
Supporting the Model-Driven Development of Real-time
Embedded Systems with Run-Time Monitoring and

Animation via Highly Customizable Code Generation

Nondini Das, Suchita Ganesan, Leo Jweda,
Mojtaba Bagherzadeh, Nicolas Hili, Juergen Dingel

School of Computing, Queen’s University
Kingston, Ontario, Canada

{ndas, ganesan, juwaidah, mojtaba, hili, dingel}@cs.queensu.ca

ABSTRACT
This paper presents a vision that allows the combined use
of model-driven engineering, run-time monitoring, and ani-
mation for the development and analysis of components in
real-time embedded systems. Key building block in the tool
environment supporting this vision is a highly-customizable
code generation process. Customization is performed via a
configuration specification which describes the ways in which
input is provided to the component, the ways in which run-
time execution information can be observed, and how these
observations drive animation tools. The environment is en-
visioned to be suitable for different activities ranging from
quality assurance to supporting certification, teaching, and
outreach and will be built exclusively with open source tools
to increase impact. A preliminary prototype implementa-
tion is described.

1. INTRODUCTION AND MOTIVATION
A component within a modern real-time embedded system

(RTE) typically has to function in the context of possibly a
large number of other components which produce input or
consume output. For instance, modern cars have over a 100
Electronic Control Units (ECUs) which, e.g., regulate the
car’s braking systems by using input about the brake posi-
tion, the vehicle speed, the speed of each wheel, the drive-
mode (e.g., 4-wheel drive enabled), etc. In the telecommuni-
cations domain, a Private Branch Exchange (PBX) connects
phones at a business site with each other and to the public
telephone network. Modern PBXs handle many kinds of re-
quests from external and internal phones including the setup
of calls, conferencing, voice messaging, etc. In banking, the
controller in an Automated Teller Machine (ATM) receives
input from, e.g., the card reader, the keypad, the money slot,
the host computer, and the bank computer, while sending
output to the display, the money slot, the speakers, and the
computers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MODELS ’16, October 02-07, 2016, Saint-Malo, France
c© 2016 ACM. ISBN 978-1-4503-4321-3/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976767.2976781

We will distinguish between two kinds of activities involv-
ing embedded systems, one occurring during development,
the other typically occurring after development: quality as-
surance (QA) and communication.

Quality assurance: To ensure proper functioning of
these embedded systems, quality assurance activities must
check a range of properties including basic correctness prop-
erties (e.g., “if the withdrawal has been authorized, the re-
quested amount is dispensed and recorded correctly”), per-
formance properties (e.g., “responses to withdrawal requests
should be given within 5 seconds”), and security proper-
ties (e.g., “only properly authorized users can access an ac-
count”). To check these properties, developers can use dif-
ferent techniques: (1) execution, which allows for initial,
low-volume sanity checks; (2) testing, to ascertain that spe-
cific inputs trigger expected outputs; and (3) monitoring and
simulation, in which the component must exhibit correct be-
haviour with respect to certain properties during a typically
longer period of time under operating conditions that might
approximate reality with different degrees of fidelity.

Note that the level of detail at which the component’s be-
haviour is monitored and the accuracy and fidelity of the
operating conditions must support the purpose of the sim-
ulation, i.e., the conclusions that are to be drawn from it.
E.g., a simulation of an ATM controller to determine if it
returns the bank card in less than two seconds after three
failed pin input attempts must allow for the time delay to
be observable and measured and must present the controller
with a sufficient total number of failed pin input attempts.

All of these techniques can benefit from (4) animation and
visualization in which relevant, possibly aggregated observa-
tions of the execution are displayed in a suitable format.

Finally, to locate and remove bugs, powerful debugging
support is required, ideally on both the model- and the code-
level.

