meant to
define some relative ranking over data points. Euclidean distances
between vectors of ordinal values as prescribed by our oracle
function would be meaningless. We note that while CPC and FPC
have only four boolean and one enum outputs in total, they have 52
float and integer outputs. Based on our experience [57], Simulink
models developed in the automotive industry tend to have several
float and integer outputs, but few enum and boolean outputs.

8.3 Measuring Fault-Revealing Ability
We use our heuristic test oracle function, oracle , defined in
Section 6 to automatically assess and compare the fault-revealing
ability of test suites in our experimental setting. For the purpose
of experimentation, we use fault-free versions of our subject
models to produce the ground truth oracle signals (i.e., signal g
in Section 6). Let T C be the set of all generated test cases for a
given Simulink modelM by a particular test generation technique,
and let SG be the set of all signals sg tco that are generated by a
test case tc ∈ T C for an output o of M and are required to be

inspected by engineers. We define an aggregated oracle function
Oracle over the set T C as follows:

Oracle(T C) = MAX sg∈SGoracle(sg)

That is, the aggregated oracle function, Oracle , returns the
largest deviation between the ground truth oracle signal and all
the output signals that are generated by T C and are expected to
be checked by engineers. In order to reveal a fault, it is sufficient
to have one fault-revealing test case among the test cases in T C.
Hence, we define Oracle as the maximum of the deviations from
the ground truth oracle generated by the test cases in T C. We
use a threshold value THR to translate the aggregated oracle
Oracle into a boolean fault-revealing measure denoted by FR.
Specifically, FR returns true (i.e., Oracle(T C) > THR) if some
output signal in SG sufficiently deviates from the ground truth
oracle such that a manual tester can conclusively detect a failure.
Otherwise, FR returns false. In our work, we set THR to 0.2.
We arrived at this value for THR based on our experience and
discussions with domain experts. In our experiments, in addition,
we obtained and evaluated the results for THR = 0.15 and
THR = 0.25 and showed that our results were not sensitive to
such small changes in THR.

8.4 Measuring Test Prioritization Effectiveness
To compare the effectiveness of different prioritization algorithms,
we measure how early faults can be detected when engineers
inspect the test case rankings generated by alternative test pri-
oritization algorithms. We use a metric, referred to as the Number
of Tests to be Evaluated (NTE), that computes the number of test
cases that need to be evaluated by engineers so that they can iden-
tify a fault. Lower NTE values denote faster fault detection, hence,
more effective test prioritization. NTE directly counts the number
of tests that need to be evaluated to find a fault, and provides a
more intuitive measure to compare different test case rankings than
existing evaluation metrics for test prioritization, such as APFD
measure [115]. Finally we note that NTE values are impacted by
the threshold THR used to compute the fault-revealing measure
FR (see Section 8.3). Hence, in our experiments we report NTE
values corresponding to the three different thresholds of 0.2, 0.15
and 0.25 used to compute FR.

8.5 Experiment Design
We developed a comprehensive list of Simulink fault patterns.
We identified these patterns through our discussions with senior
engineers from Delphi Automotive and by reviewing the existing
literature on mutation operators for Simulink models [120], [17],
[14], [114]. Tables 2 and 3 report these fault patterns. We note that
these fault patterns represent the most common faults observed in
practice.

To seed faults into the CPC and FPC models, we used an
automated fault seeding program to generate the mutant candi-
dates for the CPC and FPC models. We also developed a set of
mutation operators corresponding to the fault patterns in Tables 2
and 3. Our fault seeding program enumerated each model element
in each of these models, and mutated that element using mutation
operators that were applicable to that element. Our fault seeding
program generated 141 mutant candidates for CPC and 136 mutant
candidates for FPC such that each mutant candidate has one
fault. We then generated 10,000 test inputs for each of the CPC
and FPC models using the adaptive random testing algorithm.
We executed each mutant candidate of CPC and FPC using the
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TABLE 2
Simulink Fault Patterns Identified at Delphi

Fault Pattern. Corresponding Mutation Operator

Incorrect signal data
types in math opera-
tions

Replacing a signal data type with a different
data type, e.g., the MTALB “double” data type
with MATLAB “single” data type, or MAT-
LAB “fixdt(0,8,3)” data type with MATLAB
“fixdt(0,8,2)” data type

Missing a “GoTo”
block of a “From”
block

Removing the “GoTo” block corresponding to a
“From” block

Missing “Saturate on
integer overflow” in
math operations blocks

Unchecking the “Saturate on integer overflow”
property for the blocks with this property checked

Missing “Signal
name must resolve to
Simulink signal object”
in properties of a signal

Unchecking the “Signal name must resolve to
Simulink signal object” property for the signals
with this property checked

Improper “Merge”
block utilization

Adding a Merge block for two signals that should
not be merged

TABLE 3
Simulink Fault Patterns Identified in the literature [120], [17], [14], [114]

Fault Pattern. Corresponding Mutation Operator

Incorrect signal data
types

Replacing the MTALB “double” data type
with MATLAB “single” data type, or MAT-
LAB “fixdt(0,8,3)” data type with MATLAB
“fixdt(0,8,2)” data type.

