
See	discussions,	stats,	and	author	profiles	for	this	publication	at:	https://www.researchgate.net/publication/318144414

Addressing	the	Challenges	of	Conservative	Event
Synchronization	for	the	SARL	Agent-
Programming	Language

Chapter	·	January	2017

DOI:	10.1007/978-3-319-59930-4_3

CITATIONS

0

READS

8

6	authors,	including:

Some	of	the	authors	of	this	publication	are	also	working	on	these	related	projects:

Arakhnê	Foundation	Classes	View	project

Janus	Agent	Platform	View	project

Stéphane	Galland

Université	Bourgogne	France-Comté

123	PUBLICATIONS			854	CITATIONS			

SEE	PROFILE

Luk	Knapen

Hasselt	University

68	PUBLICATIONS			242	CITATIONS			

SEE	PROFILE

Tom	Bellemans

Hasselt	University

151	PUBLICATIONS			736	CITATIONS			

SEE	PROFILE

Davy	Janssens

Hasselt	University

259	PUBLICATIONS			1,474	CITATIONS			

SEE	PROFILE

All	content	following	this	page	was	uploaded	by	Stéphane	Galland	on	12	July	2017.

The	user	has	requested	enhancement	of	the	downloaded	file.

https://www.researchgate.net/publication/318144414_Addressing_the_Challenges_of_Conservative_Event_Synchronization_for_the_SARL_Agent-Programming_Language?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/318144414_Addressing_the_Challenges_of_Conservative_Event_Synchronization_for_the_SARL_Agent-Programming_Language?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/Arakhne-Foundation-Classes?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Janus-Agent-Platform?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephane_Galland?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephane_Galland?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephane_Galland?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luk_Knapen?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luk_Knapen?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hasselt_University?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Luk_Knapen?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom_Bellemans?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom_Bellemans?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hasselt_University?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Tom_Bellemans?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davy_Janssens?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davy_Janssens?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Hasselt_University?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Davy_Janssens?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Stephane_Galland?enrichId=rgreq-ec5d78255aea0603d71283862c11f364-XXX&enrichSource=Y292ZXJQYWdlOzMxODE0NDQxNDtBUzo1MTUxOTYzNTI5MDUyMTZAMTQ5OTg0Mzc5MDg4OQ%3D%3D&el=1_x_10&_esc=publicationCoverPdf

Addressing the Challenges of Conservative
Event Synchronization for the SARL

Agent-Programming Language

Glenn Cich1?, Stéphane Galland2, Luk Knapen1, Ansar-Ul-Haque Yasar1,
Tom Bellemans1, and Davy Janssens1

1 Hasselt University, Transportation Research Institute (IMOB), Agoralaan, 3590
Diepenbeek, Belgium

2 LE2I, Univ. Bourgogne Franche-Comté, UTBM, F-90010 Belfort, France

Abstract. Synchronization mechanism is a key component of an agent-
based simulation model and platform. Conservative and optimistic mod-
els were proposed in the domain of distributed and parallel simulations.
However, the SARL agent-programming language is not equipped with
specific simulation features, including synchronization mechanisms. The
goal of this paper is to propose a conservative synchronization model for
the SARL language and its run-time platform Janus.

Keywords: Multi-agent simulation, Conservative event synchronization,
SARL agent programming language, Janus platform

1 Introduction

In agent-based simulations, the entire simulation task is divided into a set of
smaller sub tasks each executed by a different agent. These agents may run in
parallel, and communicate with each other by exchanging timestamped events or
messages. In this paper, an event refers to an update to the simulation system’s
state at a specific simulation time instant. Throughout the simulation, events
arrive at destination agents, and depending on the delivery ordering system of
the simulation, they are processed differently. The two commonly used orderings
are (i) event reception order and (ii) event timestamp order (the timestamp is
assigned to the event by the emitting agent). With the first type, events are
delivered to the destination processes when they arrive at the destination. On
the other hand, with the timestamp-order, events are delivered in non-decreasing
order of their timestamp, requiring runtime checks and buffering to ensure such
ordering.

The key question is how to create a synchronization model, and its im-
plementation, based on the SARL agent-programming language, and assuming
that the execution platform is fully distributed. In this paper, the SARL agent-
programming language is equipped with an event synchronization model with

? Correspondence to: glenn.cich@uhasselt.be

the following characteristics: (i) The model follows a conservative synchroniza-
tion approach. (ii) The synchronization process is hidden to the agents by using
the capacity and skill concepts. (iii) The agent environment is integrated into
the synchronization process.