Communication: Communication activities typically suc-
ceed successful development. Their purpose is to show rele-
vant aspects of the structure and behaviour of the system to
different audiences with the intent to educate and attract,
train, provide evidence, or even to sell. For instance, in
the context of our ATM example, suitably chosen commu-
nication activities might be useful to (1) educate students
on different levels about software engineering or embedded
systems and attract them to the area (“outreach”), (2) train
maintenance operators, (3) help convince certification au-
thorities, or (4) potential buyers. A central motivation be-

http://dx.doi.org/10.1145/2976767.2976781

hind our work is the observation that communication activ-
ities and QA activities differ mostly in intent and audience,
but otherwise have a lot in common. For instance, certifica-
tion authorities and buyers might be impressed by software
testing that exercise the system under input conditions that
they consider realistic and that allow observations, perhaps
using suitable technical animation tools, about system ex-
ecutions that suggest correct operation to them; similarly,
high school students might be able to understand and ap-
preciate key concepts of state machines (or networks) with
a simulation in which states (or messages) are animated in
an audience-appropriate way, perhaps even with “flashy” 3D
animation tools such as Unity [9] or Minecraft [5].

Our vision.
We hypothesize that, given some RTE component C, the

QA and communication activities described above can be
supported by a tool environment that allows the use of a
wide range of different (1) input sources that can generate
inputs for C at different levels of detail and accuracy, (2)
notions of observability of executions of C and observation
consumers, and (3) animation techniques and tools. Further,
we believe that such a tool environment can be built in the
context of Model-Driven Engineering (MDE) via a highly
customizable code generation process. Apart from the mod-
els describing C, this process would take as input a user-
provided configuration specification describing the desired
ways in which input is to be given to C and the resulting
executions of C can be observed, and how these observa-
tions can drive different animation tools. The result of the
code generation would be executable code allowing the exe-
cution and monitoring of C in the specified context and at
the specified level of abstraction. Moreover, QA activities
are further supported via integrated debugging allowing the
developer to switch seamlessly between debugging activities
on the model and the code level.

While not strictly necessary, we will assume that the de-
velopment is based on Unified Modeling Language for Real-
Time (UML-RT) [29], a language specifically designed for
RTE systems with soft real-time constraints. UML-RT has a
long, successful track record of application and tool support,
via, e.g., IBM RSA-RTE [10] and PapyrusRT [6]. Moreover,
to maximize the impact of our work, we propose to develop
our tool environment entirely with open source tools includ-
ing PapyrusRT for modeling and code generation, LTTng for
m onitoring [4], and TraceCompass for trace animation [8].

Structure of the paper.
Related work is discussed in the next section. Section 3

describes the vision and its supporting tool environment in
more detail. Section 4 sketches an initial prototype imple-
mentation. Section 5 concludes.

2. RELATED WORK
Our work touches on many different areas of research with

testing, monitoring, simulation, animation, and visualiza-
tion in the context of models and code, and model-level exe-
cution and debugging probably being the most relevant ones.
We are not aware of any work on integrated debugging.

An important group of related work are existing propos-
als for model-level monitoring, simulation, and animation
of UML models. The TOPCASED project reported on an

early effort with a focus on simulation and animation of
state machines [17]. More recently, different model execu-
tion environments such as Moka and Moliz have been pro-
posed [13, 24]. In both cases, the environment contains a
customizable model execution engine based on fUML [12],
and support for breakpoints and execution animation. Our
work differs in that it focuses on monitoring the execution of
the code generated from the model, rather than on executing
the model via an execution engine. This will make our work
more suitable for the analysis of properties that can only be
observed in the execution environment the developed soft-
ware is to be shipped in such as properties involving perfor-
mance and the use of hardware resources. Thus, our work
addresses different concerns and is complementary.

Many other kinds of modeling formalisms have been used
for simulation-based performance analysis including Petri
nets, queuing networks, and DEVS [30]. Each of these for-
malisms is supported by a range of tools [2,3,7]. The Palla-
dio approach allows the analysis and simulation of architec-
tural models with respect to, e.g., performance and reliabil-
ity [15]. To keep the analyses tractable, models in Palladio
are not complete descriptions of the component’s behaviour
as in our work, but rather allow for a static description of
the component’s internal state only. None of these efforts
are usable for MDE with UML.

Work on software testing such as Apache JMeter [1] also
is relevant. As in our vision, the tool builds a complete,
highly customizable testing environment with animation ca-
pabilities, however, not from models of an RTE system, but
from existing code (in, e.g., Java). Nonetheless, we might be
able to draw inspiration from these tools, e.g., with respect
to the ways in which software tests can be set up.