Incorrect Constant Val-
ues

Replacing constant c with constant c− 1 or c+ 1;
Negating boolean constants.

Incorrect Simulink
blocks

Modifying arithmetic operators, e.g., replacing +
with - or replacing + with ×. Modifying relation
operators, e.g., replacing ≤ with ≥ or = with 6=.
Modifying logical operator, e.g., replacing ∧ with
∨. Introducing boolean negation operators.

Incorrect connections Switching the input lines of the “Switch” block

Incorrect Transition
Conditions in Stateflow
models

Modifying relation and logical operators.

Incorrect Actions in
Stateflow models

Modifying arithmetic operators, modifying con-
stants

Wrong Initial Condi-
tions and Delay Values

Changing the initial value in “Integration” and
“Unit Delay” blocks

10,000 test cases. We discarded those mutant candidates whose
output signals for all the 10,000 test cases exactly matched the
corresponding reference model output signals. From the remaining
mutant candidates, we randomly selected 44 mutants for CPC
and 30 mutants for FPC as chosen mutants to be used in our
experiments. We did so in such a way that among the chosen
mutants we have a balanced and sufficient number of mutants
for different fault pattern categories in Tables 2 and 3. We note
that our experiments based on the 74 mutants were expensive
and took 20 days to execute, excluding the process of removing
equivalent mutants. So we had to limit the number of mutants in
our experiments.

We then performed two experiments, EXP-I and EXP-II, to
answer RQ1 to RQ3, described below.
EXP-I focuses on answering RQ1 and RQ2. Figure 11(a) shows
the overall structure of EXP-I. We ran the OD algorithm in
Figure 7 with vector-based (Ov) and feature-based (Of ) objective
functions. We also ran our random and coverage-based (Cov) test
generation algorithms. As mentioned in Section 8.1, for the Cov
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Fig. 11. Our experiment design: (a) EXP-I to answer RQ1 and RQ2:
test generation algorithms are repeated for 20 times to account for their
randomness. (b) EXP-II to answer RQ3: EXP-II is repeated for all the
fault-revealing OD test suites from EXP-I. Further, random prioritization
is repeated for 20 times.

algorithm, we use an objective function that computes the set of
Simulink blocks covered by test cases. Specifically, we use the
covers function described in Section 5 for this purppose.

As shown in Figure 11(a), OD and Cov generate l separate
test suites for l outputs of the model under test, while the random
test generation algorithm generates one test suite for all the model
outputs. For each faulty model and each objective function, we
ran OD, Cov and Random for 600 sec and created test suites with
the following sizes: 3, 5 and 10. We chose to examine the fault-
revealing ability of small test suites to emulate current practice
where test suites are small so that the test results can be inspected
manually. We repeated the test generation algorithms in EXP-
I for 20 times to account for their randomness. Specifically, for
44 faulty versions of CPC model with 15 outputs and 30 faulty
versions of FPC model with 37 outputs, we sampled 16152 (i.e.,
44×3×3×15+30×3×3×37+74×3) different test suites and
repeated each sampling 20 times (i.e., in total, 323040 different
test suites were generated for EXP-I). Overall, EXP-I took around
20 days to run on our High Performance Clusters (HPC) [102].
Thanks to our HPC, we were able to parallelize EXP-I execution.
Otherwise, it would have taken more than four years to complete
EXP-I on a single core CPU system.

EXP-II answers the research question RQ3 and evaluates our test
prioritization algorithm. Figure 11(c) shows the overall structure
of EXP-II. We used our prioritization algorithm in Figure 9 to
rank the test cases generated by OD for the 74 faulty versions of
the CPC and FPC models. We also used a random prioritization
algorithm as well as the total and additional coverage-based test
prioritization strategies [122] to rank the same test cases. We
repeated EXP-II for all the fault-revealing test suites obtained by
the 20 different runs of OD in EXP-I. We ignored those test suites
obtained in EXP-I that were not able to detect any fault since test
prioritization is irrelevant for them.

Recall from Section 5 that our prioritization algorithm in
Figure 9 turns into an additional coverage-based prioritization
algorithm by setting the fault-revealing probability function to one
for all the test cases. If, in addition, we remove the part updating
the faultiness probabilities of the covered nodes, the algorithm
turns into a total coverage-based prioritization algorithm. When
multiple test cases are equally desirable with respect to coverage,
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we select a test case randomly. Further, additional coverage
strategy usually reaches a point where nodes are covered by at
least one of the prioritized test cases and none of the remaining
test cases can add any additional coverage. At this point, we reset
the accumulative coverage and reapply the additional coverage
strategy to order the remaining test cases. Overall, EXP-II took
around half an hour to run on our HPC clusters. It would have
taken more than a month on a single node. Note that, all the
test cases were already executed during EXP-I and their dynamic
test execution information, including coverage and output signals,
were available before running EXP-II.

9 RESULTS

This section provides responses, based on our experiment results,
for research questions RQ1 to RQ3 described in Section 8. We
have made the result data files available online [81].

