
Model-Data Ecosystems: Challenges, Tools, and Trends

Peter J. Haas
IBM Almaden Research Center

650 Harry Road
San Jose, CA 95120-6099 U.S.A.

phaas@us.ibm.com

ABSTRACT
In the past few years, research around (big) data management has
begun to intertwine with research around predictive modeling and
simulation in novel and interesting ways. Driving this trend is an in-
creasing recognition that information contained in real-world data
must be combined with information from domain experts, as em-
bodied in simulation models, in order to enable robust decision
making under uncertainty. Simulation models of large, complex
systems (traffic, biology, population well-being) consume and pro-
duce massive amounts of data and compound the challenges of
traditional information management. We survey some challenges,
mathematical tools, and future directions in the emerging research
area of model-data ecosystems. Topics include (i) methods for en-
abling data-intensive simulation, (ii) simulation and information in-
tegration, and (iii) simulation metamodeling for guiding the gener-
ation of simulated data and the collection of real-world data.

Categories and Subject Descriptors
H.4.2 [Information Systems Applications]: Types of Systems—
decision support; I.6 [Simulation and Modeling]: Simulation Sup-
port Systems

General Terms
Algorithms, Design

Keywords
Simulation, data assimilation, information integration, decision sup-
port

1. INTRODUCTION: DATA IS STILL DEAD
In their VLDB 2011 paper, “Data is dead. . .without what-if ana-

lytics”, Haas et al. [27] point out that, outside of scientific or his-
torical investigations and monitoring-type applications, the essen-
tial motivation underlying data processing and analytics is the need
to support enterprise decision making under uncertainty. Thus the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
PODS’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2375-8/14/06 ...$15.00.
http://dx.doi.org/10.1145/2594538.2594562.

Figure 1: The dangers of extrapolation

ultimate goal is to support deep predictive analytics that incorpo-
rate domain expertise in order to robustly predict the future conse-
quences of decisions made today. From this perspective, data by it-
self is indeed “dead”, reflecting the past state of the world. Descrip-
tive analytics—such as simple querying, OLAP, data mining, ma-
chine learning, and time-series analysis—find important patterns
and relationships in existing data, leading to insights about the real
world as it currently stands. A “shallow” predictive approach that
simply extrapolates current patterns into the future, however, can
lead to very brittle predictions and subsequent bad decisions be-
cause it does not account for the fact that the mechanisms that
generated the existing data can change. Figure 1 illustrates this
point. A simple time series model was fit to median U.S. hous-
ing prices from 1970 to 2006 and then extrapolated to 2011. As
can be seen, the resulting prediction failed spectacularly because it
ignored expert information from economists, financial analysts, be-
havioral scientists, and others that might have helped in modeling
the housing-price collapse that began in 2006. Thus data must be
supplemented by models that embody expert knowledge about the
constituent parts of systems and the way they behave and interact.
For systems characterized by uncertainty, these models often take
the form of stochastic simulations.

Eric Bonabeau, the author of Swarm Intelligence, makes a simi-
lar point in one of his blogs [9]:

There is no doubt that the more information is used
in building a model, the more accurate the model is
likely to be. However, the notion that quantitative, nu-

76

merical data are the only type of information needed
to build an accurate model is flawed. In fact, I believe
that the typical business obsession with numeric data
can do more damage than good.

He then asserts the need for fundamental system information pos-
sessed by domain experts and gives as an example the problem of
reducing traffic jams. A data-centric approach would collect large
amounts of data about current traffic speeds, volumes, and delays,
and attempt to discover correlations between time of day and av-
erage speed, between number of cars and delay lengths, and so
on. This approach ignores crucial information possessed by traffic
experts, such as that we slow down at certain rates when some-
one appears in front of us, that we accelerate to a driver-dependent
“comfortable” speed when the road is clear, that we may switch
lanes if they are open, and so on. “This kind of information is criti-
cal because it is at the heart of what creates traffic. And yet, typical
data-driven approaches would have no way whatsoever of including
this domain knowledge along with the numerical data.” Bonabeau
then shows how simple agent-based simulations that incorporate
such behavior can accurately imitate traffic jams observed in the
real world. In this context, data is key to parametrizing and cali-
brating such models.

Perhaps because of their increasing awareness of the need for
interplay between models and data within a coherent ecosystem,
researchers in the fields of information management and system
simulation have interacted more and more over the past several
years, and this trend will most likely continue. In a striking ex-
ample of this confluence of interests, the 2014 Winter Simulation
Conference (WSC)—the premier venue of the stochastic simulation
community—has chosen for its theme “exploring big data through
simulation”. Research on model-data ecosystems, however, is clearly
in its infancy. Indeed, even the Conference Chair of WSC 2014 has
expressed uncertainty about the precise meaning of the theme.

We therefore provide a survey of research pertaining to the emerg-
ing model-data ecosystem. Each topic will be treated via specific
examples, presented in a tutorial style. The selection of topics is
admittedly idiosyncratic, reflecting the author’s interests and expe-
rience as a member of both the database and simulation communi-
ties. The goal is both to spark interest in some of these topics and to
indicate some system prototypes and mathematical tools—some of
which are perhaps more familiar to the modeling community than
to the database community—that are being used to attack some of
the new research questions. Overall, we distinguish three main top-
ics:

1. Data-intensive simulation Modern simulation models can
consume and produce massive amounts of data, which cre-
ates opportunities to improve simulation performance by de-
ploying data-management technologies within simulation en-
vironments. These include (i) incorporating stochastic sim-
ulation functionality into database systems, (ii) developing
methods for massive scale time series transformations be-
tween models using MapReduce and related technologies,
(iii) extending techniques for query optimization to the set-
ting of simulation-run optimization, and (iv) querying simu-
lated data as part of the simulation process.

2. Simulation and information integration An interesting line
of thought views simulation, especially agent-based simu-
lation (ABS), as a tool for combining disparate real-world
data. A related topic is “data assimilation”, which is con-
cerned with fusing simulated and real-world sensor data to
get a clearer picture of an evolving real-world phenomenon
such as a forest fire.

3. Simulation metamodeling Metamodeling techniques provide
a powerful set of tools both for controlling the amount of
simulated data that is generated and for guiding the collec-
tion of real-world data.

In the following sections we will cover each of these topics in turn.

2. DATA-INTENSIVE SIMULATION
Traditionally, a simulation analysis would start with a small to

medium set of input data and produce a medium to “large” set
of output data. Both the input data and output data would them-
selves be the result of a data reduction process. Typical input data,
for example, might comprise a so-called “reproduction number”
for use in an epidemic simulation or some mean and variance pa-
rameters of a lognormal distribution for use in a financial simula-
tion; such inputs would typically be the result of a statistical es-
timation procedure. This situation has changed dramatically with
the introduction of agent-based simulation—see, e.g., [2, 7, 39].
ABS is an approach to modeling systems comprising individual,
autonomous, interacting “agents”. With roots going back at least
to the 1970’s [48], ABS has surged in popularity in recent years as
computational power has grown. An ABS often involves massive
numbers of agents, e.g., in simulations of regional or national pop-
ulations at the individual level. Thus the input data requirements
can be huge. The output of the simulation, which can comprise a
time series of snapshots of the state of the agent population, can
also be massive. Even when ABS is not used per se, the scale,
complexity, and granularity of simulations is growing rapidly, com-
mensurate with increases in both computing power and the amount
of available data. Running a modern simulation therefore requires
managing large amounts of data, and there have been a number of
attempts to leverage the expertise of the information-management
community when designing simulation platforms.

2.1 Simulation in the database
One line of research has attempted to incorporate stochastic sim-

ulation functionality into database systems, with a goal of avoiding
the need to reduce, extract, and load the data into a separate sim-
ulation engine and then later integrate the simulation results back
into the database. Examples of this type of system are given by the
Monte Carlo Database System (MCDB) and SimSQL. The MCDB
system [33] allows an analyst to attach arbitrary stochastic mod-
els to a relational database. In more detail, the analyst can specify,
in addition to the ordinary tables in the database, “stochastic” ta-
bles that contain “uncertain” data. Such data are not represented by
specific data values, but rather by stochastic models that describe
the probability distribution over possible values. The models are
implemented as user- and system-defined libraries of external C++
programs called Variable Generation functions, or VG functions
for short. A call to a VG function generates a realization of un-
certain data values in the form of a pseudorandom sample from the
underlying probability distribution. The sample can correspond to
the value of a single data element or to a set of correlated elements
residing in various row and column positions. The possible actions
of a VG function range from simple generation of a sample from a
normal distribution, to executing a backward random walk starting
at a given current price in order to estimate missing prior prices, to
simulating a sequence of stock prices in order to return a sample of
the value of a stock option one week from now. As another exam-
ple, a customer’s random demand for an item, given its price, might
be computed by fitting a parametric global demand model based on
data from all customers, and then computing a customized demand
distribution for each customer using the customer’s individual pur-

77

chase history together with Bayes’ Theorem. Then one can ask
queries such as “how would the revenue from East Coast customers
under thirty years old have been affected by a 5% price increase?”.

