

Semantics for Model-Based Validation of Continuous/Discrete Systems

L. Gheorghe, F. Bouchhima, G. Nicolescu, H. Boucheneb
Ecole Polytechnique de Montreal, Montreal, Canada

luiza.gheorghe, gabriela.nicolescu@polymtl.ca

Abstract
 Continuous and discrete components can be
integrated in diverse systems including defense,
medical, electronic, communication, and automotive
applications. Given the heterogeneity of concepts
that have to be taken into consideration, their design
involves overcoming specific global modeling and
validation challenges. This paper presents semantics
for model-based validation of continuous/discrete
systems. It focuses on the simulation interfaces
semantics, representation and verification. The
proposed approach is applied for the validation of a
continuous/discrete medical system, an automatic
glycemia level regulator.

1. Introduction
 Today, systems-on-chip are growing in complexity
as a result of not only a higher density of components
on the same chip but also because of the
heterogeneity of different integrated modules that are
particular to different application domains. Many
fields benefit from the continuous/discrete (C/D)
system’s advantages, among them the defense,
medical, electronic, and communication. Given the
diversity of concepts manipulated, the global design
specification and the validation are extremely
challenging [7].

In a C/D system, we find two types of models:
- continuous models where the computation is
realized in the continuous domain by solving
differential or algebraic equations;
- discrete models where the computation is realized
in cycles and every cycle represents the computation
of a selected sub set of variables.

Currently, one of the methods used for the
heterogeneous systems validation is the co-
simulation. The co-simulation allows joint simulation
of heterogeneous components with different
execution models. The main advantages of this
technique are to allow the designer to use the best
execution model and tool for each domain and to
provide the capabilities to validate the overall model.
The co-simulation based validation of C/D systems
has to take into consideration several execution
semantics. This implies a complex behavior for the
simulation interfaces as their design is time
consuming and a significant source of error. One of

the key issues for the design of these interfaces is the
rigorous definition of their semantics, their modeling,
and verification.

This paper proposes the semantics for the global
validation of C/D systems using Discrete Event
Systems Specification (DEVS) formalism and timed
automata. We focus on the simulation interfaces
semantics and their formal representation and
verification. We illustrate the proposed approach
using a C/D medical system, the glycemia regulator.

The article is structured as follows. Section 2
presents the main existing approaches for the C/D
systems simulation and formalization. Section 3
introduces the basic concepts used in this paper.
Section 4 proposes the operational semantics and the
formalization of the interfaces. Section 5 presents the
application and the experimental results. Finally,
section 6 gives our conclusions.

2. Related work

The existing work in the C/D systems validation
falls into one of the following categories: simulation-
based and formal representation-based approaches.

In the simulation-based group the utilization of a
single language for the specification of the C/D
system is proposed. These tools may be obtained by
extension of existing HDLs [4], [6], [11], [13]. This
requires the abandonment of well established
efficient tools for the continuous domain (ex.
Simulink). There are tools such as Ptolemy in which
the systems are designed by assembling together
different components [14]. Ptolemy provides formal
representation; however, the formal verification of
the simulation models is not considered.

The formal representation-based approaches
propose different definitions for heterogeneous
systems modeling. In [9], a formal framework for
comparing computation used in heterogeneous
models is presented. The role of the model of
computation in abstracting functionalities of complex
heterogeneous systems was presented in [8] where
the formalization of the heterogeneous systems is
realized separating the communication and the
computation aspects. In [15] the author introduced a
formalism defined for the modeling and simulation of
discrete event systems (Discrete EVent System

978-3-9810801-3-1/DATE08 © 2008 EDAA

498

Specifications - DEVS) where the time advances on a
continuous time base. Based on this formalism [3]
proposes a tool for the modeling and simulation of
hybrid systems using Modelica and DEVS. None of
these works focused on the representation and
verification of simulation interfaces.

The main contributions of this paper, compared
with the presented works are:

 The definition of the semantics for the
continuous and the discrete simulation interfaces
using DEVS formalism and their representation using
DEVS models and timed automata.

 The formal verification of the simulation
interfaces.

