
Efficient Inter-Process Synchronization for Parallel
Discrete Event Simulation on Multicores

Pavol Bauer, Jonatan Lindén, Stefan Engblom and Bengt Jonsson
Dept. of Information Technology, Uppsala University

{pavol.bauer,jonatan.linden,stefane,bengt}@it.uu.se

ABSTRACT
We present a new technique for controlling optimism in
Parallel Discrete Event Simulation on multicores. It is de-
signed to be suitable for simulating models, in which the
time intervals between successive events between different
processes are highly variable, and have no lower bounds.
In our technique, called Dynamic Local Time Window Es-
timates (DLTWE), each processor communicates time es-
timates of its next inter-processor event to (some of) its
neighbors, which use the estimates as bounds for advance-
ment of their local simulation time. We have implemented
our technique in a parallel simulator for simulation of spa-
tially extended Markovian processes of interacting entities,
which can model chemical reactions, processes from biology,
epidemics, and many other applications. Intervals between
successive events are exponentially distributed, thus having
a significant variance and no lower bound. We show that
the DLTWE technique can be tuned to drastically reduce
the frequency of rollbacks and enable speedups which is su-
perior to that obtained by other works. We also show that
the DLTWE technique significantly improves performance
over other existing techniques for optimism control that at-
tempt to predict arrival of inter-process events by statistical
techniques.

Categories and Subject Descriptors
I.6.8 [Simulation and Modeling]: Types of simulation—
Discrete Event,Parallel

Keywords
Parallel Discrete-Event Simulation, PDES, Optimism con-
trol, Multicore, Spatial Stochastic Simulation

1. INTRODUCTION
Discrete Event Simulation (DES) is an increasingly im-

portant tool for evaluating system models in all fields of

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGSIM-PADS’15, June 10–12, 2015, London, United Kingdom.
Copyright c© 2015 ACM 978-1-4503-3557-7/15/06 ...$15.00.
DOI: http://dx.doi.org/10.1145/2769458.2769476.

science and engineering. To improve the capacity and per-
formance of DES simulators, several techniques for Parallel
DES (PDES) were developed in the 90’s [26, 20, 25, 15]. Par-
allelization made it possible to simulate large system models,
but it was challenging to achieve good speedup correspond-
ing to the number of employed processors. A major diffi-
culty was that PDES requires fine-grained synchronization
between processing elements, which was not easy to realize
efficiently on multiprocessors at that time, given the com-
paratively long communication delays between processing
elements. With the current advent of multicore processors,
these delays have decreased, triggering the development of
new techniques for PDES targeting multicores (e.g., [7, 27,
35]).

In PDES, the simulation model is partitioned onto logical
processes (LPs), each of which evolves its sub-model along
a local simulation time axis. LPs exchange timestamped
events to incorporate inter-LP dependencies. Each LP must
ensure that the processing of incoming events is correctly
interleaved with local events. The problem with incoming
events that violate an LP’s local timestamp ordering (so-
called stragglers) can in principle be handled in two ways:
conservative approaches allow an LP to process an event
only when it is guaranteed that no straggler will later ar-
rive [26]; optimistic approaches allow stragglers by invoking
suitable corrective action (rollback) [20, 25]. In purely con-
servative approaches, local execution of LPs may be blocked
excessively unless inter-LP events can always be predicted
long in advance (e.g., when simulating networks with long
communication latencies), which most often is not possible.
On the other hand, in optimistic approaches, performance
may be damaged by excessive numbers of rollbacks. Many
approaches to PDES therefore allow stragglers, but control
the optimism by various heuristic techniques, based on, e.g.,
observed frequency of rollbacks [29, 8], patterns of past inter-
LP messages [14], etc.

In this paper we present a new technique for controlling
optimism in PDES. It is particularly designed for high effi-
ciency when simulating models in which the time intervals
between successive inter-LP events are highly variable and
have no lower bounds. Such models pose severe difficulties
for both conservative and existing variants of optimistic ap-
proaches. Our technique, called Dynamic Local Time Win-
dow Estimates (DLTWE), exploits the opportunities for fast
multicore inter-LP communication. DLTWE assumes that
an LP can reasonably estimate timestamps of its next k out-
going inter-LP events, where k is a tuneable parameter of
our technique. Each LP continuously communicates these

183

estimates to its corresponding neighboring LPs, which use
the estimates as bounds for advancing their local simulation
time. Since the communicated timestamps are merely esti-
mates, DLTWE does not rule out the occurrence of strag-
glers, meaning that each LP must perform rollbacks when
needed. If the estimates are sufficiently accurate, then the
number of rollbacks should be small, allowing the simulator
to operate with high efficiency.

We have developed the DLTWE technique in the context
of stochastic spatial simulation of models governed by the
mesoscopic reaction-diffusion master equation (RDME) [4].
Here the model’s geometry is discretized into small sub-
volumes (a.k.a., voxels), each of which contains a discrete
number of species (e.g., molecules). In each subvolume the
species obey prescribed stochastic reaction laws and the
species may move (by diffusion) to other neighboring sub-
volumes. When simulating an RDME model using PDES,
the subvolumes are partitioned onto LPs. Hence, a diffu-
sion event between two boundary subvolumes causes inter-
LP communication. By the Markovian nature of the model,
the waiting time of any event is an exponentially distributed
random variable; thus the waiting time has a significant vari-
ance and no lower bound.

In the present paper we show that the DLTWE technique
has small overhead when implemented on a shared-memory
multicore processor. In our simulator, each LP maintains a
list of future events, whose occurrence times have already
been sampled; this is already a component of our technique
for simulating RDME models [3]. We show how the DLTWE
technique can be tuned by limiting how far into the future
DLTWE estimates will be provided: The cost of providing
more accurate DLTWE estimates further into the future can
be tuned, both against the cost of rollbacks caused by poor
estimates and against achieving limited optimism in contexts
where rollbacks are relatively inexpensive.

In the paper, we also demonstrate the effect of a technique
to limit the cost of rollbacks by reversing only those pro-
cessed events that are causally dependent on the straggler
that caused the rollback in the first place. Less costly roll-
backs also allow more optimism in the simulation, thereby
limiting waiting and increasing overall simulation efficiency.

In our evaluation, we show how our implementation of
the DLTWE technique enables speedups in parallel simula-
tion of RDME models, which is superior to that obtained by
other works. We support this comparison by a detailed pro-
filing of the simulator behavior, which shows how DLTWE
significantly reduces both the cost of unnecessary blocking
and of excessive rollbacks. In particular, we compare the
DLTWE technique against other existing techniques for op-
timistic control, such as the Probabilistic Adaptive Direct
Optimism by Ferscha [14], and show that employing the
DLTWE results in at least a doubling of parallel efficiency.

After reviewing related work in the next section, we review
the class of spatial stochastic simulation models considered
by our simulator in Section 3. A detailed description of our
parallelization algorithm, including the DLTWE technique,
is given in Section 4. Section 5 contains a detailed evalua-
tion of the performance of our parallelization technique, in-
cluding a detailed breakdown of the simulation effort, and a
comparison with other techniques for optimism control. Sec-
tion 6 contains conclusions and directions for future work.

2. RELATED WORK
Numerous methods for synchronization in PDES have been

proposed. Extensive surveys are provided in [15, 9, 18]; here
we can only review a selection.

Synchronization methods can be coarsely classified into
conservative [26] and optimistic [20, 25]. Each approach
has its drawbacks, which subsequently proposed techniques
aim to mitigate. For instance, conservative time windows [1]
are used to increase parallelism in a purely conservative ap-
proach: this assumes that there is always a guaranteed lower
bound on the delay until the next inter-LP event, which does
not exist in stochastic simulations that we consider.

