
Verification of Dynamically Reconfigurable Embedded
Systems by Model Transformation Rules∗

Felix Madlener, Julia Weingart, and Sorin A. Huss
Integrated Circuits and Systems Lab

Technische Universität Darmstadt
Germany

{madlener, weingart, huss}@iss.tu-darmstadt.de

ABSTRACT
This paper describes a methodology for the verification of recon-
figurable embedded systems. The reconfigurable systems are de-
scribed by means of the Reconfigurable Discrete Event Specified
System (RecDEVS) computational model and the verification is
performed by a model transformation from the RecDEVS model
into an equivalent representation for the UPPAAL model check-
ing methodology. We introduce an algorithm for the automatic
transformation of such models, which originate from disjoint ap-
plication domains. This allows the usage of an state-of-the art ver-
ification tool for the verification of arbitrary properties of system
specifications denoted in RecDEVS. We also present a set of im-
portant system properties, which now may be verified. This set
includes some fundamental reconfiguration domain specific prop-
erties, which were not addressed by previous formal verification
methods. The feasibility of this approach is demonstrated for a
complex automotive application.

Categories and Subject Descriptors
B.6.3 [Design Aids]: Verification; F.1.1 [Computation by Ab-
stract Devices]: Models of Computation

General Terms
Verification, Design

Keywords
Reconfigurable Systems, Verification, Design Methodology, Model
Transformation, RecDEVS, UPPAAL

1. INTRODUCTION
Reconfigurable hardware architectures have emerged as a promis-

ing technique to replace conventional hardware modules in future
embedded systems and systems-on-chip. They do not only allow
for a fast and easy exploration of design variants to create efficient

∗This work was supported by CASED (www.cased.de)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CODES+ISSS’10, October 24–29, 2010, Scottsdale, Arizona, USA.
Copyright 2010 ACM 978-1-60558-905-3/10/10 ...$10.00.

hardware solutions, but they also support a dynamic, i.e., during
runtime, reconfiguration of logic resources.

The introduction of these new design features has a great poten-
tial for the development of future embedded systems. The support
of dynamic reconfiguration will clearly expand the present limita-
tions of current hardware design. It especially can provide a more
flexible and better resource utilization without loosing hardware-
specific advantages such as high performance. However, the design
problems of increasingly complex embedded systems is even more
present for reconfigurable hardware partitions due to this additional
dimension of the design space.

In conventional hardware design the problem of increasing com-
plexity is being addressed by rising the abstraction levels in the
design phase. One main disadvantage of the existing reconfig-
urable systems design methodologies is the lack of an established
approach, which supports higher abstractions.

In order to establish an exploitation of higher abstraction lev-
els, formal Models of Computation (MoC) were introduced to the
design flow. The Reconfigurable Discrete Event Specified System
(RecDEVS) [11] is such a high-level MoC, which is dedicated to
the reconfiguration property. By being an event-based specification
with an integrated reconfigurable and timed behavior, this MoC is
highly applicable for reconfigurable hardware and real-time soft-
ware models. It is based on timed automata and consists of a strict
formal specification.

In this work we demonstrate how a formal verification technique
can be applied to a reconfigurable hardware system specified de-
noted by means of the RecDEVS approach. However, RecDEVS
was not originally targeted towards verification. There are other,
more suitable specialized MoCs available for this purpose. There-
fore, a novel mapping method has been developed in order to trans-
form RecDEVS models into a timed automata based representation
of the UPPAAL Model Checker [10]. Using this approach the de-
signer can benefit from the model specific features of RecDEVS
and the expertise of the UPPAAL verification system at the same
time.

This paper reviews related work in Section 2. Section 3 mo-
tivates a MoC based design flow for both verification and design
refinement. It then presents the RecDEVS model and the UP-
PAAL model checker. Section 4 details how a transformation from
RecDEVS into the UPPAAL MoC is being performed and Sec-
tion 5 shows how the transformed model can be utilized to prove
and verify properties of an existing RecDEVS model of a complex
application example. We conclude this paper in Section 6.

2. RELATED WORK
There is a variety of publications which emphasize the advan-

tages of MoC-based design flows ([13], [7], and [15]). For this

33

System
Property Checks

System
Implementation

RecDEVS
Model

UPPAAL
Model

Proofs /
Counterexamples

SystemC/VHDL
Model

HW or SW
Modules

M
od

ifi
ca

tio
n

Code
Generation

Transformation

Verification Synthesis

Refinement

Figure 1: Proposed Design Flow for Reconfigurable Systems

work we have taken the methodology from [13] as reference. It dis-
tinguishes horizontal and vertical transformations aimed to denote
either the transformation of single implementations or the transfor-
mation of complete MoCs.