In MCDB, the VG functions are parametrized on the current state
of the non-random tables (e.g., tables of historical sales data or
delivery times). As a very simple example, consider the following
specification of a random table of blood pressure data:

CREATE TABLE SBP_DATA(PID, GENDER, SBP) AS
FOR EACH p in PATIENTS
WITH SBP AS Normal (
SELECT s.MEAN, s.STD
FROM SPB_PARAM s)
SELECT p.PID, p.GENDER, b.VALUE
FROM SBP b

A realization of SBP_DATA is generated by looping over the set of
patients and using the Normal VG function to generate a row for
each patient. These rows are effectively UNIONed to create the re-
alization of SBP_DATA. The FOR EACH clause specifies this outer
loop. The Normal VG function simple generates a sample from the
normal distribution. This function is parametrized with a mean and
standard deviation, which are obtained via a SELECT query over
the (single row, two column) SBP_PARAM table; in general a VG
function can be parametrized using a general SQL query over the
set of all non-random relations in the database.

Generating a sample of each uncertain data value creates a data-
base instance, i.e., a realization of an ordinary database. Running
an SQL query over the database instance generates a sample from
the query-result distribution. Iteration of this process yields a col-
lection of samples from this distribution that can then be used to es-
timate distribution features of interest such as moments and quan-
tiles. To ensure acceptable performance, MCDB employs query
processing techniques that execute a query plan only once, pro-
cessing “tuple bundles” rather than ordinary tuples. A tuple bundle
encapsulates the instantiations of a tuple over a set of Monte Carlo
iterations. MCDB runs on a parallel relational database platform,
and so can exploit parallel database technology for scalability. Sub-
sequent work [5, 42] demonstrates how MCDB can be extended to
deal with risk analysis (by efficiently estimating extreme quantiles)
and with threshold queries of the form “Which regions will see
more than a 2% decline in sales with at least 50% probability?”.

SimSQL [11] is a re-implementation and extension of MCDB.
SimSQL allows data in stochastic database tables to be used to pa-
rametrize the VG functions that generate the data in other stochas-
tic database tables. Moreover, SimSQL allows both versioning and
recursive definitions of stochastic database tables. For example,
data in stochastic table A can be used to parametrize the stochas-
tic generation of table B, which in turn can be used to parametrize
the stochastic generation of a second version of table A, and so on.
Whereas MCDB merely allowed generation of sample realizations
of a stochastic database D—in other words, a static database-valued
random variable—the foregoing extensions enable SimSQL to gen-
erate realizations of a database-valued Markov chain D[0],D[1],
D[2], That is, the stochastic mechanism that generates a realiza-
tion of the ith database state D[i] may explicitly depend on the prior
state D[i−1]. As with MCDB, queries are expressed in SQL; unlike
MCDB, SimSQL executes queries using the Hadoop [4] MapRe-
duce implementation in order to scale to massive data.

Besides being well suited to scalable Bayesian machine learning
(see [11]), SimSQL can also be used to implement massive stochas-
tic ABS models inside the database. The idea is to build on work by
Wang et al. [55], who observed that a step in an agent-based sim-
ulation can be viewed as a self-join. That is, the data in each row
of a table represent the internal state of an agent, so the self-join

step allows agents to interact with other agents. A key observation
is that agents typically interact only with a relatively small group
of “nearby” agents. Thus (with a little care) the join can be paral-
lelized among groups of agents, and well known parallel database
technology can be applied to achieve good performance. The work
in [55] applies primarily to deterministic simulations; SimSQL can
potentially be used to extend those ideas to stochastic simulations.

2.2 Data Harmonization at Scale
The need for transforming large datasets is certainly not new.

The scientific community, especially, has long been concerned with
transforming spatio-temporal data as part of a scientific workflow,
both to combine disparate datasets and to conform datasets to the
formats expected by analysis programs. Over the past few years,
however, demand for efficient data transformations at scale has in-
creased even further, driven by the rise of composite simulation
modeling.

Decision-makers increasingly need to bring together multiple
models across a broad range of disciplines to guide investment and
policy decisions around highly complex issues such as population
well-being; see, e.g., [23, 32] in the setting of food, climate, and
health. Consequently, there have been a number of efforts to de-
velop composite modeling tools that can leverage both new and
existing models developed by domain experts. Examples include
CIShell [10], Open Services Gateway initiatives (OSGi) frame-
work, the High Level Architecture for U.S. Department of De-
fense simulations [35], the DEVS discrete-event simulation frame-
work [54], and targeted simulation frameworks such as the STEM
epidemiological model [18] and the Community Climate System
Model [13], in which component models are written in a speci-
fied language (Java and Fortran 90) and compiled together to cre-
ate the simulation program. All of these frameworks require major
re-coding of existing models and/or strict enforcement of a com-
mon platform, API, or communication protocol—a nearly impos-
sible task when dealing with experts in vastly different domains.

In response to these issues, systems such as the IBM Splash
prototype (Smarter Planet Platform for the Analysis and Simula-
tion of Health) [26, 28, 53] have attempted to synthesize simula-
tion and data-integration techniques, permitting loose coupling of
models via data exchange; that is, models communicate by reading
and writing datasets. When model and data contributors initially
register their models and datasets with Splash, they provide meta-
data that enables drag-and-drop composite-model creation, auto-
matic detection of data mismatches between upstream “source”
and downstream “target” models, and graphical tools for specifying
needed data transformations, which are then compiled into runtime
code. For a stochastic composite model, data transformations must
be performed at every Monte Carlo repetition, so that efficiency a
is major concern.

The database community has lent its expertise to improving data-
transformation technology in several ways. For example, Howe and
Maier [31] provide an algebra of “gridfields” to allow for efficient
optimization and query processing of gridded data in a relational
database, especially when the grids are irregular. A grid, in their
terminology, is a collection of heterogeneous abstract cells of var-
ious dimensions. A grid also has an incidence relation � between
cells, where x � y means that either x = y or dim(x) < dim(y) and
x “touches” (i.e., is adjacent to) y. For example, cell x might cor-
respond to a line segment and cell y might correspond to a square,
so that x � y if x coincides with a side of the square. A variety
of set-like operations can be defined on grids. A gridfield results
from binding data to a grid by specifying, for each dimension k,
a function fk that operates on cells of dimension k and returns a

78

data value of some type τk. A variety of operations can be defined
on gridfields, with the most important operation in the current con-
text being “regrid”. The regrid operator maps a source gridfield’s
cells onto a target gridfield’s cells via a many-to-one assignment
function and then aggregates the data values bound to the mapped
cells via an aggregation function. The authors show, for example
that certain “restriction” operations—which are analogous to stan-
dard relational selection operations—-can commute with the regrid
operator, creating opportunities for optimization. This technology
was originally applied to the CORIE system, which supports simu-
lations of the Columbia River Estuary and other coastal regions.

As another example, the Splash system, discussed earlier, uses
Hadoop for data transformations between models. Hadoop is used
both to execute schema alignment and time alignment transfor-
mations on massive time series with many time ticks and large
amounts of data per tick. The former type of transformation typ-
ically handles “format” discrepancies between source-model out-
puts and target-model inputs at any given point of simulated time,
whereas time alignment deals with the orthogonal problem of time-
scale discrepancies between models. To specify schema transfor-
mations, Splash uses Clio++, an extension of the Clio schema map-
ping tool [24] to allow users to graphically define a schema map-
ping. For time-alignment transformations, the time aligner tool de-
termines the class of time alignment needed—e.g., aggregation if
the target model has coarser time granularity than the source model
or interpolation if the target has finer granularity—and provides
a GUI that lets the user specify an appropriate alignment method
from a menu. Graphical specifications of data transformations are
then automatically compiled into Hadoop runtime code.

Some time alignment operations are non-trivial to implement ef-
ficiently in a MapReduce setting. Consider interpolation, for ex-
ample, where the input is a time series S =

〈
(s0,d0), . . . ,(sm,dm)

〉
for some m ≥ 0; here si is the time of the ith observation and di
is the associated data observed at time si. Each di can be viewed
as a k-tuple for some k ≥ 1. The output is a target dataset T =〈
(t0, d̃0), . . . ,(tn, d̃n)

〉
. To exploit parallelization, Splash computes

windows of the form W =
〈
(s j,d j),(s j+1,d j+1)

〉
. Each window

is used to compute data at target points { ti : s j ≤ ti < s j+1 }. The
windows can be processed in parallel and then the target time se-
ries can be assembled via a parallel sort. A novel challenge arises
when computing a natural cubic spline interpolation, one of the
most common interpolations used in practice. The interpolation
formula is

d̃i =
σ j

6h j
(s j+1− ti)3 +

σ j+1

6h j
(ti− s j)

3

+
(d j+1

h j
−

σ j+1h j

6

)
(ti− s j)+

(d j

h j
−

σ jh j

6

)
(s j+1− ti),

where h j = s j+1− s j and σ0,σ1, . . . ,σm are spline constants that
depend on the entire input dataset and are computed as the solu-
tion to linear equation system of the form Ax = b, where A is an
(m−1)× (m−1) tridiagonal matrix. For massive time series with
fine granularity, m can be huge, and the matrix A can contain mil-
lions of rows and millions of columns. Virtually all known methods
for solving such massive systems do not translate well to a MapRe-
duce environment, because massive amounts of data shuffling are
required.