Optimistic approaches [20, 25] have the potential to achieve
higher parallelism, but performance may be damaged by
excessive rollbacks. Many techniques have been developed
for controlling the optimism and limiting the frequency of
rollbacks. One idea is to employ dynamically moving time
windows that bound how far each LP can advance its lo-
cal time (e.g., [31, 33]). Synchronization between time win-
dows typically assumes frequent calculation of global virtual
time (GVT), which is an expensive global calculation, for
which a special high-speed network is recommended. A fur-
ther development of these approaches is the class of “near-
perfect” state information (NPSI) protocols, including the
elastic time algorithm [32]. Here, the bound is based on
GVT and information about future messages to neighboring
LPs, which is computed and communicated over a special
high-speed network. Our DLTWE approach is also based
on controlling optimism by information propagated between
LPs; however, we show how such an idea can be realized on a
modern multicore without using such a high-speed network.

There are also approaches where optimism control can
be performed by LPs based on locally available informa-
tion, not requiring a special high-speed network. In some of
these techniques, each LP autonomously regulates its event
processing speed against parameters, such as frequency of
rollbacks [29, 8]. Another approach is to use the pattern of
past incoming inter-LP messages [14] to predict the time of
the next incoming message by statistical techniques, thereby
obtaining a bound for advancement of local time. We com-
pare this approach to our technique in Section 5.5. A study
where model-specific information has been used to extract
additional synchronization information (in the form of an ex-
tended lookahead) is presented in [24]. In our approach we
also make use of model-specific knowledge; we extract rel-
evant entries from the event queue and communicate them
to neighbors as DLTWEs.

Other performance-enhancing techniques in optimistic
PDES include to avoid rollbacks due to out-of-timestamp-
order when this is possible. Chen and Szymanski [6] intro-
duce a “lookback”, a limited history of recent events. When
a straggler event arrives, it is checked against the history,
and if no causality error is found, the event is processed as if
arriving in order. Leong et al. [23] view the processes in the
simulator as objects of abstract data types, and messages
as operations being performed on the objects. Some of the
operations commute with each other, and hence rollbacks
can be avoided. Recently, techniques for PDES that specifi-
cally target multicores have been developed. One approach
is to allow each subdomain to be accessed by several cores
(e.g., [7, 27]), thereby achieving better load balancing.

184

We conjecture that for our work, this benefit would be
more than outweighed by the cost needed for synchronizing
accesses to shared data. Wang et al. [35] present a multicore
NUMA-aware modification of the general optimistic simula-
tor ROSS [5]. We believe that our simulator would gain from
being optimized for a NUMA architecture as well, such an
improvement is however orthogonal to what we present here.

Parallel simulation of RDME models using exact numer-
ical methods was previously addressed by [21, 34, 10]. The
simulators are implemented in MPI, where each LP is mapped
to an MPI process. Each LP simulates a subvolume [10,
34] or a larger subdomain [21]. As discussed by Dematté
and Mazza [10], conservative simulation of RDME models
is infeasible due to the lack of precise lookahead. Hence,
simulators rely on optimistic protocols. A reduction of roll-
back cost for RDME models was previously implemented by
a static time window from the GVT [21] or adaptive pro-
tocols, such as Breathing Time Warp [34]. A more general
class of diffusive systems can also be represented in Cell-
DEVS, parallel simulation of such models has been studied
by Jafer et al. [19].

3. SPATIAL STOCHASTIC SIMULATION
In this section, we review the class of spatial stochastic

simulation models considered by our simulator.
The reaction-diffusion master equation (RDME) is a frame-

work to describe the dynamics of spatially extended Marko-
vian processes of interacting entities. As the name sug-
gests, the RDME is a suitable model for chemical reactions
in a diffusive environment, but processes from biology, epi-
demics, and many other applications may also be success-
fully treated. In particular, the RDME is particularly suit-
able for systems where discrete effects (due to small popu-
lations) and thermal noise should not be neglected.

The spatial domain of interest is divided into subvolumes,
each of which maintains a copy number (discrete count) of
all participating species. The dynamics of the model is then
a continuous-time Markov chain over the state space con-
sisting of all copy numbers in all subvolumes. The state
transitions fall in one of two categories, (i) a reaction event
acts in a single subvolume by removing a combination of
species and replacing it with a different combination, (ii) a
diffusion event moves a single unit of one species from one
subvolume to a neighboring subvolume, and hence changes
the state of two subvolumes. The waiting time for each tran-
sition is exponentially distributed with an intensity that is
proportional to the product of the copy numbers of the in-
volved species.

As a concrete example, a reaction from the Lotka-Volterra
predator-prey model described in Section 5.1 reads

B + C
r−→ 2C, (1)

that is, in a particular subvolume one unit of B (prey) is
consumed and one unit of C (predator) is produced. The
intensity for this event is proportional to the product of the
number of B’s and C’s, where r is the constant of propor-
tionality, later referred to as the reaction rate constant. At
any time t, the waiting time to the next event is exponen-
tially distributed with this intensity.

In a spatial context, prey in one subvolume can escape
by moving to another subvolume. If Bi and Bj denote the

population of preys in neighboring subvolumes i and j, then

Bi

qij−−→ Bj , (2)

expresses the event that one unit of prey in the ith subvol-
ume moves to the jth. The waiting time for this event is
equal to the product of Bi and the transport rate constant
qij . Depending on the scaling of this constant versus the
spatial units, different types of transport may in principle
be modeled. In this work we consider the diffusive scaling
regime, in which qij ∝ h−2, with h a length-scale (e.g., a ra-
dius) of the subvolumes. Notably, with a finer discretization
(i.e., h→ 0), the number of diffusion events will increasingly
dominate the Markov chain.

It was Gillespie [17] who popularized simulating indepen-
dent samples from master equations in general. For RDMEs
one of the first practical sampling algorithms was proposed
in [12], the Next Subvolume Method (NSM). The NSM is a
spatial extension of Gillespie’s Direct Method, incorporat-
ing features of the Next Reaction Method [16], which was
the first sampling algorithm using a sorted event queue for
efficiency.

In this work we consider a related method, the All Events
Method (AEM) [3]. The algorithm generates next event
times for each reaction and diffusion in all subvolumes and
stores them in an event queue. It proceeds by repeatedly
selecting the event with the smallest time from the event
queue, processes it by updating the state, and finally up-
dates the event queue by sampling the next time for the
event just processed. Also, at this stage, those rates which
have changed due to the state update need to be rescaled
(see [3] for details).

Being essentially a spatial extension of the Common Reac-
tion Path method [28], the AEM has the benefit of defining a
consistent stochastic flow in the sense of dynamical systems.
This means that the result from different simulation runs,
e.g., with slightly different model parameters, using the same
stream of random numbers will be comparable in a path-wise
sense. Besides implying a much reduced variance in statis-
tical estimators, this is also required when evaluating the
effect of small perturbations or coefficient uncertainties in a
path-wise sense (e.g., root-mean-square, see [3]).

Of relevance to the current application, the AEM stores
the waiting times for the next instance of each reaction or
diffusion event such that it is possible to estimate with rea-
sonable precision when specific events will happen, notably
including diffusion events between subvolumes. Another fea-
ture of more practical nature is that, by seeding the random
number generators in an identical way, the parallel simula-
tions yield identical results independently on the number of
LPs, thus ensuring correctness. These features come at a
certain cost, however, as the AEM requires to store more
entries in the event queue compared to, e.g., the NSM.

4. PARALLEL IMPLEMENTATION
In this section we detail our parallelization of the All

Events Method (PAEM), which implements the DLTWE for
a general class of RDME models.

