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This article describes a discrete event interpretation of the finite difference time domain (FDTD)

and digital wave guide network (DWN) wave simulation schemes. The discrete event method is

formalized using the discrete event system specification (DEVS). The scheme is shown to have

errors that are proportional to the resolution of the spatial grid. A numerical example demonstrates

the relative efficiency of the scheme with respect to FDTD and DWN schemes. The potential for

the discrete event scheme to reduce numerical dispersion and attenuation errors is discussed.
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1. INTRODUCTION

This article presents a discrete event method for simulating the linear wave
equation. The method is a discrete event interpretation of the digital waveg-
uide network described in Bilbao [2004]. The digital waveguide network has a
structure and numerical properties similar to finite difference approaches, and
so this work could also be seen as a discrete event interpretation of the finite
difference time domain (FDTD) method (see Shlager and Schneider [1998] for
a survey of the vast FDTD literature).

The discrete event interpretation retains, in any homogeneous region of a
wave carrying material, the structure and numerical properties of a digital
waveguide network. The most significant difference, in this case, is that
undisturbed sub-regions do not schedule events. When the computational
domain is large, this can reduce the computational effort needed to complete
a simulation run.
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Fig. 1. A mass-spring model with masses m, separated by distance d , and connecting by springs

with elasticity μ.

When a medium consists of different material types, each particular mate-
rial is simulated using its preferred time step. This ensures unit gain within
a homogeneous region. Differences in the time steps of adjacent regions are
accounted for by event scheduling and extrapolation. Event scheduling is used
to advance the simulation clock so that nonuniform time steps are easily man-
aged. Extrapolation is used at material interfaces to approximate missing data
points when the time grids of adjacent materials are not aligned.

2. WAVE PROPAGATION IN A ONE-DIMENSIONAL
HOMOGENEOUS MEDIUM

A homogeneous, one-dimensional medium can be modeled with a lattice of point
masses that are separated by a fixed distance, and are connected pair-wise by
springs. This model is illustrated in Figure 1.

If a mass is displaced from its equilibrium position, then its left and right
neighbors will move equal distances. This displacement in turn will cause the
next neighbors to be displaced, and so on down the line. At the same time, the
previously displaced cells return to their equilibrium positions. The macroscopic
effect is a wave that propagates left and right from the initial displacement.

The velocity of a wave traversing the lattice shown in Figure 1 is given by

V = d
√

μ

m
, (1)

assuming that the wave length is significantly larger than d . For a medium that
is nearly continuous (i.e., when d is very much smaller than the wave length),
the wave velocity can be approximated by

V =
√

ε

ρ
, (2)

where ε is the bulk modulus and ρ is the density of the medium. Brillouin [1953]
provides an excellent description of this model. More recent texts that describe
the same model include Achenbach [1973] and Bekefi and Barrett [1977].

This model can be interpreted in two ways. Brillouin [1953] uses Figure 1 to
describe the real structure of a crystalline solid. Approximate properties of a
continuous material are found by assuming that d is very small relative to the
wave lengths of interest. In contrast, Bilbao [2004] uses this model to describe
a discrete approximation of a continuous structure. The latter interpretation
is used in this article. However, the derivation of characteristic impedance,
reflection, and transmission ratios, as well as other approximate properties of
the continuous material, are simpler with the interpretation of Brillouin [1953].
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Because these properties are used, but not derived, in Bilbao [2004], Brillouin
[1953] is used here as a primary reference for wave physics.

3. AN OVERVIEW OF DEVS

The digital waveguide network described in Bilbao [2004] provides a discrete
time simulation method for the lattice model. Given a homogeneous, one-
dimensional medium, a numerically equivalent simulation method can be con-
structed as a discrete event system. The discrete event system specification
(DEVS) is used to formalize this discrete event system.

DEVS is a mathematical formalism for describing discrete event systems
(see Zeigler et al. [2000]). DEVS uses two types of structures to describe a
discrete event system. Atomic models describe the behavior of elementary com-
ponents. Coupled models describe collections of interacting components where
components can be atomic and coupled models.

An atomic model is described by a set of inputs, a set of outputs, a set of states,
a state transition function decomposed into three parts, an output function, and
a time advance function. Formally, the structure is

M =< X , Y , S, δint, δext, δcon, λ, ta >

where

X is a set of inputs,

Y is a set of outputs,

S is a set of states,

δint : S → S is the internal state transition function,

δext : Q × X b → S is the external state transition function

with Q = {(s, e) | s ∈ S & 0 ≤ e ≤ ta(s)}
and X b is a bag of values appearing in X ,

δcon : S × X b → S is the confluent state transition function,

λ : S → Y is the output function, and

ta : S → R is the time advance function.

The external transition function describes how the system changes state in
response to input. When input is applied to the system, it is said that an external
event has occurred. The internal transition function describes the autonomous
behavior of the system. When the system changes state autonomously, an inter-
nal event is said to have occurred. The confluent transition function determines
the next state of the system when an internal event and external event coincide.
The output function generates output values at times that coincide with inter-
nal events. The output values are determined by the state of the system just
prior to the internal event. The time advance function determines the amount
of time that will elapse before the next internal event occurs, assuming that no
input arrives in the interim.