The technique used in [28] is to transform the problem of solving
the tridiagonal linear system into the problem of choosing x to min-
imize L(x) = ‖Ax−b‖2—where ‖z‖ denotes the euclidean norm—
and then to apply a distributed stochastic gradient descent (DSGD)
approach [21]. Ordinary stochastic gradient descent (SGD), min-
imizes L by taking downhill steps, using “quick and dirty” ap-

M1 M2

Y1 Y2

M

Figure 2: A simple composite simulation model

proximations of the true gradient. In more detail, we first write
L(x) = ∑

m−1
i=1 Li(x), where Li(x) = (Ai·x− bi)

2 and Ai· denotes the
ith row of A. The SGD algorithm starts with an initial guess x(0) for
x, then picks a row I at random from {1,2, . . . ,m− 1}, computes
the gradient component ∇LI(x(0)), then approximates the overall
gradient ∇L(x(0))) = ∑

m
i=0 ∇Li(x(0)) by Y0 = m∇LI(x(0)), and fi-

nally updates the solution by setting x(1) = x(0)−ε0Y0. Such down-
hill steps are iterated using a carefully chosen sequence {εn}n≥0 of
step sizes; for step sizes of the form εn = n−α , SGD is provably
convergent under mild conditions, provided that 1≤ α < 2.

The SGD approach has long been known to work well in sequen-
tial settings [43] but it has not been obvious how to distribute the
algorithm across a cluster. This problem was addressed in [21],
originally in the context of matrix completion problems arising in
recommendation systems. The idea is to partition the data into
strata; the strata are carefully defined so that execution of SGD
within a stratum can be parallelized. The DGSD algorithm runs
within a chosen stratum for a period of time, then switches to an-
other stratum, and so on. For the cubic spline problem, the first
stratum S1 comprises the data in rows 1,4,7, . . . of the linear sys-
tem. If row i = 1 is selected at random in SGD, the tridiagonal
structure of A guarantees that the resulting update to x will only
involve entries x1 and x2. Similarly, an update to row i = 4 will
only involve entries x3, x4, and x5. Thus rows 1 and 4 can be sam-
pled in either order, or in parallel, and indeed the data in S1 can be
partitioned among the processing nodes and processed in parallel
by the SGD algorithm. Similarly, SGD can be run in parallel over
data in stratum S2 = {2,5,8, . . .} and in S3 = {3,6,9, . . .}. Ob-
serve that when running in a given stratum Si, SGD is minimizing
the “wrong” function because the data in the other strata are being
ignored. It is shown in [21], however, that if the process switches
randomly from one stratum to another according to a “regenerative”
process, and if equal time is spent in each stratum in the long run,
then the algorithm will converge to the overall solution with prob-
ability 1. Moreover, the amount of data that needs to be shuffled
is negligible, which results in superior performance on MapReduce
platforms. Recent experiments indicate that the DSGD idea also
leads to best-of-breed matrix completion algorithms on a variety of
architectures [40].

2.3 Optimizing Simulation Runs
Optimizing the efficiency of simulation execution is another chal-

lenge where the simulation community can benefit from the experi-
ence of the database community. In particular, composite-modeling
platforms such as Splash need to execute queries in order to harmo-
nize data between models during a simulation run, so that the prob-
lem of simulation-experiment optimization subsumes the problem
of query optimization. The challenges go further, however, to in-
clude issues such as how best to move data to models, or vice versa,
in a distributed execution environment, how to schedule execution
of components to minimize the overall run time, and so on.

79

We briefly discuss an example, taken from [25], of an optimiza-
tion problem specific to stochastic composite simulation but with
links to classical query optimization technology. To motivate the
problem, consider a composite model M comprising two compo-
nent models M1 and M2 in series, as shown in Figure 2. An execu-
tion of M proceeds by first executing M1, which produces a random
output Y1 that is written to disk. Then M2 is executed, taking Y1 as
input (after appropriate transformation) and generating a final out-
put Y2, where Y2 is distributed according to a conditional cumula-
tive distribution function F2(· |Y1). For example, M1 might be a de-
mand model that generates a sequence Y1 of customer arrival times.
The data in Y1 might then fed into a queuing model M2, which in
turn produces an output Y2, which might correspond to the average
waiting time of the first 100 customers. To generate independent
and identically distributed (i.i.d.) samples Y2;1,Y2;2, . . . ,Y2;n from
the distribution of Y2, one could execute the composite model n
times, thereby executing M1 and M2 a total of n times each. Sup-
pose, however, that M1 is in fact deterministic, so that the same out-
put Y1 is produced every time the model is executed. Rather than
repeatedly executing M1. It is clearly more efficient to cache the
output Y1 of M1 during the first execution of the composite model
M and then, for each of the remaining n−1 executions, to read Y1
from disk instead of re-executing M1. If the cost of executing M1
is large relative to the cost of executing M2, then the cost savings
can be significant. The general question, then, is how to optimally
reuse results for a general composite model in which each compo-
nent model might be stochastic.

The result-caching (RC) technique for the case of two stochas-
tic models in series in considered in [25]. Here the goal of the
simulation is to estimate θ = E[Y2], the expected value of the (real
valued) output from M2. For n simulation replications of M2, only
mn = dαne replications of M1 are executed, where α ∈ (0,1] is
called the replication fraction.1 We write the output of M1 to disk
after each of the first mn simulation replications and then repeat-
edly cycle through these outputs in a fixed order to obtain inputs
to M2. Thus each M1 output is used in approximately n/mn execu-
tions of M2. The deterministic cycling scheme produces a stratified
sample of the outputs of M1 and helps minimize estimator variance.
Finally, θ is estimated as θn = (1/n)∑

n−1
l=0 Y2;l .

To precisely formulate the notion of “increasing the efficiency”
of a simulation run, suppose that we are given a large but finite
computing budget c. Denote by Cn the cost of generating n outputs
from M2 under the RC strategy; this cost comprises the cost of cre-
ating, transforming, and storing mn outputs from M1 plus the cost
of creating n outputs from M2. Under a budget c, the number of
M2 outputs that can be generated is N(c) = sup{n ≥ 0 : Cn ≤ c},
resulting in the estimate U(c) = θN(c). Denote by c1 and c2 the
expected computation costs for the first run of M1 and M2, respec-
tively (so that the costs of transforming and storing the output from
M1 are included). Also denote by V1 the variance of an output from
M2 and by V2 the covariance of two outputs from M2 when they
share a common input from M1; assume that V2 ≥ 0, as is usually
the case in practice. Finally, set rα = b1/αc. It can be shown that
U(c)→ θ with probability 1 and c1/2[U(c)−θ]⇒

√
g(α)N(0,1)

as c→ ∞, where “⇒” denotes convergence in distribution, N(0,1)
denotes a standard (mean 0, variance 1) normal random variable,
and

g(α) = (αc1 + c2)
(

V1 +[2rα −αrα (rα +1)]V2

)
.

1Throughout, bxc and dxe denote the largest integer less than or
equal to x and the smallest integer greater than or equal to x.

Thus U(c) is a strongly consistent estimator of θ and, for a large
budget c, is approximately normally distributed with mean θ and
variance g(α). Following [19, 22], one can then define (asymp-
totic) efficiency as 1/g(α), so that maximizing efficiency is equiva-
lent to minimizing the variance of a budget-constrained simulation-
based estimator. It can be seen that g(α) is the amortized total cost
to produce an output from M2 times the variance of such an out-
put. This product-form balancing of simulation cost and variance
in order to obtain an overall measure of efficiency was originally
proposed by Hammersley and Handscomb in 1964 [29]; considera-
tion of the asymptotic behavior of budget-constrained simulations,
as above, provide a rigorous justification for this type of efficiency
measure.

To gain insight into the nature of the optimal solution for the two-

model problem, approximate rα by 1/α and write g(α)≈ g̃(α)
def
=

(αc1 +c2)
(
V1 +(α−1−1)V2

)
. It is then easy to verify that g̃(α) is

maximized by setting α = α∗, where

α
∗ =

(
c2/c1

(V1/V2)−1

)1/2
.

(Truncate α∗ at 1/n or 1 as needed to ensure a feasible solution.
Note that V1/V2 ≥ 1 by the Cauchy-Schwarz inequality.) If c1 is
large relative to c2, so that M1 is relatively expensive to execute,
then α∗ is small, and it is optimal to execute M1 a relatively small
number of times. If M2 is relatively insensitive to the input from
M1, so that most of the variability arises from randomness within
M2, then V2�V1, and again we simulate M1 only a small number
of times. In the extreme case where V2 = 0, we simulate M1 only
once, thereby recapturing the scenario in which M1 is deterministic.
If, on the other hand, M2 is a deterministic function of its inputs and
M1 is stochastic, then V1 =V2 and it is optimal to run n replications
of M1. In this case, M2 is merely a transformer of the output of M1.
Overall, it is clear that, depending on the values of c1/c2 and V1/V2,
arbitrarily large efficiency improvements are possible in principle.