In our parallel simulator, the subvolumes of the simulation
model are partitioned into subdomains, each of which is as-
signed to an LP. Each LP evolves the state of its subdomain
while maintaining three main data structures: (i) the sub-
domain state, i.e., for each subvolume, the number of entities

185

of each species (the copy number) as well as the timestamp
of the last event affecting the subvolume, (ii) a time-sorted
event queue, containing the next occurrence of each event
type (reaction or diffusion) for each subvolume in its sub-
domain, and (iii) a rollback history, which is a time-sorted
sequence of events already processed by this LP.

Each LP advances the simulation by processing events
that affect its subdomain. The LP repeatedly finds the next
event for processing, either in its event queue or in a mes-
sage from another LP, and processes it by (i) updating the
states of affected subvolumes, (ii) adding the event to its
rollback history, and (iii) adding the next event of the same
type and subvolume to its event queue. If the event is a
diffusion event which crosses a subdomain boundary, then a
message is transmitted to the neighboring LP; each pair of
LPs is connected by a FIFO channel in each direction.

Whenever an LP receives a diffusion message that causes
a causality violation (i.e., it is a straggler), it must perform a
rollback to the time immediately before the straggler’s times-
tamp, using its rollback history. We have implemented two
different versions of the rollback operation: a more costly
simple rollback and a less costly selective rollback. The se-
lective rollback is described further below. In the simple
rollback, the local time of the LP is reset to the time im-
mediately preceding the timestamp of the straggler, and the
events in the rollback history that occur after this timestamp
are processed “backwards”. All diffusion messages that had
been sent by the LP during the rollback interval must be
undone by sending corresponding anti-messages to the cor-
responding LPs. An anti-message cancels any event that
was sent earlier with the same or a later timestamp. The
receipt of an anti-message triggers rollbacks at the receiving
LPs if it cancels a message that has already been processed.

Since rollbacks triggered by stragglers hurt performance,
an LP should try not to advance its local simulation time
past the timestamp of any diffusion message that will be
received in the future. For this purpose, we have developed
the DLTWE (Dynamic Local Time Window Estimate) tech-
nique, whereby each LP communicates to a subset of its
neighboring LPs an estimate of the timestamp of the next
diffusion to respective LP; these estimates are obtained from
the current contents of the event queue. An LP does not
advance its local simulation past the time of the earliest in-
coming time estimate. The optimism of the simulation is
controlled by the tuning of the DLTWE computation, as
described in more detail in Section 5.4.

To reduce the impact of rollbacks, we have developed a
technique for selective rollback. An LP that receives a strag-
gler or an anti-message performs a refined analysis before
executing a rollback. Rather than merely comparing the
timestamp of the incoming diffusion message with its local
simulation time, the receiving LP finds the causality viola-
tions that are incurred by the incoming message. The LP
finds the processed events that are causally dependent on the
straggler or anti-message using the trace. Only these events
are rolled back. The cost of selective rollback is typically
significantly lower than the cost of simple rollback.

4.1 The simulator main loop
Algorithm 1 is a pseudocode description of the main loop

executed by each LP. Lines 2 through 6 define the main
data structures. These are
• EventQueue is a time-sorted priority queue containing

the scheduled local events;

• SubvolumeState represents the state of each subvol-
ume in the subdomain, i.e., the number of entities of
each species in each subvolume, as well as the times-
tamp of the last event affecting the subvolume,

• History is a time-sorted sequence of events already pro-
cessed by the LP; old events are regularly removed
from the history by fossil collection, which we do not
further describe here,

• Channels contains an incoming message channel for
each neighboring LP, and

• Dltwej,i consists of a DLTWE estimate from LPi to
LPj , defined for each pair of neighboring LPs.

For an event e, we let e.time denote its timestamp; for a
diffusion event e, we let e.dest denote its destination subvol-
ume. For a subvolume s, we let dom(s) denote the index of
the LP to which s belongs.

The main simulator loop consists of two phases. The first
phase (lines 8–18), finds the next event to be processed, as
follows. First, for each incoming channel, the first message
that is not canceled by a later anti-message in the channel,
is retrieved by means of the function RetrieveMsg. In-
tuitively, the retrieved message is the first one in the chan-
nel that should be processed after all rollbacks induced by
anti-messages have been performed. The earliest of these
messages is assigned to emsg. If emsg is a straggler which
violates causality in its destination subvolume (checked at
line 9) then a rollback is performed. Second, the earliest
event elocal in the event queue is read. If emsg is earlier than
elocal (line 12), then emsg is assigned to e for processing.
Otherwise, the event elocal is assigned to e for processing,
but only if no DLTWE estimate is violated (line 15). If a
DLTWE estimate is violated, the LP blocks until the ex-
pected message or a message from another neighbor is re-
ceived, at which time the main loop is restarted, in order to
process the message (line 17).

The second phase (lines 19–30) updates the subdomain
state of the LP by processing the event e that was selected
in the first phase. It starts by checking whether e is a “local
straggler”, i.e., a local diffusion event (between subvolumes
of the same LP) that would cause a local causality error
(line 19), in which case a rollback is necessary. Thereafter, e
is processed by adding it to the event history (line 21), up-
dating the states of affected subvolumes, and updating the
times of future events in the event queue that are affected
by the state change(s) (lines 22 through 26). If e is a dif-
fusion to another subdomain, a message is sent (line 28) to
the appropriate LP. After that, the DLTWEs are updated
(line 30) to inform the neighboring LPs of the estimated
times of the next diffusion events.

DLTWEs are computed based on outgoing diffusion events
that can be found in a prefix of the event queue, thus not
considering diffusion events that are scheduled far into the
future. If no relevant diffusion events for a specific LP are
found in the prefix, the corresponding DLTWE is set to in-
finity. The length of the considered prefix is a tuneable pa-
rameter of our approach. A short prefix induces less effort
for DLTWE computation, but will generate DLTWE esti-
mates for only a subset of neighboring LPs, inducing more
optimism in the simulation; too much optimism may result
in high cost for rollbacks. A long prefix, on the other hand,
costs more effort for DLTWE computation, and will avoid
excessive cost of rollbacks, but may in some context also in-

186

Algorithm 1: Main loop of Parallel AEM Simulator, executed by each LP.

1: LPs are indexed 1 . . . N , Subvolumes of LPi are indexed 1 . . . ni.
Each LP contains:

2: EventQueue . Time-sorted priority queue of scheduled events
3: SubvolumeState[1 . . . ni] . Current state of subdomain
4: History . Event history, used for rollbacks
5: Channels[neighbor LPjs] . Incoming message channels, one for each neighboring LP

Additionally, LPs communicate via global DLTWEs:
6: Dltwej,i . A DLTWE from LPj to LPi (defined for each pair of neighboring LPs)
7: while true do

. First phase: find the next event to process
8: emsg ← earliest message in {RetrieveMsg(chan) | chan ∈ Channels} . Retrieve, but do not pop, the earliest process-
9: if emsg.time < SubvolumeState[emsg.dest].time then . able incoming message.

10: SelectiveRollback(emsg) . If emsg is a straggler, then a rollback must be performed.

