
Software Test Automation using DEVSimPy Environment

Keywords: discrete event simulation, DEVS, medical
software, Web interface testing, test automation.

Abstract
The paper deals with test automation of GUI (General User
Interface) software using simulations. The development of
GUI software requires a great amount of time and cost con-
cerning the testing aspects. In order to facilitate and speed
up the testing of such GUI software an approach based on
discrete event modeling and simulation is proposed. Tradi-
tionally, the GUI software test automation approaches require
the development of testing procedures which are fastidious to
carry on. The idea is to perform test automation of GUI soft-
ware by integrating of existing GUI software testing environ-
ment within a DEVS (Discrete EVent system Specification)
formalism framework called DEVSimPy. The proposed ap-
proach is validated on a real application dealing with medical
software which have to respect very strict formats defined by
French governmental institutions.

1. INTRODUCTION
This paper deals with a new approach to GUI testing using

a discrete event simulation environment. Testing Automation
of GUI is a process that insure the correctness of a software
with a computer vision approach. Usually, a tester has to im-
plement the generation of user interface events to invoke the
changes that result in the user interface in order to validate
the software. The work of the tester requires the combination
of manual and automated methods. For the manual part the
following steps are usually involved: (i) analyze products; (ii)
design and write test code; (iii) run the test; (iv) capture and
store GUI output; (v) package test code and results along with
documentation process. The automated part relies on existing
tools which allow: (i) to run the test code and capture the out-
put; (ii) to compare the output with the desired output; (iii) to
analyze the result of the comparison.

The blending of manual and automated testing methods is
the best way to perform GUI Testing. The GUI software test-
ing traditional approaches require the development of testing
procedures which are fastidious to carry on. These is due to
the difficulty to manually reproduce the interaction between
the interface of the software and the users.

In order to efficiently combined the manual and automated
parts an approach based on discrete event modeling and sim-
ulation is proposed. The idea is to perform test automation
of GUI software by integration of existing GUI testing envi-
ronments [1,2,3] with DEVSimPy [4,5] framework based on
DEVS (Discrete EVent system Specification) formalism [6].

DEVS has been introduced by Professor B.P. Zeigler in 1976
based on the system and automata theories [7]. DEVSimPy is
an easy-to-use collaborative environment allowing the devel-
opment of DEVS model libraries used for the modeling and
the simulation of DEVS systems. The DEVSimPy framework
allows the implementation of a model library dedicated to the
GUI test automation.

The proposed approach is validated on a real case applica-
tion which use Xplore software provided by the EDL1 com-
pany. EDL is leading European company in the domain so-
lutions for the services of Radiology and Medical Imaging.
It develops the Xplore web manager that is software product
in charge of services like: medical imaging, personal medical
data management and reliability, activity statistical and ap-
pointments management. A major social issue related to the
medical field concerns exposure risks of software malfunc-
tion. In the field of software for health, France has defined
national regulations which are constantly changing. They pro-
vide a consistent set of regulations to ensure the quality and
security software in the field of health; health information
technology is becoming an activity area of economy that pro-
pose qualification processes. A common set of certification
must be implemented, covering the quality of software pro-
duction and complying with international benchmarks vali-
dated by each agency in charge of health in France. The de-
velopment of medical application software requires a great
amount of time and cost concerning the testing aspects which
have to respect very strict formats defined by governmental
institutions. We will point out how our approach is a efficient
solution to facilitate and speed up the testing of such medical
application software.
The rest of the paper is organized as follows: section 2
gives an overview of the proposed approach. The main ex-
isting tools and approaches allowing to perform GUI test au-
tomation are described and analyzed. Resulting problems are
pointed out and the proposed solution has been introduced.
Section 3 deals with the development of a set of DEVS mod-
els allowing the integration of GUI testing tools in the DE-
VSimPy framework. The library of models is described after
a brief presentation of both the DEVS formalism and the DE-
VSimPy software. The validation of the proposed approach
is given in section 4. A real case application coming from the
health software French company is presented and the valida-
tion of the software using the developed DEVSimPy library
presented in section 3 is detailed. Finally conclusions remarks

1This research work was supported by the EDL company under Con-
tract: HBFD-345432. Contact: 17 Bis avenue du 8 mai 1945 13130 BERRE
L’ETANG



and perspectives are given in the last section.