A key issue is how to estimate the statistics S = (c1,c2,V1,V2).
Note that there is some tolerance for error: inaccuracies in the es-
timates of S might result in slightly suboptimal simulation per-
formance but correctness is not an issue. Indeed, the foregoing
results show that the simulation estimates are asymptotically valid
for any value of α . Also note that a composite modeling system
such as Splash is oriented toward re-use of models, and important
performance characteristics of a model can be stored as part of the
model’s metadata. Thus the cost of executing pilot runs to estimate
the statistics in S can be amortized over multiple model execu-
tions. Moreover, as the component models are used in production
runs, their behavior can be observed and used to continually refine
the statistics in S , and hence to continually improve performance.
The issues here are analogous to the issues encountered in esti-
mating catalog statistics for a relational database system, and thus
techniques from traditional query optimization can potentially be
leveraged in the simulation setting and combined with metamod-
eling ideas as in Section 4 below and perhaps ideas from machine
learning; see [25] for further discussion.

2.4 Querying Data During a Simulation
As we have seen with systems such as MCDB and SimSQL,

one way to leverage information-management technology in data-
intensive simulation is to incorporate simulation functionality into a
database system. Another approach—as embodied in the Indemics
simulation model for large scale epidemics [6]—is to divide the
simulation work between a high-performance cluster (HPC) that
performs compute-intensive tasks and a relational database engine
that performs data-intensive tasks.

80

In more detail, Indemics uses a network model of disease trans-
mission, where nodes represent individuals and edges represent so-
cial contacts between individuals. The nodes have attributes repre-
senting the health and behavioral state of an individual, along with
static demographic information, and the edges have attributes that
specify, e.g., contact duration and type. The model also comprises
transition functions that modify nodes and/or edges, and hence spec-
ify changes in disease progression and behavioral status (e.g., fear
level), as well as changes in social interactions (formation of new
edges due to new contacts, deletion of edges due to quarantine, and
so on). The HPC updates the state of the network in between ob-
servation times. At an observation time, the experimenter can issue
SQL queries to assess the state of the network model. Such queries
select subsets of individuals and run aggregation queries on each
subset to summarize the state of the subpopulations (e.g., percent
infected). Queries can also be used compute values of performance
measures that are to be optimized (e.g., number of infected cases
or economic damage). Finally, SQL queries can be used to spec-
ify complex interventions by specifying subsets of individuals to-
gether with the actions to be performed on each subset. An action
on a subset S corresponds to modifying the states of the nodes cor-
responding to the individuals in S and/or the edges incident on the
individuals in S. Algorithm 1, adapted from [6], indicates how an
intervention strategy can be specified using SQL. When executed
by the experimenter after pausing the simulation, this type of inter-
vention represents an interactive extension to traditional “partially
observed Markov decision processes”.

Algorithm 1 Vaccinate preschoolers if more than 1% are sick
CREATE TABLE Preschool(pid) AS

(SELECT pid FROM Person WHERE 0≤ age≤ 4);
/* Based on demographic data */
DEFINE nPreschool AS (SELECT COUNT(pid) FROM Preschool);
for day = 1 to 300 do

/* Based on demographic and disease dynamic data */
WITH InfectedPreschool (pid) AS

(SELECT pid FROM Preschool, InfectedPerson
WHERE Preschool.pid = InfectedPerson.pid);

DEFINE nInfectedPreschool AS
(SELECT COUNT(pid) FROM InfectedPreschool);

if nInfectedPreschool > 1%×nPreschool then
Apply vaccines to SELECT(pid FROM Preschool);
/* Intervention subpopulation and action */

end if
end for

This division of labor between an HPC and an RDBMS yields a
highly extensible and flexible system for specifying disease trans-
mission models together with complicated intervention policies.
This approach can potentially be applied to other large scale agent-
based simulations.

We briefly mention another type of querying inside simulations,
specifically, inside parallel discrete-event simulations of agent-based
systems. Such simulations are studied in [52], for a simulation
platform called PDES-MAS. In such simulations, parallel “agent
logical processes” (ALPs) simulate the simultaneous behavior of
massive numbers of agents. Each agent operates in a repeating cy-
cle of “sense-think-response”. A key part of the “sense” stage is
discovering nearby agents via an instantaneous range query, e.g.,
“find all agents who are, right now, within one mile and who are
over 25 years old”. In the PDES-MAS distributed architecture, a
set of “communication logical processes” (CLPs) maintains, in a
distributed manner, a collection of “shared-state variables” (SSVs)
that describe the state of the environment as well as the externally
viewable characteristics of the agents such as physical location.

CLPs in fact maintain a history of SSV values over time. In the
PDES-MAS system, LPs communicate through ports; the CLPs are
arranged in a treelike structure with leaves corresponding to ALPs,
in such a manner as to balance accesses to the SSVs. The tree of
CLPs is dynamic, with possible reconfiguration of the tree struc-
ture and migration of SSVs and/or ALPs in a continual attempt to
move SSVs closer to the ALPs that are accessing them. Because
the ALPs may progress through simulated time at different rates,
answering range queries correctly becomes extremely challenging.
The authors in [52] provide some initial range-query algorithms
and test them empirically; there is still a need for theoretical analy-
sis of such algorithms.

3. INFORMATION INTEGRATION
The discussion so far has concerned the combination of informa-

tion-management and simulation methods to create simulation tools
that can handle massive data. Another set of interesting ideas con-
cerns information integration, both the integration of heterogeneous
real-world datasets and the integration of real-world and simulated
data. We discuss these two aspects below.

3.1 Simulation as an integration tool
In his keynote speech at WSC 2013 [8], Eric Bonabeau postu-

lated that agent-based simulations can be viewed as a powerful tool
for data integration and an essential means for making sense of big
data. As one concrete example, he described issues that arise in
marketing. Typically the available datasets are quite disparate in
nature and measured at a variety of granularities. These include
data about

1. Individual consumer behaviors (purchasing, use of product,
communicating about product)

2. Aggregate customer profiles (drivers, awareness, perceptions)

3. Network data (connections, relationships, influence)

4. Touch points (channel affinities, media impact, reach and fre-
quency)

5. Decisionmaking (rationality, emotion, social norms)

The claim is that big data investments alone will not solve the fore-
casting problem, because such investments merely provide non-
overlapping perspectives on individuals from disparate data sources
characterized by varying levels of aggregation. To address this
problem, an ABS approach can be used to simulate synthetic per-
sonas created from these heterogeneous data sources. The key is
then to calibrate the model using statistical and machine learning
techniques in order to approximately match existing datasets. This
integrated model can then be used to understand and predict the
effect of different types of touch points, perception changes, so-
cial network influence, stages of the purchase “journey”, and thus
to forecast volatility, risk, and reward associated with marketing
strategies. In more detail, a brand tracker or survey data can pro-
vide customer properties, media and sales data describe marketing
effectiveness, industry or product reports cover the product or offer,
and social tracking data describe word-of-mouth events and behav-
iors. The ABS model brings together these four disparate datasets
in an integrated way and yields rich insights into consumer behav-
ior that go far beyond mere sales.

Research on calibrating agent-based models is still at an early
stage. Many of the existing quantitative techniques developed so
far have come from the econometrics community, which has enthu-
siastically embraced the use of agent-based models. The traditional

81

approach to estimating parameters is the method of maximum likeli-
hood [37]. As a simple example, consider data X = (X1,X2, . . . ,Xn)
representing a sample of i.i.d. draws from the exponential density
function f (x;θ) = θe−θx for x ≥ 0. The likelihood of seeing the
given data points is L(θ ;X) =∏

n
i−1 f (Xi;θ) = θ ne−∑i Xi . The max-

imum likelihood estimate (MLE) θ̂n of θ is obtained by choosing
θ to maximize L(θ ;X) (or, equivalently, the logarithm of the like-
lihood L). A simple calculation yields θ̂n = 1/X̄n, where X̄n is the
average of the Xi’s. Although MLEs have many desirable proper-
ties, the output of an ABS is usually highly nonlinear and complex,
so that the likelihood can only be obtained in rare cases; see [1] for
an example.

Because of these difficulties, attempts at quantitative calibration
have primarily relied on adaptations of the method of moments
(MM). For the simple exponential example, it is known that the
mean of an exponential random variable is given by E[X] = 1/θ .
The method of moments proceeds by replacing E[X] by its empir-
ical counterpart X̄n and solving for θ , which in this case yields the
MLE estimator (although in general the MM and MLE estimators
do not coincide). For, e.g., a normal distribution, two equations in
two unknowns would be used, equating the first two moments to the
sample mean and sample variance. More generally, the procedure
centers on a vector of observed statistics Y = (Y (1),Y (2), . . . ,Y (m))
and, for θ = (θ1,θ2, . . . ,θm), solves the system Ȳn −m(θ) = 0,
where Y1,Y2, . . . ,Yn are i.i.d. samples of Y and m(θ) = E[Y |θ].

The extension of this method to ABS calibration is usually called
the method of simulated moments (MSM), and is usually attributed
to McFadden [41]. In this more general setting, the observations
Y1,Y2, . . . ,Yn may represent a stationary ergodic sequence; i.i.d. ob-
servations are a special case. Moreover, m(θ), which is usually
too complex to be calculated analytically, is approximated by a
simulation-based estimate m̂(θ), typically obtained by averaging
i.i.d. samples of Y from simulation runs having parameter values
equal to θ . Finally, the problem of solving Gn = Ȳn− m̂(θ) = 0
is usually relaxed to the problem of minimizing the generalized
distance J(θ) = G>n WGn, where W is chosen to boost statistical
efficiency; see [30] for some relevant theory. Typically—see, e.g.,
[20]—W is chosen to be an estimate of the inverse of the variance-
covariance matrix of the random vector Gn.