 The application of the presented approach for
the model-based validation of a C/D medical system,
an automatic glycemia level regulator.

3. Basic concepts

This section introduces the basic concepts that
were used in this work.

3.1 Discrete Event Systems Specification
Discrete Event Systems Specifications (DEVS) is

a formalism supporting a full range of dynamic
systems representation, hierarchical and modular
model development. It enables the symbolic
specification of systems semantics.
 A DEVS is defined as a structure [15]:
DEVS = ‹X, S, Y, δint, δext, λ, ta› where
X = {(pd, vd)|pd ∈ InPorts, vd ∈ X pd } set of input
ports and their values in the discrete event domain,
S - set of sequential states
Y = {(pd, vd)|pd, ∈ OutPorts, vd ∈ Y pd } set of output
ports and their values in the discrete event domain.
δint : S→ S the internal transition function
δext: QxX→ S the external transition function, where:
 Q={(s,e)|s ∈ S, 0 ≤ e ≤ ta(s)} set of total state,
 e is the time elapsed since the last transition
λ:S→Y output function
ta:S→R+

0,∞ set of positive reals with 0 and ∞.
The system’s state is, at any time s. There are two

possible situations:
- when no external events occur. In this case the

system stays in this state s for the time ta(s). When
the elapsed time e equals ta(s) (that is the time
allocated for the system to stay in state s), the system
outputs the value λ(s). The state s changes to the state
s’ as a result of the transition δint(s). We emphasize
here that the output is possible only before the
internal transitions.

- when there is an external event x before the
expiration time, ta(s) (the system is in state (s,e), with
e≤ ta(s)), the system’s state changes to state s’ as a
result of the transition δext(s,e,x).

This formalism is used to define each module that
composes a model.

3.2 Timed Automata
A timed automaton (TA) [1] is a formalism for

modeling and verification of real time systems. It
can be seen as classical finite state automata with
clock variables and logical formulas on the clocks
(temporal constraints) [1]. The constraints on the
clock variables are used to restrict the behavior of the
automaton. The logical clocks in the system are
initialized to zero when the system is started and then
increase at a uniform rate counting time with respect
to a fixed global time frame. Each clock can be
separately reset to zero. The clocks keep track of the
time elapsed since the last reset [1].

4. Semantics and formal representations
of simulation interfaces

This section presents the C/D synchronization
model, and the simulation interfaces semantics and
formal representation.

4.1 Canonical synchronization
For an accurate synchronization, each simulator

involved in a C/D simulation must consider the
events coming from the external world and it must
accurately reach the time stamps of these events. This
behavior is generally insured by the simulation
interfaces. Thus, through its simulation interfaces the
continuous simulator, must detect the next discrete
event (timed event) scheduled by the discrete
simulator when the latter has completed the
processing corresponding to the current time. The
discrete simulator must detect the state events
generated by the continuous simulator. A state event
is an unpredictable event, whose time stamp depends
on the values of the state variables (ex: a zero-
crossing event or a threshold overtaking event). The
state event is not concerned with the continuous state
evolution (we consider that the continuous state
evolution semantics are provided by the continuous
simulator). The synchronization model used in our
approach respects the canonical algorithm. Fig. 1
presents the synchronization model without (Fig. 1a)
and with state event (Fig. 1b).

At a given time, the discrete simulator is in the
state (xdk,tdk) with xdk the location and tdk the k-th
discrete time. At this point, the discrete simulator has
executed all the processes sensitive to the event and
sends the time of the next event (tdk+1) and the data to
the continuous simulator. The context is then
switched from the discrete to the continuous
simulator (arrow 1 in Fig. 1a and Fig. 1b).

499

Fig. 1: The synchronization model in the C/D
simulation interface without (a) and with (b) state
event.

The state of the continuous simulator is (xck,tck) and
the advance in time of the simulator cannot be further
than tdk+1, the time sent by the discrete simulator.

The behavior of the continuous simulator interface
(CSI) can be described by the following transition:

()




<
=

→
+++

++++

 (2) tt if)t(se,
(1) tt if)t,(x

,tx
1dk1ck1ck

1dk1ck1ck1ck
ckck

where:
- the state (xck+1, tck+1) is the state of the continuous
simulator when no state event was generated in the
time interval [tck, ,tck+1]
- the state (se,tse) represents the state of the
continuous simulator when a state event se was
generated and tse represents the time when the state
event occurred.