On the industrial side, the development of electronic con-
trol systems in, e.g., the automotive and aerospace domains,
is supported by a range of sophisticated, commercial model-
ing, monitoring, simulation, and visualization capabilities in
tools offered by, e.g., IBM Rational (Statemate, RSA-RTE),
National Instruments (LabVIEW), MathWorks (Simulink),
or dSPACE. While our work is partially inspired by these
tools, there are fundamental differences: our tool environ-
ment will be completely open source, be applicable to a
wider range of component-based systems (e.g., with distribu-
tion), and support higher degrees of customization (because,
e.g., monitoring tools, input sources, and animation tools do
not need to be part of a particular tool set). Also, with the
exception of Statemate and RSA-RTE, the above tools focus
on systems with continuous, rather than discrete, control.

To conclude, our vision differs from existing work in sev-
eral, fundamental ways.

3. OUR VISION
Traditional MDE processes for RTE systems typically in-

volve activities such as design of the system, code generation,
and execution of the generated code on the target platform
and in the context of possibly a range of other components
that the system interacts with. We posit that the key con-
cept allowing the construction of a range of such execution
scenarios supporting different purposes lies in the customiza-
tion of the code generation process. We envision for this
customizable code generation process to form the heart of
a multi-purpose infrastructure for RTE system design that
supports integrated debugging, monitoring, testing, anima-
tion, and incremental development.

Design

Code Generation

Execution

+ Context
configuration

Quality Assurance Communication

Integrated
Debugging

Monitoring &
Verification

Monitoring &
Animation

« purpose » « purpose »

« refines »« refines »

Figure 1: Overview of Use of Infrastructure

3.1 Infrastructure Overview
The use of the infrastructure is depicted in Fig. 1. Activi-

ties include design, code generation, deployment, and execu-
tion on a specific target platform and context. Executions
can be used for two different purposes: quality assurance
(QA) and communication. The infrastructure is to be used
iteratively and allows for incremental development and re-
finement of the design; QA activities would form the primary
source of feedback, but it is conceivable that communication
activities also trigger a change in the design.

The use of models for the design facilitates the expres-
sion of the system and its behaviour at different levels of
abstraction. The suitability of the level of detail in a design
depends on what the generated code is to be used for. E.g.,
a high-level design for less technical audiences might ignore
some low-level details pertaining, e.g., to the way a com-
ponent computes its output, or how time can influence the
execution; conversely, if the generation of shippable code is
the goal, then the design needs to include all details.

Models created during the design phase are inputs to the
code generator together with a context configuration which
specifies any additional components that the generated code
is to run in concert with and how the code interacts with
them. For instance, the configuration may specify (1) to
what extent the additional components are able to observe
the code during execution (e.g., which externally visible
events the execution might generate), (2) how this infor-
mation is collected (e.g., the monitoring tool used), (3) how
this information is fed to other components as input (e.g.,
to drive animations), and (4) which components can provide
input to the code and how that input is delivered. The con-
text configuration is described in more detail in Section 3.2.

After generation, the code is compiled, deployed and ex-
ecuted on the target platform. The code will interact with
additional components by generating and consuming events;
output events may be collected, displayed, analyzed, or drive
animations; input events may be generated from different
sources including a user, a sensor, or a simulation tool based
on random choice, historical data, or a probability distribu-

tion. All of these choices are specified in the context config-
uration and determine the suitability of the execution for a
range of different activities and purposes.

3.1.1 Integrated Debugging
Debugging real-time embedded systems is hard [21]. Model-

level execution and debugging is a topic of ongoing research
and some tools such as Moka are beginning to emerge [28].
While undoubtedly useful, model-level execution and debug-
ging can only represent the “first line of defense” in the fight
against bugs. More precisely, it is well suited to uncover
faults in the basic functionality of the model, but it can-
not detect requirement violations due to the way the system
uses computational resources such as violations of real-time
or memory constraints, because these issues only manifest
themselves when the generated code is run in its intended
execution environment and on the intended platform. After
detecting these kinds of violations via code-level monitoring
as supported by our envisioned infrastructure, inspection
and debugging on the code level is necessary as “second line
of defense”.

However, instead to model- and code-level debugging to be
disjoint activities implemented by separate tools unable to
share information, we envision integrated debugging, which
allows the developer to perform debugging activities on ei-
ther level and which automatically “lifts” code-level debug-
ging information (e.g., stack traces) onto the model-level
and displays it there in an appropriate form (e.g., as state
chains). To achieve this integration, relevant code-level ele-
ments must be traceable to their model-level counterparts.