The remainder of the paper is organized as follows: in Sect. 2, an overview
of the current state of the art is given. Section 3 introduces the agent based
framework SARL that is used in the model described in this paper. Section 4
describes the method used to synchronize events in SARL. The evaluation of
this method is described in Sect. 5. Finally, in Sect. 6, the paper is concluded.

2 Related Work

Parallel Discrete-Event Simulation (PDES) has received increasing interest as
simulations become more time consuming and geographically distributed. A
PDES consists of Logical Processes (LPs) acting as the simulation entities, which
do not share any state variables (similar to agents) [3].

A PDES that exclusively supports interaction by exchanging timestamped
messages obeys the local causality constraint if and only if each LP processes
events in non-decreasing timestamp order [2]. To satisfy the local causality con-
straint, different synchronization techniques have been proposed for distributed
systems which generally fall into two major classes of synchronization: conser-
vative or pessimistic, which strictly avoids causality violations; and optimistic,
which allows violations and recovers from them.

Conservative synchronization algorithms strictly avoid any occurrence of
causality errors. To do so, the LP is blocked from further processing of events
until it can make sure that the next event in its local future event list has a
timestamp smaller than the arrival time of any event that might be arriving at
the LP in the future. The main issue of any conservative parallel simulator is
determining if it is safe for a processor to execute the next event. To deal with
this issue, several techniques have been proposed which are further classified
into four categories: methods with dead-lock avoidance, deadlock detection and
recovery, synchronous operation, and conservative time windows.

Optimistic synchronization algorithms do not try to stop the LP’s execution
to synchronize them. It allows causality errors to occur and to be detected by
the arrival of an event with a timestamp that is less than the local time of the
receiving LP. Optimistic algorithms recover from the causality error by undoing
the effects caused by those events processed speculatively during the previous
computation. This recovery operation is known as rollback, during which the
state of the LP is restored to the one that was saved just prior to the timestamp of
the violating event. The main issue of any optimistic parallel simulator is related
to the necessary storage space that is needed for recovery, and the positive ratio
of the time spent for performing the recovery on the time spent for executing
the behavior of the system.

In the past three decades, numerous approaches have been proposed by dif-
ferent researchers in this field. A number of surveys can be found in the literature
which summarize both conservative and optimistic techniques [2, 3, 5, 9, 10, 12].

In multiagent systems, several models of synchronization were proposed. In
this domain, agents are assimilated to LPs. Weyns and Holvoet [13] describe a
conservative synchronization module in the multiagent system that is based on
the composition of the synchronizationa modules for each agent a. The approach
of the model is to let synchronization be the natural consequence of situatedness
of agents and not be part of the agents decision mechanism. This is reflected in
the fact that the composition of a set of synchronized agents only depends on the
actual perception of the agents. Such synchronization is based on the exchange
of a structured set of synchronization messages.

Braubach et al. [1] propose a centralized service that has the role to manage
the time evolution, and to notify the agent when the time is evolving. In this
model, each agent notifies the time management service when it has finished its
task for a given time period. This model is one of the most simple pessimistic
synchronization algorithms. Its major drawback is related to the introduction of
the centralized service that makes it harder and less efficient to distribute the
agents over a computer network.

Xu et al. [15] propose an asynchronous conservative synchronization strategy
for parallel agent-based traffic simulations. The authors propose to replace the
global synchronization barrier in the multiagent system by a local synchroniza-
tion strategy that enables agents to communicate individually and providing
each of the agents with a heuristic for increasing the time-window look ahead in
order to predict the next safe events.

3 SARL: an Agent-Oriented Programming Language

SARL3 is a general-purpose agent-oriented programming language [11]. Such
language should thus provide a reduced set of key concepts that focuses solely
on the principles considered as essential to implement a multi-agent system. In
this paper, four elements of the metamodel of SARL are used: Agent, Space,
Capacity and Skill. These four concepts are explained below.

– Agent: An Agent is an autonomous entity having a set of skills to realize
the capacities it exhibits. An agent has a set of built-in capacities considered
essential to provide the commonly accepted competences of agents, such as
autonomy, reactivity, proactivity and social capacities. The various behaviors
of an agent communicate using an event-driven approach.