2. OVERVIEW
The main contribution of the presented work is to propose a

DEVS simulation approach for test automation of GUI soft-
ware. In this section we first present the major open-source
GUI test automation software. The problematic associated to
the use of a combination of these traditional test automation
tools is pointed out. A efficient solution is then introduced.

2.1. Test Automation software
2.1.1. RobotFramework
RobotFramework [8,9] is a generic test automation frame-

work for acceptance testing and Acceptance Test-Driven De-
velopment (ATDD). It has easy-to-use tabular test data syntax
and utilizes the keyword-driven testing approach. Its testing
capabilities can be extended by test libraries implemented ei-
ther with Python or Java language, and users can create new
keywords from existing ones using the same syntax that is
used for creating test cases. RobotFramework is open source
software. RobotFramework includes the popular Selenium
[10-12] web testing tool. RobotFramwork allows some in-
teresting features like:

• Providing support for Selenium for web testing, Java
GUI testing, running processes, Telnet, SSH, and so on,

• Providing easy-to-read reports in HTML or TEXT for-
mat,

• Being platform and application independent,

• Offering a modular architecture that supports tests cre-
ation even for applications with several different inter-
faces,

• Providing a simple library API (Application Program-
ming Interface) for test libraries.

2.1.2. Sikuli
Sikuli [13,14] is a visual technology to automate and test

GUI using images (snapshots) of the software under test. It
is an open-source research project (released under MIT Li-
cense) developed at User Interface Design Group, MIT com-
puter Science and Artificial Intelligence Laboratory (CSAIL).
It may be used like Selenium to control a web page and also
other PC (Windows, Mac OS X and Linux) applications, and
even an iPhone or Android application [15]. SikuliScript is
a visual scripting API using Jython (a Java implementation
of the Python language) to create automation scripts. Sikuli
includes an IDE for writing visual Sikuli scripts with snap-
shots. The efficiency of Sikuli is due to: (i) the use of a pow-
erful fuzzy based image recognition algorithm to execute ac-
tions and (ii) the possibility of using conditional statements to

make complex test sequences. Sikuli finds on-screen matches
with a reference image. It can then perform any keyboard or
mouse action at or near the matches. Sikuli can use any kind
of GUI as native, Flash/Silverlight, cross-platform. The Sikuli
scripts can be written using its Python API by hand or in the
Sikuli IDE.
The main limitations when using Sikuli to perform GUI test
automation are: (i) to write a wrapper to launch scripts; (ii)
to handle return values; (iii) to install Sikuli. We describe in
the next sub-section the drawbacks that arise when using this
kind of tools. Sub-section 2.3 will introduce how the pro-
posed solution allows to efficiently respond to these limita-
tions.

2.2. Traditional approach limitations
As explained in the introduction, the main difficulty for

software developers is the testing phase. In order to speed-up
the development of the set of tests numerous frameworks have
been developed [9,12,13,16,17,18]. However the deployment
of such a solution is very time-consuming since the user has
to integrate different kinds of software. Three kinds of tools
can be found in the literature when dealing with GUI appli-
cation testing:

• Graphical layer testing [13]

• DOM (Document Object Model) analysis [9]

• CLR (Common Language Runtime) objects analysis
[16-17]

Figure 1. Three kinds of tools for web application testing

In both cases the testing activity relies on the use of scripts
or IDE in order to write the tests corresponding to a given
software. Figure 1 points out for the three kinds of tools and
the main software which can be found: Sikuli for the graphi-
cal Layer testing [13], RobotFramework for the DOM analy-
sis and Exader.dynamics [18], Watin [16], WET [17] for the
web application testing through analysis of CLR objects.

In order to develop an efficient test automation scheme for
interface web software, a combination of the two first kinds
of tools are usually used. The traditional approach when de-
velopers have to test an interface web software is highlighted
in figure 2(a).



(a) (b)

Figure 2. (a) Traditional approach dedicated to the test soft-
ware (b) Proposed approach based on DEVSimPy environ-
ment

The traditional approach involves the following steps:

• From the Test Data specification the developer has to
write test scripts defined using the Sikuli environment.
The obtained scripts compose the Test Library

• The developer has to write a set of scripts in order to vi-
sualize the results of the previous test scripts execution.
These scripts are written using the RobotFramework en-
vironment

• The developer has to write a launch script that will allow
to both execute the test scripts of the Test Library and the
visualization of the obtained results

Each step has to be repeated anytime a new test data spec-
ification has to be taken into account. Furthermore each one
of these steps is time-consuming since the developer has to
write manually the scripts which are very often not so easy to
write.

