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Abstract 
     Continuous and discrete components can be 
integrated in diverse systems including defense, 
medical, electronic, communication, and automotive 
applications. Given the heterogeneity of concepts 
that have to be taken into consideration, their design 
involves overcoming specific global modeling and 
validation challenges. This paper presents semantics 
for model-based validation of continuous/discrete 
systems. It focuses on the simulation interfaces 
semantics, representation and verification. The 
proposed approach is applied for the validation of a 
continuous/discrete medical system, an automatic 
glycemia level regulator. 
 
1. Introduction 
   Today, systems-on-chip are growing in complexity 
as a result of not only a higher density of components 
on the same chip but also because of the 
heterogeneity of different integrated modules that are 
particular to different application domains. Many 
fields benefit from the continuous/discrete (C/D) 
system’s advantages, among them the defense, 
medical, electronic, and communication. Given the 
diversity of concepts manipulated, the global design 
specification and the validation are extremely 
challenging [7].   

In a C/D system, we find two types of  models: 
- continuous models where the computation is 
realized in the continuous domain by solving 
differential or algebraic equations; 
- discrete models where the computation is realized 
in cycles and every cycle represents the computation 
of a selected sub set of variables. 

Currently, one of the methods used for the 
heterogeneous systems validation is the co-
simulation. The co-simulation allows joint simulation 
of heterogeneous components with different 
execution models. The main advantages of this 
technique are to allow the designer to use the best 
execution model and tool for each domain and to 
provide the capabilities to validate the overall model. 
The co-simulation based validation of C/D systems 
has to take into consideration several execution 
semantics. This implies a complex behavior for the 
simulation interfaces as their design is time 
consuming and a significant source of error. One of 

the key issues for the design of these interfaces is the 
rigorous definition of their semantics, their modeling, 
and verification.  

This paper proposes the semantics for the global 
validation of C/D systems using Discrete Event 
Systems Specification (DEVS) formalism and timed 
automata. We focus on the simulation interfaces 
semantics and their formal representation and 
verification. We illustrate the proposed approach 
using a C/D medical system, the glycemia regulator.   

The article is structured as follows. Section 2 
presents the main existing approaches for the C/D 
systems simulation and formalization. Section 3 
introduces the basic concepts used in this paper. 
Section 4 proposes the operational semantics and the 
formalization of the interfaces. Section 5 presents the 
application and the experimental results. Finally, 
section 6 gives our conclusions.  
 
2. Related work 

The existing work in the C/D systems validation 
falls into one of the following categories: simulation-
based and formal representation-based approaches.  

In the simulation-based group the utilization of a 
single language for the specification of the C/D 
system is proposed.  These tools may be obtained by 
extension of existing HDLs [4], [6], [11], [13]. This 
requires the abandonment of well established 
efficient tools for the continuous domain (ex. 
Simulink). There are tools such as Ptolemy in which 
the systems are designed by assembling together 
different components [14]. Ptolemy provides formal 
representation; however, the formal verification of 
the simulation models is not considered.   

The formal representation-based approaches 
propose different definitions for heterogeneous 
systems modeling. In [9], a formal framework for 
comparing computation used in heterogeneous 
models is presented. The role of the model of 
computation in abstracting functionalities of complex 
heterogeneous systems was presented in [8] where 
the formalization of the heterogeneous systems is 
realized separating the communication and the 
computation aspects. In [15] the author introduced a 
formalism defined for the modeling and simulation of 
discrete event systems (Discrete EVent System 
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Specifications - DEVS) where the time advances on a 
continuous time base. Based on this formalism [3] 
proposes a tool for the modeling and simulation of 
hybrid systems using Modelica and DEVS. None of 
these works focused on the representation and 
verification of simulation interfaces.    

The main contributions of this paper, compared 
with the presented works are: 

 The definition of the semantics for the 
continuous and the discrete simulation interfaces 
using DEVS formalism and their representation using 
DEVS models and timed automata. 

 The formal verification of the simulation 
interfaces. 

 The application of the presented approach for 
the model-based validation of a C/D medical system, 
an automatic glycemia level regulator. 

 
3. Basic concepts  

This section introduces the basic concepts that 
were used in this work.  