3.1.2 Monitoring & Verification for QA
Run-time monitoring and testing are important activi-

ties in software development [14, 18, 22, 26]. They can help
designers validate model quality under different “operating
conditions”, and detect and debug faults in the models by
observing the code execution on the target platform. Obser-
vation could aim at high-level correctness properties (e.g., “it
is never the case that the statemachines of these two com-
ponents are in these two states at the same time”), or at
low-level resource consumption or timing properties (e.g.,
“after a request has been received, a response is issued within
2 seconds”). Observing and tracking high-level, non-timing-
related information such as the currently active statema-
chine state is not too difficult. Similarly, most operating
systems support performance counters that can be used to
determine the consumption of resources such as heap-space
or network bandwidth; examples include perf in Linux and
perfmon in Windows. However, the collection of meaningful
timing information that allows the validation of real-time
constraints is a lot more difficult and real-time monitoring
tools should satisfy specific requirements [25]. More pre-
cisely, the tool must incur low overhead to limit the im-
pact on the execution of the observed system; it should be
non-obtrusive and be able to operate as an observer along-
side the system execution; moreover, to support resource-
constrained systems, the monitoring tools’ memory footprint
should be as small as possible. While remote monitoring,
in which events are sent over a communication link to the
monitor, is useful for tracking high-level, non-timing related
information, its utility for timing analyses is limited to the
overhead caused by the communication; local monitoring is
much more suitable here.

3.1.3 Monitoring & Animation for Communication
As before, the suitability of an animation depends on the

purpose and the audience: (1) Model execution tools such
as Moka [28] allow for model-level animation of the system’s
execution and appear most suitable for a more technically
inclined audience hoping to understand the inner workings
of the system across relatively short executions with limited
environment interactions. They might also serve to illus-
trate the use of statemachines to describe RTE systems in
training and teaching contexts. (2) However, to show the
system’s behaviour across longer-running executions involv-
ing perhaps complex environment interactions that approx-
imate realistic operating conditions with a high degree of
fidelity to an audience of, e.g., potential buyers and regula-
tors, animation tools capable of, e.g., aggregating data and
displaying it graphically would be more suitable. (3) Finally,
to maximize appeal and “wow”-factor for, e.g., outreach and
recruitment events, the use of, e.g., 3D-animation tools such
as Unity or Minecraft [5,9] allowing users to visualize a sys-
tem and possibly even interact with it via avatars might be
the best choice.

Code Execution
Flow

Monitoring Tools
(e.g. LTTng)

User’s
Actions

Custom Code

Serious games
(e.g. Minecraft)

Model AnimationDrivers

ev1

ev2
∆T

foo()

ev3

ev5

bar()

ev4
baz()

A B

Figure 2: Interaction between Code and Context

3.2 The Context Configuration Model
As discussed above, the generated code usually has to in-

teract with a number of different components. All these
components constitute the context of execution of the sys-
tem. Fig. 2 provides an illustration of how the running code
might interact with its context. It may include devices, de-
bugging, monitoring, testing, or animation tools, or drivers
to access external devices and sources of input. We note
that all components have one thing in common: They can
either consume or produce events, or both. Consequently,
the code generation process has to be adapted so that the
generated code can interact with them.

To this end, we define a context configuration model. It
lists all the components the generated code is to interact
with and which events they can produce or consume (left
and right sides in Fig. 2). The presence of a component
in the configuration would not only impact the shape of
the code generated from the model, but may also cause the
generation of additional artifacts the component requires.

Event

CommunicationE AttributeE CapsuleE StateMachineE

MessageE QueueE

InitializedE ChangedE

SentE DeliveredE HandledE DroppedE

CreatedE DestroyedE BoundE

StateE TransitionE

ActiveE TriggeredE

Figure 3: Taxonomy of Monitorable Events

To facilitate the specification of the interaction between
the code and its context, we define a hierarchy of moni-
torable events (Fig. 3). The hierarchy is currently specific to
UML-RT, but could be adapted to other component-based
modeling languages. It distinguishes four main categories
of monitorable events, namely CommunicationE, Attribu-
teE, CapsuleE and StateMachineE events each of which with
subcategories. For example, events occurring in a statema-
chine model are related to states and transitions (StateE
and TransitionE). Sub-events are ActiveE and TriggeredE,
which indicate, respectively, a change in the currently active
statemachine state and the triggering of a transition.