2.3. Proposed solution
In order to facilitate the use of test automation environ-

ments combining Sikuli and RobotFramework, we propose to
use DEVSimPy simulations as described in figure 2(b). The
use of DEVSimPy allows:

• an automatic generation of test scripts using the simula-
tion of models representing the test data specification,

• an automatic generation of the scripts allowing the visu-
alization of results,

• an automatic execution of the previous test scripts and
the visualization of the results through a DEVSimPy
plugin,

• an automatic install of both the RobotFrameWork (in-
cluding Selenium) and the Sikuli packages.

Writing test GUI automation consists to create (or manip-
ulate) new graphical models (or existing models stored in li-
braries) which contain elementary tests. When the user want
to implement large test cases, it uses reusability for atomic
model and coupled models for structuring instead of manip-
ulate a textual syntax which can introduce additional issues.
Furthermore, unit tests becomes possible on atomic models
and consolidates the use of DEVSimPy for automating GUI
tests. Another point to consider is the benefit provided by the
DEVSimPy implementation when user must modify the test
in order to validate new specifications imposed by certifica-
tion organism. The delete or the add of new elementary test
is performed by deleting or adding new DEVSimPy model.
The order of test execution can be managed using the list of
priority of DEVS models. DEVSimPy provides an dialog to
manage this one and the priority is changed with a simple
drag-and-drop.

The following section presents the DEVSimPy framework
and the DEVSimPy implementation of the proposed approach
in detail.

3. DEVSIMPY FOR TEST AUTOMATION
This part describes the DEVSimPy library of DEVS mod-

els allowing to facilitate the use of automation test software.
A first sub-section briefly introduces the DEVS formalism,
the second one presents the DEVSimPy framework while the
last one deals with the library of DEVS models which have
been developed in order to integrate GUI test software.

3.1. DEVS formalism
The Discrete EVent system Specification (DEVS) formal-

ism introduced by Zeigler [6] provides a means of specifying
a mathematical object called a system. Basically, a system
has a time base, inputs, states, outputs, and functions for de-
termining next states and outputs given current states and in-
puts. The DEVS formalism is a simple way in order to charac-
terizes how discrete event simulation languages may specify
discrete event system parameters. It is more than just a means
of constructing simulation models. It provides a formal rep-
resentation of discrete event systems capable of mathemati-
cal manipulation just as differential equations serve this role.
Furthermore by allowing an explicit separation between the
modeling phase and simulation phase, the DEVS formalism
is one of the best ways to perform an simulation of systems
using a computer.
In the DEVS formalism, one must specify: (i) basic models
from which larger ones are built, and (ii) how these mod-
els are connected together in hierarchical fashion. An atomic
model allows specifying the behavior of a basic element of a



given system. Connections between different atomic models
can be performed by a coupled model. A coupled model, tells
how to couple (connect) several component models together
to form a new model. This latter model can itself be employed
as a component in a larger coupled model, thus giving rise to
hierarchical construction.
A simulator is associated with the DEVS formalism in order
to exercise instructions of coupled model to actually generate
its behavior. The architecture of a DEVS simulation system
is derived from the abstract simulator concepts [6] associated
with the hierarchical and modular DEVS formalism. What
can provides the DEVS simulation in test automation ? The
integration of Sikuli anf RF using DEVS open new perspec-
tives for the automation of test scenarii simulation. For ex-
ample, with DEVS the user can plan (using plugin) multiple
tests in a automated way using a process dedicated to executes
multiple simulations.

For the last ten years, research work has been oriented to-
wards the development of environments based on the DEVS
formalism [19-24].

3.2. DEVSimPy environment
DEVSimPy (Python Simulator for DEVS models) [5,6]

is a user-friendly interface for collaborative modeling and
simulation of DEVS systems implemented in Python lan-
guage. Python is a programming language known for its sim-
ple syntax and its capacity to allow modelers to implement
quickly their ideas [25]. The DEVSimPy project used the
Python language and provides a GUI based on PyDEVS [26]
API in order to facilitate both the coupling and the reusabil-
ity of PyDEVS models. This API is used in the excellent
multi-modeling GUI software named ATOM3 [24] which al-
lows to use several formalisms without focusing on DEVS.
DEVSimPy is an open source project under GPL V3 li-
cense and its development is supported by the University
of Corsica Computer Science research team. It uses the wx-
Python graphic library which is a wrapper of the most popu-
lar WxWidgets C library. DEVSimPy can be downloaded at
http://code.google.com/p/devsimpy.