Coupled models are described by a set of components and a set of compo-
nent couplings. Components of a coupled model can be atomic models and other
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coupled models. Just as with atomic models, coupled models have interfaces de-
fined by input and output sets. The behavior of a coupled model is determined
by its component models and their interconnections. DEVS is a modular mod-
eling formalism, and so interactions with a coupled model must occur through
its interface.

For the purposes of this article, the discussion of coupled models is restricted
to a flat structure (i.e., a structure composed entirely of atomic models) without
external input or output coupling (i.e., the component models can not be affected
by elements outside of the network). With these restrictions, a coupled model
is described by the structure

N =< {Mk}, {zi j } >

where

{Mk} is a set of atomic models, and

{zi j } is a set of output-to-input maps zi j : Yi → X j ∪ {�}
where i and j correspond to Mi and M j in {Mk} and � is the nonevent.

The output-to-input maps describe how atomic models affect one another.
The output-to-input map is, in this application, somewhat overgeneralized and
could be replaced with more conventional descriptions of computational sten-
cils. The nonevent is used in this instance to represent components that are
not connected. That is, if component i does not influence component j , then
zi j ( yi) = �, where yi ∈ Yi.

These structures describe what a model can do. A canonical simulation al-
gorithm, given here as Algorithm 1, is used to generate dynamic behavior
from the description. Algorithm 1 assumes a coupled model with components
{M1, M2, . . . , Mn} and a suitable set of output-to-input maps. For every compo-
nent model Mi, there are time of last event and time of next event variables,
denoted by tLi and tNi, respectively. There are also state, input, and output
variables si, xi, and yi in addition to the basic structural elements (i.e., state
transition functions, output function, and time advance function). The variable
xi is a bag with elements taken from the input set X i, and the variable yi has
a value taken from the output set Yi. The simulation time is kept in variable t.

Algorithm 1 DEVS simulation algorithm.

t ← 0
for all i ∈ [1, n] do

tLi ← 0
set si to the initial state of Mi

end for
while terminating condition not met do

for all i ∈ [1, n] do
tNi ← tLi + tai(si)
Empty the bag xi

end for
t ← min{tNi}
for all i ∈ [1, n] do

if tNi = t then
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yi ← λi(si)
for all j ∈ [1, n] & j �= i & zij( yi) �= � do

Add zij( yi) to the bag x j

end for
end if

end for
for all i ∈ [1, n] do

if tNi = t & xi is empty then
si ← δint,i(si)
tLi ← t

else if tNi = t & xi is not empty then
si ← δcon,i(si , xi)
tLi ← t

else if tNi �= t & xi is not empty then
si ← δext,i(si , t − tLi , xi)
tLi ← t

end if
end for

end while

4. A DEVS MODEL FOR ONE-DIMENSIONAL WAVE SIMULATION

A propagating wave can be simulated with an array of discrete event cells.
Each cell describes a single mass in Figure 1, and the cells are separated by a
distance d . A disturbance propagates through a cell with a speed V which is
given by Equation 2.

A cell can change state in response to two types of events. An external event
occurs when the mass at a neighboring cell is displaced from and returns to
its equilibrium position. The result of an external event is to cause the cell to
become displaced by a distance equal to its neighbor’s displacement. An internal
event occurs when the cell returns to its equilibrium position. Internal events
occur d/V units of time after an external event, corresponding to the time
required for the wave to propagate through the cell.

The discrete event system is constructed as a network of DEVS atomic mod-
els. Each atomic model describes a single cell, and the atomic models are con-
nected to their left and right neighbors. A cell has three state variables. The
variable U describes the displacement of the cell. The variables Ul and Ur de-
scribe the amplitude of the last displacement events received from the left and
right neighbors, respectively. At the start, U is equal to the initial displacement
of the mass, and Ul and Ur are equal to zero.

The input set X of a cell consists of pairs of real numbers that describe
the displacement of the left and right neighbors. These values are denoted by
X l and X r , respectively. Similarly, the output set Y consists of pairs of real
numbers denoted by Yl and Yr . The output Yl at cell i is mapped to the input
X r at cell i − 1. Similarly, Yr at cell i is mapped to X l at cell i + 1. This output-
to-input mapping is shown in Figure 2. If a cell receives an event from the right
without receiving a simultaneous event from the left, then the value of X l is
denoted by the nonevent �. Nonevents from the right are similarly treated.

A cell operates in the following way. If the cell and its neighbors are not
displaced, then the cell does not schedule any events. In this case, the time
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Fig. 2. Coupling between scattering models.

advance of the cell is ∞. A cell can become displaced when it receives input
from its left or right neighbor. On receiving an input event, the cell computes
its total displacement as the sum of the displacements of its left and right
neighbors, and it remembers the observed left and right displacement values.
Missing inputs (i.e., nonevents) are treated as zeros.