In both states, the continuous simulator will stop
and send the data to the discrete simulator and then
the context is switched to the time tdk (arrow 3 in
Fig. 1a and 1b).

In the case described by the equation (1), after the
context switch, the discrete simulator will advance to
the time tdk+1 that is the next synchronization point,
where it will execute all the processes sensitive to
this event. Before switching the context to the
continuous simulator, the discrete simulator sends the
data and the time of the next scheduled event tdk+2
(arrow 4 in Fig. 1a) and the cycle restarts.

Equation (2) describes the case where a state event
occurred. The continuous simulator will send,
through its simulation interface, not only the data but
also the time when the state event occurred tse (arrow
3 in Fig. 1b). The discrete simulator will advance to
this time (state event detected by the discrete
simulator) where it will execute all the processes
sensitive to the event. Before switching the context to
the continuous simulator the discrete simulator will

send, through its simulation interface, the data and
the recalculated time of the next scheduled event tdk’
(arrow 4 in Fig. 1b). The time stamp can change after
a state event. This time stamp can take any value
bigger than tse .

The canonical model requires synchronization at
each simulation step of the discrete simulator and this
implies some redundant synchronization steps.
Despite this, the model is still efficient since it avoids
any need of roll-back.

4.2 Operational semantics and formalization
for the Discrete Simulator Interface (DSI)

This section presents the operational semantics of
the Discrete Simulation Interfaces (DSI). The
semantics was defined with respect to the
synchronization model presented in section 4.1, using
DEVS formalism. Table 1 presents a set of rules that
show the transition between states. Its form
is

Conclusion
Premises .

For all the rules, the semantic of the global
variable flag is related to the context switch between
the continuous and discrete simulators. When the flag
is set to ‘1’, the discrete simulator is executed. When
it is ‘0’, the continuous simulator is executed. The
global variable synch is used to impose the order of
the different operations expressed by the rules. The
first rule covers arrow 1 in Fig. 1a and 1b. The
second and third rules correspond to arrows 3 (on the
receiving part) and 4 in Fig. 1a respectively Fig. 1b.

In order to clarify, we detail here the first rule. The
premises of this rule are: the synch variable has value
‘1’, the flag variable has value ‘1’, and we have an
external transition function (δext) for the DSI.

This rule expresses the following actions of the
discrete simulator interface:

- receiving data from the discrete model. This is an
external transition (δext) expressed by
?(DataFromDisc).

- sending data to the Continuous Simulator
Interface (CSI) (!DataToCSI). The data sent to the
CSI is the output function λ(xdk,tdk) and it is possible,
according with DEVS formalism, only as a
consequence of an internal transition (δint). In our
case the output is represented by !(data,tdk+1(xdk,tdk)).
This transition corresponds to arrow 1 in Fig. 1a and
1b.

- switching the simulation context from the discrete
to the continuous domain (action expressed by
flag:=0).

All the other rules presented in this table follow the
same format.

500

Rule

)),,(()),,(()),,((
),),,((),()(:)));,((,(!?

1dkdkdk
0flagtxtdata

dkdk
scDataFromDi

dkdk

dkdkextdkdk

ttx0txtx
x0txtx1flag1synch1

dkdk1dk
+

= → →∞
=∧=∧=

+

δ

)),,(()),,(()),,(()),,((
),),,((),()(!:;??

1dk1dk1dk
DataToDisc

dkdk
1synchdata

dkdk
Event

dkdkdk

dkdkextdkdk

etx0tx0txetx
x0txtxstateevent1flag0synch2

+++
=  → → →

=∧¬∧=∧= δ

)),,(()),,(()),,(()),,((

),),,((),(
)(),(!:);,?(?

sesese
tseDataToDisc

dkdk
1synchtsedata

dkdk
Event

dkdkdk

dkdkextdkdk

etx0tx0txetx

x0txtxstateevent1flag0synch
3

 → → →

=∧∧=∧=
=

δ

Table 1. Operational semantics for the Discrete Simulator Interface (DSI)

From these rules we can trace the state graph of the
DSI as shown in Fig. 2.