There are different approaches for modeling dynamic reconfig-
urable systems based on lower level programming languages like
VHDL [16], SystemC [8], or ImpulseC [4]. Due to the lack of
a complete formal specification of these languages it is not clear
whether they are suitable at all formal verification purposes.

Both the HySAM [2] approach and RecDEVS [11] provide the
required formal specification foundation. HySAM splits the de-
scriptions of reconfiguration and functionality, respectively, into
two disjoint models which makes a conclusive verification difficult.
RecDEVS, because of being based on the DEVS formalism [18],
combines both descriptions in a single model and thus supports the
verification of function-triggered reconfiguration properties. The
SC-DEVS code generation detailed in [12] for SystemC illustrates
the capabilities of this computational model for the formal speci-
fication of embedded systems with its hardware and software as-
pects. The flow of implementation steps is summarized in the right
hand part of Figure 1.

Regarding the verification of RecDEVS models, there is some
preliminary work on the formal verification of the underlying DEVS
formalism. The first work [14] implements an own theorem prover,
while [17] and [5] benefit to some extend from the established UP-
PAAL model checking environment presented in [10].

3. VERIFICATION-BASED DESIGN FLOW
As already stated, most existing design flows for reconfigurable

systems are directly based on low level implementation languages
like VHDL or Verilog. While it is possible to implement a design
in these lower abstraction levels, it is highly appropriate to raise
the abstraction level and to represent a system by means of sev-
eral Models of Computation, which provide a more abstract system
view.

One benefit resulting from an introduction of MoCs is a consider-
able simplification of the system development, as a substantial part
of the domain specific features is already included in the MoC def-
inition. It is furthermore possible to exploit domain-specific MoCs
instead of a generic MoC or a design language based model. They

allow to reuse expertise and knowledge, which has already been
aggregated for these specific models. Furthermore, the raised ab-
straction layer is no longer linked to a specific hardware or software
specific description language like VHDL or C, but a computational
model that can be refined into both implementation domains (HW
or SW) in the ongoing design flow.

Another essential aspect of such a MoC-based methodology is
the consideration of for formal methods for system design. Such
methods are mathematically-based languages, techniques, and tools
for modeling, specification, and verification of complex systems.
Compared to standard testing techniques, a formal verification is
an exhaustive process that can cover the whole possible system be-
havior, whereas testing techniques can only explore a limited set
of test cases. The main goal of formal verification is therefore
the revealing of design errors by proving a relationship between
an implemented model and a user specified system behavior [6, 9].
Hence, with the help of formal verification, it is possible to prove
whether the implementation satisfies a desired specification.

The verification of reconfigurable hardware systems is still an
open research topic. To the best knowledge of the authors, this pa-
per is the first work that puts a special focus on the formal verifica-
tion of reconfigurable hardware systems. For this purpose, we com-
bine two specialized MoCs as illustrated in Figure 1. The picture
shows the proposed design flow for the verification and, to some ex-
tent, the implementation of reconfigurable embedded systems. The
RecDEVS MoC captures the functionality of reconfigurable hard-
ware systems. It focuses on reconfiguration and provides specific
features for the description of such features. On the same abstrac-
tion level lies the UPPAAL Model of Computation, which already
includes verification expertise and knowledge. A transformation
from RecDEVS to UPPAAL models is thus highly approriate to
obtain verification results at an early stage of the design process. If
the transformation preserves all important model properties, then
the results of the UPPAAL verification will also hold for the equiv-
alent RecDEVS-based design. These results may then be used to
further refine the implementation until all desired verification prop-
erties are met.

At this time the RecDEVS model can be transformed to embed-
ded system (ES) or hardware description languages. Taking this
path of the design flow as outlined in the right hand part of Figure 1
will then lead to a working design implementation. [12] describes
the resulting design process for the DEVS formalism.