A displaced cell schedules an internal event to occur d/V units of time in the
future. When this event occurs, the cell displaces its neighbors by producing left-
and right-going output events. The value of the left-going event is equal to the
total displacement of the cell minus the remembered left displacement value.
The right-going event is determined in a similar way. Events with a value of
zero do not need to be propagated because missing events are interpreted as
zeros by the neighboring cells. After producing its left and right displacement
events, the cell returns to its equilibrium position and sets its time advance to
∞.

The behavior of a cell is described concisely by its DEVS state transition,
output, and time advance functions

δint((U, Ul , Ur )) = (0, 0, 0) (3)

δext((U, Ul , Ur ), e, {X l , X r}) =

⎧⎪⎨
⎪⎩

(X l + Ur , X l , Ur ) if X l �= � & X r = �

(Ul + X r , Ul , X r ) if X l = � & X r �= �

(X l + X r , X l , X r ) otherwise

(4)

δcon((U, Ul , Ur ), e, {X l , X r}) = δext(δint((U, Ul , Ur )), e, {X l , X r}) (5)

λ((U, Ul , Ur )) = {Yl , Yr} = {U − Ul , U − Ur} (6)

ta((U, Ul , Ur )) =
{

∞ if U = Ul = Ur = 0

d/V otherwise
. (7)

State, input, and output trajectories of the discrete time model described in
Bilbao [2004] can be recovered from this discrete event model. If the time ad-
vance function is defined to be constant with value d/V , then the discrete
event model becomes a discrete time model with time step d/V . The state, in-
put, and output trajectories of this discrete time model are the same as in the
discrete event model, except that nonevents in the discrete event model appear
as zero-valued inputs and outputs in the discrete time model. Similarly, if the
time advance for this discrete time model is redefined as in Equation 7, then
nonevents appear in place of zero-valued inputs and outputs.

These similarities can be formalized as a system isomorphism (see Zeigler
et al. [2000]). Because the discrete event and discrete time models are isomor-
phic, numerical properties of the discrete time model also hold for the discrete
event model. The discrete time waveguide model is equivalent to a second-order
finite difference approximation of the wave equation (see Bilbao [2004]). By
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selecting the time step of the discrete time model to be d/V , the stability of the
scheme is guaranteed. Moreover, the model exactly replicates the propagating
wave so long as the transmission medium is one-dimensional and homogeneous.
These properties also hold for the discrete event model.

5. WAVE ATTENUATION IN A ONE-DIMENSIONAL HOMOGENEOUS MEDIUM

Wave attenuation due to real resistive effects in a material can be accounted
for in the discrete event model. The strength of the attenuation is determined
by the wave length and the transmission medium (e.g., Brillouin [1953]). For
an attenuation coefficient α, the amplitude A(x) of a wave decays exponentially
with distance x as

A(x) = A(0)e−αx . (8)

If the wave amplitude at position x − d (for a right-traveling wave) is known,
then the amplitude at position x is given by

A(x) = A(x − d )e−αd = A(x − d )K . (9)

The term K = e−αd is the loss coefficient that describes the amplitude attenu-
ation over a distance d .

A simulation of an attenuating wave can be obtained by modifying the ex-
ternal transition function (i.e., Equation 4). The modified function applies the
loss coefficient K from Equation 9 to incoming events. This causes a cell to at-
tenuate any wave passing through it. The modified external transition function
is

δext((U, Ul , Ur ), e, {X l , X r})

=

⎧⎪⎨
⎪⎩

(K X l + Ur , K X l , Ur ) if X l �= � & X r = �

(Ul + K X r , Ul , K X r ) if X l = � & X r �= �

(K (X l + X r ), K X l , K X r ) otherwise

. (10)

Using Equation 10 in place of Equation 4 yields an exact simulation of an
attenuating wave in a one-dimensional homogeneous medium. To see this, it is
sufficient to observe that the attenuation over a distance nd is given by

A(x) = A(x − d )K = (A(x − 2d )K )K = · · · = A(x − nd )K n . (11)

If a displacement is introduced at position x − nd in the discrete event model,
it will propagate left and right via application of Equation 10. Without loss of
generality, consider only the right-traveling wave. Applying Equation 10 at the
next cell to the right gives a wave amplitude of

A(x − (n − 1)d ) = A(x − nd )K . (12)

Repeated application gives an amplitude at x − (n − k)d , k ≤ n, of

A(x − (n − k)d ) = A(x − (n − k + 1)d )K

= A(x − (n − k + 2)d )K 2 = · · · = A(x − nd )K k (13)

Letting k = n gives Equation 11 and completes the argument.
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Fig. 3. Wave attenuation in a one-dimensional homogeneous medium.

Fig. 4. A medium with two distinct materials, each with a different mass and elasticity.

Figure 3 shows a simulation of an attenuating wave by the use of this discrete
event model. The example uses K = 0.9, d = 0.01, and V = 1.0. The wave is
shown at times 0, 0.1, 0.2, 0.3, 0.4, and 0.5. The x-axis shows the indices of the
computational grid points. The y-axis shows the amplitude of the wave as a
function of x.