The main goal of this environment is to facilitate the mod-
eling of DEVS systems using the GUI dynamic libraries and
the drag and drop functionality. With DEVSimPy, models
can be stored in a dynamic library in order to be reused and
shared (left panel in figure 3). The creation of dynamic li-
braries composed with DEVS components is easy since the
user is coached by dialogs and wizard during the building
process. With DEVSimPy, complex system can be modeled
by a coupling of DEVS models and the simulation is per-
formed in a automatic way. Moreover, DEVSimPy allows the
extension (or the overwrite) of their functionalities in using
special plugins managed in a modular way. The user can en-
abled/disabled a plugin using a simple dialog window. We

Figure 3. DEVSimPy general interface

propose in this paper the DEVS modeling of GUI test au-
tomation scenario through DEVSimPy by implementing a
specific dynamic library. Thereby, this library can be reused
any time GUI test automation is needed during the applica-
tion development.

3.3. The TestAutom library
3.3.1. Overview
In order to facilitate the generation of test scripts when

using the existing tools presented in section 2.1, the pro-
posed approach consists in integrating these tools into the
DEVSimPy framework. This integration will allow the soft-
ware developers to use the previous tools in an integrated way.
The scripts will be automatically generated and the different
tools are automatically launched own to a simulation process.
The simulation process leans on the modeling phase where
the software developers have to build a DEVSimPy coupled
model using some drag and drop. The drag and drop are ac-
complished from a set of atomic models belonging the DE-
VSimPy library called TestAutom.
The library has been developed according to two main sub-
divisions: the first one called Sikuli offers a set of models al-
lowing to automatically generate the test scripts dedicated to
the test of GUI and to automatically launch the effective test
of the software; the second one called Selenium allows the
user to complement the previous test by automatically gener-
ate log files describing the results of the previously defined
tests. Figure 4 highlights the TestAutom library (on the left
part of 4) and an simple example of use.

The Sikuli sub-part of the TestAutom library involves a set
of atomic models allowing the developer of GUI to both au-
tomatically generate test scripts and easily execute them. The
models are described in sub-section 3.3.2. The Selenium part
of the library allows to generate the results of the execution
of the test. This part is described in sub-section 3.3.3. Finally
we show on a pedagogical example how to use this library in
sub-section 4.3.4.



Figure 4. The TestAutom library with an example of use in
DEVSimPy

3.3.2. The Sikuli sub-part library
The models belonging to Sikuli sub-part library are the ba-

sic elements which are used to build the model which will
be simulated in order to generate the test scripts. These basic
elements belong to the events set (left part in figure 4):

• Click:In order to simulate the mouse click event

• Enter: To simulate the enter key press

• Capture: To execute a Snapshot operation

• Shortcut: To simulate shortcut keys combination press

• Wait: To simulate a timing statement

• NewOnglet: To invoke a new tab in the web navigator

• Paste: To simulate the paste function

• Type: To populate a text area

• CloseApp: To simulate the closing of an application

• OpenApp: To simulate the opening of an application

All of these models can be instantiated and combined us-
ing drag and drop functionalities in order to build a complex
action.
Two other basic elements (atomic models) are playing an im-
portant role:

• Step: To define an complex action by combining some
of the previous events

• Sikuli: To aggregate the different steps involved in the
definition of the test scenario

All the Step instances obtained from the unique Step
model by simple Drags and Drops are connected to an Sikuli
instance. This instance is in charge to generate the final test
scripts.

3.3.3. The Selenium sub-part library
The models offered in the Selenium sub-part library mainly

concern the possibility to generate automatically snapshots of
the execution results for the test scripts generated using the
Sikuli sub-part library. Tree atomic models are proposed:

• RF Launcher: To execute both the test and visualization
scripts using a plugin contained in its class

• RobotFramework: To execute the Sikuli scripts and is
included in the RF Launcher

• Test: To execute Sikuli scripts using a command line
way (optional functionality)

Furthermore a set of atomic models belonging to the set-
tings directory can be used by the user in order to precise
some attributes when dealing with Snapshots or test format
printing.
The final step consist in connecting a Sikuli instance to a
RF Launcher for the execution of Sikuli scripts and their vi-
sualization using DEVSimPy simulation.