3.1 Discrete Event Systems Specification  
Discrete Event Systems Specifications (DEVS) is 

a formalism supporting a full range of dynamic 
systems representation, hierarchical and modular 
model development. It enables the symbolic 
specification of systems semantics.  
 A DEVS is defined as a structure [15]: 
DEVS = ‹X, S, Y, δint, δext, λ, ta› where  
X = {(pd, vd)|pd ∈ InPorts, vd ∈ X pd } set of input 
ports and their values in the discrete event domain, 
S - set of sequential states 
Y = {( pd, vd)|pd, ∈ OutPorts, vd ∈ Y pd } set of output 
ports and their values in the discrete event domain. 
δint : S→ S the internal transition function 
δext: QxX→ S the external transition function, where: 
       Q={(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)} set of total state, 
       e is the time elapsed since the last transition  
λ:S→Y output function 
ta:S→R+

0,∞ set of positive reals with 0 and ∞. 
The system’s state is, at any time s. There are two 

possible situations: 
- when no external events occur. In this case the 

system stays in this state s for the time ta(s). When 
the elapsed time e equals ta(s) (that is the time 
allocated for the system to stay in state s), the system 
outputs the value λ(s). The state s changes to the state 
s’ as a result of the transition δint(s). We emphasize 
here that the output is possible only before the 
internal transitions. 

- when there is an external event x before the 
expiration time, ta(s) (the system is in state (s,e), with 
e≤ ta(s)), the system’s state changes to state s’ as a 
result of the transition δext(s,e,x). 

This formalism is used to define each module that 
composes a model. 

3.2 Timed Automata  
A timed automaton (TA) [1] is a formalism for 

modeling and verification of real time systems.  It 
can be seen as classical finite state automata with 
clock variables and logical formulas on the clocks 
(temporal constraints) [1]. The constraints on the 
clock variables are used to restrict the behavior of the 
automaton. The logical clocks in the system are 
initialized to zero when the system is started and then 
increase at a uniform rate counting time with respect 
to a fixed global time frame. Each clock can be 
separately reset to zero. The clocks keep track of the 
time elapsed since the last reset [1].   
 
4. Semantics and formal representations 
of simulation interfaces 

This section presents the C/D synchronization 
model, and the simulation interfaces semantics and 
formal representation.  

4.1 Canonical synchronization 
For an accurate synchronization, each simulator 

involved in a C/D simulation must consider the 
events coming from the external world and it must 
accurately reach the time stamps of these events. This 
behavior is generally insured by the simulation 
interfaces. Thus, through its simulation interfaces the 
continuous simulator, must detect the next discrete 
event (timed event) scheduled by the discrete 
simulator when the latter has completed the 
processing corresponding to the current time. The 
discrete simulator must detect the state events 
generated by the continuous simulator. A state event 
is an unpredictable event, whose time stamp depends 
on the values of the state variables (ex: a zero-
crossing event or a threshold overtaking event). The 
state event is not concerned with the continuous state 
evolution (we consider that the continuous state 
evolution semantics are provided by the continuous 
simulator). The synchronization model used in our 
approach respects the canonical algorithm. Fig. 1 
presents the synchronization model without (Fig. 1a) 
and with state event (Fig. 1b). 

At a given time, the discrete simulator is in the 
state (xdk,tdk) with xdk the location and tdk the k-th 
discrete time. At this point, the discrete simulator has 
executed all the processes sensitive to the event and 
sends the time of the next event (tdk+1) and the data to 
the continuous simulator. The context is then 
switched from the discrete to the continuous 
simulator (arrow 1 in Fig. 1a and Fig. 1b).  

499



 

 

 
Fig.  1: The synchronization model in the C/D 
simulation interface without (a) and with (b) state 
event. 

The state of the continuous simulator is (xck,tck) and 
the advance in time of the simulator cannot be further 
than tdk+1, the time sent by the discrete simulator. 

The behavior of the continuous simulator interface 
(CSI) can be described by the following transition: 

( )



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=

→
+++

++++

          (2)          tt if  )t(se,
(1)      tt if )t,(x

,tx
1dk1ck1ck
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where:  
- the state (xck+1, tck+1) is the state of the continuous 
simulator when no state event was generated in the 
time interval [tck, ,tck+1] 
- the state (se,tse) represents the state of the 
continuous simulator when a state event se was 
generated and tse represents the time when the state 
event occurred.  

In both states, the continuous simulator will stop 
and send the data to the discrete simulator and then 
the context is switched to the time tdk (arrow 3 in 
Fig. 1a and 1b).  