6. WAVE PROPAGATION IN A ONE-DIMENSIONAL
HETEROGENEOUS MEDIUM

A heterogeneous medium can be modeled just as in Figure 1 except that mass
and elasticity will vary with position. Figure 4 illustrates a medium consisting
of two different materials.

Where the medium is homogeneous, propagating waves can be modeled as
before. When a wave encounters an interface, the model must account for
two effects. First, the wave is split into reflected and transmitted parts. The
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Fig. 5. A wave traveling from left to right. The reflected wave goes left, and the transmitted wave

continues to the right.

transmitted part continues in the same direction as the original wave. The
reflected part travels in the opposite direction. Both the transmitted and re-
flected waves will have the same frequency as the original wave. However, the
velocities and amplitudes of the two waves will be different.

The second effect is a consequence of the differing wave velocities. The wave
speed is the product of the wave length and wave frequency (i.e., the distance
per unit time). The wave frequency is unchanged, thus, the wave length of the
transmitted part must change to match the new wave velocity.

The amplitudes of the reflected and transmitted waves are related to the
amplitude of the incident wave by the reflected amplitude ratio R and the
transmitted amplitude ratio T . If AI is the amplitude of the incident wave,
AT is the amplitude of the transmitted wave, and AR is the amplitude of the
reflected wave, then

AT = TAI , and (14)

AR = RAI . (15)

The transmitted and reflected amplitude ratios are determined by the char-
acteristic impedance of the two materials. In general, the characteristic
impedance is dependent on the wave length. However, when the wave length is
large compared to d , the characteristic impedance Z can be approximated by

Z = √
ρε, (16)

where ε is the bulk modulus and ρ is the density of the medium.
Let Z1 be the characteristic impedance of the material carrying the inci-

dent wave, and Z2 the characteristic impedance of the adjacent material. This
arrangement is shown in Figure 5. The transmitted amplitude ratio is

T = 2Z1

Z1 + Z2

. (17)

The reflected amplitude ratio is

R = Z1 − Z2

Z1 + Z2

. (18)

These ratios are required for energy conservation at the interface; notice that
AI = AT − AR = T AI − R AI . Moreover, when Z1 = Z2, energy conservation

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 2, April 2006.



A Discrete Event Method for Wave Simulation • 183

requires that the transmitted wave have the same amplitude as the incident
wave. In a homogeneous medium, where the characteristic impedance is con-
stant, this can only be satisfied when the optimal time step is used (i.e., d/V ).
The discrete event model uses an optimal time step for each region, and so it
is energy conserving within homogeneous sections. Derivations of R and T can
be found in Brillouin [1953], Achenbach [1973], and Bekefi and Barrett [1977].
Brillouin [1953], in particular, derives them directly from energy conservation
laws at the interface.

When the wave speeds on the two sides of an interface are different, the
transmitted wave will have a different wave length than the reflected wave. The
wave number a of a wave is the inverse of its wave length. Let w be the frequency
of the incident wave, AI (x) be the position-dependent wave amplitude, and aI be
the wave number. Let the time-and space-dependent amplitude of the incident
wave be described by

ÂI (t, x) = AI (x)sin(wt − aI x) . (19)

Then the reflected wave ÂR(t, x) is described by

ÂR(t, x) = R ÂI (t, x), (20)

where R is the reflected amplitude ratio given by Equation 18. The reflected
wave has the same speed and wave number as the incident wave.

The transmitted wave, however, has a different speed and wave number. The
wave number of the transmitted wave, denoted aT , is

aT = V1

V2

aI . (21)

In Equation 21, V1 is the wave speed in the material carrying the incident wave,
and V2 is the wave speed in the material carrying the transmitted wave (see
Figure 5). The transmitted wave ÂT (t, x) is described by

ÂT = TAI (x)sin(wt − aT x) . (22)

If V1 = V2, then the wave numbers of the transmitted and reflected/incident
waves are the same. It is also true that the time grids of the two materials are
the same. However, if V1 �= V2, then the wave numbers and time grids will be
different. In this case, information will be missing when a wave moves across
the interface boundary.

If V1 > V2, then the wave is moving from a high speed to a low speed medium.
On a fixed spatial grid, this means that the incident wave is sampled with a
higher frequency that the transmitted wave. In this case, there is too much
information, and the high speed wave must be down sampled as it moves into
the slower material. When V1 < V2, the continuity of the high speed wave can
only be maintained by introducing information that is not available on the low
speed grid. These cases are instances of a general time alignment problem,

ACM Transactions on Modeling and Computer Simulation, Vol. 16, No. 2, April 2006.



184 • J. Nutaro

Fig. 6. A string consisting of two materials. The left material has wave speed V1 and the right

material has wave speed V2. In this figure V1 < V2, and so the time grid points for the right material

are closer together than those for the left material. In general, only the grid points at time zero are

aligned.

where information required at a time grid point of one material is not available
on the time grid of the adjacent material. The time grid alignment problem is
illustrated in Figure 6.