4. IMPLEMENTATION
Fig. 4 illustrates our current prototype implementation of

the infrastructure and how the different activities discussed
in Fig. 1 are supported through open source tools. For design
and code generation, PapyrusRT [6] is used. PapyrusRT is
built on the Papyrus modeling environment for UML 2.5 [11,
23]. It provides a complete environment for UML-RT models
design, C++ code generation capabilities and a Run-Time
Support (RTS) library for Linux platforms.

Design

Code Generation

Execution

+ Context
configuration

Quality Assurance Communication

Integrated
debugging

+

Monitoring &
Verification

+

Monitoring &
Animation

+

Figure 4: Architecture Overview

PapyrusRT
Codegen

Context
Code Generator

CapsuleGenerator

ProtocolGenerator

StateMachineGenerator

. . .

PapyrusRT Model

Context Config.
Model

ExtStateMachineGenerator
for LTTng

ExtStateMachineGenerator
for animation

Bash

CCC
hhh

« generates »

« generates »

« defines »
« defines »

Figure 5: Papyrus Code Generator Extension

4.1 Extension of the PapyrusRT Codegen
A central objective of the PapyrusRT Codegen project

was to design a code generator for UML-RT models that
can be easily extended. The architecture of the generator
is described in [27] and our work leverages the extensibil-
ity of this architecture greatly. On the left-hand side, Fig. 5
sketches the structure and use of the standard generator and
shows the collection of independent generators that are reg-
istered with the PapyrusRT Codegen plugin. Each genera-
tor focuses on the generation of a specific high-level element
type in UML-RT models. For example, the CapsuleGener-
ator generates C++ artifacts related to the definition of a
capsule with its ports, attributes, and internal parts. The
StateMachineGenerator generates code corresponding to a
UML-RT statemachine.

The right-hand side of Fig. 5 shows how our implementa-
tion subclasses standard generators with customized gener-
ators that are registered using a specific Eclipse extension
point. To increase generality, we implemented a Context
Code Generator that takes the context configuration model
as an input and defines which specialized code generator
should be used to subclass a standard one. For example,

Figure 6: The Failover System

we defined two customized statemachine code generators:
one to support monitoring with LTTng (described in Sec-
tion 4.3) and another one for web-based animation (Sec-
tion 4.4). Each generator contributes the code required by
the additional components.

4.2 Running Example: the Failover System
To validate our implementation, we modeled a Failover

system and executed the generated code on a Raspberry PI
platform. The Failover system uses passive replication, a
key technique to maximize availability in distributed real-
time systems. In passive replication, only one server (called
master) handles all client requests, while the backup servers
are largely idle, except for, e.g., receiving state updates from
the master. If the master fails, a failover is triggered and one
of the backups becomes the new master.

Fig. 6 shows the behavior of the root capsule of a system
containing two or more servers. During the initialization, the
system is idle, waiting for a server to proclaim itself to be
the master. Then, the master server has to regularly notify
the system that it is alive. If no master is discovered during
the initialization of the system, or if the current master is
not available for a specific period, the system enters a failure
mode and waits for another server to become the master.

4.3 Timing Constraint Validation using LTTng
So far, our implementation supports timing constraint val-

idation (e.g., “if the master fails, selecting a backup server
to be the new master should be done within 2 seconds”).
Future extensions could allow for additional analyses such
as CPU performance evaluation.

Fig. 7 summarizes the main monitoring steps. Using UML-
RT models designed with PapyrusRT, trace monitoring is
performed on the target platform using Linux Trace Toolkit
Next Generation (LTTng), an open source tracing frame-
work for Linux [4,20]. Traces are collected to validate timing
constraints and further refine the design.