– Space: A Space is the abstraction to define an interaction space between
agents or between agents and their environment, which may be the real world
or a simulated environment. The simulated environment subsystem could be
modeled with a multiagent system by itself. In the SARL toolkit, a concrete
default space, which propagates events, called EventSpace is proposed.

3 http://www.sarl.io

– Capacity: A Capacity is the specification of a collection of functions that
support the agent’s capabilities, which are represented by the Capacity con-
cept. This specification makes no assumptions about its implementation. It
could be used to specify what an agent can do, i.e. what a behavior requires
for its execution.

– Skill: A Skill is a possible implementation of a capacity fulfilling all the
constraints of this specification.

The Janus platform4 was redesigned and reimplemented in order to serve as
the software execution environment of the SARL programs. Janus is designed in
order to be a fully distributed platform over threads and a computer network.
The execution unit in Janus is the event handler: the part of the SARL agent that
is executed when a specific event is received. Each of these units are executed in
parallel to the other units, even in the same agent.

The design of the Janus platform may cause issues for creating agent-based
simulation applications. Indeed, several notions of time must be considered: user
time (the real time, machine time) and simulated time. According to Lamport
[7], simulated time is a logical clock that induces a partial ordering of events; it
has been refined in distributed context as logical virtual time by Jefferson [6]. The
Janus platform does not make any assumption on the ordering of the events that
are exchanged by the agents. As a consequence it is impossible to use the Janus
platform for agent-based simulation involving a time concept without providing
the platform with a specific synchronization mechanism. A model of such a
mechanism is described in Sect. 4. Agents timestamp the event notifications
they emit using their current perception of simulated time (the logical clock).
They perceive each other behavior as a sequence of events ordered by the logical
clock. Agents can only emit events that comply to the Lamport partial order
for logical time induced the causality rule. In case agent A0 uses information
about agent A1 notified by an event E0 timestamped by t(E0), it can no longer
notify any event E1 that precedes E0 in the partial order. This requires agents
to synchronize their perception of the common logical clock.

Additionally, agent-based systems often include an agent environment , which
is the software layer between the external world and the agents. This environment
contains objects and resources, a.k.a. artifacts, that are not agents, but could
be used by them. All the actions on the artifacts must be also synchronized in
order to preserve the integrity of the agent environment state.

4 Event Synchronization Model for SARL

In this section, an event synchronization model for the SARL programming
language and its Janus execution environment is presented.

A time period is delimited by two discrete moments in (real or simulated)
time. Each moment in time can be thought to bear a label which is the times-
tamp. In the remaining part of the paper the terms timestamp and time period

4 http://www.janusproject.io

will be used interchangeably. Hence, the term timestamp is also used to identify
the time period starting at the moment in time it is associated with.

According to the SARL metamodel, interaction among the simulation agents
on one hand, and between the simulation agents and the agent environment
on the other hand is supported by events. Each event e in the set E of events
that are not already fired in the simulation agents is defined by a time stamped
te and a content ce. The timestamp te is the simulation time for which the
event is fired. It is always greater or equal to the current simulation time t:
∀e ∈ E, e = 〈te, ce〉 =⇒ te ≥ t.

4.1 General Architecture

The proposed event synchronization model is designed by considering the fol-
lowing three major assumptions and constraints (in bold face).

The synchronization process is hidden to the agents by using the
capacity and skill concepts. Indeed, the synchronization process is related to
the simulation and not to the simulation agent architectures and models. For
example, the simulation agent models should be the same if they are instantiated
during simulation or deployed on embedded computers. In order to enforce this
characteristic, we propose to provide skills that are implementing the standard
interaction agent capability, which is provided by the SARL metamodel, with the
proposed synchronization mechanisms. This approach enables a clear distinction
between the application-dependent models in the agents, and the simulator-
dependent modules. It increases the level of abstraction that the framework will
provide to application developers.

The agent environment is part of the simulated system. The agent
environment as a key component of the system must be considered in the event
synchronization model. In this work, we assume that the agent environment
is modeled with a complex hierarchy of agents, as proposed by Galland and
Gaud [4]. The root agent in this hierarchy represents the entire environment for
the application logic layer (even if the environment is distributed over multiple
environmental agents). In the context of this paper, and for simplicity reasons, we
make use of two kinds of agents: (i) an environment agent, and (ii) a simulation
agent, which represents the application logic’s agent.