11: elocal ← earliest event in EventQueue
12: if emsg.time ≤ elocal.time then . If m precedes any local event
13: e ← pop emsg from its message channel . The event e to be processed is from the incoming channels
14: else
15: while ∃ neighboring LPj s.t. Dltwej,i < elocal.time do . If next event is later than some DLTWE
16: if ∃enew ∈ Channels[LPj] or

exists message in other channel earlier than Dltwej,i then
17: goto 8 . restart loop from line 8

18: e ← pop elocal from event queue . Otherwise the event to be processed is the next local one

. Second phase: process selected event
19: if e is a local diffusion event and SubvolumeState[e.dest].time > e.time then
20: SelectiveRollback(e)

21: add e to History
22: update state of SubvolumeState[e.subvol]
23: update timestamps of affected future reactions/diffusions in EventQueue
24: if e is a diffusion then
25: if e.dest is local then
26: update SubvolumeState[e.dest]
27: else
28: send diffusion message to owner of e.dest

29: for each neighbor LPj do
30: Dltwei,j ← min ({ediff .time | ediff ∈ prefix(EventQueue) and ediff .dest is in the domain of LPj} ∪∞)

duce too little optimism. How to tune the prefix length to
make this trade-off is examined in Section 5.4.

As an optimization, the updates of the DLTWEs at line 30
are performed only when necessary, i.e., when the estimated
time of some future inter-LP diffusion event is updated. The
DLTWE estimates are communicated using a single mem-
ory cell per direction and neighboring LP-pair, which is only
written to when this results in a new value, to avoid unnec-
essary coherence traffic.

4.2 The SelectiveRollback function
The function SelectiveRollback(ecause), shown in Al-

gorithm 2, reverses the effect of all events processed by an
LP at or after time ecause.time, that are causally dependent
on ecause. If a causally dependent event has been sent to a
neighbor, a corresponding anti-message will be sent. Differ-
ent subvolumes may be rolled back to a different timestamp.
First, we let H contain the part of the history that may be
rolled back (line 2). After that we define a set D of subvol-
ume timestamp pairs, 〈subvolume, timestamp〉. Each pair
〈s, t〉 defines the time t to which subvolume s has to be rolled
back. Initially, if ecause is a straggler, D must at least contain
〈ecause.dest, ecause.time〉 (line 4). If ecause is an anti-message,

D instead contains all destination subvolumes of messages
received from dom(ecause) after time ecause.time, and their
respective time (line 6). Thereafter, D is completed to con-
tain all 〈subvolume, timestamp〉 pairs that are causally de-
pendent on ecause. More precisely, for every diffusion event
between any two subvolumes s, s′ of this LP at time t′′, we
have that if 〈s, t〉 ∈ D and t < t′′, there exists 〈s′, t′〉 ∈ D
such that t′ ≤ t′′ (line 7). In the main while loop, the sub-
set of the history H is traversed backwards in time, event
by event (line 8). Each event being incident on some subvol-
ume occurring in D, after the corresponding time t, is rolled
back. An event e is reverted by reversing the state changes
of the affected subvolumes, and updating the intensity of the
corresponding reaction or diffusion accordingly. If the roll-
back was initiated by an anti-message, and e is an incoming
diffusion originating from a neighbor LP that did not send
this anti-message, then e will be pushed back to the top of
its originating message channel (checked at line 12). If one
or more diffusion events have been sent to a neighbor LPj

during the rollback interval, a single anti-message will be
sent, containing the timestamp of the earliest message sent
to LPj after t (starting at line 14).

187

Algorithm 2: Rollback events at or after time t.

1: function SelectiveRollback(event ecause)
2: H ← {e | e ∈ History and e.time ≥ ecause.time}
3: if ecause is straggler then
4: D ← {〈ecause.dest, ecause.time〉}
5: else . ecause is an anti-message
6: D ← {〈e.dest, e.time〉 | e ∈ H, dom(e.subvol) =

dom(ecause.subvol)}
7: D ← extend D under causal dependence
8: while e← pop latest event in H do
9: if ∃〈s, t〉 ∈ D s.t.

e.subvol = s and e.time ≥ t then
10: revert e
11: Pop e from History
12: if e.subvol ∈ LPj and not (isanti(ecause) and

dom(ecause.subvol) = LPj) then
13: push e back to front of Channels[LPj]

14: for each neighbor LPj do . send anti-messages
15: ediff ← earliest rolled back diffusion to LPj

16: send anti-message with time ediff .time to LPj

4.3 The RetrieveMsg function
The function RetrieveMsg(chan) returns the first mes-

sage in the incoming channel chan that can be meaningfully
processed, i.e., it is not undone by a corresponding anti-
message already present in chan. The function starts by
finding the timestamp of the earliest anti-message in the
channel (line 3). Thereafter, messages are popped and dis-
carded from the channel, until either the first message pre-
ceding the earliest anti-message is encountered, or until the
anti-message itself is encountered (lines 4–7). In the former
case, the function returns the message immediately without
popping it from chan. In the latter case, a rollback corre-
sponding to the anti-message is performed (line 8) and the
procedure is repeated. Thus, there are two possible states
of the channel after the completion of the function: a) ei-
ther there are no anti-messages left in the channel, or b) the
first message in the channel is a diffusion event and has a
time earlier than the time of the earliest anti-message in the
channel.

Algorithm 3: Locating the first processable message.

1: function RetrieveMsg(channel chan)
2: while chan contains anti-messages do
3: eanti ← earliest anti-message in chan
4: for e← first message in chan do
5: if e.time < eanti.time then return e

6: pop e from chan
7: if e = eanti then goto 8

8: SelectiveRollback(eanti.event)

9: return first message in chan

5. PERFORMANCE EVALUATION
In this section, we evaluate the performance of our par-

allelization technique. The aim is to answer the following
questions.

• How does our technique scale with the number of LPs?
In Section 5.2 we determine the speedup obtained on
benchmarks, and investigate the dependency on model
parameters.

• How does the parallelized simulator behave? In Sec-
tion 5.3 we describe how the computation effort is
spent on different activities, exposing potential bot-
tlenecks.

• How should the DLTWE technique be tuned? In Sec-
tion 5.4 we describe how to tune the cost for the com-
putation of the DLTWE estimate against the gain in
reduced rollback frequency.

• How does the DLTWE technique compare to other
techniques? In Section 5.5, we compare the DLTWE
technique to adaptive optimism control techniques, that
are based on local history. In Section 5.6, we compare
our parallel simulator to other existing simulators for
RDME models.

The performance was evaluated on three sets of benchmarks,
described in more detail in Section 5.1. All experiments were
run on a 4-socket Intel Sandy Bridge E5–4650 machine, each
socket having 8 cores and a 20 MB shared L3-cache. Hy-
perthreading was used, resulting in a total of 16 hardware
threads per processor. An LP is always assigned to a sin-
gle thread. Speedup is defined as the wall-clock time of the
sequential algorithm (AEM) over the wall-clock time of par-
allel algorithm (PAEM). Three-dimensional geometries were
constructed using Comsol Multiphysics 4.3 and converted to
computational models using the URDME framework [11].
The two-dimensional structured meshes used in the spa-
tial predator and prey model were constructed using cus-
tom Matlab scripts. The resulting meshes were divided into
subdomains using the multilevel k-way partitioning method
provided by the Metis library [22]. Metis optimizes the
partitioning for minimal number of diffusions crossing sub-
domain boundaries, while maintaining an equal number of
subvolumes in each subdomain. The partitioning provides a
balanced simulator workload, which we believe has an im-
pact on the parallel performance.

5.1 Benchmarks
We investigated the behavior of our simulator on three

benchmarks. In the first benchmark we evaluated the scal-
ing as a function of the geometry and the ratio of diffusion
to reaction events (D:R). The D:R was measured during a
sequential profiling run. The second benchmark is a spatial
predator and prey model in two dimensions, which was pre-
viously used for performance evaluation by others [34]. The
last benchmark is the simulation of the Min-protein system
in a three-dimensional model of the E. Coli bacterium.