RQ1 (Comparing OD with State-of-the-art). To answer RQ1,
we ran EXP-I to compare our OD algorithm with Random
and Cov. We ensured that the test suites generated by different
algorithms have the same oracle cost (see Section 6). Figures 12(a)
to (c) compare the fault-revealing ability of Random (R), Cov, and
OD with the objective functions Ov and Of . Each distribution
in Figures 12(a) to (c) contains 74 points. Each point relates to
one faulty model and represents, for the 20 test suites with size q
obtained for that faulty model, the average aggregated oracle (i.e.,
Oracle) in the diagrams on the leftmost column, and the average
fault revealing measure (i.e., FR) in the other diagrams. Note that
the FR values are computed based on three different thresholds
THR of 0.2, 0.15, and 0.25. For example, a point with (x = R)
and (y = 0.149) in the Oracle plot of Figure 12(a) indicates that
the 20 different random test suites with size three generated for
a faulty model achieved an average aggregated oracle of 0.149.
Similarly, a point with (x = OD(Of )) and (y = 0.85) in any of the
FR plots of Figure 12(b) indicates that, among the 20 test suites
with size five obtained for each output of a faulty model using
OD with objective function Of , 17 test suites had some fault-
revealing test case (i.e., FR = 1), while three test suites had no
fault-revealing test case (i.e., FR = 0).

To statistically compare the Oracle and FR values, we
performed the non-parametric pairwise Wilcoxon signed-rank
test [19], and calculated the effect size using the Cohen’s d [25].
The level of significance (α) was set to 0.05, and, following
standard practice, d was labeled “small” for 0.2 ≤ d ≤ 0.5,
“medium” for 0.5 ≤ d ≤ 0.8 and “high” for d ≥ 0.8 [25].

Comparing fault-revealing ability of OD, R and Cov. The
average Oracle and FR values obtained by OD, with both
objective functions Of and Ov , for all the three thresholds and
with all the three test suite sizes, are significantly better than those
obtained by Random and Cov. Further, for all the comparisons
between OD and Random, the effect size is consistently “high”
for OD with both Of and Ov . As for comparing OD with Cov,
the effect size is “high” for all the comparisons except for the
comparisons of FR distributions for OD(Ov) with test suite sizes
five and ten, where the effect size is “medium”.

Comparing decision coverage achieved by OD, R and Cov.
Figure 13 compares the average percentages of decision coverage
achieved by the 20 different runs of R, Cov, OD(Of ) and OD(Ov)
over the faulty CPC and FPC models. As discussed in Section 5,
in our work, the test coverage for a test case is a subset of the static
backward slice of the output related to that test case. Therefore, we

computed the values reported in Figure 13 by taking the average
percentage of decision coverage for each test case in the fault-
revealing test suite over the static backward slice of the output
related to that test suite. As shown in Figure 13, Cov is able to
achieve higher structural coverage than the two other algorithms
across all the test suite sizes. Specifically, it achieves, on average,
89%, 91% and 93% decision coverage for the test suite sizes 3,
5 and 10, respectively. As shown in the figure, this is at least 3%
points higher than the structural coverages achieved by the other
algorithms across all the test suite sizes. Nevertheless, as shown
in Figure 12, achieving higher structural coverage with Cov does
not result in higher fault-revealing ability.

In summary, the answer to RQ1 is that while OD’s decision
coverage is on average 4% points lower than the decision coverage
achieved by Cov, the fault-revealing ability of OD significantly
outperforms that of both Cov and Random.

RQ2 (Comparing Of with Ov ). The results in Figure 12 enable
us to compare the average Oracle and FR values for the feature-
based, OD(Of ), and the vector-based, OD(Ov ), output diversity
algorithms.

Comparing fault-revealing abilities of OD(Of ) and OD(Ov ).
As for the average Oracle distributions, the statistical test results
indicate that OD(Of ) performs significantly better than OD(Ov )
for the test suite sizes 5 and 10 with a “small” effect size. For
the test suite size 3, there is no statistically significant difference,
but OD(Of ) achieves higher mean and median Oracle values
compared to OD(Ov ). As for the FR distributions, the improve-
ments of OD(Of ) over OD(Ov ) are not statistically significant.
However, for all the three thresholds and with all the test suite
sizes, OD(Of ) consistently achieves higher mean and median FR
values compared to OD(Ov ). Specifically, with threshold 0.2, the
average FR is .63, .66 and .71 for OD(Of ), and .51, .52 and .61
for OD(Ov ) for the test suite sizes 3, 5, and 10, respectively. That
is, across all the faults and with all the test suite sizes, the average
probability of detecting a fault is at least %10 points higher when
we use OD(Of ) instead of OD(Ov ).