In the case described by the equation (1), after the 
context switch, the discrete simulator will advance to 
the time tdk+1 that is the next synchronization point, 
where it will execute all the processes sensitive to 
this event. Before switching the context to the 
continuous simulator, the discrete simulator sends the 
data and the time of the next scheduled event tdk+2  
(arrow 4 in Fig. 1a) and the cycle restarts. 

Equation (2) describes the case where a state event 
occurred. The continuous simulator will send, 
through its simulation interface, not only the data but 
also the time when the state event occurred tse (arrow 
3 in Fig. 1b). The discrete simulator will advance to 
this time (state event detected by the discrete 
simulator) where it will execute all the processes 
sensitive to the event. Before switching the context to 
the continuous simulator the discrete simulator will 

send, through its simulation interface, the data and 
the recalculated time of the next scheduled event tdk’ 
(arrow 4 in Fig. 1b). The time stamp can change after 
a state event. This time stamp can take any value 
bigger than tse . 

The canonical model requires synchronization at 
each simulation step of the discrete simulator and this 
implies some redundant synchronization steps. 
Despite this, the model is still efficient since it avoids 
any need of roll-back.  
 
4.2 Operational semantics and formalization 
for the Discrete Simulator Interface (DSI) 

This section presents the operational semantics of 
the Discrete Simulation Interfaces (DSI). The 
semantics was defined with respect to the 
synchronization model presented in section 4.1, using 
DEVS formalism. Table 1 presents a set of rules that 
show the transition between states. Its form 
is

Conclusion
Premises .  

For all the rules, the semantic of the global 
variable flag is related to the context switch between 
the continuous and discrete simulators. When the flag 
is set to ‘1’, the discrete simulator is executed. When 
it is ‘0’, the continuous simulator is executed. The 
global variable synch is used to impose the order of 
the different operations expressed by the rules. The 
first rule covers arrow 1 in Fig. 1a and 1b. The 
second and third rules correspond to arrows 3 (on the 
receiving part) and 4 in Fig. 1a respectively Fig. 1b. 

In order to clarify, we detail here the first rule. The 
premises of this rule are: the synch variable has value 
‘1’, the flag variable has value ‘1’, and we have an 
external transition function (δext) for the DSI.  

This rule expresses the following actions of the 
discrete simulator interface: 

- receiving data from the discrete model. This is an 
external transition (δext) expressed by 
?(DataFromDisc).  

- sending data to the Continuous Simulator 
Interface (CSI) (!DataToCSI). The data sent to the 
CSI is the output function λ(xdk,tdk) and it is possible,  
according with DEVS formalism, only as a 
consequence of an internal transition (δint). In our 
case the output is represented by !(data,tdk+1(xdk,tdk)). 
This transition corresponds to arrow 1 in Fig. 1a and 
1b.  

- switching the simulation context from the discrete 
to the continuous domain (action expressed by 
flag:=0). 

All the other rules presented in this table follow the 
same format.  
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Table 1. Operational semantics for the Discrete Simulator Interface (DSI)

From these rules we can trace the state graph of the 
DSI as shown in Fig.  2.  

 
Fig.  2: State graph of the DSI represented using 

DEVS 
     The dashed lines represent internal transitions and 
the corresponding states and the plain lines represent 
external transitions and the corresponding states.  

The equivalent timed automaton of the DSI is 
given in Fig. 3. The timed-automata model 
completes the DEVS graph with the addition of the 
timing evolution notions [5]. Thus, the transitions 
label may include operation for the time variable 
update. For instance, during the transition from the 
WaitDataFromCont state to the Start state, the value 
of the NextTime variable is assigned to the td 
variable expressing the time of the discrete 
simulator. The NextTime variable represents the next 
synchronization instance and its value is calculated 
respecting the canonical synchronization model.  

Since several formal verification tools (ex 
UPPAAL) are based on timed-automata models, the 
transition from the DEVS graph to the timed-
automata offers a model for verifiability.  

 
Fig.  3: The DSI represented as a TA 

      
4.3 Operational semantics and formalization 
for the Continuous Simulator Interface (CSI) 
     

The operational semantics for the CSI is given by 
the set of rules presented in Table 2. In these rules, 
the Data notation refers to the data exchanged 
between the DSI and the discrete simulator.  
From these rules we can trace the state graph of the 
CSI as shown in Fig. 4.  
 