3.1 RecDEVS Model of Computation
As already stated, the RecDEVS formalism [11] is aimed as

a mathematical and theoretical foundation for the functional and
time-related specification of reconfigurable embedded systems. It
extends the DEVS [18] formalism from Zeigler et al. towards
the formal specification of reconfigurable hardware modules. The
DEVS formalism itself is based on timed automata and specifies
hierarchically, concurrently executed, formal models. It was origi-
nally designed for the simulation of concurrent systems and is well-
suited for the formal specification of combined hardware and soft-
ware systems, i.e., embedded systems, as detailed in the sequel.

3.1.1 Definition
A RecDEVS system specification is a structure

NRec = 〈Xext,Yext, D,Cχ〉 . (1)

The system consists of multiple interacting atomic components.
Each atomic component is described by a tuple

C = (X ,Y , S, s0, δint, δext, δcon, λ, τ). (2)

34

timeout e = τ(si)

output λ(si)

si = δint(si−1)

si−1 si si+1

Figure 2: State Transition and Output

S is a non-empty set of states, with s0 ∈ S being the initial state
of the RecDEVS component. Every state has an associated timeout
τ : S → R. Atomic components communicate via their input X
and output Y . The complete system NRec communicates with the
external environment via Xext and Yext.

RecDEVS defines three different types of state transitions:

Internal transition δint : S → S: After the timeout τ(s) occurred,
the component will do an internal state transition.

External transition δext : S ×X × R→ S: Iff an input event oc-
curs on X and no timeout happens, the component will do an
external state transition δext(s, x, e), where e < τ(s) is the
elapsed time since the current state was entered.

Confluent transition δcon : S ×X × R→ S: Iff an input event oc-
curs together with the timeout (i.e. e = τ(s)), the next state
will be computed by δcon(s, x, e).

Whenever a timeout τ(s) is hit, the component will also emit a
an output, defined by λ(s), on the output port Y . This output may
either consist of an arbitrary number of messages for other com-
ponents or of the empty output event �. As depicted in Figure 2,
an output occurs upon leaving a state, although its value is being
determined upon entering a state.

As another difference to the original MoC, RecDEVS incorpo-
rates a message based communication scheme. All components
share one common communication system that can hold multiple
messages at any point in time. Each component instance I can be
identified by an unique identifier ID. Thus, all messages consist
of tuples ID × Data, denoting the target and the message body
of each message. Messages are transmitted without time delay and
trigger an input event at the receiving target component.

3.1.2 Reconfiguration in RecDEVS
A system specification NRec can be reconfigured by either re-

moving components from the active system or by adding further
components to the active system. The list of available components
is denoted by D. The list of active components is encapsulated
within the system executive Cχ. This static component is a special
instance of an atomic component and handles the configuration of
new components as well as the deletion of components. It is stat-
ically active in every RecDEVS system and is known to all other
components.

Reconfiguration activities in RecDEVS are performed by a set
of three dedicated messages: new(d), del(), and confirm(). The
del() and new(d) messages can be emitted by all active components
and are handled by Cχ. These messages request the deletion of
the component id or the creation of a new component of one of
the types denoted in D. After the creation a confirmation message
confirm(id) will be sent back to the requester, so that the newly
created component can simply be referenced by means of id from
now on.

M1

S0

t ≤ 4

S1 S2

t ≥ 2 sync!

n := n+ 1

M2

S0 S1 S2

sync? n ≥ 3

n := 0

Figure 3: UPPAAL Automata Example

3.2 The UPPAAL Model Checker
UPPAAL [10] is a model checking tool for modeling, simula-

tion, and verification of real-time systems. It is based on constraint-
solving and explicit verification techniques. The model checker is
suitable for the verification of systems, which can be represented by
nondeterministic processes with finite control structures and real-
valued clocks (i.e., Timed Automata). Compared to theorem prov-
ing approaches it does not require any user-interaction. In addition,
the model checker can also produce counterexamples when the im-
plemented model does not satisfy the required specifications.

UPPAAL offers the verification of arbitrary user defined speci-
fication requirements such as reachability, safety, or bounded live-
ness properties. Its intrinsic requirement specification language ex-
ploits timed computational tree logic. The UPPAAL Model Checker
has been successfully used in for many industrial case studies [1].
This model specification language is an extended finite-state ma-
chine with clocks, synchronization channels, state and transition
invariants, data variables, and update labels. Time is modeled by
means of a set of multiple user-defined clocks. These clock values
are incremented continuously, but they can also be set interactively
to arbitrary values during the model execution.