Why does OD(Of ) perform better than OD(Ov )? Here, we
provide more insight as to why OD(Of ) achieves higher fault-
revealing ability than OD(Ov ). Specifically, our investigation of
OD execution in our experiments indicated that OD ran for the
same number of iterations with both Ov and Of within the
given test execution time budget. Recall that in Section 4.3, we
discussed the asymptotic time complexity of individual iterations
of OD(Of ) and OD(Ov ). According to our experimental results,
the time required to run the underlying model for q test cases (i.e.,
TM×q in Section 4.3) significantly dominates the time required to
compute Of and Ov . Specifically, a single model execution TM
takes on average 1.1 second, while computing Of or Ov takes
on average 0.012 and 0.005 second, respectively. Since OD(Of )
and OD(Ov ) are given the same test execution time budget in
EXP-I, on average, they ran for the same number of iterations
in our experiments. As a result, we conjecture that the reason
for better fault-revealing ability of OD(Of ) lies in providing a
better landscape for the search. That is, the feature-based diversity
objective function provides a better surrogate for fault-revealing
ability of the generated test suites compared to the vector-based
output diversity objective function.

In summary, the answer to RQ2 is that the fault-revealing
ability of OD with the feature-based diversity objective is higher
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Fig. 12. Boxplots comparing average aggregated oracle values (Oracle) and fault revealing measures (FR) of OD (with both diversity objectives),
coverage-based (Cov) and random test suites (R) for different thresholds and different test suite sizes.
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test generation algorithms over the faulty versions of CPC and FPC
subject models for different test suite sizes.

than that of OD with the vector-based diversity objective.

RQ3 (Comparing Test Prioritization with state-of-the-art).
To answer RQ3, we performed EXP-II using the fault-revealing
samples of the test suites generated by OD(Of ) (i.e., the best
performing algorithm) in EXP-I. Figures 14 and 15 compare the
average NTE distributions obtained by the random prioritization
(R), total (Tot) and additional (Add) coverage-based prioritization,
and our test prioritization (PrioAlg) algorithms for the CPC and
FPC models, respectively. Note that in contrast to the Oracle and
FR measures used in EXP-I, NTE measure is not normalized (e.g.,
it can go up to 45 for Figure 14(a), and up to 75 for Figure 14(b)).
Hence, we present the results of EXP-II in separate plots for CPC
and FPC case studies. Each distribution in Figures 14(a) to (c)
(resp. in Figures 15(a) to (c)) contains 44 (resp. 30) points. Each
point relates to one faulty model and represents the average NTE
values obtained by applying a test prioritization algorithm to the

combined set of test cases generated by OD(Of ) for that faulty
model. Further, the results for random prioritization represent the
average NTE values obtained over 20 different runs of the random
prioritization algorithm. For example, a point with (x = Tot) and (y
= 12.35) in any of the plots in Figure 14(c) indicates that among
the 150 (i.e., 15× 10) test cases generated for 15 outputs of CPC
model, on average, when test cases are prioritized using the total
coverage algorithm, 12.35 test cases need to be evaluated to find
a fault. Similarly, a point with (x = PrioAlg) and (y = 9.8) in
any of the plots in Figure 15(b) indicates that among all the 185
(i.e., 37 × 5) test cases generated for the 37 outputs of FPC, on
average, when test cases are prioritized using our test prioritization
algorithm, 9.8 test cases need to be evaluated to find a fault.

To statistically compare the NTE values, we used the same
setting as in EXP-I. Recall that lower NTE values denote faster
fault detection and hence more effective test prioritization. Testing
differences in the average NTE distributions for both CPC and
FPC models, for all the three thresholds, and with all the three test
suite sizes, shows that PrioAlg performs significantly better than
the other three algorithms. In addition, for all the comparisons
between PrioAlg and both R and Tot, the effect size is consistently
“high’. For the comparisons between PrioAlg and Add, the effect
size is “high’ for the test suite sizes 5 and 10, and “medium’ for
the test suite size 3.

The NTE results shown in Figures 14 and 15, in addition to
demonstrating statistical significance, are practically significant as
well. Specifically, across all the faults and with all the test suite
sizes, on average, engineers inspect 12.1 fewer test cases (i.e.,
48% fewer test cases) to find a fault when they use our prioritiza-
tion (PrioAlg) algorithm instead of the additional coverage-based
(Add) algorithm, the second best prioritization algorithm. That is,
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PrioAlg reduces the time required to inspect test cases to almost
half when compared with the existing state-of-the-art prioritization
algorithms.

In summary, our prioritization algorithm significantly outper-
forms the random, and the total and additional coverage-based
prioritization algorithms. Further, it reduces the inspection time by
almost half compared to the second best performing prioritization
algorithm.

Validity considerations and threats. Internal and external va-
lidity threats are the most relevant validity aspects in our experi-
ments.

Internal validity: We mitigated the factors that could poten-
tially cause confounding effects in our experiments. We repeated
all of our experiments for three different test suite sizes of
three, five and ten. In addition, our results are not impacted by
small changes made to the fault revealing threshold THR and are
consistent with the results obtained based on the quantitative fault
revealing measure, i.e., Oracle, that does not rely on a threshold.
We also note that in our experiments, we have reported the
quantitative fault revealing measures obtained for the OD, Random
and Cov algorithms without considering any threshold.