The event synchronization model follows a conservative synchro-
nization approach. As explained in Sect. 2, two major approaches of synchro-
nization can be considered: conservative and optimistic. In order to select the
best approach, we have considered the two types of interaction between the sim-
ulation agents and the environment: (i) the simulation agents perceive the state
of the environment; and (ii) the simulation agent acts in order to change the
state of the environment. First, consider the data representing the perception
of an agent at simulation time t: this needs to be extracted from the same state
of the environment for all agents in order to ensure the consistency of the agents’
behaviors for time t. Second, the simulation agents are supposed to act in the
environment simultaneously and autonomously. Solving the joint actions of the
agents requires to avoid them to directly change the environment’s state. Agents

are sending desires of actions, named influences, that are gathered and used
by the agent environment in order to compute its next state. This approach is
known as the influence-reaction model [8]. Because the agent environment may
be modeled by means of a hierarchy of agents, according to Galland and Gaud [4],
the influence-reaction model may be locally applied if each subagent inside the
environment is supporting a specific spatial zone. The influence-reaction model
implies the introduction of at least one rendez-vous point during the simulation
process: the agent environment is waiting for all the simulation agents to pro-
vide their influences. Besides the types of interaction, one can take into account
the possible drawbacks of an optimistic approach. The optimistic approach will
need a lot of space in order to store the different states of the simulation. This
indicates as well that this approach will be application dependent because the
used data structures are application specific which might induce burden to the
designer/programmer. The type of applications we have in mind need a strict
synchronization between a lot of agents. The possibility of rollbacks will be very
high and hence very time consuming. The bottle neck we introduce with our
conservative mechanism will probably cause less time loss in these cases. These
considerations lead us to select a conservative approach in designing our event
synchronization model.

Synchronization-Unaware Simulation Agent Architecture. The general
architecture for the simulation agents can be described by Algorithm 1.1. The
simulation agents are able to react to PerceptionEvent events, which are fired
by the agent environment to notify the simulation agent that its perception has
changed. When the simulation agent has executed its reaction behavior, it sends
its list of desired actions to the agent environment by calling the influence

function. This function is provided by the EnvironmentInteractionCapacity

capacity (Algorithm 1.1), which represents the capacity of an agent to interact
with its environment. The EnvironmentInteractionCapacity implementation
will pack the influences into an occurrence of the AgentIsReadyEvent event,
and send the latter to the agent environment. The simulation agent is also able
to react to events that were fired by other simulation agents.

agent SimulationAgent {
2 uses EnvironmentInteractionCapacity

on PerceptionEvent {
4 /∗ React on the p e r c e p t i o n r e c e i v i n g from the environment ∗/

[. . .]
6 /∗ Send AgentIsReadyEvent to the environment ∗/

influence ([. . .])
8 }

on Event {
10 /∗ React on even t s from s imu l a t i o n agen t s ∗/

[. . .]
12 }

}
14 capacity EnvironmentInteractionCapacity {

def influence (desiredActions : Object ∗)
16 }

Algorithm 1.1. General algorithm for the simulation agents and definition of the
EnvironmentInteractionCapacity capacity.

All the agents in the SARL specification are provided with built-in capacities
for which the execution platform provides the implementation. The first built-in
capacity that is relevant to our synchronization model is Time. It provides the
functions for accessing the value of the current simulation time t. The second
built-in capacity is Behaviors. It provides the asEventListener function, which
replies the entry point for all events that are received by the agent. This capacity
also provides the wake function to emit events inside the context of the agent
itself. Specific implementation of these two capacities will be provided in Sect. 4.2
in order to integrate our synchronization model in a way that is transparent to
the simulation agent.

Synchronization-Unaware Environment Architecture. The general ar-
chitecture for the simulation agents can be described by Algorithm 1.2. In this
paper, we consider that the agent environment can be modelled using a dedi-
cated (holonic) agent according to the model proposed by Galland and Gaud [4],
in which the proposed agent represents the agent environment and is managing
time evolution.

agent AgentEnvironment {
2 uses TimeManager

var expectedNumberOfInfluences : Integer
4 var influences : List

on StartSimulationStep {
6 sendPerceptionsToAgents

}
8 on AgentIsReadyEvent {

influences += occurrence
10 i f (influences . size == expectedNumberOfInfluences) {

appliesInfluencesToEnvironmentState
12 readyForTimeEvolution

}
14 }

}

Algorithm 1.2. General algorithm for the agent environment.