Fig. 2: State graph of the DSI represented using

DEVS
 The dashed lines represent internal transitions and
the corresponding states and the plain lines represent
external transitions and the corresponding states.

The equivalent timed automaton of the DSI is
given in Fig. 3. The timed-automata model
completes the DEVS graph with the addition of the
timing evolution notions [5]. Thus, the transitions
label may include operation for the time variable
update. For instance, during the transition from the
WaitDataFromCont state to the Start state, the value
of the NextTime variable is assigned to the td
variable expressing the time of the discrete
simulator. The NextTime variable represents the next
synchronization instance and its value is calculated
respecting the canonical synchronization model.

Since several formal verification tools (ex
UPPAAL) are based on timed-automata models, the
transition from the DEVS graph to the timed-
automata offers a model for verifiability.

Fig. 3: The DSI represented as a TA

4.3 Operational semantics and formalization
for the Continuous Simulator Interface (CSI)

The operational semantics for the CSI is given by
the set of rules presented in Table 2. In these rules,
the Data notation refers to the data exchanged
between the DSI and the discrete simulator.
From these rules we can trace the state graph of the
CSI as shown in Fig. 4.

Table 2. Operational semantics for the Continuous Simulator Interface (CSI)

Rule

),(),(),(
),),,(()()),(,(!:);,?(

ckck
txtDataToCont

ckck
0synchtdata

ck

ckckextk

txtxx
x0txq1flag1synch4
dkdka1dk  → →∞

=∧=∧=
=+

δ

),(),(),(
)),((

)(
,

:);(!)?(
int

1kd
1flagdata

ckck
ntDataFromCo

ckck

ckck1k

tqtxtx
txqstateevent0flag0synch

5
+

=
+

 → →
=∧¬∧=∧= δ

),(),(),(
)()(:);,(!)?(

int

se
1flagtdata

ckck
ntDataFromCo

ckck

k1k

tsetxtx
qqstateevent0flag0synch6

se  → →
=∧∧=∧=

=
+ δ

501

!DataToDSI

Fig. 4: State graph of the CSI represented using
DEVS

 The equivalent timed automaton of the CSI is
given in Fig. 5.

Fig. 5: The CSI represented as a TA

4.4 Formal verification of the simulation
interfaces

The representation of the interfaces as timed
automata allows for their formal verification. In our
work we used UPPAAL [2] to check three types of
properties:

1. Safety properties - the system does not get into
an undesirable configuration. The safety properties
verified for the simulation interfaces are:

- P1: Absence of deadlock.
- P2: No state event is detected by the discrete

simulator interface if no state event was sent by the
continuous simulator.

2. Liveness properties - some desired
configuration will be visited eventually or infinitely.
The liveness properties verified in our approach are:

- P3: The respect of the causality principle
- P4: A state event sent by the continuous

domain leads to a state event detected in the DSI.
3. Reachability properties – the system always

has the chance of reaching a given situation.
- P5: Invariantly both DSI and CDI in the Start

location (initial state) and each of them executed one
cycle imply the time in the continuous domain tck is
equal with the time in the discrete domain tdk. :
A[]((IDiscrete.Start and
IContinu.Start) imply (
IContinu.tc - IDiscrete.td == 0))

5. Implementation and results
The presented verified models were used as basis

for the implementation of simulation interfaces for
the SystemC [12] discrete simulator and Simulink
[10] continuous simulator. The implemented DSI is a
SystemC model respecting the functionality
presented in section 4.2 while the implemented CSI
is a Simulink model respecting the functionality
presented in section 4.3.

The implemented interfaces were applied for the
validation of a medical C/D system, a glycemia level
regulator. This system allows the utilization of a new
technique for diabetes therapy: the insulin or glucose
infusion based on real time values of patient’s
glycemia level. This technique is a more beneficial
alternative to the conventional therapy consisting in
daily insulin injections.