5.1.1 Reversible isomerization
We created spatial models from different three-dimensional

geometries, namely a sphere, a disc, and a rod, all of equal
volume. The RDME model considered consists of two freely
diffusing species, A and B, each with initial copy numbers
of 1000 per subvolume. We prescribed the simplest possible
reversible isomerization

A
c−→ B, B

c−→ A, (3)

where the reaction rate c is selected such that the D:R is 1
when both species diffuse at a diffusion rate of 1. The dif-
fusion rates of both species were varied in {1, 100}, thereby

188

increasing the D:R. We also varied the volume of the geome-
tries in {1, 10, 100}. For the sphere and the disc we did this
by increasing the radius, keeping the height of the disc at the
constant value 0.2. For the rod, the radius was kept at the
value 0.2 while the length was increased. As all discretiza-
tion parameters remained the same for all model configu-
rations, the number of subvolumes in each model grew to
approximately {1500, 15000, 150000}. In the following, we
refer to the specific model configurations as [vx,dy], denot-
ing that the model has a volume of x and that the diffusion
rates for both species are y.

5.1.2 Spatial predator-prey model
This benchmark is the spatial extension of the Lotka-

Volterra model, proposed by Schinazi [30]. We use the model
parameters proposed by Wang et al. [34]. The system con-
tains three species, A, B, and C, where the initial copy
number for each is set to 1000 per subvolume. The model
reads

A + B
0.01−−→ A + 2B,

B + C
0.01−−→, 2C

C
1−→ ∅.

(4)

Note that the count of species A is not changed in the first
reaction, but A is a factor of the total reaction intensity. The
geometry is a two-dimensional square with a varying side of
length {64, 200, 400} units and with square subvolumes of
unit area. The diffusion rates of species B and C are either
d1
B = 2.5 and d1

C = 5, or d2
B = 5 and d2

C = 10, while dA = 0
in all cases. In the first case, the D:R is approximately 1,
and about 2 in the second.

5.1.3 A model of the Min-protein system
As a rather challenging benchmark we used a model of

a Min-protein system in a three-dimensional model of an
E. Coli bacterium [13]. The model contains five chemical
species interacting in a system of five reactions. The geome-
try is pill-shaped, resulting from the union of a cylinder with
two spheres (Figure 1). The complete set of reaction- and
diffusion-rates can be found in [13], and the model is also
available for download in the current release of URDME [2].
We simulated the model at two different mesh resolutions,
hence at two different ratios of reaction to diffusion events
since the diffusion rate is inversely proportional to the square
of the subvolume length. The coarse mesh (Figure 1A) con-
tained 1555 subvolumes and the D:R was approximately 250.
In the fine mesh (Figure 1B) the system consisted of 13307
subvolumes, and the D:R was about 1400.

5.2 Scalability
In this section, we evaluate how the simulator performance

scales with increasing LP-count, and how the scaling de-
pends on the particular model. In order to relate the models
better to the measured performance we identify four poten-
tial performance indicators:
• Subvolume count : The number of subvolumes in the

model.
• The diffusion to reaction ratio (D:R): The ratio of sim-

ulated diffusion to reaction events.
• Average degree: The average number of neighbors of

each LP.
• Inter-LP diffusion ratio (Inter-LPD): The number of

diffusions crossing subdomain boundaries over the to-
tal number of diffusions. We also tried including the

Figure 1: The spatial discretization of the E. coli
bacterium geometry; coarse-grained (A) and fine-
grained (B) tetrahedral meshes.

reactions into the ratio, but this yielded a worse indi-
cator. We discuss the impact of reactions separately
under the D:R.

In Table 1 we present an overview of the benchmark con-
figurations together with the introduced indicators. As the
indicators inter-LP diffusion ratio and the average degree
depend on the number of partitions, the values are listed for
the partitioning to 16, 32 and 64 subdomains. We also list
the sequential and parallel wall-clock time measured for all
model configurations. Note that to measure the sequential
time we used the sequential version of the algorithm (AEM),
thus no parallelization overhead is included in the measure-
ment. Moreover, the simulated time range was freely varied
for each configuration, thus no direct relationship exists be-
tween wall-clock times shown in different rows.

Lastly, we list the parallel efficiency for all experiments
and the same set of partitions. The parallel efficiency calcu-
lates as T1(TN ∗N)−1, where T1 is the sequential simulation
time and TN the parallel simulation time using N LPs.

We investigated the relationship of the introduced indica-
tors to the measured parallel efficiency. To study the influ-
ence of the inter-LP diffusion ratio (inter-LPD) we observe
the scaling of the rod, disc and sphere models at the [d1]
configuration shown in Figures 2a, 2b and 2c. We see that
large models (v100) scale significantly better than models of
medium (v10) and small size (v1). As shown in Table 1, a
large model size leads to a high private work-load per LP
and thus a low inter-LPD. Furthermore, large models with
a lower inter-LPD (e.g., rod) achieve a higher parallel effi-
ciency than models with a higher inter-LPD (e.g., sphere).
The inter-LPD increases at an increasing LP-count, as the
average subdomain size and the number of internal diffusions
decreases. This noticeably affects the scaling of small mod-
els (v1), where doubling the LP-count significantly reduces
the parallel efficiency. Hence, we find that the inter-LPD
is an accurate indicator for the parallel performance of our
simulator.

To study the impact of an increasing diffusion to reac-
tion ratio (D:R) we present the scaling of the sphere model
at configurations [d1] and [d100] shown in Figure 4. Here
we find that the difference in parallel performance due to
the increased D:R is small (< 10%). Furthermore, for large
models (v100) we observe that the parallel performance is
independent of the D:R, as shown in Table 1. This is an un-
expected finding, as we assumed that the D:R has a stronger
influence on the scaling due to its effect on private workload.

To study how the parallel efficiency depends on the aver-
age degree in isolation, we compare different configurations

189

Model Conf. #Subvol. D:R Avg. Degree Inter-LPD.% Time [s] Efficiency
16 32 64 16 32 64 Seq. 16 32 64 16 32 64

[v1,d1] 1437 1 7.6 8.8 10.3 24 32 42 198.7 34.7 29.9 21.9 0.36 0.21 0.14
[v1,d100] 1437 105 7.6 8.8 10.3 24 32 42 216.4 45.5 40.5 37.9 0.3 0.17 0.09
[v10,d1] 13575 1 7.8 8.8 10.8 12 15 21 259.8 37.7 23.1 13.7 0.43 0.35 0.3
[v10,d100] 13575 107 7.8 8.8 10.8 12 15 21 293.7 43.3 28.2 17.1 0.42 0.33 0.27
[v100,d1] 135228 1 7.9 9.8 10.8 6 8 10 545.1 64.1 31.1 12.6 0.53 0.55 0.68

Sphere

[v100,d100] 135228 109 7.9 9.8 10.8 6 8 10 476.1 53.3 24.5 11.6 0.56 0.61 0.64

[v1,d1] 1555 1 4.1 5 5.7 15 22 33 186.9 31.3 23.7 23.1 0.37 0.25 0.13
[v1,d100] 1555 91 4.1 5 5.7 15 22 33 190.2 33.5 26.8 30 0.36 0.22 0.1
[v10,d1] 13452 1 4.4 4.7 5.2 5 8 11 203.4 27.3 14.9 8.8 0.47 0.43 0.36
[v10,d100] 13452 85 4.4 4.7 5.2 5 8 11 204.4 26.8 15.9 9.7 0.48 0.4 0.33
[v100,d1] 125537 1 4.2 4.6 5.1 2 3 4 376.9 45.7 20.1 7.4 0.52 0.59 0.8