The agent environment is waiting for the StartSimulationStep event that is
fired by the platform’s time manager5. When the event is received, the agent
environment computes the agents’ perception from the environment’s state and
sends PerceptionEvent events to the simulation agents. The implementation of
the sendPerceptionsToAgents is application specific; it is not detailed in this
paper. When receiving the PerceptionEvent occurrence, each simulation agent
updates its knowledge with the timestamp of the event.

After sending the perception to the simulation agents, the agent environment
is waiting for the agents’ influences, according to the influence-reaction model
[8]. When all the expected influences are received, the agent environment up-
dates its state, and notifies the time manager that the simulation time t can
evolve. Indeed, inside a simulation process including an environment as a whole
entity, the simulation agent at time t can evolve according to the state of the

5 The time manager is a platform module or another agent that is storing and man-
aging the time t over the simulation.

environment [8, 14]. Basically, time evolution might be modeled by t′ := t+∆t,
where t is the current simulation time, ∆t is a constant time evolution amount,
and t′ is the new simulation time.

Additionally, we have considered to dynamically determine the time incre-
ment using t′ := min {te|∀e ∈ E, te > t}. This approach is still vulnerable to
deadlocks of simulation agents when they enter a deadlock or unexpectedly
crash. In this case, the agent environment will wait infinitely for their response
and hence the simulation will end in a deadlock as well. However this issue can
be solved by using the machine time in order to detect a deadlock. The environ-
ment agent could keep track of the expected execution time per agent. When an
agent exceeds this time, the environment agent could assume there is something
wrong; the environment agent can proceed and ask the agent in deadlock to
leave the simulation. In case a simulation agent wants to leave the simulation
(deliberately stop, or crash) the environment agent is aware of that by listening
the specific events fired by the execution platform and can update its list of
agents to monitor.

4.2 Conservative Event Synchronization Mechanism

The event buffering is needed to ensure a pessimistic approach. The main idea
is that simulation agents can send events to each other, but the events are
not directly fired to the appropriate simulation agent. Hence, if a simulation
agent decides to send an event to another simulation agent, this event is saved
somewhere within the agent. This is done for every event that is sent for a given
time period.

In the SARL specification, events may be received by an agent from another
agent or from itself. In the first case, the Behaviors built-in capacity provides the
agent’s event listener that could be used for receiving the events. For supporting
the second case, the Behaviors capacity provides the wake function for firing
an event inside the context of the agent. For every simulation agent, the events
that are received from other agents, or from itself are intercepted by a specific
skill implementation of the Behaviors capacity. The intercepted events are kept
in a bucket until a specific event of type TimeStepEvent that is representing a
time step in the simulation is received. The PerceptionEvent event described
in the previous section is a subtype of TimeStepEvent. Consequently, when a
simulation agent receives its perception from the agent environment, all the
buffered events for the current simulation time are fired in the agent context as
well as the PerceptionEvent whose occurrence advances the agent’s time to the
next timestamp. Algorithm 1.3 provides a SARL implementation of the specific
skill. The internal class InternalBuffer is defined to represent the event buffer
(defined as a multiple-value map).

If the received event e is not of type TimeStepEvent, e is buffered. Each
event is mapped to a time interval with the filter function (te 7→ [ti, ti+1[) where
te ∈ [ti, ti+1[is the event timestamp and ti and ti+1 are consecutive values of
discrete time in the simulation. Hence for a given time t, the agent has to process
a list of events {e|e ∈ E,filter(t) = filter(te)}. If the event e is not explicitly

timestamped, then the default timestamp is assumed to be equal to the time of
the next simulation step (computed by the nextTimeStep function in Algorithm
1.3).

In a simulation agent, if the received event e is of type TimeStepEvent,
the current simulation time is updated with the timestamp of e. Due to our
conservative synchronization approach, this timestamp is equal to the global
time simulation. Additionally, the buffered events are consumed and fired into
the current simulation agent by using the default event listener (provided by the
execution platform). Finally, the SynchronizationAwareSkill implements the
two functions of the Behaviors capacity that correspond to the two methods
for receiving events: the asEventListener and wake functions.

s k i l l SynchronizationAwareSkill implements Behaviors , Time {
2 val defaultSkill : Behaviors

val eventBuffer : EventListener
4 var time : Integer

new (platformSkill : Behaviors) {
6 defaultSkill = platformSkill ; eventBuffer = new InternalBuffer