The main difficulty encountered in calibration of this sort is that
m̂(θ) is usually expensive to compute for even a single value of
theta, so that the stochastic optimization problem of minimizing
J(θ) is highly cost intensive. Recently, researchers have begun to
apply some techniques from the field of simulation-based optimiza-
tion to develop workable algorithms. For example, Fabretti [17]
uses heuristic optimization methods, such as Nelder-Mead and ge-
netic algorithms, to try and quickly locate the optimal parame-
ter value. While this approach is a vast improvement over ran-
dom sampling of θ values, the computational requirements can still
be high. An alternative approach in [45] carefully uses design of
experiment (DOE) techniques—in particular, a nearly-orthogonal
Latin hypercube design (see Section 4.2 below)—to select repre-
sentative values of θ to simulate. The method then uses a flex-
ible surface-fitting technique called “kriging” to approximate the
function m̂(θ), and hence J(θ). This approximated function (also
called a simulation metamodel) is then minimized to find the de-
sired calibrated values of θ ; see Section 4 below for a discussion
of metamodeling. Both of these techniques implicitly assume that
the simulation is deterministic in nature; other methods that explic-
itly consider stochastic model response are potentially applicable
here. For example, the kriging method used in [45] could poten-
tially be replaced by stochastic kriging and extensions—see, e.g.,

[44]—which incorporate simulation variability into the fitting algo-
rithm.

Overall, there are ample research opportunities around the use
of simulation as a data integration tool, especially with respect to
model calibration. As indicated above, algorithm development is
still at an early, largely ad hoc stage. Another interesting ques-
tion is how to extend existing approaches, which calibrate against
a small number of population summary statistics, to calibrate at a
finer granularity. Such fine-grained calibration might have the po-
tential for avoiding situations where multiple calibrations are all
deemed acceptable but lead to very different predictions [51]. Prin-
cipled methods for avoiding overfitting during the calibration pro-
cess are also of great interest, since simulation-model calibration is
known to be vulnerable to such issues [36, p. 266]. One advantage
of the MSM method is that regularization terms can potentially be
incorporated into the objective function J to avoid overfitting.

3.2 Combining real and simulated data
Besides integrating disparate real-world datasets, there is an in-

creasing interest in combining simulated and real world data in or-
der to more deeply integrate domain expertise into data analysis.
One method receiving attention is data assimilation via particle fil-
tering. As an example, the work in [56, 57] concerns the problem
of monitoring a wildfire. Domain experts have developed simu-
lation models that capture the probabilistic mechanism by which
a fire spreads over terrain. During an actual fire, real-world tem-
perature data from the affected region is available as a stream of
time-varying readings from a set of sensors. Particle filtering can
be used to combine sensor readings with simulated data to yield
more accurate estimates of the fire status than could be obtained
from either data source alone.

We give a brief introduction to particle filtering, following [16],
and then indicate how particle filtering can be used for data as-
similation. Particle filtering (also called “bootstrap” filtering) al-
gorithms are a subclass of sequential Monte Carlo methods, which
in turn are a subclass of importance sampling (IS) methods. We
discuss each class of methods in turn. Suppose that, for some
n ≥ 1, our goal is to obtain a Monte Carlo approximation of a
probability density πn(x1:n) = γn(x1:n)/Zn on X n, where X de-
notes the common state space of the xi’s and zi: j denotes the vec-
tor (zi,zi+1, . . . ,z j). Here γn is an unnormalized probability den-
sity and Zn =

∫
γn(x1:n)dx1:n is a normalizing constant. A standard

Monte Carlo approach draws N independent samples {X i
1:n}1≤i≤N

from πn and then approximates πn by

π̂n(x1:n) = (1/N)
N

∑
i=1

δX i
1:n
(x1:n),

where δx0(x) denotes the Dirac density function with unit probabil-
ity mass at x0. An expected value

∫
g(x1:n)πn(x1:n)dx1:n can then

be approximated by
∫

g(x1:n)π̂n(x1:n)dx1:n = (1/N)∑
N
i=1 g(X i

1:n).
This standard approach may fail however, if the dimension n is
large and πn is highly complex, so that sampling is either impossi-
ble or too expensive, e.g., with costs proportional to n. Computa-
tion of the normalizing constant is often the culprit with respect to
high cost.

Importance sampling methods try to address the foregoing prob-
lems using a simple but powerful idea: to sample from a compli-
cated distribution, first sample from a tractable distribution and then
“correct” the sampled value via a multiplicative weight. In particu-
lar, suppose that for some n≥ 1 we want to approximate a distribu-
tion πn from which it is hard to sample and there exists a proposal
density qn (also called an importance density) such that (i) it is
relatively easy to sample from qn and (ii) qn(x1:n) > 0 whenever

82

πn(x1:n)> 0. Then, trivially,

πn(x1:n) = wn(x1:n)qn(x1:n)/Zn (1)

and

Zn =
∫

wn(x1:n)qn(x1:n)dx1:n, (2)

where wn is the unnormalized weight function

w(x1:n) = γn(x1:n)/qn(x1:n).

Thus we can (easily) draw N independent samples {X i
1:n}1≤i≤N

from qn and insert the resulting Monte Carlo approximation of qn
into (1) and (2) to obtain

π̂n(x1:n) =
N

∑
i=1

W i
nδX i

1:n
(x1:n)

and

Ẑn =
1
N

N

∑
i=1

wn(X i
1:n),

where the normalized weights are given by

W i
n =

wn(X i
1:n)

∑
N
j=1 wn(X

j
1:n)

.

The samples are often called particles. Note that this method re-
quires a priori knowledge only of γn and not πn, so there is no need
to know the value of the (hard-to-compute) constant Zn in advance.

A sequential version of the above procedure, called sequential
importance sampling (SIS) can be applied when the goal is to ap-
proximate a sequence {πn}n≥1 of probability measures of increas-
ing dimension. SIS is recursive, so that only an O(1) cost is in-
curred at each time point. The idea is to use an importance density
having a Markov structure, i.e.,

qn(x1:n) = q1(x1)
n

∏
k=2

qk(x1:k | x1:k−1) for n > 1,

which can be evaluated recursively. Using the Markov structure,
some algebra shows that the unnormalized weights can also be
computed recursively: wn(x1:n) = wn−1(x1:n−1)α(x1:n), where

αn(x1:n) =
γn(x1:n)

γn−1(x1:n−1)qn(xn | x1:n−1)
.

The method as described so far has a severe drawback. As n in-
creases the IS estimate involves the product of more and more ran-
dom weights, which can cause the variance of the estimate to grow
exponentially or can cause π̂n to “collapse”, in that one weight will
tend to 1 while the rest tend to 0. A solution to this problem is
to obtain a new sample of size N at the end of each iteration by re-
sampling the foregoing set of N particles according to their normal-
ized weights W 1

n , . . . ,W
N
n . Each element in the new set of particles

is independently sampled and is assigned a weight of 1/N, thus
preventing collapse or exponential growth. Note that the new set
of particles is a sample from π̂n, and hence approximately a sam-
ple from πn. The resulting method is called sequential importance
sampling with resampling (SIR).

We now return to the particle filtering method, which starts with
a hidden Markov model (also called a state space model), com-
prising (i) a discrete-time Markov chain {Xn}n≥1 specified by an
initial distribution p1(x1) and transition probabilities pn(xn|xn−1)
for n ≥ 2, and (ii) an observation process {Yn}n≥1 with associated
probabilities pn(yn|xn) for n ≥ 1. The goal is to infer at each time
n the conditional probability density pn(xn | y1:n) of the true state,

given the observations. The particle filtering algorithm is obtained
by specializing the SIR algorithm. Specifically, take γn(x1:n) =
pn(x1:n,y1:n), so that πn(x1:n) = pn(x1:n | y1:n). Based on the fore-
going discussion, we obtain Algorithm 2. It can be shown that the
proposal density q∗n(xn | xn−1,yn) ∝ pn(xn | xn−1)pn(yn | xn) is “op-
timal” for this algorithm in that it minimizes the variance of the
random weights.