Without loss of generality, suppose that the incident wave approaches the
interface from the left. There will be at least one, but possibly more, missing
time points on the right. Let t be the time at which the incident wave strikes
the interface, n the number of missing time points, and ti, with i ∈ [1, n], the
missing time points. The time t1 is the first time point on the right, following
time t. Subsequent tis are found by adding the time step of the right material
to t1. The ti can be written concisely as

ti =
⌈

t V2

d

⌉
d
V2

+ (i − 1)d
V2

. (23)

The number of approximating points n is found by counting the number of right
time grid points that occur in the interval between t and the next time grid point
on the left. This number can computed using Algorithm 2.

Algorithm 2 Compute the number of approximated points.

n ← 0
tstart ← �t V2/d�d/V2

tend ← t + d/V1

while tstart < tend do
n ← n + 1
tstart ← tstart + d/V2

end while
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Fig. 7. Couplings between a junction model and its associated scattering models.

Note that Algorithm 2 constructs an approximation to Equation 21, comput-
ing n as, approximately, (tend − t)(V2/d ). Without loss of generality, let t = 0.
Then tend = d/V1 and n ≈ V2/V1, so the wave length of the transmitted wave
is roughly V2/V1 times the wave length of the incident wave. The wave number
is the inverse of the wave length, and so we have arrived, approximately, at
Equation 21.

Note that if the incident wave strikes the interface on the right, then V1 and
V2 in Equation 23 and Algorithm 2 are exchanged. That is, the tis in Equation 23
are computed using V1. Also, tstart in Algorithm 2 is determined with V1, and
V2 is used to find tend.

These effects are implemented in a junction model. A junction model is placed
between scattering models at an interface. When a junction model receives an
input event from the left, it sends an output left immediately. This output is
the reflected wave, and its amplitude is given by Equation 15. The transmitted
wave consists of a series of events that are sent to the right. Each event sent
to the right has an amplitude given by Equation 14. There are n such events
where n is determined using Algorithm 2. The times at which the events are
transmitted are given by Equation 23.

A junction model is formalized as an atomic model. Its input events are pairs
(D, A), where D describes the wave direction (LEFT or RIGHT) and A is the
wave amplitude. An input event from the scattering model on the left will have
D = LEFT. An input from the right scattering model will have D = RIGHT.
Junction output events are bags of such pairs. An output event with D = LEFT
becomes an input X r at the scattering model to the left. Similarly, an output
with D = RIGHT becomes an input X l at the scattering model to the right.
The coupling between a junction model and its associated scattering models is
shown in Figure 7.

Its state is a sorted list of output events. Each event in the list is described
by the time at which it will occur, a direction in which the event is to be sent,
and the wave amplitude. The tuple (t, D, A) is used to denote this, where t is
the event time, and D and A are as before. The events are sorted by time in
increasing order. That is, the smallest element is at the front of the list and
the largest at the back. The list, denoted by q, has five operations that can be
performed on it. These are:

—empty(q), which is true if there are no events in the list, and false otherwise,

—first(q), which gives the first tuple stored in the list,

—add(q, (t, D, A)), which places the tuple (t, D, A) in its appropriate list posi-
tion, and replaces any existing tuple with equivalent t and D (i.e., t and D
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uniquely identify an event in the list, and the list always contains the last
such event that was added),

—remove smallest(q), which removes every event in the list with time first(q).t,
and

—get smallest(q), which returns a bag containing every event in the list whose
time is first(q).t, or an empty bag if q is empty.

The junction model knows the current simulation time, which is denoted as t
in the state transition and time advance functions.

The list is initially empty and its time advance is ∞. When the model receives
an input event, it places a reflected wave event and transmitted wave events
on the list q. The time advance function schedules the next output event at the
time of the first tuple in the sorted list. If q is empty, then the time advance
is ∞. The internal transition function removes the most recent events from q.
The junction model behavior is described concisely by

δint(q) = remove smallest(q) (24)

δext(q, e, xb) = q′ , where q′ is computed from q and xb using Algorithm 3 (25)

δcon(q, xb) = δext(δint(q), 0, xb) (26)

ta(q) =
{

first(q).t − t if empty(q) = false
∞ otherwise

(27)

λ(q) = {(Di, Ai) | (Di, Ai) ∈ get smallest(q)} . (28)

Algorithm 3 Compute the external transition function.

q′ ← q
for each (D, A) ∈ xb do

q′ ← add(q′, (t, D, RA))
compute n using Algorithm 2
for all i ∈ [1, n] do

compute ti using Equation 23 with incident wave direction D.
if D = LEFT then

q′ ← add(q′, (ti , RIGHT, TA))
else

q′ ← add(q′, (ti , LEFT, T A))
end if

end for
end for

7. NUMERICAL PROPERTIES OF THE DISCRETE EVENT SCHEME
IN ONE-DIMENSION

In a homogeneous region, the discrete event simulation scheme is exact. This is
due to two facts. First, in any homogeneous region the discrete event scheme is
isomorphic to the discrete time scheme described in Bilbao [2004]. The discrete
time scheme is known to be exact (see Bilbao [2004]) for a one-dimensional
homogeneous material. It follows that the discrete event scheme is exact as well.
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Second, because every material within a nonhomogeneous medium is simulated
using its preferred time step, this relationship holds in every homogeneous
region of an inhomogeneous material.