}
8 def asEventListener : EventListener { return eventBuffer }

def wake (e : Event) { eventBuffer . receiveEvent (e) }
10 def getTime : Integer { return time }

def nextTimeStep : Integer { return time + 1 }
12 class InternalBuffer implements EventListener {

val buffer : Map<Integer , Collection<Event>> = new MultiMap
14 def receiveEvent (e : Event) {

i f (e instanceof TimeStepEvent) {
16 time = e . timestamp

var events = buffer . remove (time)
18 for (be : events) {

defaultSkill . asEventListener . receiveEvent (be)
20 }

defaultSkill . asEventListener . receiveEvent (e)
22 } else {

var timestamp = i f (e instanceof TimestampedEvent) e . timestamp
24 else nextTimeStep

i f (timestamp > time) {
26 buffer . put (timestamp , e)

}
28 }

}
30 }

}

Algorithm 1.3. Skill implementation of behaviors and time capacities.

The second built-in capacity that must be overridden to enable event syn-
chronization is the Time capacity. This capacity provides the getTime function
that is returning the current simulation time. In Algorithm 1.3, we define the
local attribute time, which is the local simulation time from the agent point of
view. According to our conservative approach, this local time is updated with
the global simulation time that is the timestamp of a received TimeStepEvent

occurrence.
In order to use the previously defined SynchronizationAwareSkill skill, it

must be given to the simulation agent as the skill to be used when the functions
of Behaviors and Time are invoked. In order to ensure that the synchronization
process is hidden to the agents, we cannot change the definition of the simula-
tion agents. Algorithm 1.4 describes this discarded approach, which is based on

the explicit creation of an instance of the SynchronizationAwareSkill skill,
with the Behaviors skill from the platform as argument. This skill instance is
mapped to the two capacities Behaviors and Time. From this point the agent
is automatically synchronized with the rest of the system.

agent SimulationAgent {
2 on Initialize {

var syncSkill = new SynchronizationAwareSkill (getSkill (Behaviors))
4 setSkill (syncSkill , Behaviors , Time)

}
6 [. . .]
}

Algorithm 1.4. Bad practice: explicit set of the synchronization skill in the simulation
agents.

We consider that a better approach is to install the
SynchronizationAwareSkill skill when a another simulation-based skill is in-
stalled into the agent. We have defined the EnvironmentInteractionCapacity

capacity in Sect. 4.1. The corresponding skill may be defined in order to install
the synchronization skill when it is installed, as illustrated by Algorithm 1.5.

s k i l l SimulationEnvironmentInteractionSkill implements
EnvironmentInteractionCapacity {

2 def install {
var syncSkill = new SynchronizationAwareSkill (getSkill (Behaviors))

4 setSkill (syncSkill , Behaviors , Time)
}

6 [. . .]
}

Algorithm 1.5. Good practice: installing the synchronization skill from another
simulation skill.

5 Performance

In order to be able to measure the performance without being biased by appli-
cation related calculations, we created a very simple ping-pong application.

In the time period starting at T0, every agent has 20 % probability to emit
a ping message to X other agents where X ∼ Uniform(1 : 100). The message
needs to be delivered in the time period Td ∼ Uniform(Te−T0) where Te denotes
the end of simulated time. The measured time is illustrated in Fig. 1, where T0
and T1 denote the start and the end of the interval; Ta denotes the end of the
reception of the events sent by the environment to the simulation agents; Tb the
end of “application level payload work” done by the agents, and finally Tc the
end of delivering the AgentIsReadyEvent to the environment. For every time
period, the amount of emitted messages is computed together with the total
amount of time needed to execute this time period. Experiments are realized
for 200 agents on a Linux Ubuntu 14.04LTS laptop with 8GB memory and a
Intel Core i5-4210M CPU 2.60GHz × 4. The number of time periods that are
simulated is 2 500.

Experimental results are illustrated in the graph represented in Fig. 2. In
our experiments, all the agents have the same actions to do. Consequently, they

T0

T1

Ta

Tb

Tc

Environment sends
perceptions to

all agents

Agents conduct
their algorithms

Sends ready
events

Wait for
slowest agents

M
e
a
su

re
d
 T

im
e

Fig. 1. An overview
of the time measure-
ment in our experi-
ments.