Figure 3 illustrates the essential elements of an UPPAAL system
with two communicating automatons M1 and M2, respectively. Ex-
actly one state of each automaton is marked by double lines as the
initial node. Every state may additionally be labeled with a state
invariant (e.g., the invariant t ≤ 4 for the state M1.S0) to express
time constraints. The system may stay in a state as long as the in-
variant is true. The state has to be left over state transitions when
the invariant value changes to false at the last point in time. If no
invariant is given, then its value is true by default.

All transitions may be attributed by a guarding condition that
has to be true for an execution of the corresponding transition. The
communication between the automatons M1 and M2 in Figure 3 is
realized with synchronization channels and shared data structures.
Whenever a transition is marked with an ’emit’ synchronization
(denoted by an exclamation mark) a corresponding ’receive’ syn-
chronization channel (denoted by a question mark) has to exist and
it’s transition has to be executed, too. While synchronization chan-
nels contain no additional data, they can be complemented with
update labels. These labels are executed on a transition and enable
the user to update shared data variables or to modify clock values.
In the synchronized receiving transition these variables can then be
read with another update label and thus realize the data exchange.

35

Timeout

S0

t ≤ τ(S0)

S1t = τ(S0)

t := 0

Figure 4: Timeout Realization in UPPAAL

In the example of Figure 3 this is demonstrated by means of the
shared variable n.

4. RECDEVS TO UPPAAL MODEL TRANS-
FORMATION

Both models, RecDEVS and UPPAAL, have a similar structure
and execution model. They utilize an event-based, explicit specifi-
cation of timed behavior, and are based a concurrent, state-transition
based execution model. As [13] explains, this similarity is neces-
sary to allow for an automated transformation process between both
models.

The main requirement for all created transformation rules is that
they preserve the behavior of the originating model. Verification
can only prove properties of the original RecDEVS model if the
transformation can guarantee the equivalence of both models. How-
ever, even without formal equivalence, verification environments
can still serve as a counterexample-based test system.

It is possible to perform an automated transformation of RecDEVS
models into UPPAAL ones. First, we present a set of transforma-
tion rules for all basic elements of a RecDEVS model. As described
in [13], this allows the implementation of conversion tools that
can automatically transform any user defined RecDEVS model.
Then, a pseudo-code representation for the conversion of a com-
plete model is given in Algorithm 1.

Secondly, we summarize features of RecDEVS, which can not
be translated properly and we discuss the related consequences.
Whenever the preservation of all properties is not feasible, the ver-
ification bandwidth will be somewhat limited. These limitations
stem from the differences between two distinct models of compu-
tation and are unavoidable. The transformation process tries to cir-
cumvent such limitations whenever possible.

Both models, RecDEVS and UPPAAL, incorporate multiple, com-
municating components. It is thus feasible to transform each com-
ponent of a RecDEVS model into a corresponding UPPAAL au-
tomaton. However, the UPPAAL model does not provide mecha-
nisms for a dynamically changing set of the components as required
by the RecDEVS formalism. Section 4.4 describes how such a be-
havior can still be represented in UPPAAL.

4.1 Timing Behavior
Every RecDEVS state has an associated timeout function τ :

S → R. Figure 4 shows a corresponding UPPAAL model with
a timeout τ(S0) on state S0. However, timeouts are not directly
supported in UPPAAL. Thus, the timeout for S0 is realized by a
combination of a state invariant t ≤ τ(S0) for S0 and a transition
guard t = τ(S0). The invariant forces the system to leave the state
at the latest when τ(S0) time units have passed on the clock t and
the guard prevents the system to take the transition any time before

Elapsed Time

S0

t ≤ τ(S0)

Stmp Sint
input1?
t := 0

n = τ(S0)
t := 0
n := 0

t = τ(S0)n := 0
t := 0

Figure 5: Elapsed Times over Multiple States

τ(S0). So, the transition with the guard expression has to be taken
exactly at the desired timeout time.

A minor limitation of the model transformation is that UPPAAL
only supports natural numbers only and hence can only realize
somewhat restricted timeout functions τ : S → N. For a cor-
rect implementation of the timeout it is also necessary to reset the
clock t to zero whenever a state S0 is entered. This has to be done
on all incoming transitions using update labels.