Disc

[v100,d100] 125537 82 4.2 4.6 5.1 2 3 4 282.7 34.2 14.9 5.5 0.52 0.59 0.8

[v1,d1] 1429 1 1.9 1.9 2.8 13 27 54 174.7 27.1 22.9 27.1 0.4 0.24 0.1
[v1,d100] 1429 90 1.9 1.9 2.8 13 27 54 177.6 31.1 30.1 33.8 0.36 0.19 0.08
[v10,d1] 14000 1 1.9 1.9 2 1 2 5 224.2 28 14.7 8.3 0.5 0.48 0.42
[v10,d100] 14000 90 1.9 1.9 2 1 2 5 232.6 27.7 15.6 9.3 0.53 0.47 0.39
[v100,d1] 139139 1 1.9 1.9 2 0 0 0 325.5 40.1 18 6.4 0.51 0.56 0.79

Rod

[v100,d100] 139139 91 1.9 1.9 2 0 0 0 357 42.2 19.7 6.9 0.53 0.57 0.81

[n64,d1] 4096 1 4.1 4.7 4.9 6 10 14 203.5 29.2 22.8 12.2 0.44 0.28 0.26
[n64,d2] 4096 2 4.1 4.7 4.9 6 10 14 324.6 51.6 41.2 33.4 0.39 0.25 0.15
[n200,d1] 40000 1 4.1 4.6 5 2 3 5 371.2 44.2 22.7 11 0.53 0.51 0.53
[n200,d2] 40000 2 4.1 4.6 5 2 3 5 592.6 72.3 34.6 20.9 0.51 0.54 0.44
[n400,d1] 160000 1 4 4.6 5.1 1 2 2 286.1 31.5 13.8 5.8 0.57 0.65 0.78

Pred.-
Prey

[n400,d2] 160000 2 4 4.6 5.1 1 2 2 387.1 50.5 22.2 9.1 0.48 0.54 0.67

[coarse,–] 1555 304 5.2 7.5 8.7 20 27 38 126 29.7 23 24 0.27 0.17 0.08Min-
System [fine,–] 13307 1517 4.9 7.3 8.9 10 14 20 539.9 80.4 53.1 34.1 0.42 0.32 0.25

Table 1: Overview of benchmark characteristics and results.

of geometries with the same Inter-LPD. Namely, the mod-
els disc [v10,d1] and sphere [v100,d1], both of which have
a Inter-LPD of 8% at the partitioning on 32 LPs. We find
that the sphere model has a higher average degree than the
disc model and the parallel efficiency is likewise increased.
Nonetheless, as the models are of different subvolume sizes,
we can not rule out the influence of unknown factors that
correlate with the average degree.

Lastly, we observe the effect of the subvolume count indi-
cator. It can be seen in Table 1 that a correlation with the
Inter-LPD and thus the parallel efficiency exist. Further-
more, the efficiency for simulation of large models (v100)
increases at increasing LP-count, which is not the case for
small or medium size models. We suspect that this outcome
is attributable to cache effects, as the partitioned model may
fit better into core-local cache levels.

To visualize the correlation of the inter-LP diffusion ra-
tio and subvolume count indicators to the parallel efficiency
we applied least-squares curve fitting to the data for all [d1]
models simulated on 64 LPs, as shown in Table 1. In Fig-
ure 3 we see the inter-LPD to parallel efficiency data fitted
with a negative exponential function, and the subvolume
count to parallel efficiency correlation fitted by a log-linear
relationship.

5.3 Detailed Behavior
In this section, we study in detail how the effort of the

simulator is allocated. The DLTWEs were tuned to achieve

Inter-LP diffusion ratio

0 10 20 30 40 50 60

p
a

ra
lle

l
e

ff
ic

ie
n

c
y

0

0.5

1
64 threads

log(subvolume count)

7 8 9 10 11 12

p
a

ra
lle

l
e

ff
ic

ie
n

c
y

0

0.2

0.4

0.6

0.8

Figure 3: Curve fitting of the inter-LPD and
subvolume-count indicators to the parallel efficiency
for all [d1] models simulated on 64 LPs.

the best performance for each model; hence the degree of
optimism varies, and as a consequence the allocation of ef-
fort may be distributed differently. To measure the differ-
ent parts of the effort, a lightweight instrumentation of the
simulator was performed. The instrumentation allows us to
break down the execution time into six parts of interest (line
numbers refer to Algorithm 1):

190

0
5

10
15
20
25
30
35
40
45
50
55

10 20 30 40 50 60

S
p

e
e
d
u
p

Number of threads

v1
v10
v100

(a) Rod[d1]

0
5

10
15
20
25
30
35
40
45
50
55

10 20 30 40 50 60

S
p

e
e
d
u
p

Number of threads

v1
v10
v100

(b) Disc[d1]

0
5

10
15
20
25
30
35
40
45

10 20 30 40 50 60

S
p

e
e
d
u
p

Number of threads

v1
v10
v100

(c) Sphere[d1]

Figure 2: Speedup for different configurations of the geometries rod, disc and sphere, the size is varied.

0

5

10

15

20

10 20 30 40 50 60

S
p

e
e
d
u
p

Number of threads

d1
d100

Figure 4: Speedup for the sphere[v10] model, D:R
d1 and d100.

• Waiting: Time spent on blocking due to DLTWEs.
(lines 15–17)

• Rollbacks: Time spent on processing anti-messages
and rollbacks. (lines 8,9 and 20).

• Redo: Time spent on redoing work that has been un-
done by a preceding rollback. We estimate that the
forward processing time is roughly equal to the back-
ward processing time of an event, thus we estimate this
value to be the same as Rollbacks.

• Local work: Time spent on processing of local events,
other than events that could be attributed to Redo.
(roughly lines 21–28, when e originates from the local
event elocal at line 18)

• Messaging: Time spent on processing of diffusion
messages other than anti-messages and messages that
could be attributed to Redo. (roughly lines 21–28,
when e originates from the message m at line 13)

• DLTWE computation: Time spent on computing
new DLTWEs, including scanning of the event queue.
(line 30)

Of the above, Local work and Messaging are considered use-
ful work, and the other parts are referred to as non-work.

The results of the breakdown analysis for the rod[d1],
disc[d1] and sphere[d1] models, large size (v100), are shown
in Figure 5. We see that the non-work part is completely
dominated by blocking due to DLTWEs. Only a lesser part
of the time is spent on rollbacks. Hence, the DLTWEs lead
to a largely conservative execution for these models. For
the sphere model, more time is spent on the processing of
messages in relation to the other models. This difference is
explained by the increased connectivity of the sphere model,

0

100

1 2 8 16243240485664 1 2 8 16243240485664 1 2 8 16243240485664

%
o
f

to
ta

l

Number of threads

local work
messaging

redo
rollbacks

waiting
DLTWE comp.

spherediscrod

Figure 5: Breakdown of the execution time for the
rod, disc and sphere models, size v100 and D:R d1.

whose average degree is the double of that of the disc model,
and five-fold in comparison to the rod.

0

100

1 2 8 16243240485664 1 2 8 16243240485664 1 2 8 16243240485664

%
o
f

to
ta

l

Number of threads

local work
messaging

redo
rollbacks

waiting
DLTWE comp.

spherediscrod

Figure 6: Breakdown of the execution time for the
rod, disc and sphere models, size v1 and D:R d1.

In Figure 6, a corresponding breakdown analysis for the
small models (v1) is shown. Here we see that a much larger
portion of the non-work time is spent on rollbacks, for the
disc and the sphere models. The DLTWEs have been tuned
for optimal performance in each case. For the small models
(v1), we see that for the best performance, a more optimistic
(i.e., allowing for more rollbacks) simulation is better. Over-

191

all, more time is spent on parallel overhead for small models,
which is in line with our expectation, as the amount of pri-
vate work per LP is very small.

5.4 Tuning the DLTWE Computation
In this section, we discuss how to tune the DLTWE com-

putation, and we show how the selective rollback technique
affects the performance in comparison to using non-selective
rollbacks.

