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Abstract—Smart buildings are a prevalent example of cyber-
physical systems: embedded with sensors, they emit a continuous
data stream based on which algorithms are being developed to
infer the occupants’ activities in order to control the building’s
ambience to improve the occupants’ comfort and safety, and to
reduce the building’s energy consumption. This type of sensor-
fusion-for-occupant-activity-analysis research requires large data
sets; however, the security and privacy concerns around sharing
data about people’s activities impedes the collection, curation,
and sharing of such data sets. One solution to this issue would
be the creation of a human-activity simulator for generating
synthetic, yet realistic, data sets. In this paper, we describe
our human-activity simulator as a component in our general
framework for evaluating activity-recognition methods for indoor
spaces. Our simulator, developed in Unity3D, uses the Building
Information Model (BIM) of the space as the context in which to
simulate multiple agents, with different abilities and tasks. We
conclude with a reflection of the pros and cons of our simulator
design and implementation and discuss areas for future research.

Index Terms—Smart Buildings, Activities of Daily Living,
Activity Simulation, Building Information Modeling, BIM, IFC,
agent-based task planning

I. INTRODUCTION

Sensors embedded in our homes and buildings promise

to afford us the opportunity to make informed decisions on

(a) how to optimize the safety and comfort of the buildings

occupants and (b) how to reduce the energy consumed by

these buildings and their impact on the environment. Research

in the area of IoT-enabled indoor-activity recognition has

treated these two concerns independently: under the Smart

Homes heading, research seeks to improve the ambient indoor

environment or to support frail individuals in their Activities

of Daily Living (ADL); on the other hand, under the Smart

Buildings heading, research has sought to reduce energy

consumption and improve thermal comfort.

In spite of their different motivating problems, both re-

search streams rely on activity recognition, i.e., the process

of extracting information about the activities of the buildings

occupants. Admittedly, the former research stream typically

focuses on the activities of individuals, at high spatio-temporal

granularity, i.e., recognizing the activities of daily living of a

person in their home, where the latter stream examines aggre-

gate activity indicators at coarser spatio-temporal granularity,

i.e., estimating area-occupancy counts over long periods of

time. In spite of this difference, a key prerequisite for the

development and validation of any solution to the general

problem is the availability of large datasets. Due to the

substantial effort and resources required for collecting and

curating such a dataset, there are few, and not large, such

datasets. Furthermore, privacy concerns make them difficult to

share publicly and reuse. Therefore, using virtual environments

and sensors and simulating occupants’ activities is a more cost

effective solution, as they would allow for a vast range of

synthetic yet realistic datasets to be generated.

This paper provides an overview of the existing research

on simulating human activities within a virtual environment

and describes our own simulator, BIMSim
3D , that integrates the

Building Information Modeling (BIM) standard for modeling

buildings with the widely adopted Unity 3D environment

in which to flexibly simulate multiple agents, with different

abilities and tasks. Building Information Models (BIMs) are

the de-facto standard for specifying building infrastructures,

and, as Tsigkanos et al. [1] points out, they can be extended

for the specification and analysis of cyber-physical spaces. We

have chosen Unity 3D as the implementation platform because

of its support for rendering BIMs and for avatar path planning.

The structure of the paper is as follows. Section II provides

a literature review, identifying the most interesting simulators

today, outlining their software architecture, usage, imple-

mentation, and contributions. Section III provides a general

overview of our own BIMSim
3D simulator and a description

of each component more in detail. Section IV is a discussion

of our current work, and finally, Section V concludes with

a summary of our work to date and outlines future research

opportunities.

II. RELATED WORK

There are two broad approaches for simulating activities

in indoor spaces [2]. Interactive simulators enable users to
interact with the simulation software, in order to control at

a fine grain the simulated activities and resulting data sets

generated. Users of an interactive virtual environment have

more intuitive and interactive experience than a model-based

simulator. The approach allows users a large degree of control

over the activities performed. However, generating more data
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TABLE I
MODEL-BASED HUMAN ACTIVITY SIMULATORS

Study Year
Multi-
agent

support

intero-
perabilitya

Multilevel Simulation of
Daily Activities [3]

2013 � �

Occupancy analysis [4] 2013 � �
Heritage use planning [5] 2016 � �
Simulator for (un)planned

activities [6]
2016 � �

Simulator for human
spatial behavior [7]