For our experiments, we obtained a comprehensive list of
fault patterns for Simulink models based on our discussions with
Delphi engineers as well as by surveying the literature. To discard
mutants that are semantically equivalent to the reference model
(i.e., the non-faulty model), we relied on an adaptive random
testing algorithm. The issue that arises here is that we may have
spuriously discarded some stubborn mutants, i.e., the mutants that
are unlikely to be found by random (or adaptive random) testing.
First, to mitigate this issue, in our work, we generated a large
number of test inputs (i.e., 10,000 test inputs) and used adaptive
random testing which attempts to maximize diversity among test
inputs. Second, we note that the CPC and FPC models used
in our evaluation contained complex S-Functions. The Simulink
toolboxes that can perform Simulink model equivalence checking
based on formal methods, e.g., SLDV, could not run on neither
CPC nor FPC. Third, we note that our experiments compared our
OD approach with two other randomized baseline algorithms: a
random testing (Random) algorithm and a search-based coverage-
based test generation (Cov) algorithm. It is very unlikely that a
(potential) removal of stubborn mutants would have significantly
impacted our comparison results with the Cov and Random
algorithms and biased the results in favor of our OD approach.

External validity: To account for the cost of manual test
oracles in practice, we considered small test suites that do not
contain more than ten test cases. The test input signals used in
our experiments were piecewise constant signals. According to
our domain experts, such test inputs were sufficient for testing our
study subjects. While we considered two industrial case studies
in our experiments and we anticipate them to be representative
of Simulink models in the automotive domain, additional case
studies, in particular from other domains, will be essential in the
future.

10 REAL FAULTS IN INDUSTRY SIMULINK MODELS

In this section, we discuss three real faults that we were able
to identify using our black-box output-based Simulink testing
tool. We found these faults during a pilot study conducted in
collaboration with Delphi engineers where we applied SimCoTest
to a number of Simulink models that were under development at
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Fig. 16. An output signal containing instability failure caused by a real
fault in an industrial Simulink model.
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Fig. 17. A faulty output signal generated by output saturation on overflow.

Delphi. We further argue why existing tools are unlikely to reveal
these faults.

The three outputs that revealed these faults are shown in
Figures 16, 17 and 18(c). Specifically, (1) Figure 16 shows quick
and frequent oscillations of a controller output over a time interval
between 6.4 and 6.9 sec. These oscillations violate the controller
stability requirement. (2) Figure 17 shows an output with a discrete
jump at 0.1 sec. According to engineers, this jump is undesirable
and indicates a fault. This fault was generated due to an output
saturation of a Simulink block. (3) The third fault is related to
a faulty delay buffer (Figure 18). The fault was due to an integer
overflow inside the buffer. The impact was that some output signals
(e.g., the output signal in Figure 18(c)) were not correctly-shifted
copies of their corresponding input signals (e.g., the input signal
in Figure 18(b)). These three faults were identified when engineers
inspected test outputs generated by our black-box output diversity
algorithm. These faults had not been previously found via manual
expertise-based testing nor by commercial tools.

One important question is whether existing Simulink testing
tools, given their underlying technology, can possibly find the
above faults. In the remainder of this section, we try to answer this
question considering the first usage mode of these tools that we
discussed in Section 2.2 (i.e., checking Simulink models against
formal properties). We note that the second usage mode of these
tools was already discussed in Section 2.2. In this comparison, we
consider the Reactis tool since it can test Simulink models against
formal properties/assertions, and further, the Reactis license, in
contrast to the license of Mathworks toolboxes, permits such
comparisons.
Assertions capturing dynamic properties. Since Reactis was
not applicable to the model in which the fault in Figure 16 was
originally observed, we created the Simulink model in Figure 19
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delay buffer.
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Fig. 19. A Simulink model to check if the fault in Figure 16 could be
identified by Reactis.

to check if the fault in Figure 16 could be identified by Reactis.
The model in Figure 19 includes a subsystem that returns zero
if it identifies the behavior in Figure 16. Our implementation for
the subsystem in Figure 19 is available at [80]. The output of this
subsystem is connected to a Simulink assertion block. We used
Reactis to generate an input signal such as the one in Figure 16
to trigger the assertion block. We let the tool execute for 24 hours
but it did not generate any results. We conjecture that due to
its underlying technology, Reactis is not able to find faults that
manifest late during the simulation time (e.g., after 6000 steps in
our example in Figure 16).

Runtime errors. Relying on runtime crashes as test oracles may
not help with fault finding in practice due to some particular en-
gineering practices in Simulink model development. Specifically,
in Simulink models, to prevent runtime crashes, engineers often
enable output saturation on under/overflow for all the blocks
that may potentially lead to an under/overflow. Enabling this
property generates a safety check for the respective block that
sets the block’s output to the maximum (resp. minimum) of its
value range if the block produces an output larger (resp. less)
than the maximum (resp. minimum) of the output range. This
eliminates runtime crashes due to under/overflows in Simulink
models. Nevertheless, engineers still need to ensure that saturating
outputs do not lead to incorrect behaviors such as the erroneous
signal jump in Figure 17 or the delay buffer error in Figure 18.
Tools such as Reactis, however, do not address the identification
of such erroneous behaviors since they focus on triggering runtime
errors and assertions.