Because the scheme is exact within any homogeneous region, error is intro-
duced only when a wave crosses an interface. When this occurs, there are two
sources of error. The first error comes from the wave amplitude approximation
scheme used at the interface. The second error is in the simulated time required
for the wave to traverse the interval that spans the interface.

The error introduced when a wave crosses an interface is given by the sum of
the amplitude approximation error and the transit time error. Let u(x) describe
the incident wave at the moment it strikes the interface, and u(0) be the wave
amplitude at the interface.

The junction model approximates the transmitted wave amplitude with the
last computed value at the interface. The approximation error, denoted E1, is
given by neglected terms in the Taylor series expansion of u(x) about 0. Only
the first term is used in the approximation, therefore, the error is

E1 =
∞∑

p=1

u(p)(0)

p!
hp , (29)

where h is the length of the extrapolation interval. The extrapolation inter-

val h is bounded from above by the spatial grid spacing d . Let u(p)
max be the

largest p-th derivative of u with respect to x. Dropping the higher order terms
in Equation 29, the amplitude error can be written as

E1 ≤ |u(1)
max|d . (30)

Let V1 and V2 be the wave speeds on either side of an interface. The actual speed
in the cell where the interface resides is between V1 and V2. Because the simula-
tion uses either V1 or V2 depending on the wave direction, the error is bounded
by |V1 − V2|. This speed error, multiplied by the simulated time required to
cross the interface, gives a wave position error. The simulated traversal time is
bounded from above by d/Vmin, where Vmin is the smaller of V1 and V2. Multi-
plying the position error by the u(1)

max(x) gives a bound on the error in u(x) due
to inaccuracy in the interface traversal time. This bound, denoted E2, is

E2 ≤ d |(V1 − V2)u(1)
max|

Vmin

. (31)

Let �Vmax be the largest difference in the velocities of adjacent regions. Then,
the error due to incorrect propagation times is bounded by

E2 ≤ d�Vmax|u(1)
max|

Vmin

. (32)

The total error bound is given by

E1 + E2 ≤ d |u(1)
max|

(
1 + �Vmax

Vmin

)
. (33)

A test problem is used to verify Equation 33. The test problem consists of a
string with a unit length that is divided into two segments. The first segment
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Fig. 8. Observed and theoretical error bound for the one-dimensional wave propagation scheme.

has a bulk modulus of 1 and density of 1. The second segment has a bulk
modulus 0.5 and density 1. The initial disturbance of the string is described by

u(0, x) =
{

sin(10πx) 0 ≤ x ≤ 0.1

0 otherwise
. (34)

The simulation is run for one time unit. At then end of the simulation, the error
is found by taking the difference of the known and computed solution at each
grid point. Figure 8 shows a plot of error versus d , where the error is the largest
observed at any grid point.

The error bound given by Equation 33 matches the observed errors very
nicely for the range of d shown in Figure 8. However, for small d the error
bound fails to hold. A likely culprit is the notorious sensitivity of some discrete
event models to rounding errors (e.g., Nicol et al. [2000] and Wieland [1997]).
In fact, all numerical methods are susceptible to rounding errors when the
discretization is small enough. While small enough is typically smaller than
practically useful for time stepped methods, it is possible that the discrete event
method proposed here is orders of magnitude more sensitive to this kind of error.

One particular source of rounding error is the ceiling function used in
Equation 23. Rounding errors here can cause an event to be scheduled one
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Fig. 9. A two-dimensional network of scattering (S) and junction (J) models. Couplings are shown

as thin lines, and a material interface is shown with a thick line.

time step before or after it should actually occur. To illustrate this, suppose
that, in Equation 23, d/V = 0.1 and t = 1.0. It should be the case that
t1 = �1.0 · 10.0�0.1 = 1.0. However, a small rounding error, say 0.0001, in
the multiplication 1.0 · 10.0 gives t1 = �10.0 + 0.0001�0.1 = 11.0 · 0.1 = 1.1,
which is incorrect. In this case, an event that should have been scheduled at
time 1.0 is scheduled for one time step later, at time 1.1.

8. PROPAGATION IN TWO- AND THREE-DIMENSIONS

Extending the scheme into two- and three-dimensions is straightforward. Inter-
faces are handled just as in the one-dimensional case. The scattering models are
modified to become four input/four output (in two-dimensional) or six input/six
output (in three-dimensional) models. The structure of a two-dimensional wave
propagation model is shown in Figure 9.

Just as in the one-dimensional case, the generalized scattering model in
Bilbao [2004] is reinterpreted as a discrete event system. In Bilbao [2004], it
is shown that these types of scattering models introduce errors proportional to
the square of the grid spacing d . Assuming that the scattering and junction
errors are additive, the introduction of the generalized scattering models does
not materially affect the linear errors that occur at the interfaces. Consequently,
the k-dimensional case has errors dominated by Equation 33 when the material
is inhomogeneous.