2016 � �

A simulator based on
Event Modeling

Language (EML) [8]
2017 � �

MASSHA [9] 2017 � �
MOVICLOUD [10] 2018 � �

aDefines the feature that a simulator could use or exchange
information. In our analysis this feature indicates whether the
simulator is based on BIM.

sets requires a person to manually interact with the software,

which is time–consuming and burdensome. This is why in

our work we have chosen to adopt the model-based simula-

tion methodology. Model–based approaches specify activity
models to define an order of events, the probability of an

event occurring, and the time required for each event/activity

to complete. Model-based approaches generate extensive data

sets describing activities over long periods of time. However,

the quality and accuracy of the resulting data depend heavily

on the quality of the activity description model.

Table I reports several recent model–based simulators,

which provide the background context for our work.

Kormányos et al. [3] proposed a daily activity simulation

for a single agent in a home environment. Activities and

exact spatial position of the agent should be defined. The

designer is able to easily modify them through the simulator.

The sensors and physiological information of the simulated

person are also simulated. Their goal is to simulate daily

activities, with priorities, at multiple levels of abstraction,

with higher levels simulating complex activities and lower

levels simulating sensor signals. Their simulator is based on

a home editor, where the layout of a home can be described.

It is important to note here that, in addition to the elements

typically found in an architectural blueprint, the home layout

also indicates places that can be used to perform specific

activities.

Two studies [4], [5] proposed the use of BIMs for defining

the structure of the buildings in which activities are simulated.

They used different simulation environments –the former

used Cell–DEVS [11] and the latter Unity3D – and they

had different motivations: the former as designed to identify

bottlenecks of buildings’ design that could be problematic in

emergency evacuations, while the latter focused on finding a

balance between efficacy requirements of heritage spaces and

the preservation needs of the artefacts. The integration of BIM

enhances the interoperability of the proposed methods, since

this standard specification of physical environments can be

shared across different pieces of software.

Schaumann et al. [6], [7] proposed an event-driven human-

behaviour simulation method, where each event specifies the

relevant actors, their activities, and the spaces where the ac-

tivities take place. Event-driven simulation is a useful method

when the events of interest are known and can be scheduled

ahead of time; Schaumann et al. [6], however, proposed a

method to intertwine scheduled events with another set of

events that cannot be scheduled in advance. In their subsequent

work [7], they investigated the use of the simulation in

order to determine how well a building supports the activities

of its inhabitants. In their work, events coordinate agents’

behaviour and are self-contained routines with pre-conditions,

procedures, and post-conditions. The events can be used to

create human behaviour narratives since they can be nested in

tree-like structures to create more complex behaviour. Planned

events are encoded as a top-down time-based schedule, while

unplanned events are a list of possible behaviours that may

be performed under certain pre-conditions. All the events are

overseen by a narrative manager, which resolves conflicts

between events using a rule database. The authors further

extended their simulation with the Event Modeling Language

(EML) that helps model events in a hierarchical fashion [8].

Specifically, an actors decision making can be proactive or

reactive: they can plan proactively based on the state of the

world and their goal, but they can also be reactive based on

the actions available to them at a certain time. In terms of

video-game AI, this would involve decision trees, finite state

machines, and behaviour trees. EML enhances the modularity

and scalability of the system and allows for more complex

events to be modelled.

Recently, Barriuso et al. [10] presented a 3D simulator,

MOVICLOUD, in order to investigate the accessibility prob-

lems of a built environment. MOVICLOUD is a multi–agent

system that can perform social simulations in a 3D model of

a physical space, implemented in Unity 3D. Agents have their

characteristics, roles, services, and additional features stored in

a database. In order to assess the accessibility of indoor places,

they provide information regarding completed and failed tasks.

The user can then change configurations of the simulation

in order to reduce the failed tasks, which results in a more

accessible indoor space.