 
Table 2. Operational semantics for the Continuous Simulator Interface (CSI)
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!DataToDSI

 
Fig.  4:  State graph of the CSI represented using 
DEVS  

     The equivalent timed automaton of the CSI is 
given in Fig.  5.  

 
Fig.  5: The CSI represented as a TA 

4.4 Formal verification of the simulation 
interfaces 

The representation of the interfaces as timed 
automata allows for their formal verification. In our 
work we used UPPAAL [2] to check three types of 
properties: 

1. Safety properties - the system does not get into 
an undesirable configuration. The safety properties 
verified for the simulation interfaces are:  

- P1: Absence of deadlock. 
- P2: No state event is detected by the discrete 

simulator interface if no state event was sent by the 
continuous simulator. 

2. Liveness properties - some desired 
configuration will be visited eventually or infinitely. 
The liveness properties verified in our approach are:  

- P3: The respect of the causality principle  
- P4: A state event sent by the continuous 

domain leads to a state event detected in the DSI. 
3.  Reachability properties – the system always 

has the chance of reaching a given situation.  
- P5: Invariantly both DSI and CDI in the Start 

location (initial state) and each of them executed one 
cycle imply the time in the continuous domain tck is 
equal with the time in the discrete domain tdk. : 
A[]( (IDiscrete.Start and 
IContinu.Start )  imply  ( 
IContinu.tc - IDiscrete.td == 0)) 

5. Implementation and results 
The presented verified models were used as basis 

for the implementation of simulation interfaces for 
the SystemC [12] discrete simulator and Simulink 
[10] continuous simulator. The implemented DSI is a 
SystemC model respecting the functionality 
presented in section 4.2 while the implemented CSI 
is a Simulink model respecting the functionality 
presented in section 4.3.  

The implemented interfaces were applied for the 
validation of a medical C/D system, a glycemia level 
regulator. This system allows the utilization of a new 
technique for diabetes therapy: the insulin or glucose 
infusion based on real time values of patient’s 
glycemia level. This technique is a more beneficial 
alternative to the conventional therapy consisting in 
daily insulin injections.  

As shown in Fig. 6, the glycemia system includes 
two sub-systems, a continuous sub-system modeling 
in Simulink the patient, the insulin and glucose 
pumps, and the insulin and glucose injection and a 
SystemC discrete sub-system for the injection 
control.   

 
Fig.  6: The glycemia regulator system 

The patient glycemia level (that is the level of 
glucose in the blood) is read and compared with the 
normal level in the “Injection sub-system” and the 
result is sent to the “Control sub-system”. Depending 
on the value, the “Control sub-system” activates 
either the insulin or the glucose pump. If the level of 
the glycemia drops under 60mg/dl, this corresponds 
to the state of hypoglycemia, and the glucose pump 
will be activated immediately. In the case of this 
application, two types of state events are generated: 
- the state events generated when a normal level of 
glycemia is reached (120 mg/dl)  
- the state events generated when the glycemia 
drops under a reference value (60 mg/dl) - 
hypoglycemia.   

Fig. 7a and 7b illustrate the evolution of the 
patient’s insulinemia (units of insulin/dl) during 24 
hours monitoring respectively the generation of a 

502



 

state event. The state event is generated at the time 
22.2481 when the patient’ glycemia reaches the 
normal level (120mg/dl) (see Fig. 7b). We observe 
from Fig 7a that the insulin injection stops at the 
same time 22.2481,as a consequence of the state 
event detection. Fig.  8 shows the messages displayed 
by the SystemC simulator signalizing the state event 
detection and the insulin injection.   
 
6. Conclusions 
     Given the diversity of concepts manipulated in the 
continuous/discrete systems, the global validation 
stage is very challenging. It requires a complex 
behavior for the simulation interfaces. One of the key 
issues for the design of these interfaces is the 
rigorous definition of their semantics, their modeling, 
and verification. 
     This paper presented the simulation interfaces 
semantics and their formal representation using 
DEVS formalism as well as timed automata  
that allowed the formal verification. The validation 
of an automatic glycemia level regulator illustrated 
the proposed approach. 

22.2481

(a)

(b)

22.2481

(a)

(b)

 
Fig.  7: Patient’s insulinemia and state event 
generation by CSI 
 

 
Fig.  8: State event detection by DSI 

     .  
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