UPPAAL does not provide any mechanism to obtain the elapsed
time, when an synchronization channel is triggered. This means,
that it is not possible to obtain the elapsed time e, which is required
by the RecDEVS transition functions δext(s, x, e) and δcon(s, x, e)
as stated in Equation 2. However, there is a wide range of appli-
cations where the elapsed time is either not required, or it is only
used to preserve the timeout of the originating state. The latter sce-
nario happens when a short interruption of a longer timeout cycle
is triggered. After the interrupt it is likely that the original timeout
should continue without restart. This is possible by introducing a
second clock which is not automatically reset to 0 on each transition
as illustrated in Figure 5, where an additional clock n is inserted.
Currently, we have not yet implemented an algorithm to detect the
described short interruption of a longer timeout state automatically.
Thus, the additional clocks for such interrupts have to be inserted
manually into a generated UPPAAL model.

4.2 RecDEVS Transitions δint, δext, δcon

All three RecDEVS transitions are realized by distinct UPPAAL
transitions. Using the previously described timeout mechanism
these three transitions mainly differ in their guard conditions and
synchronization channels. The resulting model of a single state
with three leaving transitions is depicted in Figure 6.

The internal transition δint : S0 → Sint is guarded by the time-
out condition t = τ(S0). The external transition δext : S0 × X ×
R → Sext is guarded by a receiving synchronization channel and
must not have reached the timeout point in time, i.e., t ≤ τ(S0).
The synchronization channel represents the external event of an
RecDEVS model inside UPPAAL. The confluent transition δcon :
S0×X×R→ Scon combines the timeout of t = τ(S0) of internal
transitions and the synchronization channel mechanism of external
transitions.

For the timeout t = τ(S) both transitions, δint and δcon, may
trigger. However, UPPAAL will always prefer transitions with
synchronization channels. This behavior is similar to a RecDEVS
model, where the confluent transition has to be taken and thus no
further conditions are required to assure that the correct transition
will be executed.

4.3 Inter-Module Communication
While RecDEVS utilizes a message based communication scheme,

UPPAAL features dedicated communication channels. It is there-

36

Transitions

S0

t ≤ τ(S0)

Sext

Scon

Sint

t ≤ τ(S0)
input1? t = τ(S

0)input1?

t = τ(S
0)

δext

δint

δcon

Figure 6: Mapped DEVS Transitions

fore necessary to introduce a synchronization channel for each out-
put message λ : S → ID ×Data of a RecDEVS model. All syn-
chronization channels must have unique names, which can be guar-
anteed by the target identifier ID that uniquely defines the recipient
of the message within RecDEVS. Thus, for each message a corre-
sponding synchronization channel pair ID_Data! and ID_Data? is
created in UPPAAL.

RecDEVS allows the occurrence of multiple events at the same
time. In UPPAAL synchronization channels can only fire sequen-
tially, which eventually leads to an execution mismatch between
both models.

To minimize this difference the transformation takes advantage
of the fact that UPPAAL chooses indeterministically between pos-
sible transitions. To represent two concurrent messages the equiv-
alent UPPAAL model implements both possible synchronization
message orders as illustrated in Figure 7. This approach can be
extended to any number of multiple output events.

4.4 Reconfiguration
As already stated reconfiguration in RecDEVS is performed by

a set of dedicated communication messages. Consequently, these
messages are to be mapped into UPPAAL models by means of syn-
chronization channels as described in Section 4.3.

However, a problem arises from the static structure of UPPAAL,
which does not allow for the creation of new modules. Thus, for
the reconfiguration of UPPAAL models a new state is introduced
for each model, to denote the ’deleted’ property. Then, a set of
’deleted’ modules is instantiated. The creation of a new module
changes the system state of a free module from ’deleted’ to the
initial state of the DEVS model for this module. Consequently,
a deletion of an instantiated module is performed by resetting the
state values to ’deleted’.

Depending on the implemented design it may be necessary to
introduce in UPPAAL an equivalent to the system executive Cχ.
This component has to perform the arbitration of available unused
components and to distribute the reconfiguration messages. It does
also suppress the confirm() message when no ’deleted’ components
are available to fulfill a new() request. For implementations with
a predefined order of reconfiguration the activities of this special
component can simply be removed as demonstrated in Section 5.

While this solution may be viewed as a limitation in compari-
son with the original RecDEVS model, it resembles other recon-
figurable hardware architectures with limited communication re-
sources. This approach is also used in other approaches to model
reconfigurable systems in other description languages such as Sys-
temC [8].

Channels

S0

S1

S2

S3

chan1!

chan2!

chan2!

chan1!