Kamara-Esteban et al. [9] presented an agent-based simula-

tor for emulating human activities in intelligent environments

and compared the sensor events emitted by their simulator

against real human activity data sets. In order to generate

realistic data sets, MASSHA relies on expert definitions of hu-

man behaviour. MASSHAs human simulation model is defined

by high level concepts of Person, Intelligent Environment,

Behaviour, Activity, Action, Object, and Sensor. The Person

lives in the Intelligent Environment, interacting with Objects

embedded with Sensors with specific Behaviours. Actions are

executed by a Person and can be detected by Sensors. The

Persons behaviour model is driven by needs, preferences, and

activities (i.e., action sequences); at run time the simulated

person is aware of three elements: Activities of Daily Living,
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TODO List, and Done List. The MASSHA multi-agent system

implementation remaps their high-level concepts onto a multi-

agent system. Each agent is loaded into the environment with

their own behaviour algorithm, but they can interact with other

agents and the environment. The authors point out that there

are still improvements to be made for activity management,

in order to improve the realism of the produced data, possibly

using probabilistic finite state machines, neural networks, or

hidden Markov models.

Human activity simulation promises to broaden researchers

insights on sensor deployments that can effectively detect

occupants’ activities in indoor spaces, with minimized effort

and cost. We have seen that a number of studies used standard

specifications of buildings (namely BIM), which can poten-

tially improve the interoperability between tools. However,

there has not been an integration of BIM and IFC files with

a simulation engine capable of modeling complex scenar-

ios. The most common method is to generate the physical

geometry from an IFC file using Autodesk Revit, and then

apply environmental information separately before passing

it into the simulation engine. Our work aims at delivering

a platform that is composed of different components. Our

BIM Editor integrates BIM and Activities of Daily Living

(ADL) specifications, that enable users to enhance BIM with

the object affordances properties, relevant to activities. These

properties then can be used by virtual agents to accomplish

their daily activities, e.g., sitting on a ”sittable” object like a

chair or a couch. Our ADL simulator, BIMSim
3D , is a multi-

agent 3D simulator that takes as input a BIM file and a set of

tasks for each agent. A hierarchy of activities for every agent

based on the given tasks gets generated. As agents perform

their activities in the indoor environment, our Sensor Event

Generation Process generates sensor events, which can be

examined and analyzed by an observation-analysis component,

which can then infer the agents’ activities in a manner that can

be compared against the original simulated activities.

III. METHODOLOGY

The overview architecture of our methodology is depicted

in Fig. 1. It consists of four main components: (i) the

human-activity simulator, (ii) the sensor simulator, (iii) the
sensor-event analysis and activity-recognition component, and
(iv) the configuration-deployment evaluation [12] component.
BIMSim

3D , the first of the above components and the focus

of this paper, is responsible for simulating the activities of

a set of agents in an indoor environment and generating

synthetic activity traces. These traces are consumed by the

sensor simulator, which generates sensor-data streams, which
are further consumed by the sensor-event analysis and ac-
tivity recognition component. The fourth component of the
framework is an evaluation module that compares the synthetic

simulator traces against the traces inferred by these algorithms

to compute a number of indicators about the quality of the

simulated sensor configuration. Together, this suite of tools

supports researchers to systematically explore the properties

of different sensor-deployment configurations, in a variety of

environments, without actually having to deploy real sensors

in real-world environments.

A. Human-activity simulation with BIMSim
3D

This component involves four main features. First, it enables

the simulation designer to review the BIM elements and

specify the interactions they afford. Second, based on a user-

configurable model of the simulated agents’ daily objectives

and the desired time period, it visually simulates and produces

a trace of all agents’ activities as they pursue their tasks.

Finally, this activity trace is consumed by a sensor event

Fig. 1. Overall architecture of our methodology.
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generation process, to emit a sequence of sensor events based

on the environment’s BIM. In the following, each feature is

explained in detail.

1) The BIM Editor: In order to run a simulation, a BIM
file of the intended indoor environment (in IFC format) is

needed. We have implemented in Unity 3D a BIM Editor

(Fig. 2) that visualizes the input IFC file and allows designers

to modify and add a layer of information with the types of

interactions that the model elements afford. For instance, if an

object is defined as ”sittable”, agents may choose this element

to sit on, when their task becomes to sit. The edited BIM can

then be exported as a new enriched IFC file. This is the type

of BIM that BIMSim
3D expects, namely a BIM with objects

whose properties list the actions that the simulated agents can

perform with them.