The EventQueue of Algorithm 1 is implemented as two
separate queues, one for reactions and one for diffusions.
The diffusion queue contains both local and inter-LP diffu-
sion events. The DLTWEs are produced by scanning the
events in the diffusion queue (line 30 in Algorithm 1). The
length of the prefix being scanned is a tunable parameter of
our simulator, that affect the number of neighbors of each
LP for which the DLTWEs are updated. Scanning a longer
prefix of the diffusion queue results in a greater fraction of
the DLTWEs being updated, and thus a more conservative
simulation; furthermore, it requires more effort to update
the DLTWEs. Scanning a shorter prefix results in fewer
DLTWEs being updated (and thus set to infinity), and a
more optimistic simulation.

0

5

10

15

20

25

30

35

40

45

0 1 2 3 4 5 6 7 8

0.100.12 0.26 0.48 0.67

T
im

e
[s

]

number of outgoing inter-LP diffusions k

Avg. % of DLTWEs present

Selective rollbacks

Non-selective rollbacks

Figure 7: Total execution time for varying num-
ber of outgoing inter-LP diffusion events k being
scanned, and average percentage of DLTWEs com-
puted on the Predator-Prey[n200,d1] benchmark, on
64 threads.

We analyze how the performance depends on the num-
ber of outgoing inter-LP diffusions k found while scanning
a prefix of the diffusion queue, and also how this depen-
dency is affected by the total cost of performing rollbacks
during a simulation. For this, we run simulations under a
range of scan prefix lengths, on the Predator-prey[n200,d1]
model, both using the selective rollback technique and us-
ing the non-selective rollbacks. The results are displayed in
Figure 7. On the x-axis above the plot, the performance
is related to the average percentage of DLTWEs being up-
dated. On the x-axis below, the performance is related to
the number of outgoing inter-LP diffusions k. The execution
time of the simulation using selective rollbacks and using
non-selective rollbacks are shown for different lengths of the
scan prefix (and hence for different k). For a smaller k, the
performance of the non-selective rollback starts to decline
when the percentage of the DLTWEs being updated passes
below 50%. For the selective rollback, the performance does
not start to decline until 5%.

We see that in general the selective rollback technique al-
ways results in a superior or similar performance in compari-

son to the non-selective rollbacks. The optimal k is different
for the two techniques, using selective rollbacks it is substan-
tially shorter. This is because the effort of rollbacks is much
smaller, and thus the performance improves, as optimism in-
creases, even though the number of stragglers increase. We
also see that in general, the best performance is achieved
when quite a modest percentage of the DLTWEs between
the LPs are known.

5.5 Comparison to other techniques.
In this part we compare the DLTWE-synchronization tech-

nique to an adaptive protocol guided by the LP’s local his-
tory, namely the Probabilistic Adaptive Direct Optimism
Control (PADOC) proposed by Ferscha [14]. PADOC was
implemented in our simulator, replacing the DLTWE syn-
chronization. We have used non-selective rollbacks in this
comparison, as it was more efficient when using the PADOC
algorithm.

The PADOC algorithm relies on message arrival statistics
that are continuously collected on each LP. At each advance
of the local simulation time, the LP computes an estimate
of the next message arrival time based on the statistics and
the last arrival time. Depending on the distance from the
current simulation time to the estimate, the LP decides to
block for a constant amount of real time or or to proceed
with optimistic execution of local events. To be exact, the
decision is made by sampling of a sigmoidal probability den-
sity function described by a mean at the estimated future
arrival time. The steepness of the probability distribution
function is scaled with a constant in the range [0 1], where
a value closer to 1 implies a stronger confidence in the esti-
mator. In our experiments PADOC obtained the best per-
formance at a scaling constant of 0.1. This suggest a large
variance of the message arrival times in the simulations. We
used the arithmetic mean as the estimator of message arrival
statistics.

We evaluated PADOC on two benchmarks; the spatial
predator and prey model at the [n400,d1] configuration, and
the Min-system at the [fine] configuration. The speedup for
both models simulated using the PADOC or DLTWE proto-
col is shown in Figure 8a, 8c. For both models, the DLTWE
outperforms PADOC by a large margin. The breakdown of
the execution time is shown in Figure 8b and 8d. For each
LP-count, the execution time is normalized to the DLTWE
time, the left bar. We see that in general, DLTWE keeps
the time spent on rollbacks at a very modest level. It should
be noted that in the breakdown figures, the relative portion
of the waiting time is slightly bigger for the DLTWE than
if selective rollbacks would have been used. For PADOC,
waiting for neighbors and performing rollbacks takes up a
greater part of the total execution time. As the number of
LPs increases, the failure to accurately predict arrivals of
messages carries an increasingly significant cost.

5.6 Relation to other works
In this section we discuss the performance of our simula-

tor using the DLTWE technique in relation to other works.
We would like to point out that is difficult to make a fair
comparison to other approaches, as previously used methods
differ from our approach (e.g., other numerical algorithms
or distributed instead of shared-memory). The single pre-
viously published RDME benchmark that can be found in
the literature for the amount of LPs considered by us was

192

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60

S
p

e
e
d
u
p

Number of threads

DLTWE

PADOC

(a) Speedup Predator-Prey

0

Number of threads

local work
messaging
redo
rollbacks
waiting
DLTWE comp.

64564840322416821

(b) Breakdown Predator-Prey

0

5

10

15

20

10 20 30 40 50 60

S
p

e
e
d
u
p

Number of threads

DLTWE

PADOC

(c) Speedup Min-System

0

Number of threads

local work
messaging
redo
rollbacks
waiting
DLTWE comp.

64564840322416821

(d) Breakdown Min-System

Figure 8: Comparison of DLTWE and PADOC on the Predator-Prey[n400,d1] and Min-System[fine] models.
In (a) and (c) the speedup of the DLTWE and the PADOC method is shown. In (b) and (d) a breakdown of
how the time is spent is shown.

the spatial predator and prey model presented by Wang et
al. [34]. The parallel simulator used in the study is the
Abstract Next Subvolume Method (ANSM), a distributed-
memory implementation of the NSM using the Breathing
Time-Warp protocol for synchronization. Our speedup and
the ANSM speedup taken from [34], Figure 2b, are shown
in Table 2.

Simulator (Protocol) 8 LPs 16 LPs 32 LPs 64 LPs
ANSM (BTW) 4x 6x 11x 20x
PAEM (DLTWE) 4.5x 8.4x 16.4x 33.9x

Table 2: Speedups obtained on the spatial predator
prey model on a 200 x 200 grid using the ANSM
and PAEM simulators.

6. CONCLUSION
We have presented a new technique for inter-LP synchro-

nization in PDES. It is designed to be suitable when sim-
ulating models in which the time intervals between succes-
sive inter-LP events are highly variable and have no lower
bounds, as in the spatial stochastic simulation that we have
considered. Our DLTWE technique enables a detailed con-
trol of the amount of optimism in the simulation, which can
be tuned to achieve desired accuracy of information commu-
nicated between LPs. We have shown how using a technique
for selective rollbacks, the cost of optimism decreases, thus
making it beneficial to allow for more optimism in the sim-
ulation.

With our implementation we have shown that the DLTWE
technique is well suited to the setting of spatial stochastic
simulations, and that it performs well on realistic problems
in a shared memory environment. Notably, the DLTWE en-
ables a parallel scaling which compares favorably to other
inter-LP synchronization techniques described in the litera-
ture, as well as other parallelization efforts that have been
reported in the literature.

7. ACKNOWLEDGMENTS
This work was supported in part by the Swedish Founda-

tion for Strategic Research through the CoDeR-MP project
as well as the Swedish Research Council within the UP-
MARC Linnaeus centre of Excellence.