11 RELATED WORK

As explained in Section 1, this article considerably extends and
improves our previous papers [54], [58] and further provides a
comprehensive exposition of our approach. In this section, we
focus on comparing our approach with the most related research
threads to our work on software testing, test case prioritization,
controller testing and signal processing

11.1 Software Testing
A large part of existing test automation techniques rely on program
analysis and focus on testing software implementation (source
code). Our work, in contrast, aims to test models capturing
both software and its environment. Having said that, we have
used the following two specific ideas from the research focused
on testing software code: (1) Whole test suite generation: Our
algorithm uses whole test suite generation [29] that was proposed
for unit testing software code. This approach evolves an entire test
suite, instead of individual test cases, with the aim of covering
all structural coverage goals at the same time. Our algorithm,
instead, attempts to diversify test outputs by taking into account
all the signal features (see Figure 6) at the same time. (2) Output
uniqueness/diversity: The notion of output diversity in our work is
inspired by the output uniqueness criterion [2], [3]. As noted by
Alshahwan and Harman [3], effectiveness of this criterion depends
on the definition of output difference and differs from one context
to another. While Alshahwan and Harman [2], [3] describe output
differences in terms of the textual, visual or structural aspects of
HTML code, in our work, output differences are characterized by
signal shape features.

In the remainder of this section, we compare our work with
testing approaches that rely on or relate to software models. In
particular, we consider model-based testing, and model checking
and testing techniques.

11.1.1 Model-based testing
Model-based testing relies on software models to generate both
test scenarios and test oracles for testing implementation-level
artifacts. A number of model-based testing techniques have been
applied to Simulink models with the aim of achieving high
structural coverage or detecting a large number of mutants. Below,
we discuss these approaches in detail.

Coverage-based techniques. Various model-based testing tools
have been developed to generate coverage-adequate test suites
for Simulink/Stateflow models [70], [31], [15]. Search-based
techniques have been applied to minimize a fitness function that
approximates how far a given test input is from covering a specific
Simulink block or Stateflow state [109], [110], [119]. Such fitness
functions are typically defined in terms of metrics measuring the
distance between input values and conditions characterizing the
targeted blocks/states.

Reachability analysis is used to generate coverage-adequate
test inputs or to provide proofs of correctness by showing unreach-
ability of the faulty model parts [35], [64], [87]. For each coverage
goal, a boolean assertion is instrumented into the model in such a
way that violation of the assertion ensures coverage of the desired
coverage goal and vice versa. The reachability analysis (e.g., using
model checkers) either yields a counterexample (test scenario)
demonstrating that the assertion under analysis is violated or it
proves that the assertion is never violated, hence the underlying
model is correct.
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Reactis tester [83], [24], a well-known commercial tool for
model-based testing of Simulink models, adapts a guided random
test generation strategy consisting of two steps [88], [90]. First,
test inputs are generated randomly. Second, the coverage goals that
are not covered by the randomly generated inputs are attempted
to be covered either using constraint solvers and static analysis or
heuristic-based strategies.

Mutant-killing techniques. Another group of model-based testing
techniques focus on generating mutant-killing test suites from
Simulink models. These techniques assess the adequacy of test
inputs by measuring the number of mutants that are detected
by a given test suite. A mutant is detected by a test input
if the test input yields different values for some output when
applied to both the mutant model and the original model. Mutant-
based test generation is done either using search techniques or
behavioral analysis techniques (e.g., bounded reachability). Search
techniques can be used to produce different outputs between the
mutant model and the original model by generating different
values at the fault seeded points and propagating those values to
outputs [120], [121]. Alternatively, bounded reachability analysis
techniques [17], [36] can be used to detect mutants by checking
k-step (bi)similarity [45] between the original and the mutant
models. The k-step (bi)similarity either asserts that the original
and the mutant models are equivalent for the first k simulation
steps or provides a test input showing that the models differ in
some outputs.

Almost all existing model-based test generation approaches
applied to Simulink/Stateflow consider only models with discrete
behaviors. The work of Philipps et. al. [71] is one of the few
exceptions and proposes a model-based testing approach for
mixed discrete-continuous Simulink models. That work, however,
focuses on generating test inputs from the discrete fragments of
Simulink models. These test inputs are then applied to the original
model to obtain test oracles in terms of continuous signals.

All the model-based testing techniques described above as-
sume models are correct and aim to generate test suites and oracles
from models. In reality, however, Simulink models might contain
faults. Hence, in our work, we propose techniques to help testing
complex Simulink models for which automated and precise test
oracles are not available. Further, even though in Simulink, every
variable is described using signals, unlike our work, none of the
above techniques generate test inputs in terms of signals.

11.1.2 Model testing or verification
In contrast to model-based testing that focuses on deriving test
cases from models to test implementation-level artifacts, model
testing and model checking techniques aim to evaluate the correct-
ness of models. We consider three categories of such techniques:
(1) Model checking techniques that exhaustively verify correctness
of models against some given formal properties, (2) Statistical
model checking techniques that aim to provide probabilistic guar-
antees indicating that a model satisfies some given formal prop-
erties, and (3) Model testing techniques that attempt to identify
faults in models by simulating models.