Algorithm 2 Particle Filtering
1: Sample {X i

1}1≤i≤N from q1(x1 | y1)

2: Compute weights w1(X i
1)= p1(X i

1)pn(y1 |X i
1)/qn(X i

1 | y1) for 1≤ i≤N
3: Compute normalized weights {W i

1}1≤i≤N

4: Resample {(W i
1,X

i
1)}1≤i≤N to obtain {(1

N , X̄ i
1)}1≤i≤N

5: for n≥ 2 do
6: Sample {X i

n}1≤i≤N from qn(xn | yn, X̄ i
n−1)

7: for i = 1,2, . . . ,N do
8: Compute weight α i

n =
pn(yn | X i

n)pn(X i
n | X̄ i

n−1)/qn(X i
n | yn, X̄ i

n−1)

9: end for
10: Compute normalized weights W i

n = α i
n/∑

N
j=1 α

j
n for 1≤ i≤ N

11: Resample {(W i
n,X

i
n)}1≤i≤N to obtain {(1

N , X̄ i
n)}1≤i≤N

12: end for

In [56], Xue et al. exploit the particle filtering algorithm to com-
bine simulated data and sensor measurements. Their modified ver-
sion of the DEVS-FIRE model simulates the stochastic progression
of a wildfire over a gridded representation of terrain, where the cur-
rent fire state records for each cell whether the cell is unburned,
burning, or burned and, if burning, the intensity of the fire. The
state of the fire after the nth simulation step and the corresponding
sensor data correspond to xn and yn as above. The goal is there-
fore to compute the conditional density pn(xn | yn), i.e., to use the
sensor data to “correct” the simulation or, looked at another way,
to use the simulation to infer the state of the fire from the sensor
data. The simulation steps correspond to increments of ∆t simu-
lated time units, where ∆t is determined by the sensor measure-
ment frequencies and the model’s time-scale granularity. Based on
scientific studies, the authors obtain a Gaussian model of sensor be-
havior, which leads to a closed-form expression for the observation
function pn(yn | xn) as required in Steps 2 and 8. The original for-
mulation in [56] uses the state transition probability pn(xn | xn−1)
as the proposal density qn for n > 1 and uses p1(x1) for q1. With
these choices, the formulas for the weights reduce to an evaluation
of the observation function in Steps 2 and 8. Moreover, the task
of sampling from qn(xn | yn, X̄ i

n−1) in Step 6 reduces to sampling
from pn(xn | X̄ i

n−1); this sampling is accomplished simply by set-
ting the state of the simulation to X̄ i

n−1 and then simulating for ∆t
time units. (The initial sampling in Step 1 is handled similarly.)

Note that, unlike the optimal proposal density q∗n, the forego-
ing version of qn ignores the sensor data yn. Experiments with the
model showed, perhaps not surprisingly, that accuracy degrades
when the transition density pn(xn | xn−1) is far from the optimal
proposal density q∗n mentioned above. The authors address this
issue in [57], where they provide a proposal density that is sen-
sitive to the sensor measurements. In brief, the process starts by
first generating a fire state x from pn(xn | xn−1) as described ear-
lier. Then, based on sensor readings, another fire state x′ is gen-
erated from x by (i) randomly igniting unburned cells in x that are
deemed to have sufficiently high sensor temperatures and (ii) “turn-
ing off” the fire for x cells where sensor temperatures are deemed
sufficiently cool. Then either x or x′ is selected at random, accord-
ing to a probability that is based on the relative “confidence” in
the sensors and in the simulation model, and the selected state is

83

returned as the sample from qn. To obtain analytical expressions
for both pn(X i

n | X̄ i
n−1) and for qn(X i

n | yn, X̄ i
n−1), as are needed

to compute the weights in Step 8, M > 1 additional samples are
drawn from these distributions using the methods discussed above
and then the density functions are estimated using a standard kernel
density estimator (KDE). For example, given samples x1,x2, . . . ,xM
from the density fn(x) = pn(x | X̄ i

n−1), the density function is es-
timated as f̂n(x) = (Mh)−1

∑
M
i=1 K

(
(x− xi)/h

)
, where h > 0 is the

KDE “bandwidth” and K is the KDE “kernel”. The kernel is a
nonnegative symmetric function such that K(0) > 0 and K(x) is
non-increasing in |x|, e.g., K(x) = e−|x|; see [49] for a classical
treatment and [15] for a discussion of more advanced kernel den-
sity methods. Finally, the method sets pn(X i

n | X̄ i
n−1) = f̂n(X i

n) in
Step 8, and the qn term is handled analogously. Preliminary exper-
iments indicate that the new proposal distribution can potentially
lead to improvements in accuracy. As with model calibration, there
are many opportunities for research in this area.

4. SIMULATION METAMODELING
We now focus our attention on the data generated from simu-

lation models. Large, high-resolution models can easily generate
terabytes of data during a run. Moreover, simulation models often
have many input parameters, so there can be a combinatorially huge
parameter space to explore, with large amounts of data being gen-
erated for each parameter-value combination simulated. For sto-
chastic models, the amount of data generated is multiplied by the
number of Monte Carlo replications. These challenges are exac-
erbated in composite modeling systems such as Splash. To fully
exploit the potential of simulation models as tools for understand-
ing complex systems, it is crucial that the generation of simulated
data be carefully controlled and efficient.

Often, the first task in understanding a model is to identify the
input parameters to which the model is most sensitive. Such sensi-
tivity analysis can drastically reduce the size of the input parameter
space by decreasing its dimensionality. Knowing which parameters
are the most important can also guide the input-data collection pro-
cess by focusing resources on data that yields sharper estimates of
the important parameters. Often the parameters correspond to deci-
sion variables, and the goal is to identify optimal parameter settings
that maximize or minimize some performance measure of interest.
As discussed previously, the problem of model calibration falls into
this category, where the performance measure to be minimized is
the discrepancy between simulated and observed data. More gener-
ally, engineers and scientists have a set of questions that they want
to answer using the model. One approach to controlling the amount
of simulated data that is generated is to try and simulate just enough
to capture the features pertinent to the questions of interest. Specif-
ically, the use of statistical experimental-design methodology can
reduce data-generation requirements by orders of magnitude. As
discussed in what follows, the key concept underlying experimen-
tal design is simulation metamodeling.

4.1 Simple and Complex Metamodels
A simulation metamodel is a simplified functional representa-

tion of a simulation model, i.e., a response surface, that approx-
imates the model response as a function of the input parameters.
For a stochastic model, the response is often an expected value of
some quantity of interest, such as profit. An appealing property of
a metamodel is that is supports “simulation on demand”: once a
metamodel has been fit to the simulation data, then an approxima-
tion of the model output corresponding to given input values can
be obtained almost instantly, allowing for exploration of a model

in real time. For simplicity, we focus on real-valued responses
throughout.

Metamodels vary in their complexity. The classic polynomial
model relates the model response Y (x) to the input parameters x =
(x1,x2, . . . ,xn) via

Y (x) =β0 +β1x1 +β2x2 + · · ·+βnxn +β1,2x1x2 + · · ·
+β1,2,3x1x2x3 + · · ·+β1,2,...,nx1x2 · · ·xn + ε,

(3)

where the β coefficients are real-valued constants and ε is a zero-
mean random variable that encapsulates the stochastic variability.
(Dropping ε in the above equation thus yields a model of the ex-
pected model response.) When only β0,β1, . . . ,βn are positive, we
obtain a linear model, perhaps the simplest possible metamodel.
(Sometimes, confusingly, the full polynomial model is referred to
as a “linear model” because it is linear in the β coefficients.) The
terms of the form βixi represent “main effects”, whereas the re-
maining terms model second-order interaction effects, third-order
effects, and so on.

At the other end of the complexity spectrum are Gaussian pro-
cess metamodels. For deterministic models, perhaps the simplest
form of such a model is

Y (x) = β0 +M(x), (4)

where the constant β0 represents the mean response and M(x) is
a stationary Gaussian process (also called a stationary Gaussian
random field), that is, a real-valued random process such that for
any finite collection of points x1,x2, . . . ,xr the random vector

V =
(
M(x1),M(x2), . . . ,M(xr)

)
has a multivariate normal distribution with, E[V] = (0,0, . . . ,0). In
applications, the covariance matrix is often defined as

ΣM(xi,x j) = Cov[M(xi),M(x j)] = τ
2

n

∏
k=1

exp
(
−θ j(xi,k− x j,k)

2)
(5)

for each i and j. When the simulation is run at a set of design
points x1,x2, . . . ,xr, the stochasticity of M models the uncertainty
associated with the output of the simulation when run at a point
x0 that is not one of the design points. Given the observed model
outputs at the design points, it can be shown [3] that the optimal
estimator (in terms of minimizing mean square error) is

Ŷ (x0) = β0 +ΣM(x0, ·)>Σ
−1
M (Ȳ −β01r), (6)

where ΣM(x0, ·) =
(
ΣM(x0,x1), . . . ,ΣM(x0,xr)

)
, the vector Ȳ is

given by
(
Y (x1), . . . ,Y (xr)

)
, the r× r matrix ΣM is the covariance

matrix of the design points, and 1r = (1,1, . . . ,1) is a vector of
length r. The main observations are that Ŷ (xi) coincides with the
observed value Y (xi) at each design point xi and, for an arbitrary
point x0, the centered estimator Ŷ (x0)−β0 is a linear combination
of Y (x1)− β0,Y (x2)− β0, . . . ,Y (xr)− β0. In practice the various
parameters that appear in (6)—such as β0, ΣM , and so on—are es-
timated from the data.