Figure 7: Concurrent Channels

4.5 Automatic Transformation
Algorithm 1 gives a pseudo code representation of the outlined

transformation rules. Please note that this following representa-
tion of the mapping method is generic in so far, because it creates
just one reconfigurable module for each UPPAAL model. For the
instantiation of multiple components the algorithm has to be ex-
tended appropriately. In that case, the names of the synchronization
channels have to be adopted for uniqueness, too.

Algorithm 1 RecDEVS to UPPAAL Transformation

Input: RecDEVS Specification NRec = 〈Xext,Yext, D,Cχ〉.
Output: A corresponding UPPAAL system representation
function Transform(NRec) is

Create Global Time Variable t
for all d ∈ D do

Create an UPPAAL Component d
for all s ∈ Sd do

Create an UPPAAL State s
Create Transition from s to deleted with Synchronization
Channel “del()?”
Create State Invariant t ≤ τ(s)
for δint(s) = sint do

Create Transition t from s to sint

Update(s,“x = τ(s)”,“x := 0”,∅,t)
end for
for δext(s, xin , e) = sext do

Create Transition t from s to sext
Update(s,“x ≤ τ(s)”,“x := 0”,“d_input?”,t)

end for
for δcon(s, xin , e) = scon do

Create Transition t from s to scon
Update(s,“x = τ(s)”,“x := 0”,“d_input?”,t)

end for
end for

end for
end function
function Update(s, g, l, i, t) is

Add Guard Condition g to t
Add Update Label l to t
Add Synchronization Channel i to t
if If λ(s) = (tar ,msg) is present then

Add Synchronization Channel “tar_msg !” to t
end if

end function

37

Sensor Shape Contrast Taillight

request

picture new()

Entrance detected

request

picture
request

picture

new()del()

Tunnel entered

request

picture

request

high-contrast picture

new()
del()

Tunnel exited

request

picture

Figure 8: Object Diagram of the AutoVision Example

5. VERIFICATION OF A RECDEVS MODEL
For a detailed analysis of the proposed verification flow, a com-

plex application has been modeled and certain properties of the
model have been verified. The application example is based on
the AutoVision scenario introduced in [3].

This example taken from the automotive domain consists of sev-
eral distinct components for vision enhancement and for automated
object recognition aimed to a driving assistance scenario. It switches
between different components, implementing a shape- or a taillight-
based object recognition depending whether the car is on an open
road or inside a dark tunnel. Figure 8 gives an overview over the
following components and their interaction:

Sensor: Provides pictures to all requesting components. This com-
ponent persists throughout the whole execution.

Shape: Performs picture requests and scans the result for impor-
tant shapes (e.g., other cars). If the shape of a tunnel entrance
is found, then the Contrast component is invoked.

Contrast: Enhances the Sensor picture and recognizes, when the
car enters or leaves a tunnel, in which case it activates or
suspends other components.

Taillight: Provides object information to the driver based on tail-
light traces. It operates when the car is inside the tunnel
where it is too dark for the Shape component.

The different situations inside and outside a tunnel trigger the
reconfiguration of Shape, Contrast, and Taillight, respectively. The
transformed model consists of four different UPPAAL components,
which switch their state values from ‘deleted‘ to ‘active‘ and vice
versa. This implies that no confirm() messages are required after a
new() call. A central system executive Cχ is not necessary in this
case, because all reconfiguration messages are handled directly by
the relevant components.

In the following subsections we outline the most important veri-
fication features for reconfigurable systems. We will describe their
relevance and their UPPAAL notation. In Table 1 one can find a

summary of these statements, a corresponding example for the Au-
toVision application, and verification results for the tested system
specification properties.

5.1 Reachability and Deadlocks
Beside reconfiguration specific properties, there is also a wide

variety of important conventional system properties. These proper-
ties have to be checked by the presented approach as well.

UPPAAL allows the examination of complex system states, which
are composed by multiple RecDEVS components. E.g., the UP-
PAAL statement “(Comp1.state1 and Comp2.state2)”
refers to a combination of two atomic component states. All other
components may have arbitrary states.

It is possible to examine the reachability of a system state by ver-
ifying the UPPAAL specification statement “E<>(P1.s1 and
P2.s2 and P4.s4)” to answer the question whether a com-
plex system state is actually reachable, or “E[](P1.s1 and
P2.s2 and P4.s4)” to verify whether a state is always reach-
able. The existence or absence of deadlocks can also be verified by
means of the system specification “A[] not deadlock”.