4.3.1 Monitoring Configuration
The first step consists of two activities: 1) defining with

respect to which events shown in Fig. 3 the system is to be
monitored; and 1’) specifying timing constraints that must

UML-RT
Model M

Timing
Constraints

Model M’
with monitoring

information

Code with
trace points

Generated
trace files

Models M”
with

trace results

Monitoring
Configuration1

Timing constraint
specification

1’

Code generation
using Papyrus-RT2

Code execution & trace
monitoring using LTTng

3

Trace result
display 4

Timing constraint
validation

5

Model-level

Code-level

Figure 7: Time Constraint Monitoring Overview

be validated over the execution (e.g., going from state S1

to state S2 must not exceed 2 seconds). For 1), a UML-RT
model M is annotated with monitoring information. For the
moment, our prototype only supports statemachine events.
Information we can currently monitor includes when the sys-
tem enters a specific state, when a transition is triggered,
and the amount of time between two user-selected events.
Selected elements are marked for the code generator using
a “LTTngElement” stereotype we defined (c.f. Fig. 8). For
1’), timing constraints are specified in a separate file which
is used to validate the collected traces.

4.3.2 Code Generation with LTTng trace points
LTTng is well suited for monitoring timing constraints

as it is efficient, non-obtrusive, and allows for both local
and remote monitoring. Local monitoring has low overhead
and is thus more suitable for timing analyses. In addition,
LTTng relies on the Common Trace Format (CTF) [19], an
optimized format for producing and analyzing large amounts
of data, to produce trace files with a low overhead [20].

From the annotated model M’ code is generated. It in-
cludes trace points required by LTTng to monitor the exe-
cution. To this end, we extended the standard code genera-

tor of PapyrusRT as described in Section 4.1. Alongside the
code, a script containing all the LTTng commands necessary
for tracing and which can be run to monitor the execution
is generated.

Our implementation is fully automated, meaning that the
generation of the code, the execution of LTTng on the tar-
get platform, the production of traces and their display in
PapyrusRT do not require user interaction.

Figure 8: Monitoring Profile

4.3.3 Tracing using LTTng and Trace Display
We developed an Eclipse-based plugin to display and ana-

lyze traces. The goal is to display the trace in both a textual
as well as a graphical format1. Fig. 9 depicts an Eclipse view
comprising three columns showing trace files, trace details2,
and four buttons for user interaction. The plugin allows
users to select a model and the plugin will then automati-
cally list any trace files associated with that model. Upon
selecting a trace file produced by LTTng on the embedded
platform, the Trace Compass CTF parser is used for pars-
ing all the traces. The most significant feature of an LTTng
trace is that it contains timestamp information for every
monitored event [16, 20]. In our plugin, the timestamp in-
formation is displayed along with the string field of all traced
events in the left part of Fig. 9. Users can step through the
trace in the model by using a “Display” and a “Step” button,
shown on the right-hand side of Fig. 9; the currently active
state and transitions taken are highlighted in the model and
the textual view. Finally, timing constraints can be vali-
dated on a trace by using a “Validate Time” button on the
right-hand side of the view (cf. Fig. 9).

1A screen cast of the tracing of the Failover model with
LTTng is available at https://youtu.be/h2uNLHg001I
2Fig. 9 shows a trace file resulting from the execution of the
Failover model (cf. Fig.6).

Figure 9: Trace Display

https://youtu.be/h2uNLHg001I

Figure 10: Live Monitoring & Web-Based Animation Environment for the UML-RT System and its Surrounding Context

4.4 Live Monitoring & Web-based Animation
We also implemented a live monitoring and animation tool

which interacts with PapyrusRT to animate the execution of
the generated C++ code at run-time on the statemachines
the code was generated from. Our implementation differs
from existing simulation tools such as Moka [28], which inter-
pret the model using executable action semantics like ALF
or fUML. In our case, statemachine model monitoring is
directly driven by the code running on the embedded plat-
form. Therefore, it directly monitors the actual execution
of the system. To monitor the execution flow from Eclipse,
we implemented a bi-directional socket communication.

In addition to the statemachine model monitoring, we also
implemented an animation engine to animate the execution
of the model on a user-friendly, web-based environment, us-
ing JavaScript and HTML5 Canvas. In terms of Fig. 2, both
the model and the environment animation engines are part
of the execution context of the platform. Consequently, they
can be plugged in to monitor the code execution flow on the
real platform.

Fig. 10 illustrates the monitoring of the Failover model.
The animation environment depicts the system and two ser-
vers. Each server is identified by an identifier and can be-
come either the main server or the slave. The two statema-
chines on the right-hand side of the animation environment
show the behavior of the system and of the master server3.