A k-dimensional scattering model has m = 2k possible input and output
directions and m+1 state variables. The state variables are denoted U , U1, . . . ,
Um. The time advance function is the same as in the one-dimensional case:

ta((U, U1, . . . , Um)) =
{∞ if U = U1 = U2 = · · · = Um = 0

d/V otherwise
. (35)

The scattering model can receive input from any of m directions. The input
bag xb contains pairs (D, A) where D indicates the direction from which the
wave arrives, and A is the amplitude of the wave. The direction variable D has
a range [1, m] corresponding to the m possible input directions. The external
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transition function is

δext((U, U1, . . . , Um), e, xb) =
( ∑

i∈[1,m]

U ′
i , U ′

1, . . . , U ′
m

)
, where (36)

U ′
i =

{
Ai if (i, Ai) ∈ xb

Ui otherwise
. (37)

The stored value U is scattered equally in all directions except for those direc-
tions from which input was received. This is described by the scattering model
output function

λ((U, U1, . . . , Um)) = {Y1, . . . , Ym} =
{

− U1 + 2

m
U, . . . , −Um + 2

m
U

}
, (38)

where Yi goes in direction i. The perhaps surprising 2/m factor appearing
in Equation 38 is derived in Bilbao [2004]. Note, however, that the factor is
necessary for Equation 38 to become Equation 6 in the one-dimensional case.

The internal and confluent transition functions of the system remain the
same as in the one-dimensional case;

δint((U, U1, . . . , Um)) = (0, 0, . . . , 0) , and (39)

δcon((U, U1, . . . , Um), xb) = δext(δint((U, U1, . . . , Um)), 0, xb) . (40)

9. BOUNDARY CONDITIONS

Boundary conditions can be applied by generating appropriate input events for
scattering models at the edge of the solution domain. Periodic boundary con-
ditions can be constructed by attaching the free outputs of the edge-scattering
junctions to the free inputs of the edge-scattering junctions appearing on the
opposite side of the solution domain. Perfectly reflecting boundary conditions
can be implemented by adding a reflecting terminator model to the free outputs
and inputs of the edge-scattering junctions. The reflecting terminator model has
one input and one output. The output of the model is a copy of the input �t
units of time in the past, where �t is equal to the noninfinite value taken by
the time advance function of the adjacent scattering model.

Absorbing boundary conditions can be complicated to implement, and they
continue to be an area of active research. However, it is possible in many in-
stances to implement known boundary conditions directly as DEVS models
(for a description of some frequently used absorbing boundary conditions, see
Taflove [1995]). For instance, approximately absorbing boundary conditions can
be implemented by attaching a one-dimensional wave simulator to the free in-
puts and outputs of edge scattering models. The one-dimensional wave simula-
tor uses a single cell finite difference approximation to the wave equation. The
left edge of this one-dimensional simulator is fixed at zero. The right edge is
equal to the input value received from the adjacent scattering model. The model
output is the value of the state variable. The time step, spatial grid spacing, and
wave speed of the one-dimensional simulator are equal to that of the attached
scattering junction.
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A DEVS model that implements this approximately absorbing boundary con-
dition is described in the following. The model has a single input and a single
output. The three state variables are the edge-wave amplitude at the current
time step, the edge-wave amplitude at the last time step, and the last input
value. The model is parametrized by the wave speed V and time step �t of the
adjacent scattering model. The values of the state variables are initially zero.
The model state transition functions are

δext((U1, U0, U ), e, x) = (U1, U0, x) , (41)

δint((U1, U0, U )) =
(

1

V 4
U + 2

(
1 − 1

V 4

)
U1 − U0, U1, 0

)
, and (42)

δcon((U1, U0, U ), x) = δext(δint((U1, U0, U )), 0, x) . (43)

The output function is given by

λ((U1, U0, U )) = U1 (44)

and the time advance function is

ta((U1, U0, U )) =
{

∞ if U1 = U0 = U = 0

�t otherwise
. (45)

10. AN EXAMPLE

Figure 10 shows a electromagnetic wave propagating through a gap in a con-
crete wall. The wave is produced by an impulse. The impulse has a height of ten,
and it originates at the center of the displaced area seen in the first image. The
approximately absorbing boundary conditions described in Section 9 are used
in this simulation. The four meter by four meter region is approximated by a
grid spacing of 0.02 meters. The concrete blocks are outlined in black. The air
is assumed to have a permeability (inductance per meter) of 1.26 × 10−6 H/m
and a permittivity (capacitance per meter) of 8.85 × 10−12 F/m. The concrete
has a permeability of 1.26 × 10−5 H/m and a permittivity of 8.82 × 10−11 F/m.

This simulation is optimized by placing a lower bound on the magnitude of a
wave that is propagated. In some applications (e.g., wireless communications),
wave amplitudes that are small enough can be treated as being effectively zero.
This lower limit is applied in the boundary and scattering models. In both
cases, outputs with values below the threshold are replaced by nonevents. The
threshold value used for this simulation is 10−3.

The computational cost of the simulation can be measured by the number of
state transitions that are computed. This measure can be translated into real
performance gains if an efficient discrete event simulation engine is used (e.g.,
Nutaro et al. [2003], Muzy et al. [2005], and Tang et al. [2005]). This example
uses the adevs simulation engine (see Muzy and Nutaro [2005]).