3.3.4. How to use the TestAutom library
In order to use the previously described library, the user

(a software developer who wants to test GUI software) has
to build (by some drag and drop actions) an interconnected
model which will permit through a DEVSimPy simulation to
automatically generate the test scripts and execute them in
order to obtain the test results under Snapshots of log files
format. An example of an interconnected model is given in
figure 4. This model involves two atomic models (events) :
OpenBrowser which is an OPenApp model and NewOnglet.
These two models are aggregated using the Sikuli model. The
RF Launcher model is connected to the Sikuli model to exe-
cute the test and visualize the results as explained in 3.3.3.

4. VALIDATION OF THE PROPOSED AP-
PROACH

The previous TestAutom library has been validated on a
real case application used in the medical domain. The ap-
proach is validated in a simple case which shows the basis
of use of DEVSimPy for the automation of test GUI.

4.1. Validation benchmark
The sub-section describes the real test case used in order

to validate the proposed approach. It concerns an integrated
application designed specifically to meet management needs
of imaging services public and private institutions in France.
A tool named Xplore Management has been designed by a
software industry called EDL and it has been chosen for the
validation. Xplore Management web software can:

• Accommodate the patient and prepare his case



• Enter the examinations and automatically calculate as-
sociated quotes

• Editing reports: use of the word processor Word and as-
sociated features (templates, glossary of standard para-
graphs, ...); incorporation of the text of report in the
database (or in the patient record)

• Edit care sheets and technical packages

• Edit schedules and transport of patients, monitor patients
unlisted, and much more

• Edit activity statistics

• Manage patient records and history

• Define and manage user profiles (radiologists, radiogra-
phers, secretaries, ...)

• Edit and adapt the settings to the service environment

• Be integrated in an existing hospital information system

Figure 5. Example of a public appointment activity

Figure 6. Example of a private report editing

Figures 5 and 6 are two screenshots that point out some of
the features of the Xplore management software which is the
system under test.

4.2. Case of study: Xplore testing
We describe in this section the design of a test scenario

according to the previous validation benchmark. The test sce-
nario consist in the search of a patient by name. It involves
four steps (figure 7):

1. The launching of a web navigator (like Google Chrome)
and the creation of a new tab using respectively an
OpenChrome model and a NewOnglet model

2. The private web site access by referencing the corre-
sponding url in the navigator url area. As it can be seen
in figure 7, four models are used to realized this step.

3. The Back-office access with authentication using lo-
gin and password. This step is accomplished own
to six different event models (ClickCode, Passcode,
ClickPasswd, PastePasswd, Enter2, Wait2).

4. The research of the patient called MARIN by its name
following be the capture of the results under the form
of a screenshot (figure 8). In this case, five event models
allows to realize the research of the patient and a last one
allows the caption of the snapshot.

Figure 7. DEVSimPy model of the case of study

As already seen in section 3.3.4, the Sikuli and
RF Launcher models are used to execute the test and visu-
alized the final results (figure 8). The simulation final result
shown in figure 8 highlight the success of the research test
since the patient named MARIN has been found.

5. CONCLUSION
The paper deals with an efficient solution for test au-

tomation of GUI software using discrete event simulations.
We have pointed out that the DEVSimPy framework has
brought a solution to the lack of homogeneous test au-
tomation environment. Furthermore, DEVSimPy simplifies
the combination of test automation software as Sikuli and



Figure 8. Screenshot of final results corresponding to the
simulation of the test case study

RobotFramework. This combination allows: (1) to automati-
cally generate test scripts based on DEVSimPy models stored
in dynamic libraries; (2) to automatically execute the test
scripts and visualize customizable logs using a simple click
approach. Furthermore, using DEVSimpy several variants of
original test can be experimented and combined using sim-
ulation. A real case application has been employed in order
to validate the benefits to apply DEVSimPy simulation. The
proposed approach has been adopted by EDL which is a ma-
jor French company in charge of medical software develop-
ment. We plan to exploit the DEVSimPy library for GUI test-
ing in various application domains. We envision also to em-
bed analysis of CLR objects using DEVSimPy in order to
complete the test scripts according to a code oriented view.

6. REFERENCES
[1] Prabhu, J., and N. Malmurugan, 2011 , A Survey on Au-

tomated GUI Testing Procedures, European Journal of Scien-
tific Research 64 (3): pp. 456-462.