 200

 300

 400

 500

 600

 700

 800

 0 2000 4000 6000 8000 10000

E
x
e

c
u

ti
o

n
 t

im
e

 f
o

r
it
e

ra
ti
o

n
 (

m
s
)

Total amount of Events handled by All Agents

Total amount of events handled
tendency

Fig. 2. Graph that represents the total amount of events
handled in a specific iteration (x-axis) against the total ex-
ecution time for that iteration in ms (y-axis) for the case of
200 agents and 2 500 iterations.

have approximately the same execution time. It is clear to see that the execution
time follows a constant tendency, and hence seems to be independent of the
number of processed events over the full range of observations. The execution
time for a single period between two consecutive increments of simulated time
includes: perception of the environment, application specific payload work and
end-of-period notification. The duration required for the payload work in the
experiment is negligible. The large variance of the execution time masks the
expected dependency on the number of events.

6 Conclusion and Perspectives

A proof of concept is given for the support of the event synchronization using the
SARL language and its Janus execution platform, without changing neither the
specification of SARL nor the code of the Janus platform. Similar to Weyns and
Holvoet [13], we plan refining our model by including regional synchronization.
Another perspective is to provide an optimistic synchronization model. From
a technological point-of-view, our synchronization mechanism will be included
into the Janus execution platform.

Acknowledgments: the research reported was partially funded by the IWT 135026
Smart-PT: Smart Adaptive Public Transport (ERA-NET Transport III Flagship Call
2013 “Future Traveling”).

Bibliography

[1] Braubach, L., Pokahr, A., Lamersdorf, W., h. Krempels, K., o. Woelk, P.: A generic
simulation service for distributed multi-agent systems. In: In From Agent Theory
to Agent Implementation (AT2AI’04. pp. 576–581 (2004)

[2] Fujimoto, R.: Parallel discrete event simulation. Communications of the ACM
33(10), 30–53 (1990)

[3] Fujimoto, R.: Parallel and Distributed Simulation Systems. Wiley, New York
(2000)

[4] Galland, S., Gaud, N.: Organizational and holonic modelling of a simulated and
synthetic spatial environment. E4MAS 2014 - 10 years later, LNCS 9068(1), 1–23
(Nov 2015), http://www.springer.com/us/book/9783319238494

[5] Jafer, S., Lui, Q., Wainer, G.: Synchronization methods in parallel and distributed
discrete-event simulation. Simulation Modelling Practice and Theory 30, 54–73
(2013)

[6] Jefferson, D.: Virtual time. ACM Trans Program Lang Syst 7, 404–425 (1985)
[7] Lamport, L.: TI clocks, and the ordering of events in a distributed system. Com-

munications of the ACM 21, 558–565 (1978)
[8] Michel, F.: The IRM4S model: the influence/reaction principle for multiagent

based simulation. In: Sixth International Joint Conference on Autonomous Agents
and Multiagent Systems (AAMAS07). ACM, Honolulu, Hawaii, USA (2007)

[9] Perumalla, K.: Parallel and distributed simulation: traditional techniques and re-
cent advances. In: Proceedings of the 2006 Winter Simulation Conference. pp.
84–95. Monterey, CA (2006)

[10] Perumalla, K., Fujimoto, R.: Virtual time synchronization over unreliable network
transport. In: Proceedings of the 15th International Workshop on Parallel and
Distributed Simulation. pp. 129–136. Lake Arrowhead, CA (2001)

[11] Rodriguez, S., Gaud, N., Galland, S.: Sarl: A general-purpose agent-oriented pro-
gramming language. In: Web Intelligence (WI) and Intelligent Agent Technologies
(IAT), 2014 IEEE/WIC/ACM International Joint Conferences on. vol. 3, pp. 103–
110 (Aug 2014)

[12] Tropper, C.: Parallel discrete-event simulation applications. Journal of Parallel
and Distributed Computing 62(2), 327–335 (2002)

[13] Weyns, D., Holvoet, T.: Model for situated multi-agent systems with regional
synchronization. In: Concurrent Engineering, Agents and Multi-agent Systems.
pp. 177–188. Madeira, Portugal (2003)

[14] Weyns, D., Omicini, A., Odell, J.: Environment as a first-class abstraction in
multi-agent systems. Autonomous Agents and Multi-Agent Systems 14(1), 5–30
(2007)

[15] Xu, Y., Cai, W., Aydt, H., Lees, M., Zehe, D.: An asynchronous synchroniza-
tion strategy for parallel large-scale agent-based traffic simulations. In: SIGSIM-
PADS’15. London, United Kingdom (Jun 2015)

View publication statsView publication stats

https://www.researchgate.net/publication/318144414