2) The Task Planner: This module takes as input a user-
configurable set of daily objectives for each agent and outputs
a plan, i.e., a sequence of time-stamped activities, for each
agent. The agent’s daily objectives represent the behavioural

model of each agent, in terms of the activities they are capable

of (and should be) performing during the day, as well as

the frequency, duration, pre- and post-conditions of these

activities. The agent’s daily-objectives specification is non-

deterministic. The agent’s plan is a deterministic time-stamped

and coordinate-aware sequence of activities that meets the

constraints implied by the daily objectives.

The daily-objectives specification is stored in a JSON file;

a sample excerpt describing sleeping and eating behavior is

shown below.

{
"Actions": {
"Sleep": {
"name": "Sleep",
"duration": 480,
"probability": 100,
"occurrence": 1,
"requires": [],
"post": [],
"times": [
[ 0, 8 ]

],
"aliases": []

},

"Eat": {
"name": "Eat",
"duration": 30,
"probability": 100,
"occurrence": 3,
"requires": [ "Cook" ],
"post": [ "Wash" ],
"times": [
[ 8, 9 ],
[ 12, 13 ],
[ 18, 19 ]

],
"aliases": []

},
}

}

The properties of the actions are explained below:

Duration: How long the activity will last in simulation time,
indicated in minutes. A value of 480 would translate to 8 hours

of simulation time.

Probability: The program takes in a list of actions and ran-
domly sorts the list every time a new action needs to be

selected. The actions are then selected sequentially. This selec-

tion method ensures the equal probability of all actions being

selected, which may not be desirable for agent behaviour.

To remedy this, the probability we define is the chances of

performing the selected action, allowing for more variation in

behaviour. Probability is indicated from a 0 - 100. If the action

is exclusively a precondition, its probability is 0, as it will be

forcibly acted upon when needed, and no other time.

Occurrence: The maximum number of times this action can
occur per day.

Requires: Actions that must be performed before this action.
Post: Actions that must be performed after this action.
Times: Time constraints on when this action can be performed.
The range of times and values are indicated using a 24-hour

clock. (Ex. [13, 16])

Aliases: Alternate names for the action the agent is taking
to make them seem more lifelike. Prevents the creation of

redundant actions, as ”Eating lunch” and ”Eating dinner”

would effectively be the same thing.

Note that each activity has to be associated with at least one

(and possibly more) object(s) in the IFC file, which affords this

activity.

Within each simulation scenario, multiple behavioral pro-

files may be specified and each simulated agent is associated

with one of them.

As mentioned above, the task planner takes as input the

daily objectives JSON file and provides a plan for each agent

(< time, location, activity >). This plan describes what
activities the agent should be doing together with the time and

location for each. Our simulation is defined by the space, the

objects in the space, the agents, and their activities. The agent

is an entity that lives and acts in the space and has its own

behavioural model. The agent’s behaviour can be as complex

as desired and depends on spatial restrictions such as physical

barriers. The agent interacts with the objects in the space, and

it is these objects that enable the agent to perform its tasks.

These objects also have their own constraints regarding the

agents interactions.

3) Visual Animation: This module visualizes the envi-
ronment’s IFC file in Unity3D and simulates multiple agents

performing their daily tasks.

For that purpose, we use avatars from [13] to perform the

activities in the agents’ plans. In this way, the agents’ avatars

have different physical characteristics, of children, men, and

women, and they realistically simulate a variety of activities,

such as working out, sleeping, and cooking. Fig. 2, (d) shows

a screenshot of an example avatar working out, from different

cameras’ views. The avatar’s movements during each activity

are controlled by a state machine, corresponding to the activity

in question. Fig. 3 shows a sample state machine for the

sleeping activity, which consists of a three-step sequence of

”lying down”, ”sleeping”, and ”getting up” actions.

The agent plan provided by task planner includes a list of

activities to be done by the agent with specified times and

locations. The BIMSim
3D provides an action trace for each

agent (< time, location, activity >), describing what it
should be doing throughout the simulation time, using the

agent plan. That is to say, the agent trace includes the location

and activity of the agent in small time periods e.g. each 2

seconds. In order for the agents’ avatars to navigate through

21



Fig. 2. Screenshots of the BIM Editor and simulation environment: (a) a rendered IFC file; (b) a panel for adding/deleting objects, or adding properties to
the model objects. (c) A dynamically generated NavMesh for an IFC file, after it is loaded and rendered in a Unity3D scene. (d) A screenshot of an agent
avatar working out from two different camera views.

the space, we use the built-in Unity3D path-finding methods,

which require a Navigation Mesh (NavMesh) of the space.