3A screen cast of the animation of the Failover model in our
tool is available at https://youtu.be/p5emJoswWpk

4.5 Discussion and Future Directions
How to best realize and support the customization is a

research topic. Leveraging code generation customization
for such a broad range of purposes and tools appears novel.
At model-level, it allows for the support of customizable
communications with external tools. At code-level, several
questions have to be answered in order to choose the right
techniques in order to implement a customizable code gener-
ator. For example, supporting techniques could be using as-
pects, ’monkey patching’ from Python and Javascript, byte
code manipulation, etc.

The originality of the vision relies on the adaptability of
the proposed framework with respect to different RTE ac-
tivities and targeting different intents and levels of detail.
Our current prototype is based on the customization of the
PapyrusRT code generator. While the extension of the code
generator is the pivotal technological concept, the vision is
mostly supported by the ideas that 1) each external compo-
nent can be seen as a producer / consumer of events, 2) the
taxonomy of events defined in Fig. 3 allows the annotation of
UML-RT models to make them suitable for monitoring, and
3) the code generation is impacted by the choice of which
components the system has to interact with.

In our vision of integrated debugging, the traceability be-
tween the model and the generated code must be ensured.
It requires the generation of appropriate mapping informa-
tion during the code generation. This work is planned to be
done in the future

https://youtu.be/p5emJoswWpk

5. CONCLUSION
In this paper, we described a unified infrastructure to ad-

dress many specific challenges of real-time embedded system
design and development. It encompasses integrated debug-
ging, monitoring, verification, and continuous development.
It is built upon traditional activities such as design, code
generation and execution, and it supports an iterative de-
velopment. In addition, it is highly customizable through a
context configuration model providing support for different
activities with different purposes and audiences.

We also described an initial implementation of our infras-
tructure. Central characteristics of the implementation are
that it covers the entire design flow, and it only relies on open
source tools. PapyrusRT is used for the design, code gener-
ation, and model monitoring activities ; LTTng and Trace-
Compass are used for tracing and monitoring the execution
flow for detecting real-time constraint violations. Finally,
web-based technologies such as JavaScript and HTML5 Can-
vas were used to propose a user-friendly environment to vi-
sualize the system in its surrounding environment.

Acknowledgment
This work is supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC) and by the
Ontario Ministry of Research and Innovation.

6. REFERENCES
[1] Apache JMeter. http://jmeter.apache.org.

[2] DEVS tools. http://www.sce.carleton.ca/faculty/
wainer/standard/tools.htm.

[3] List of queueing theory software.
http://web2.uwindsor.ca/math/hlynka/qsoft.html.

[4] LTTng documentation. http://lttng.org/docs.

[5] Minecraft video game. https://minecraft.net.

[6] Papyrus for real time (PapyrusRT).
https://www.eclipse.org/papyrus-rt. Accessed:
2016-03-10.

[7] Petri nets tools database quick overview.
https://www.informatik.uni-hamburg.de/TGI/
PetriNets/tools/quick.html.

[8] Trace compass. https:
//projects.eclipse.org/projects/tools.tracecompass.
Accessed: 2016-03-15.

[9] Unity: 3D engine and game development environment.
https://unity3d.com.

[10] IBM Rational Software Architect RealTime Edition,
v9.5.0 Product Documentation. http://www.ibm.com/
support/knowledgecenter/SS5JSH 9.5.0, 2015.

[11] Object Management Group (OMG). Unified Modeling
Language (UML) 2.5 Specification, Mar. 2015.

[12] Object management group (OMG). Semantics of a
foundational subset for executable UML models
(fUML). http://www.omg.org/spec/FUML/1.2.1,
2016.

[13] Papyrus: Moka overview. http://wiki.eclipse.org/
Papyrus/UserGuide/ModelExecution, 2016.

[14] N. Asadi, M. Saadatmand, and M. Sjödin. Run-time
monitoring of timing constraints: A survey of methods
and tools. In International Conference on Software
Engineering Advances (ICSEA’13), 2013.

[15] S. Becker, H. Koziolek, and R. Reussner. The Palladio
component model for model-driven performance
prediction. Journal of Systems and Software, 82:3–22,
2009.