Model checking. Model checking is an exhaustive verification
technique that explores the reachable states of a model in order
to determine whether some given formal properties are satisfied
or not [23]. It has a long history of application in software and
hardware verification. It has been previously used to detect faults
in Simulink models [35], [10] by showing that a path leading

to an error (e.g., an assertion or a runtime error) is reachable.
To solve the reachability problem, these techniques often need to
translate Simulink models as well as the given properties into the
input languages of some existing model checkers [62], [61], [89],
[6]. For example, Barnat et al. [10] transform Simulink models
into the DiVinE model checker’s input language [11] to verify
Simulink models against some linear temporal logic properties.
Whalen et al. [106], [62] first translate Simulink models into the
LUSTRE formal specification language [34] and then transform
the LUSTRE specifications into the input languages of several
well-known model checkers such as NuSMV [21] and the SAL
tool suite [13]. Finally, Simulink Design Verifier [35] translates
and feeds Simulink models into a commercial SMT-based model
checker, called Prover [77]. Some alternative techniques [40], [8],
[103] translate Simulink models into code and use existing code
analysis tools to detect faults in the models. 8Cage [40] marks
the Simulink models in places where specific fault models [74]
are detected. It then converts the models into c-code and directs
KLEE [18] toward those markers to generate test inputs that raise
failures corresponding to the fault models. Polyglot [8] transforms
Stateflow models into java code and uses JavaPathFinder [42] to
analyze and check properties on the generated java code.

Statistical model checking. Model checking approaches, being
exhaustive, suffer form the state explosion problem [23]. To
alleviate the scalability problems of exhaustive model checking,
statistical model checking approaches have been proposed. These
approaches try to achieve scalability by checking some randomly
sampled simulations from the space of all possible model simula-
tions [116], [48]. They use statistical inference methods to answer
whether the sampled simulations provide a statistical evidence for
the satisfaction or violation of the properties of interest [116],
[123]. Statistical model checking has been previously applied
to Simulink models to estimate the probability that properties
specified in temporal logic hold over models [123], [22]. Note
that in contrast to model checking, statistical model checking does
not guarantee to produce exact results (i.e., true/false results) and
only estimates the probability of property satisfaction/violation.

Simulation-based testing. Simulation-based testing techniques run
a set of test cases attempting to falsify assertions and properties in-
strumented into Simulink models [84], [86]. Reactis validator [84],
[24] adapts such an approach by running the coverage-adequate
test suites generated by Reactis tester [83] and tracking whether
any assertions are violated by the test cases. S-Taliro toolbox [86],
[5], [124] has usage modes that rely on Monte-Carlo to falsify
Metric Temporal Logic properties [43] instrumented into Simulink
models. Note that though these techniques look for possibility
of assertion violations, they provide no guarantee to uncover all
assertion violations.

The main limitation of model checking techniques when
applied to Simulink models is the incompatibility challenge dis-
cussed in Section 1. Specifically, model checking is not applicable
to dynamical systems, i.e., systems described solely in terms of
time-continuous differential or difference equations [4]. Examples
of dynamical systems include PID controllers [68] or mathemati-
cal models of physical plants. Model checking has been applied to
linear hybrid systems i.e., linear systems whose dynamics consists
of both continuous evolution of time and discrete instantaneous
updates to states [4], [30]. Further, there has been techniques
to extend model checking to fragments of non-linear hybrid
automata by approximating nonlinear systems using piecewise-
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affine models or using abstraction techniques [30]. More recently,
translation techniques are proposed to convert Simulink models
into hybrid automata models that can be verified using model
checking [63]. However, industrial Simulink models are likely
to include look-up tables, S-Functions containing legacy C code
or executables, and switching conditions that depend on inputs.
Presence of these features is likely to prohibit the translation into
hybrid automata [1], [92], and hence, prevents analysis using the
state of the art model checking tools, e.g., SpaceEx [30].

Statistical model checking [116] and simulation-based testing
techniques such as S-Taliro [1] attempt to address the limitations
of applying model checking to complex systems. Like our work,
these approaches are black-box and analyze systems by sampling
and simulating scenarios selected from their test input spaces.
However, statistical model checking uses a randomized sampling
to develop statistical guarantees that a given temporal property
holds on a model. In contrast, our work uses a guided, randomized
sampling to generate test suites that maximize the likelihood of
triggering failures within a limited test budget.

The closest work to ours is the S-Taliro tool [1], [86] that
uses random search techniques such as Monte Carlo simulation
to test Simulink models by identifying scenarios violating a given
formal temporal property. Our approach, however, does not rely
on the presence of formal properties or any form of automatable
test oracles. We focus on generating small test suites with high
fault-revealing ability to effectively reduce the manual oracle cost.
Further, in contrast to the S-Taliro tool, our approach is based on
a dedicated search algorithm, tailored to the problem at hand.