[2] Chang, T. H, 2011, Using Graphical Representation of
User Interfaces as Visual References, in Proceedings of the
24th Annual ACM Symposium Adjunct on User Interface
Software and Technology, pp. 27-30.

[3] Gupta, P., and P. Surve, 2011, Model Based Approach
to Assist Test Case Creation, Execution, and Maintenance
for Test Automation, in Proceedings of the First International
Workshop on End-to-End Test Script Engineering, pp. 1-7.

[4] Zeigler, BP, H. Praehofer, and TG Kim, 2000, Theory
of modeling and simulation, 2nd Edition, Academic Press.

[5] self—
[6] DEVSimPy, Open-source collaborative software,

http://code.google.com/p/devsimpy/
[7] Kohavi, Z. 1978. Switching and Finite Automata The-

ory, McGraw-Hill.
[8] Robotframework. http://code.google.com/p/robotframe-

work.

[9] Laukkanen, Pekka, 2006, Data-Driven and Keyword-
Driven Test Automation Frameworks, Master Thesis, Helsinki
University of Technology , http://eliga.fi/Thesis-Pekka-
Laukkanen.pdf.

[10] Hellsten, C. 2006. Using Selenium with Automation
Regression Test, IBM Developer Works.

[11] Kim, E. H, J. C Na, and S. M Ryoo. 2009. Imple-
menting an Effective Test Automation Framework, In Com-
puter Software and Applications Conference, 2009. COMP-
SACâ09. 33rd Annual IEEE International, 2: pp. 534-538.

[12] Selenium. http://seleniumhq.org/
[13] Yeh, T., T. H Chang, and R. C Miller. 2009. Sikuli: Us-

ing GUI Screenshots for Search and Automation, in Proceed-
ings of the 22nd Annual ACM Symposium on User Interface
Software and Technology, pp. 183-192.

[14] Chang, T. H, T. Yeh, and R. C Miller. 2010. GUI Test-
ing Using Computer Vision, In Proceedings of the 28th In-
ternational Conference on Human Factors in Computing Sys-
tems, pp. 1535-1544.

[15] Song, H., S. Ryoo, and J. H Kim. 2011. An Inte-
grated Test Automation Framework for Testing on Heteroge-
neous Mobile Platforms., In Software and Network Engineer-
ing (SSNE), 2011 First ACIS International Symposium On,
pp. 141-145.

[16] WaTin. Web Application Testing in dotNet,
http://watin.sourceforge.net.

[17] WET. opensource web automation testing tool,
http://wet.qantom.org.

[18] Exader.dynamics. open-source web automation test-
ing tool, http://feed.nuget.org/packages/Exader.Dynamic.

[19] Bergero, F., and E. Kofman. 2011. PowerDEVS: a
Tool for Hybrid System Modeling and Real-time Simulation,
Simulation 87 (1-2): pp. 113-132.

[20] Sarjoughian, H. S, and B. R. Zeigler. 1998. DEVS-
JAVA: Basis for a DEVS-based Collaborative M&S Environ-
ment, Simulation Series 30: pp. 29-36.

[21] Wainer, G. 2002. CD++: a Toolkit to Develop DEVS
Models, Software: Practice and Experience 32 (13): pp. 1261-
1306.

[22] Quesnel, G., R. Duboz, É Ramat, and M. K Traoré.
2007. VLE: a Multimodeling and Simulation Environment, in
Proceedings of the 2007 Summer Computer Simulation Con-
ference, pp. 367-374.

[23] Traoré, M. K. 2008. SimStudio: a Next Generation
Modeling and Simulation Framework, in Proceedings of the
1st International Conference on Simulation Tools and Tech-
niques for Communications, Networks and Systems & Work-
shops, pp. 67.

[24] Lara, J., Vangheluwe, H., 2002, AToM 3: A Tool
for Multi-Formalism and Meta-Modelling, Fundamental Ap-
proaches to Software Engineering, pp. 174-188.

[25] Sanner M.F., 1999, Python: a programming language



for software integration and development, J. Mol. Graphics
Mod, vol. 17, pp. 57-61.

[26] Bolduc, J. S., Vangheluwe, H., 2001, The Modelling
and Simulation Package PythonDEVS for Classical Hierar-
chical DEVS, MSDL Technical Report MSDL-TR–01. Mon-
treal, Quebec, Canada.