[16] M. Bligh, M. Desnoyers, and R. Schultz. Linux kernel
debugging on Google-sized clusters. In Proceedings of
the Linux Symposium, pages 29–40, 2007.

[17] B. Combemale, X. Crégut, J.-P. Giacometti,
P. Michel, and M. Pantel. Introducing simulation and
model animation in the MDE Topcased toolkit. In 4th
European Congress on Embedded Real Time Software
(ERTS’08), 2008.

[18] N. Delgado, A. Q. Gates, and S. Roach. A taxonomy
and catalog of runtime software-fault monitoring tools.
IEEE Transactions on Software Engineering, 30(12),
2004.

[19] M. Desnoyers. Common trace format (CTF)
specification (v1.8.2). Common Trace Format GIT
repository, 2012.

[20] M. Desnoyers and M. Dagenais. LTTng tracer: A low
impact performance and behavior monitor for
GNU/Linux. In OLS (Ottawa Linux Symposium),
volume 2006, pages 209–224, 2006.

[21] L. Dohmen and L. Somers. Experiences and lessons
learned using UML-RT to develop embedded printer
software. In 4th International Conference on Product
Focused Software Process Improvement (PROFES’02),
pages 475–484, 2002.

[22] H. Koziolek. Performance evaluation of
component-based software systems: A survey.
Performance Evaluation, 67:634–658, 2010.

[23] A. Lanusse, Y. Tanguy, H. Espinoza, C. Mraidha,
S. Gerard, P. Tessier, R. Schnekenburger, H. Dubois,
and F. Terrier. Papyrus UML: an open source toolset
for MDA. In Fifth European Conference on
Model-Driven Architecture Foundations and
Applications (ECMDA-FA’09), pages 1–4, 2009.

[24] T. Mayerhofer and P. Langer. Moliz: A model
execution framework for UML models. In Int. Master
Class on Model-Driven Engineering: Modeling
Wizards (MW’12), 2012.

[25] A. Mok and G. Liu. Efficient run-time monitoring of
timing constraints. In IEEE Real Time Technology
and Applications Symposium, pages 252–262, 1997.

[26] B. Plattner and J. Nievergelt. Monitoring program
execution: A survey. IEEE Computer, 14, 1981.

[27] E. Posse. PapyrusRT: modelling and code generation.
In Workshop on Open Source for Model Driven
Engineering (OSS4MDE’15), 2015.

[28] E. Seidewitz and J. Tatibouet. Tool paper: Combining
Alf and UML in modeling tools–an example with
Papyrus. In Workshop on OCL and Textual Modeling
(OCL’15), 2015.

[29] B. Selic. Using UML for modeling complex real-time
systems. In Workshop on Languages, Compilers, and
Tools for Embedded Systems (LCTES’98), pages
250–260, 1998.

[30] B. Zeigler. Theory of Modelling and Simulation (2nd
Ed.). Academic Press, 2000.

http://jmeter.apache.org
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm
http://www.sce.carleton.ca/faculty/wainer/standard/tools.htm
http://web2.uwindsor.ca/math/hlynka/qsoft.html
http://lttng.org/docs
https://minecraft.net
https://www.eclipse.org/papyrus-rt
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
https://www.informatik.uni-hamburg.de/TGI/PetriNets/tools/quick.html
https://projects.eclipse.org/projects/tools.tracecompass
https://projects.eclipse.org/projects/tools.tracecompass
https://unity3d.com
http://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0
http://www.ibm.com/support/knowledgecenter/SS5JSH_9.5.0
http://www.omg.org/spec/FUML/1.2.1
http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution
http://wiki.eclipse.org/Papyrus/UserGuide/ModelExecution

	Introduction and Motivation
	Related Work
	Our Vision
	Infrastructure Overview
	Integrated Debugging
	Monitoring & Verification for QA
	Monitoring & Animation for Communication

	The Context Configuration Model

	Implementation
	Extension of the PapyrusRT Codegen
	Running Example: the Failover System
	Timing Constraint Validation using LTTng
	Monitoring Configuration
	Code Generation with LTTng trace points
	Tracing using LTTng and Trace Display

	Live Monitoring & Web-based Animation
	Discussion and Future Directions

	Conclusion
	References