5.2 Communication and Timing
If an arbitrary RecDEVS transition δ(S1) = S2 will be taken,

it can be verified by the corresponding UPPAAL statement “E<>
P1.S1 imply P1.S2”. This statement also allows for the ver-
ification of the RecDEVS communication being realized by syn-
chronization channels in UPPAAL. As each synchronization chan-
nels is linked to a specific transition, we can use this verification
statement to prove whether a specific communication message will
be sent.

By introducing additional local clocks as explained in Section 4.1,
it is also possible to verify timing constraints which cover a longer
transition path with multiple state transitions. A verification state-
ment like “E<>(P1.S1 imply P1.S2 imply P1.S3) and
t ≤ 6” can guarantee that the specified path must not take more
than 6 time units.

38

Table 1: Set of Verifiable Model Properties of the AutoVision Example
Description AutoVision Example UPPAAL Notation Property
State Reachability Is the state (Shape.idle and

Contrast.idle) reachable?
E <> (Shape.idle and
Contrast.idle)

Satisfied

General Reachability Is the state (Shape.deleted)
always reachable?

E[] Shape.deleted Satisfied

Deadlock Existence Is the implementation free of dead-
locks?

A[] not deadlock Not Satisfied, all existing dead-
locks can be listed by UPPAAL

Resource Consump-
tion

Is at least one component always
deleted?

E[] (Shape.deleted or
Contrast.deleted or
Taillight.deleted)

Not Satisfied, e.g., Taillight is
created before Shape is deleted

Transition Usage Is the internal transition
from (Shape.new) to
(Shape.request) used?

E <> Shape.new imply
Shape.request

Satisfied

Synchronization
Channel

Does Contrast perform a pic-
ture request?

E <> Contrast.request
imply Contrast.idle

Satisfied

Timing Constraint Can a tunnel be detected in 6 time
units?

E <> (Shape.idle imply
Shape.entrance imply
Shape.idle) and t ≤ 6

Satisfied

Module Reconfigura-
tion

Will Taillight ever be created? E <> Contrast.tunnel
imply Contrast.idle (this
transition emits the synchroniza-
tion channel new(taillight)!)

Satisfied

5.3 Dynamic Resource Allocation
Regarding reconfiguration we have identified several important

generic verification properties, which may be applied to all recon-
figurable designs.

For the implementation of a dynamically reconfigurable hard-
ware system it is of crucial interest to analyze whether there are
enough resources for the execution of the reshaped system. As the
utilized resources will change during runtime, this question is not
trivial to answer. UPPAAL can be used for the exploration of such
resource requirements.

Under the assumption that P1 to P4 are the only components of
a system, the statement “E[](P1.deleted or P2.deleted
or P3.deleted or P4.deleted)” will only hold if at least
one of the four components is deleted at all times. Thus, a system
with resources for three reconfigurable components will be suffi-
cient in this case. It is even possible to optimize this approach by
suggesting implementation specific variants of the resource con-
straint. The statement “E[]((P1.deleted and P2.dele-
ted) or (P3.deleted and P4.deleted))” can guaran-
tee that the specified system specification will always have at least
the combination P1 and P2 or the combination P3 and P4 deleted.
Depending on the size of the different components this property
may provide stronger information on the required resources than
the general resource constraint property, thus resulting in smaller
designs.

Another question is related to the existence of a specific recon-
figuration activity, i.e., if component A will ever trigger a specific
reconfiguration to create component B. According to the message-
based reconfiguration scheme described in Section 4.4 of RecDEVS,
this always requires a corresponding message new(B). This mes-
sage would then require a corresponding transition on which it will
be emitted. The activation of such a transition can be tested by veri-
fying the specification statement “E<>(P1.S1 imply P1.S2)”.
Here, the transition from S1 to S2 emits the new(B) message.
This statement is only true when a direct transition from state S1
to S2 of the model P1 will be taken.

6. CONCLUSION
We have presented a systematic approach to transform the Re-

configurable Discrete Event Specified System model RecDEVS into
an equivalent representation of the UPPAAL model checking tool.

This allows for the formal verification of reconfigurable hard-
ware systems, which is an essential aspect of a complete design
methodology for embedded systems. This approach verifies differ-
ent properties of the RecDEVS model such as the reachability of
certain states or the existence of deadlocks. We have also demon-
strated how the verification can be utilized to prove reconfigura-
tion specific properties that do not exist in other verification tools
yet. The maximal resource consumption of reconfigurable logic
resource is an example for such a new property.