11.2 Test Case Prioritization

Test case prioritization algorithms have been mostly studied in
the context of regression testing where the goal is to identify an
optimal ranking of test cases to help detect faults that might be
introduced after a change as quickly as possible [78], [115], [85].
These techniques are broadly categorized into dynamic techniques
that use test execution information, and static techniques that rely
on static analysis of source code or other artifacts such as test
code [78]. As discussed in Section 5, in this article, we take a
greedy dynamic test prioritization algorithm to rank the generated
test cases. We made this choice based on the following two
contextual factors: First the number of test cases is relatively small
in our work. Hence, a greedy algorithm will not be too expensive.
Second, we have access to test execution information.

Existing dynamic test prioritization techniques typically rank
test cases by relying on total or additional structural coverages
achieved by individual test cases [78], [115]. To unify the total and
additional coverage-based strategies, Zhang et al. [122] propose an
algorithm that provides a knob to control the amount of feedback
from previously prioritized test cases incorporated in prioritization
of the remaining tests. No feedback from the previous iteration is
equivalent to prioritization based on total coverage, and maxi-
mum feedback yields an additional coverage algorithm. Our test
prioritization algorithm generalizes and extends this algorithm by
explicitly considering the fault-revealing probability of individual
test cases in test prioritization (i.e., FRP function in Figure 9).
We consider the notion of output diversity as a proxy for FRP .
This is because output diversity has shown to correlate to fault
finding [3], [54], [58]. As a result, individual test cases with
slightly lower coverage but coming from test suites with higher
output diversity are likely to be ranked higher. As shown in

Section 9, our prioritization algorithm significantly outperforms
total and additional coverage-based prioritization and reduces the
inspection time by almost half compared to existing coverage-
based test prioritization.

11.3 Controller testing and Signal Generation
Continuous controllers have been widely studied in the control
theory domain [68], [7], [105] where the focus has been to
optimize controllers’ behaviors for a specific application by design
optimization [68] or for a specific hardware setup by configuration
optimization [7]. In general, existing work in control theory
mainly deals with optimizing the controller design or config-
uration rather than testing. They normally check and optimize
the controller behavior over one, or a few number of test cases.
These techniques, however, cannot substitute systematic testing as
addressed by our approach.

In our earlier work, we proposed an approach to testing a class
of continuous controllers known as closed-loop controllers based
on automated test oracles derived from three types of continu-
ous controller requirements: stability, smoothness and responsive-
ness [56], [53], [55]. We used meta-heuristic search to generate
test cases maximizing the likelihood of presence of failures in
controller outputs (i.e., test cases that produce outputs that break
or are close to breaking stability, smoothness and responsiveness
requirements). Our earlier work [56], [53], [55], however, cannot
be used to test Simulink models in general because for closed-
loop controllers, the environment (plant) feedback and the desired
controller output (setpoint) [37] are both available. Hence, test
oracles could be formalized and automated in terms of feedback
and setpoints. In Simulink models that do not include plant
models or contain open loop controllers, the plant feedback is
not generally available.

Recent work in the intersection of Simulink testing and signal
processing has focused on test input signal generation using
evolutionary search methods [9], [111], [112], [50], [108]. Com-
plex continuous input signals are generated either by sequencing
parameterized signals [9], [111], or by modifying parameters
of Fourier series characterizing signals [112]. These techniques,
however, either apply the input signals to Simulink models to
obtain test oracles, as in model-based testing, or assume automated
oracles, e.g., assertions, are provided. Since they assume test
oracles are not manual, they do not pose any restriction on the
shape of test inputs. In our work, however, we restrict the number
of steps in input signals as more complex inputs increase the oracle
cost. Finally, similar to our work, the work of [118] proposes a set
of signal features. These features are viewed as basic constructs
which can be composed to specify test specifications as well as
test oracles. In our work, since oracle descriptions do not exist,
we use features to improve test suite effectiveness by diversifying
feature occurrences in test outputs.

12 CONCLUSIONS

Simulink is a prevalent modeling language for Cyber Physical
Systems (CPSs). In this article, we identified three main challenges
in testing Simulink models, namely the incompatibility, oracle and
scalability challenges. To address these challenges, we proposed a
Simulink testing approach consisting of a test generation algorithm
and a test prioritization algorithm. Our test generation algorithm is
implemented using meta-heuristic search and is guided to produce
test suites with output signals exhibiting a diverse set of signal
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features. Our test prioritization algorithm combines test coverage
and test suite output diversity to automatically rank test cases
according to their likelihood of revealing a fault. Our evaluation
is performed using two industrial Simulink models and shows that
(1) Our test generation approach significantly outperforms random
and coverage-based test generation. (2) Our test prioritization
algorithm significantly outperforms random and coverage-based
test prioritization.

In future, we plan to combine output diversity and structural
coverage objectives to achieve high structural coverage while
maximizing output diversity. We note that generating coverage-
adequate test suites for Simulink models containing continuous
operations is still an open problem. We further plan to devise
testing techniques that, instead of generating one test suite for
each model output, generate one test suite for several model
outputs together by relying on test objectives defined over a set
of outputs. Such objectives, in addition to diversity, may rely on
known relationships between model outputs or between outputs
and inputs.
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