For stochastic simulations, the jth observation at design point
xi is modeled as in (4), except with an additional additive term
ε j(x) that represents the random variability between simulation
runs at a given design point. Here, for each i, the random variables
ε1(xi),ε2(xi), . . . are i.i.d. normal with mean 0 and variance V (xi),
independent of M and of ε j(xh) for all j and h 6= i. The estimator
Ŷ (x0) is defined almost as in (6) above, but the ith element of Ȳ
is now the average result over all simulation runs at design point
xi and the term Σ

−1
M is replaced by [ΣM +Σε]

−1, where Σε is the

84

Parameters
Run x1 x2 x3 x4 x5 x6 x7

1 -1 -1 -1 1 1 1 -1
2 1 -1 -1 -1 -1 1 1
3 -1 1 -1 -1 1 -1 1
4 1 1 -1 1 -1 -1 -1
5 -1 -1 1 1 -1 -1 1
6 1 -1 1 -1 1 -1 -1
7 -1 1 1 -1 -1 1 -1
8 1 1 1 1 1 1 1

Figure 3: Resolution III design for seven parameters

Figure 4: Main-effects plot for seven parameters

covariance matrix given by

Σε (h, i) = Cov
[
(1/nh)

nh

∑
j=1

ε j(xh),(1/ni)
ni

∑
j=1

ε j(xi)
]

and n j denotes the number of Monte Carlo replications at x j.
Some good discussions of Gaussian process metamodels for de-

terministic and stochastic simulations can be found in [47] and [3],
respectively. The basic ideas extend to more general settings where,
for deterministic simulations, the metamodel has the form (4) but
the random field M need not necessarily be Gaussian and the con-
stant β0 may be replaced by a more general regression model, e.g.,
as in (3). In this more general context, the metamodeling technique
is often called kriging, after mining engineer D. G. Krige. The au-
thors in [3] denote by stochastic kriging their extension of kriging
obtained by adding a term ε j, as discussed previously, to encom-
pass stochastic models. See [44] for a recent example of stochastic
kriging using a random field more complex than a basic Gaussian
field.

4.2 Metamodeling and Experimental Design
The parameters of a metamodel encapsulate salient characteris-

tics of simulation-model behavior. Selection of a particular meta-
model leads to specific procedures for fitting the metamodel pa-
rameters. The power of experimental design lies in the observation
that, if a relatively simple metamodel suffices to represent the sim-
ulated response, then the parameters of the metamodel—i.e., the
key features of the simulation response—can often be estimated by
exploring a very small but carefully selected subset of the param-
eter space, thereby reducing the amount of data that needs to be
generated.

To illustrate, consider the polynomial model in (3) and suppose
that n = 7. Of particular interest in this setting are the coefficients

Run x1 x2

1 -4 -3
2 -3 4
3 -2 -1
4 -1 2
5 0 0
6 1 -2
7 2 1
8 3 -4
9 4 3

Figure 5: Latin hypercube design for two factors and nine runs

β1 through β7, which are called “main effects” or “sensitivities”
and describe the change in simulation response corresponding to
a given change in the parameter value while holding all other pa-
rameters constant. In classical experimental design, low and high
values that represent ranges of feasibility or of problem-specific in-
terest would be determined for each parameter, based on the exper-
imenter’s domain expertise. (Parameter values are usually called
“factor levels” in experimental design terminology.) A naive “full
factorial design” would then run simulations at all of the 27 = 128
possible combinations of parameter values. Suppose, however, that
prior knowledge leads one to believe that the higher-order terms in
(3) can be ignored, so that a simple linear model adequately cap-
tures the shape of the response surface. One can then use a “resolu-
tion III fractional factorial design” as shown in Figure 3 to estimate
the main effects using only eight simulation runs; in the figure, the
symbols “−1” and “1” correspond to low and high values. For frac-
tional factorial designs, the columns are orthogonal, which facili-
tates the ensuing statistical analysis. Note that, under the linearity
assumption, the main effects capture virtually all model behavior
of interest. Main effects are often displayed as in Figure 4. In
this “main effects plot”, each factor is characterized by two points,
where the left (resp., right) point is the average simulation response
over all runs where the parameter is set to its low (resp., high) value;
these values are shown beneath the points. Main effects plots are
typically accompanied with diagnostics that assess the statistical
significance of the effect sizes, such as “half-normal plots”, also
called “Daniel plots” [14].

In a similar manner, if only third-order and higher effects can
be ignored, one can estimate main effect using a resolution IV de-
sign that requires 16 runs. If the goal is to estimate both main
and second-order effects, and if one can ignore third-order and
higher effects, then a resolution V design requires only 32 runs.
Thus experimental design methodology can be used to minimize
the amount of data generated based on the both complexity of the
response and the response characteristics of interest.

Rather than using only extreme values of the parameters as in
fractional factorial designs, it is often desirable to use design points
spread out evenly across the parameter space, especially when fit-
ting complex nonlinear metamodels. A number of authors [3, 45]
propose variants of Latin hypercube (LH) designs as providing a
good compromise between covering the parameter space and mini-
mizing the number of experiments. The basic procedure for a “ran-
domized” LH with n parameters and r ≥ n design points—where r
is typically of the form 2k or 2k +1 for some k ≥ 1—is as follows.
Determine r equally-spaced levels for each parameter and generate

85

an n× r design matrix where each column is a random permutation
of {1,2, . . . ,r}. Then the ith row gives the levels to use for the ith
simulation run. Figure 5 shows a randomized LH design for n = 2
parameters and r = 9 levels (and design points), where the levels are
designated as −4,−3,−2,−1,0,1,2,3,4, along with a plot of the
design points. The chief characteristic of an LH design is that each
possible x1 value appears once, as does each possible x2 value. In
general, randomized LH designs may not work well unless r� n.
LH designs, however, are usually well behaved when the columns
of the design matrix are orthogonal. (The LH design in Figure 5 is
in fact orthogonal.) Because orthogonal designs can be rather hard
to create, schemes for nearly orthogonal LH (NOLH) designs have
been developed that provide good space-filling and orthogonality
properties while being computationally efficient [12].

Because of its practical importance and theoretical elegance, the
literature on experimental design is enormous. Treatments that are
oriented toward stochastic simulation include the book of Kleij-
nen [34] and the tutorial paper of Sanchez and Wan [46]; the latter
reference contains a nice table summarizing a wide variety of mod-
ern experimental designs. In [26], the authors describe the exper-
iment management capabilities of the Splash composite-modeling
platform, where metadata is used to provide an experimenter with a
unified view of composite model parameters. Splash also provides
a facility for specifying experimental designs as well as runtime
support for setting parameter values by automatically synthesizing,
via a templating mechanism, the input files that each component
model expects.

4.3 Metamodeling and Factor Screening
Factor screening refers to the process of identifying the subset

of parameters to which the simulation response is most sensitive.
As mentioned previously, focusing on the key factors can greatly
reduce the amount of generated data and experimentation effort.
This problem is intimately related to metamodeling because, as we
have seen, metamodel coefficients can quantify the sensitivity of
the simulation output to changes in parameter values. Thus these
metamodel coefficients can be used to classify model parameters as
“important” or “unimportant”.

For example, if a linear metamodel suffices, the observation noise
can be modeled as Gaussian, and the main-effect coefficients are
positive, then efficient sequential bifurcation methods can be used
to identify important factors from among a potentially large set [50].
This type of procedure starts by dividing the set of parameters into
two groups, and testing each group to decide if it contains at least
one important parameter; such group testing is much faster than
testing each individual parameter. If a group contains no impor-
tant parameters, then it is discarded; otherwise, the group is again
divided in two, and the testing procedure continues recursively.

For complex metamodels, the screening problem is much more
difficult, and is a topic of ongoing research. Consider, for example,
the Gaussian process metamodel in Section 4.1. It follows from (5)
that a plausible measure for the importance of the jth factor is the
coefficient θ j: a very low value for θ j implies a correlation function
that approximately equals 1, so that there is no variability in model
response as the value of the jth parameter changes. A number of
studies have looked at the factor screening problem in this context;
see, for example, [38].

5. CONCLUSION
To effectively support decisions in the enterprise, the informa-

tion contained in big data must be combined with the information
known to domain experts. Consequently, the fields of information
management and of system simulation are intermingling more and

more over time. Many of the questions concerning the interplay
between models and data have not been formulated very precisely,
and many of the techniques developed so far have been ad hoc. The
PODS community is well poised to address the many issues around
the increasingly important topic of model-data ecosystems.

Acknowledgments
The author wishes to thank Eric Bonabeau and Haidong Xue for
providing materials and support and Ron Fagin for providing help-
ful feedback.

6. REFERENCES
[1] S. Alfarano, F. Wagner, and T. Lux. Estimation of

agent-based models: the case of an asymmetric herding.
Comput. Econ., 26:19–49, 2005.

[2] T. T. Allen. Introduction to Discrete Event Simulation and
Agent-Based Modeling. Springer, 2011.

[3] B. E. Ankenman, B. L. Nelson, and J. Staum. Stochastic
kriging for simulation metamodeling. Oper. Res.,
58(2):371–382, 2010.

[4] Apache Hadoop. https://hadoop.apache.org.
[5] S. Arumugam, R. Jampani, L. Perez, F. Xu, C. Jermaine, and

P. J. Haas. MCDB-R: Risk analysis in the database. In
VLDB, pages 782–793, 2010.

[6] K. R. Bisset, J. Chen, S. Deodhar, X. Feng, Y. Ma, and M. V.
Marathe. Indemics: An interactive high-performance
computing framework for data-intensive epidemic modeling.
ACM Trans. Model. Comput. Simul., 24(1):4, 2014.