As shown in Fig. 6, the glycemia system includes
two sub-systems, a continuous sub-system modeling
in Simulink the patient, the insulin and glucose
pumps, and the insulin and glucose injection and a
SystemC discrete sub-system for the injection
control.

Fig. 6: The glycemia regulator system

The patient glycemia level (that is the level of
glucose in the blood) is read and compared with the
normal level in the “Injection sub-system” and the
result is sent to the “Control sub-system”. Depending
on the value, the “Control sub-system” activates
either the insulin or the glucose pump. If the level of
the glycemia drops under 60mg/dl, this corresponds
to the state of hypoglycemia, and the glucose pump
will be activated immediately. In the case of this
application, two types of state events are generated:
- the state events generated when a normal level of
glycemia is reached (120 mg/dl)
- the state events generated when the glycemia
drops under a reference value (60 mg/dl) -
hypoglycemia.

Fig. 7a and 7b illustrate the evolution of the
patient’s insulinemia (units of insulin/dl) during 24
hours monitoring respectively the generation of a

502

state event. The state event is generated at the time
22.2481 when the patient’ glycemia reaches the
normal level (120mg/dl) (see Fig. 7b). We observe
from Fig 7a that the insulin injection stops at the
same time 22.2481,as a consequence of the state
event detection. Fig. 8 shows the messages displayed
by the SystemC simulator signalizing the state event
detection and the insulin injection.

6. Conclusions
 Given the diversity of concepts manipulated in the
continuous/discrete systems, the global validation
stage is very challenging. It requires a complex
behavior for the simulation interfaces. One of the key
issues for the design of these interfaces is the
rigorous definition of their semantics, their modeling,
and verification.
 This paper presented the simulation interfaces
semantics and their formal representation using
DEVS formalism as well as timed automata
that allowed the formal verification. The validation
of an automatic glycemia level regulator illustrated
the proposed approach.

22.2481

(a)

(b)

22.2481

(a)

(b)

Fig. 7: Patient’s insulinemia and state event
generation by CSI

Fig. 8: State event detection by DSI

 .

References
[1] Alur, R., Dill, D.,: “Automata for modeling real-time

systems”, in Proc. 17-th Int. Colloquium on Automata,
Languages and Programming, vol. 443, 1990.

[2] Behrmann, G. et al.: “A Tutorial on UPPAAL”, Real-
Time Systems Symposium, Miami, 2005

[3] D'Abreu, M.; Wainer G.: “M/CD++ : modeling
continuous systems using Modelica and DEVS”, IEEE
Int. Symposium of MASCOTS’05, 2005

[4] Frey, P. et al.: “Verilog-AMS: Mixed-signal
simulation and cross domain connect modules”,
Behavioral Modeling and Simulation Workshop, 2000

[5] Giambiasi, N., Paillet J-L., Chane F., :”From timed
automata to DEVS”, in Proc. of the 2003 Winter
Simulation Conference., 2003

[6] IEEE Standard VHDL Analog and Mixed-Signal
Extensions (1999), IEEE Std 1076.1-1999

[7] International Technology Roadmap for
Semiconductor Design, at http://public.itrs.net/.

[8] Jantsch, J. “Modeling Embedded Systems and SoCs -
Concurrency and Time in Models of Computation“.
Morgan Kaufmann Publishers, June 2003.

[9] Lee, E.A. and Sangiovanni-Vincentelli A.L.:
“Comparing Models of Computation” in: Int. Conf. on
Computer-Aided Design (ICCAD), 1996.

[10] Matlab-Simulink at www.mathworks.com
[11] Patel, D. H, and Shukla, S. K.: “SystemC kernel –

Extensions for heterogeneous System modeling”
Kluwer Academic Publishers, 2004

[12] SystemC LRM, available at www.systemc.org
[13] Vachoux, A. et al.; “Analog and mixed signal

modeling with SystemC”, ISCAS’03.
[14] Ptolemy project at http://ptolemy.eecs.berkeley.edu/
[15] Zeigler, B.P.; Praehofer H. and Kim, T.G.: “Modeling

and Simulation - Integrating Discrete Event and
continuous complex dynamic systems“. Academic
Press, San Diego, 2000

503