BIMSim
3D , when it imports and renders the IFC model of

a building, it dynamically creates a NavMesh for it. Fig. 2

shows, with yellow highlighting, a dynamically generated

NavMesh for an IFC file structure.

The simulation-configuration process involves the following

steps. Through the simulation engine, the user selects the

IFC file to be used for the simulation and the duration of

the simulation. The duration cannot be too short, because the

length may not be enough for the agents to visually move and

perform their actions, which would compromise the quality

of the output dataset. The simulation also takes as input the

number of agents, the agent types, and the behaviour files for

each agent.

B. Sensor Simulation

This component is responsible for consuming agents’ traces

(< time, location, activity >) as input and produce sensor
events accordingly. Based on the application in hand, several

sensor types, e.g. motion sensors, pressure sensors, and beacon

sensors can be defined. In this paper, we focus on using

motion sensors in order to localize an agent in an indoor

environment, and restrict our discussion to simulating motion-

sensor behaviour.

We simulate the behavior of a motion sensor based on two

basic factors:

• Random Reading: Based on [14], sensors are subject to
false readings (or random measurements). This is due to

several environmental factors such as light, air particles.

In order to model this behavior in motion sensors, we

simply denote a probability, Prand, for each sensor. In

every snapshot of the simulation, there is a chance,

for each sensor, equal to Prand to fire, while there is

no movement in it’s sensing area. Therefore, in each

snapshot, a random subset of sensors have false readings.

• Detection Probability: The closer a subject is to the
center of the sensing area of a motion sensor, the more

likely it is that the sensor fires. We model this behavior

using Mahalanobis distance [15]. Mahalanobis distance

measures the probability that a test data point, Dtest, be-

longs to a set of given data points, S = {D1, D2, ..., Dn}.
We define the agent’s location as Dtest and assume that,

for each sensor, the set S follows a normal distribution,
while n → ∞, with known parameters. Mahalanobis
distance, in this case, denotes the probability that a sensor

fires if an agent is located inside of it’s sensing area. The

probability is highest if the agent is at the center of the

sensing area.

C. Sensor-event Analysis and Activity Recognition

This component takes as input the stream of sensor

events and estimates agent’s location in real-time. We

use the localization algorithm described in [16]. The out-

put of this component is an inferred activity trace (<
time, location, activity >). Since this paper does not focus
on recognizing activities, we put activity to null in each tuple.

D. Configuration-Deployment Evaluation

In the final step of our methodology, this component com-

pares the agents’ ground truth activity trace from simulation

with the inferred activity trace. The comparison here is based

on three aspects described in [12]: Overall performance, and

Contextual-aware performance. These tools aid designers to

evaluate their sensor deployment model in an environment,

and change their model accordingly. Overall performance

calculates the average of error that localization committed in

each area. Contextual-aware performance shows the average
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of the estimation’s error throughout an indoor space while

considering the frequency of usage of each area. Therefore,

during a simulation, areas that agents went there more fre-

quently, obtain more importance despite of a small error in

localization (such as the dining room or bathroom). Similarly,

less frequently used areas get less importance despite of high

error in localization (such as the closet).

As an example, We import the IFC file of Smart

Condo™ [17], a one-bedroom condo equipped with different

types of sensor, and add objects with various properties. We

also place 14 motion sensors, each with a circular sensing

area with radius equals to 60 centimeters. We then put into

the model An agent with specifications depicted in Fig. 3, and

a set of actions in behavioral file. By running the simulation,

we compare the inferred location of the agent, in each time,

against the actual location in the simulation. Fig. 4 shows the

average error, from overall and contextual-aware aspects, of

our estimation in every location of the indoor space. These

figures suggest areas that need attention. A designer can

change the placement of the sensors in order to obtain the

desired performance.

IV. DISCUSSION

Our research has focused on two main components: 1)

creating an IFC file editor (BIM Editor), and 2) visualization

within Unity3D and creating a multi-agent human behaviour

simulator (BIMSim
3D ) to simulate Activities of Daily Living

(ADL) within a model of an indoor space.