[7] E. Bonabeau. Agent-based modeling: Methods and
techniques for simulating human systems. Proc. Nat. Acad.
Sci., 99(3):7280–7287, 2002.

[8] E. Bonabeau. Big data and the bright future of simulation:
The case of agent-based modeling. Keynote address, Winter
Simulation Conference, December 2013.

[9] E. Bonabeau. Building accurate predictive models "without
data". Icosystem Blog, accessed March 31.
http://www.icosystem.com/

building-accurate-predictive-models-without-data,
2014.

[10] K. Börner. Plug-and-play macroscopes. Commun. ACM,
54(3):60–69, 2011.

[11] Z. Cai, Z. Vagena, L. L. Perez, S. Arumugam, P. J. Haas, and
C. M. Jermaine. Simulation of database-valued Markov
chains using SimSQL. In SIGMOD, pages 63–7–648, 2013.

[12] T. M. Cioppa and T. W. Lucas. Efficient nearly orthogonal
and space-filling Latin hypercubes. Technometrics,
49(1):45–55, 2007.

[13] W. D. Collins, C. M. Bitz, M. L. Blackmon, G. B. Bonan,
C. S. Bretherton, J. A. Carton, P. Chang, S. C. Doney, J. J.
Hack, T. B. Henderson, J. T. Kiehl, W. G. Large, D. S.
Mckenna, B. D. Santer, and R. D. Smith. The community
climate system model version 3 (CCSM3). J. Climate,
19:2122–2143, 2006.

[14] C. Daniel. Use of half-normal plots in interpreting factorial
two-level experiments. Technometrics, 1(4):311–341, 1959.

[15] L. Devroye and G. Lugosi. Combinatorial Methods in
Density Estimation. Springer, 2001.

[16] A. Doucet and A. M. Johansen. A tutorial on particle
filtering and smoothing: fifteen years later. In D. Crisan and
B. Rozovskii, editors, The Oxford Handbook of Nonlinear
Filtering. Oxford University Press, 2011.

86

[17] A. Fabretti. On the problem of calibrating an agent based
model for financial markets. J. Econ. Interact. Coord.,
8:277–293, 2013.

[18] D. A. Ford, J. H. Kaufman, and I. Eiron. An extensible
spatial and temporal epidemiological modelling system. Int.
J. Health Geographics, 5(4), 2006.

[19] B. L. Fox and P. W. Glynn. Discrete-time conversion for
simulating finite-horizon Markov processes. SIAM J. Appl.
Math, 50(5):1457–1473, 1990.

[20] R. Franke and F. Westerhoff. Structural stochastic volatility
in asset pricing dynamics: Estimation and model contest. J.
Econ. Dynam. Control, 36:1193–1211, 2012.

[21] R. Gemulla, E. Nijkamp, P. J. Haas, and Y. Sismanis.
Large-scale matrix factorization with distributed stochastic
gradient descent. In KDD, pages 69–77, 2011.

[22] P. W. Glynn and W. Whitt. The asymptotic efficiency of
simulation estimators. Oper. Res., 40(3):505–520, 1992.

[23] H. Godfray, J. Pretty, S. Thomas, E. Warham, and
J. Beddington. Linking policy on climate and food. Science,
331(6020):1013–1014, 2011.

[24] L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth.
Clio grows up: From research prototype to industrial tool. In
SIGMOD Conference, pages 805–810, 2005.

[25] P. J. Haas. Improving the efficiency of stochastic composite
simulation models via result caching. 2014. Submitted for
publication.

[26] P. J. Haas, N. C. Barberis, P. Phoungphol, I. Terrizzano,
W.-C. Tan, P. G. Selinger, and P. P.Maglio. Splash:
Simulation optimization in complex systems of systems. In
50th Allerton Conf., 2012.

[27] P. J. Haas, P. P. Maglio, P. G. Selinger, and W. C. Tan. Data is
dead... without what-if models. PVLDB, 4(12):1486–1489,
2011.

[28] P. J. Haas and Y. Sismanis. On aligning massive time-series
data in splash. In VLDB Big Data Workshop, 2012. Available
at researcher.watson.ibm.com/researcher/files/
us-phaas/mta.pdf.

[29] J. M. Hammersley and D. C. Handscomb. Monte Carlo
Methods. Chapman and Hall, 1964.

[30] L. P. Hansen. Large sample properties of generalized method
of moments estimators. Econometrica, 50(4):1029–1054,
1982.

[31] B. Howe and D. Maier. Algebraic manipulation of scientific
datasets. VLDB J., 14(4):397–416, 2005.

[32] T. T. Huang, A. Drewnowski, S. K. Kumanyika, and T. A.
Glass. A systems-oriented multilevel framework for
addressing obesity in the 21st century. Preventing Chronic
Disease, 6(3), 2009.

[33] R. Jampani, F. Xu, M. Wu, L. L. Perez, C. Jermaine, and P. J.
Haas. The Monte Carlo Database System: Stochastic
analysis close to the data. TODS, 36(3):1–41, 2011.

[34] J. P. C. Kleijnen. Design and Analysis of Simulation
Experiments. Springer, 2008.

[35] F. Kuhl, R. Weatherly, and J. Dahmann. Creating Computer
Simulation Systems: An Introduction to the High Level
Architecture. Prentice Hall, New Jersey, 1999.

[36] A. M. Law. Simulation Modeling and Analysis.
McGraw-Hill, sixth edition, 2014.

[37] E. L. Lehmann and G. Casella. Theory of Point Estimation.
Springer, second edition, 1998.

[38] C. Linkletter, D. Bingham, N. Hengartner, and K. Q. Ye.
Variable selection for Gaussian process models in computer
experiments. Technometrics, 48(4):478–490, 2006.

[39] C. M. Macal and M. J. North. Introductory tutorial:
Agent-based modeling and simulation. In Proc. Winter
Simul. Conf., pages 362–376, 2013.

[40] F. Makari, C. Teflioudi, R. Gemulla, P. J. Haas, and
Y. Sismanis. Shared-memory and shared-nothing stochastic
gradient descent algorithms for matrix completion. Knowl.
Info. Sys., 2014. In press.

[41] D. McFadden. A method of simulated moments for
estimation of discrete response models without numerical
integration. Econometrica, 57(5):995–1026, 1989.

[42] L. L. Perez, S. Arumugam, and C. M. Jermaine. Evaluation
of probabilistic threshold queries in MCDB. In SIGMOD,
pages 687–698, 2010.

[43] H. Robbins and S. Monro. A stochastic approximation
method. Ann. Math. Statist., 22:400–407, 1951.

[44] P. Salemi, J. Staum, and B. L. Nelson. Generalized integrated
brownian fields for simulation metamodeling. In Proc.
Winter Simul. Conf., pages 543–554, 2013.

[45] I. Salle and M. Yildizoglu. Efficient sampling and
metamodeling for computational economic models. Comput.
Econ., 2013. DOI 10.1007/s10614-013-9406-7.

[46] S. M. Sanchez and H. Wan. Work smarter, not harder: a
tutorial on designing and conducting simulation experiments.
In Proc. Winter Simul. Conf., page 170, 2012.

[47] T. J. Santner, B. J. Williams, and W. I. Notz. The Design and
Analysis of Computer Experiments. Springer, 2003.

[48] T. C. Schelling. Dynamic models of segregation. J. Math.
Sociol., 1:143–186, 1971.

[49] D. W. Scott. Multivariate Density Estimation: Theory
Practice, and Visualization. Wiley, 1992.

[50] H. Shen and H. Wan. A hybrid method for simulation factor
screening. In Proc. Winter Simul. Conf., pages 382–389,
2006.

[51] D. Shi and R. J. Brooks. The range of predictions for
calibrated agent-based simulation models. In Proc. Winter
Simul. Conf., pages 1198–1206, 2007.

[52] V. Suryanarayanan and G. K. Theodoropoulos. Synchronised
range queries in distributed simulations of multiagent
systems. ACM Trans. Model. Comput. Simul., 23(4):25,
2013.

[53] W. C. Tan, P. J. Haas, R. L. Mak, C. A. Kieliszewski, P. G.
Selinger, P. P. Maglio, S. Glissmann, M. Cefkin, and Y. Li.
Splash: a platform for analysis and simulation of health. In
ACM Intl. Health Informatics Symp. (IHI), pages 543–552,
2012.

[54] G. A. Wainer. Discrete-Event Modeling and Simulation: A
Practitioner’s Approach. CRC Press, 2009.

[55] G. Wang, M. Vaz Salles, B. Sowell, X. Wang, T. Cao,
A. Demers, J. Gehrke, and W. White. Behavioral simulations
in MapReduce. Proc. VLDB, 3(1):952–963, 2010.

[56] H. Xue, F. Gu, and X. Hu. Data assimilation using sequential
Monte Carlo methods in wildfire spread simulation. ACM
Trans. Model. Comput. Simul., 22(4):23, 2012.

[57] H. Xue and X. Hu. An effective proposal distribution for
sequential Monte Carlo methods-based wildfire data
assimilation. In Proc. Winter Simul. Conf., pages 1938–1949,
2013.

87