A state transition in the discrete event scheme is any computation of an
internal, external, or confluent transition function. A state transition in an
FDTD scheme is a calculation of a new value at a grid point. The example
problem is simulated for 3.66E ×10−8 seconds, at which time the discrete event
model becomes passive. The discrete event simulation requires 6, 790, 199 state
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Fig. 10. A wave propagating through a gap in a concrete wall.

transitions. The smallest time advance used by a scattering model is 6.67 ×
10−11.

If an FDTD scheme is used to perform the same calculation, then a time
step of 6.67 × 10−11 is the largest possible while maintaining the stability of
the calculation (e.g., Taflove [1995] and Bilbao [2004]). The domain of the test
problem is approximated with 40, 000 grid points (i.e., a four meter by four
meter and grid resolution of 0.02 meters). Using a time step of 6.67×10−11, 548
time steps are needed to simulate 3.66×10−8 seconds. A new value is computed
at each grid point for each time step, and so 21, 920, 000 state transitions are
required. This is 3.2 times more computational effort than is required by the
discrete event simulation.

When the same scenario is simulated using a 0.01 meter grid resolution (i.e.,
with 160, 000 grid points), the discrete event model requires 19, 502, 660 state
transitions. The same analysis as given before indicates that an FDTD solution
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requires 142, 720, 000 state transitions, or 7.3 times more computational effort.
When a 0.005 meter grid resolution is used, an FDTD scheme requires 16.3
times more state transitions than the discrete event simulation.

This trend is anticipated by the performance models constructed in
Jammalamadaka [2003]. The relative performance improvement is a result of
the discrete event scheme focusing computational effort only on those portions
of the grid that are changing. In this particular example, the earlier frames
(Figures 10a and 10b) have large numbers of inactive cells (i.e., cells with
ta(·) = ∞). The latter frames (Figures 10c and 10d), while containing more
active cells, still have many inactive cells within the concrete walls.

In contrast, FDTD schemes apply equal amounts of computational effort
everywhere. As the grid becomes more refined, the relative number of active
cells becomes smaller. Consequently, the relative performance of the discrete
event scheme is improved. This performance improvement can be significant
when the number of grid points is large and the extent of the disturbance
is relatively small. In the most refined version of this example (i.e., with
d = 0.005), there is an order of magnitude reduction in the computational
effort.

11. CONCLUSIONS

The wave simulation scheme described in this article is closely related to the
dynamic structure cellular automata (DSCA) described in Muzy et al. [2005]. In
fact, homogeneous regions can be simulated using the very efficient algorithms
developed for DSCA models. Within any homogeneous region, the time advance
function has the effect of turning a cell on (i.e., ta(·) = d/V ) or off (i.e., ta(·) =
∞). Moreover, inactive cells have a unique quiescent state. This allows inactive
cells to be removed from the simulator, and active cells to be created on demand.
This can substantially reduce the memory needed to simulate a large cell space,
thereby improving performance (e.g., Muzy et al. [2003, 2005]).

The wave simulation method is only weakly related to quantized state inte-
gration schemes (e.g., Zeigler et al. [2000], Kofman [2004], Nutaro et al. [2003],
and Giambiasi et al. [2000]). Quantized state methods are characterized by
their continuous time base and discrete state space. In contrast, the scheme
presented here retains the discrete time base and continuous state space of
FDTD methods.

This difference manifests itself in two ways. First, the time advance func-
tion is restricted to d/V and ∞. Quantized state methods use a time advance
function whose range is all of the positive real numbers and ∞. Second, event
rescheduling is not needed by the wave simulation; once a state transition is
scheduled (i.e., when ta(·) �= ∞), it is guaranteed to occur at the specified time.
Quantized state methods, on the other hand, require event rescheduling.

The errors exhibited by the discrete event scheme could be further reduced
by using second-order approximations in the junction model. If a second-order
extrapolation technique is used, then the discrete event scheme will exhibit
first-order errors due only to uncertainty in the wave transit time at an inter-
face. A second-order accurate approximation to the transit time would allow
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for a second-order accurate discrete event scheme (i.e., the simulation error is
proportional to d2).

The simplest FDTD schemes for wave simulation are second-order accurate.
The discrete event scheme presented in this article is first-order accurate, but
it allows each region in an inhomogeneous material to be simulated with its
optimal time step. This suggests that the difference between simulated and
actual wave velocities will be smaller with the discrete event scheme than is
possible with a simple FDTD scheme. Moreover, the discrete event scheme’s
simulated gain within a homogeneous region will more closely match the actual
gain, relative to what is possible with a simple FDTD scheme.

Taken together, this implies that numerical dispersion and attentuation er-
rors are likely, in general, to be substantially smaller with the discrete event
scheme. This could result in errors that are comparable to, and in some in-
stances better than, the second-order accurate FDTD scheme, in spite of the
discrete event scheme being only first-order accurate. To establish or disprove
this notion will require further experimentation.
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