One of our objectives in this work is reuse and interoperabil-

ity. The BIM Editor enables designers to import and render

any BIM-defined indoor space, add/delete objects, and add

properties. Given an indoor space, different ADL scenarios

with different sets of objects can be tested. Thereby, designers

are able to quickly and effortlessly evaluate several ADL

scripts with different object layouts in the same space before

their actual real-world experiments.

The agents’ behavioural file offers flexibility in defining

agents’ behaviour, from simple to complicated. Based on the

attributes of actions in the behavioural file and the validation of

actions during task planning, incredibly complex agents can

Fig. 3. A sample state machine controller for animator’s sleeping activity.

Fig. 4. Average error of the localization algorithm throughout the Smart
Condo™. The floor plan of the condo is shown with thin solid lines and
the center of the motion sensors are depicted with small dots. (a) shows
contextual-aware performance (performance with respect to the agent’s trace),
and (b) shows the overall performance.

be simulated. pre-conditions and post-conditions can link a

series of actions together to form a more complex behaviour

and restrictions can be placed on the agent to better replicate

a daily routine.

Moreover, The navigation methods in Unity3D are based

on randomized algorithms which makes the behaviour of

agents more natural. For instance, an agent would select

different paths for walking from a point to another. This

behaviour benefits our Configuration-Development Evaluation

from two perspectives. First, it generalizes our evaluation of

sensor deployment models since different agents’ trace can

be generated. Second, using a few number of scripts, we can

make sure that all of the space regions are covered, and hence,

tested.

The simulation could also be improved by having a more

complex path-finding algorithm. BIMSim
3D uses the built-in

Unity3D navigation system, which can be problematic when

attempting to simulate agents with certain disabilities such

as blindness. This is because the navigation system assumes

the agents know the state of their environment, and these

assumptions can make the generated dataset invalid. Further-

more, Our methodology still needs to be evaluated in order to

determine its efficacy of the generated data set. Out of all of

the related work, the evaluation method used for MASSHA [9]

that compares the simulations generated data set to a real-

world data set would be most effective.

It is important to note that our methodology is based on

a loosely-coupled architecture, meaning that each component

has no or little knowledge about other components. Our

loosely-coupled architecture offers flexibility and extensibil-

ity features to our methodology. Each component in our

architecture can be changed or replaced with another similar

component, with respect to the input(s) and output(s) it accepts

and produces. For instance, Sensor-event Analysis and Ac-

tivity Recognition component can be equipped with Machine

Learning techniques. More importantly, implementing more

complex Sensor Model Simulation is easier and faster in
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our architecture. It is possible to utilize different covariance

matrices or asymmetry distributions in order to model envi-

ronmental noises or sensors’ aging.

Finally, overall and contextual-aware performance plots

assist designers to examine different configuration for sensor

placements and choose the most suitable one based on their

needs. For instance, a health–care application for older adults

probably should monitor more frequently used areas (such as

the bathroom) in order to detect the risk of falling. Therefore,

the contextual-aware performance analysis comes into play.

V. CONCLUSION AND FUTURE WORK

In order to study the deployment of Internet of Things

in indoor environments, utilizing human-activity simulators

has recently increased. The simulators generate the large data

sets necessary for the development and evaluation of activity-

analysis algorithms. In this paper, We presented a multi-agent

human activity simulator, BIMSim
3D , integrated with Building

Information Models (BIM), with capability of using different

agents’ types and behaviours.

BIMSim
3D was designed with interoperability in mind: the

simulation scenario is configured with (a) the BIM of the

indoor space, specially annotated with the affordances of its

elements, and (b) the tasks that simulated agents have to carry

out and the actions they are capable of performing. BIMSim
3D

is one of the components of our sensor-deployment-analysis

framework [12] responsible for generating synthetic agent

activity traces. These traces are consumed by a downstream

sensor simulation, which generates sensor-data streams, which

are further consumed by our sensor-event analysis and activity-

recognition algorithms. The synthetic BIMSim
3D traces are

compared against the traces inferred by these algorithms to

compute a number of indicators about the quality of the

simulated sensor configuration.

In the future, we would like to expand the agents’ task-

and-actions model, and the planner module, to consider the

interactions among agents as they work and collaborate in a

space.

There are also many opportunities for expanding this work

to other domains, including the simulation of workers’ ac-

tivities in factories and construction sites, possibly extending

the specification of the simulation context with CityGML

information.
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