We have also presented certain limitations of the proposed trans-
formation, originating from the different formalisms of both sys-
tems, and how some of these limitations can be bypassed for prac-
tical applications.

Finally, we have introduced the complex AutoVision example
and demonstrated the application of our verification approach. By
means of the model checker we have found some unsatisfied prop-
erties in our implementation, which have to be corrected in subse-
quent design steps.

7. REFERENCES
[1] G. Behrmann, A. David, K. Larsen, O. Moller, P. Pettersson,

and W. Yi. UPPAAL - Present and Future. IEEE Conference
on Decision and Control, 2001.

[2] K. Bondalapati and V. K. Prasanna. Reconfigurable
Computing Systems. Proceedings of the IEEE,
90(7):1201–1217, 2002.

[3] C. Claus, W. Stechele, and A. Herkersdorf. Autovision - A
Run-time Reconfigurable MPSoC Architecture for Future
Driver Assistance Systems. it - Information Technology,
49(3):181–186, 2007.

[4] S. D. Craven and P. M. Athanas. High-Level Specification of

39

Runtime Reconfigurable Designs. In T. P. Plaks, editor,
ERSA, pages 280–283. CSREA Press, 2007.

[5] H. P. Dacharry and N. Giambiasi. A formal verification
approach for DEVS. In SCSC: Proceedings of the 2007
summer computer simulation conference, pages 312–319,
San Diego, CA, USA, 2007. Society for Computer
Simulation International.

[6] A. Gupta. Formal Hardware Verification Methods: A Survey,
volume 1, 1992.

[7] F. Herrera and E. Villar. A framework for heterogeneous
specification and design of electronic embedded systems in
SystemC. ACM Transactions on Design Automation of
Electronic Systems, 12(3):1–31, 2007.

[8] P.-A. Hsiung, C.-S. Lin, and C.-F. Liao. Perfecto: A
SystemC-based Design-Space Exploration Framework for
Dynamically Reconfigurable Architectures. ACM Trans.
Reconfigurable Technol. Syst., 1(3):1–30, 2008.

[9] W. K. Lam. Hardware Design Verification: Simulation and
Formal Method-Based Approaches. Prentice Hall Modern
Semiconductor Design Series. Prentice Hall PTR, Upper
Saddle River, NJ, USA, 2005.

[10] K. G. Larsen, P. Pettersson, and W. Yi. UPPAAL in a
Nutshell. International Journal on Software Tools for
Technology Transfer STTT, 1(1-2):134–152, 1997.

[11] F. Madlener, S. A. Huss, and A. Biedermann. RecDEVS: A
Comprehensive Model of Computation for Dynamically

Reconfigurable Hardware Systems. In 4th IFAC Workshop on
Discrete-Event System Design (DESDes’09), Oct. 2009.

[12] F. Madlener, H. G. Molter, and S. A. Huss. SC-DEVS: An
efficient SystemC Extension for the DEVS Model of
Computation. In ACM/IEEE Design Automation and Test in
Europe (DATE’09), Apr. 2009.

[13] H. G. Molter, F. Madlener, and S. A. Huss. A System Level
Design Flow for Embedded Systems based on Model of
Computation Mappings. In 4th IFAC Workshop on
Discrete-Event System Design (DESDes’09), Oct. 2009.

[14] L. Morihama, V. Pasuello, and G. A. Wainer. Automatic
verification of DEVS models. In Proceedings of SISO Spring
Interoperability Workshop, Orlando, FL. U.S.A, 2002.

[15] H. Patel, S. Shukla, E. Mednick, and R. Nikhil. A rule-based
model of computation for SystemC: integrating SystemC and
Bluespec for co-design. In Proc. of the ACM and IEEE Intl.
Conf. on Formal Methods and Models for Co-Design,
MEMOCODE ’06., pages 39–48, July 2006.

[16] M. Santambragio. Hardware-Software Codesign
Methodologies for Dynamically Reconfigurable Systems.
PhD thesis, Politecnico Di Milano, Italy, 2008.

[17] J. Weingart. Verifikation von DEVS Modellen für
rekonfigurierbare Systeme. Diploma thesis, Dept. of
Computer Science, Technische Universität Darmstadt,
Germany, Sept. 2009.

[18] B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of
Modeling and Simulation. Academic Press, Inc., 2000.

40