8. REFERENCES
[1] R. Ayani and H. Rajaei. Parallel simulation using

conservative time windows. In Proceedings of the 24th
Winter Simulation Conference, pages 709–717,
Arlington, VA, USA, December 13-16 1992. ACM.

[2] P. Bauer, B. Drawert, S. Engblom, and A. Hellander.
Urdme v. 1.2: User’s manual. Technical Report
2012-036, Uppsala University, 2012.

[3] P. Bauer and S. Engblom. Sensitivity estimation and
inverse problems in spatial stochastic models of
chemical kinetics. volume 103 of Lecture Notes in
Computational Science and Engineering, pages
519–527. Springer Switzerland, 2015.

193

[4] D. Bernstein. Simulating mesoscopic reaction-diffusion
systems using the gillespie algorithm. Phys. Rev. E,
71(4):041103, 2005.

[5] C. Carothers, D. Bauer, and S. Pearce. ROSS: a
high-performance, low memory, modular time warp
system. In Proceedings of the 14th Workshop on
Parallel and Distributed Simulation, pages 53–60,
Bologna, Italy, May 28-31 2000. IEEE.

[6] G. Chen and B. Szymanski. Lookback: a new way of
exploiting parallelism in discrete event simulation. In
Proceedings of the 16th Workshop on Parallel and
Distributed Simulation, pages 138–147, Los Alamitos,
CA, USA, May 12-15 2002. IEEE.

[7] L. Chen, Y. Lu, Y. Yao, S. Peng, and L. Wu. A
well-balanced time warp system on multi-core
environments. In Proceedings of the 25th Workshop on
Parallel and Distributed Simulation, pages 1–9, Nice,
France, June 14-17 2011. IEEE.

[8] S. H. D. Ball. The adaptive time-warp concurrency
control algorithm. In Proceedings of the SCS
Multiconference on Distributed Simulation, pages
174–177, San Diego, CA, USA, Jan. 17-19 1990. SCSI.

[9] S. R. Das. Adaptive protocols for parallel discrete
event simulation. J. Oper. Res. Soc., 51(4):385–394,
2000.

[10] L. Dematté and T. Mazza. On parallel stochastic
simulation of diffusive systems. volume 5307 of Lecture
Notes in Computer Science, pages 191–210. Springer
Berlin Heidelberg, 2008.

[11] B. Drawert, S. Engblom, and A. Hellander. URDME:
a modular framework for stochastic simulation of
reaction-transport processes in complex geometries.
BMC Syst. Biol., 6(1):76, 2012.

[12] J. Elf and M. Ehrenberg. Spontaneous separation of
bi-stable biochemical systems into spatial domains of
opposite phases. Syst. biol., 1(2):230–236, 2004.

[13] D. Fange and J. Elf. Noise-Induced Min Phenotypes in
E. coli. PLoS Comput. Biol., 2(6):e80, 2006.

[14] A. Ferscha. Probabilistic adaptive direct optimism
control in time warp. In Proceedings of the 9th
Workshop on Parallel and Distributed Simulation,
pages 120–129, Lake Placid, NY, USA, June 13-16
1995. IEEE.

[15] R. M. Fujimoto. Parallel discrete event simulation.
Comm. of the ACM, 33(10):30–53, 1990.

[16] M. A. Gibson and J. Bruck. Efficient exact stochastic
simulation of chemical systems with many species and
many channels. J. Phys. Chem. A, 104(9):1876–1889,
2000.

[17] D. T. Gillespie. Exact stochastic simulation of coupled
chemical reactions. J. Phys. Chem., 81(25):2340–2361,
1977.

[18] S. Jafer, Q. Liu, and G. A. Wainer. Synchronization
methods in parallel and distributed discrete-event
simulation. Simul. Model. Pract. Th., 30:54–73, 2013.

[19] S. Jafer and G. Wainer. Conservative vs. optimistic
parallel simulation of DEVS and cell-DEVS: A
comparative study. In Proceedings of the 2010 Summer
Computer Simulation Conference, pages 342–349,
Ottawa, Canada, July 11-14 2010. SCSI.

[20] D. R. Jefferson. Virtual time. ACM Trans. Program.
Lang. Syst., 7(3):404–425, 1985.

[21] M. Jeschke, R. Ewald, A. Park, R. Fujimoto, and
A. M. Uhrmacher. A parallel and distributed discrete
event approach for spatial cell-biological simulations.
SIGMETRICS Perform. Eval. Rev., 35(4):22–31, 2008.

[22] G. Karypis and V. Kumar. A Fast and High Quality
Multilevel Scheme for Partitioning Irregular Graphs.
SIAM J. Sci. Comput., 20(1):359–392, 1998.

[23] H. Leong, D. Agrawal, and J. Agre. Using message
semantics to reduce rollback in the time warp
mechanism. volume 725 of Lecture Notes in Computer
Science, pages 309–323. Springer Berlin Heidelberg,
1993.

[24] J. Liu and D. M. Nicol. Lookahead revisited in wireless
network simulations. In Proceedings of 16th Workshop
on Parallel and Distributed Simulation, pages 79–88,
Arlington, VA, USA, May 12-15 2002. IEEE.

[25] B. D. Lubachevsky. Efficient parallel simulations of
dynamic ising spin systems. J. Comput. Phys.,
75(1):103–122, 1988.

[26] J. Misra. Distributed discrete-event simulation. ACM
Comput. Surv., 18(1):39–65, 1986.

[27] A. Pellegrini, R. Vitali, S. Peluso, and F. Quaglia.
Transparent and efficient shared-state management for
optimistic simulations on multi-core machines. In
Proceedings of the 20th International Symposium on
Modeling, Analysis Simulation of Computer and
Telecommunication Systems, pages 134–141,
Arlington, VA, USA, August 7-9 2012. IEEE.

[28] M. Rathinam, P. W. Sheppard, and M. Khammash.
Efficient computation of parameter sensitivities of
discrete stochastic chemical reaction networks. J.
Chem. Phys., 132(3):034103, Jan. 2010.

[29] P. L. Reiher, F. Wieland, and D. Jefferson. Limitation
of optimism in the time warp operating system. In
Proceedings of the 21st Winter Simulation Conference,
pages 765–770, Washington, D.C., USA, Dec. 4-6
1989. ACM.

[30] R. B. Schinazi. Predator-prey and host-parasite spatial
stochastic models. Ann. Appl. Probab., 7(1):1–9, 1997.

[31] L. M. Sokol, D. P. Briscoe, and A. P. Wieland. MTW:
A strategy for scheduling discrete simulation events
for concurrent execution. In Proceedings of the SCS
Multiconference on Distributed Simulation, pages
34–42, San Diego, CA, USA, Feb. 3-5 1988. SCSI.

[32] S. Srinivasan and P. F. R. Jr. Elastic time. ACM
Trans. Model. Comput. Simul., 8(2):103–139, 1998.

[33] J. S. Steinman. Breathing time warp. In Proceedings
of the 7th Workshop on Parallel and Distributed
Simulation, pages 109–118, San Diego, CA, USA, May
16-19 1993. ACM.

[34] B. Wang, B. Hou, F. Xing, and Y. Yao. Abstract next
subvolume method: A logical process-based approach
for spatial stochastic simulation of chemical reactions.
Comput. Biol. Chem., 35(3):193–198, 2011.

[35] J. Wang, D. Jagtap, N. B. Abu-Ghazaleh, and
D. Ponomarev. Parallel discrete event simulation for
multi-core systems: Analysis and optimization. IEEE
Trans. Parallel Distrib. Syst., 25(6):1574–1584, 2014.

194

