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ABSTRACT 
 
 
 
ROBUST NON-LINEAR LYAPUNOV DEEP LEARNING CONTROL DESIGN FOR 

CHAOTIC SYSTEMS 
 

by 
 

AMR SALAH MAHMOUD 
 

 
Adviser:  Mohamed Zohdy, Ph.D. 
 
 
 Despite their operational success, machine learning controllers lack theoretical 

guarantees in terms of system stability. In contrast, classic model-based controller design 

uses principled approaches such as Linear Quadratic Regulator (LQR) to synthesize 

stable controllers with verifiable proofs. In addition, deep learning controllers encounter 

feedback timing bottlenecks that increase exponentially with the system complexity. 

Deep learning is also dependent on the quality and diversity of the dataset to produce 

unbiased findings; therefore, the prediction of deep learning is not guaranteed. As a 

result, in this research, we develop and implement a guaranteed stability solution for 

safety critical and chaotic systems through the integration of Lyapunov Stability theory 

and deep machine learning. Three control methods are researched, leading to the 

development of the Deep Lyapunov-stable controller: the deep learning methodology, the 

Lyapunov control function, and controller parameters. In this research, we provide a 

generic method for synthesizing a Deep Lyapunov-stable control and a way to 

simultaneously confirm its stability. A unique Lyapunov control function is devised and 

shown to be effective in managing Duffing, Van der Pol, and Zohdy-Harb nonlinear 
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systems, but with restrictions on the system's oscillation frequency, initial conditions and 

disturbances. Subsequently, Dynamic Lyapunov Deep Learning is introduced to alleviate 

the Lyapunov control’s shortcomings. Developing a deep learning architecture in 

combination with a customized Lyapunov control resolves the temporal delay and 

Lyapunov parameters calibration concern. Different datasets are also presented before 

establishing the one with the best accuracy. In addition to the dataset, the architecture of 

the deep learning model has a significant effect on the model's accuracy. A process for 

relearning is intended to accommodate the introduction of new system dynamics. Based 

on the correlation study, we also designed an optimization technique to improve the 

integration of the deep learning layer and controller layer. The proposed integration of 

Deep Learning and Lyapunov Control, referred to as Lyapunov Deep Learning (LDL) 

control, is applied in MATLAB / SIMULINK to the magnetic levitation chaotic non-

linear system to demonstrate its effectiveness in addressing sudden changes in system 

behavior, the environment, and demands in comparison to other methods of control. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 
 

In this research, we focus on advancing the field of nonlinear controllers. Over the 

past decade, researchers have concentrated on the linearization of nonlinear systems and 

the use of linear controllers such as PID with the hope that it will perform well enough 

for pole placement, control, root-locus, or other linear techniques to work. This might be 

attributed to the ease of implementation and the low time requirement of linear control. 

Controllers that require linearization, such as PID or LQR techniques lose some of the 

best properties of the system while linearizing. On the other hand, nonlinear controllers 

overcome this disadvantage by using the nonlinear model. New technologies have been 

increasing in complexity in an exponential manner in response to the market's 

overwhelming need for greater functionality, performance, and bandwidth there, for as 

much functionality as possible is integrated in new designs. As such, linear controllers 

will no longer be able to provide the desired outcome as complexities increase and 

demand for efficiency and lossless design increase. 

 

1.1 Fundamentals of Complex Non-Linear Systems 

In order to understand the best method to control a system, we should begin by 

understanding what modern complex nonlinear systems require. While it is simple to 

define linear functions, the term nonlinear encompasses anything else. As Stanislaw 

Ulam, a famous scientist in the field of mathematics and nuclear physics once explained, 

“Using a term like nonlinear science is like referring to the bulk of zoology as the study 
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of non-elephant animals.”[1]. As Figure 1 shows, most Dynamic Systems are non-linear 

in nature and most Nonlinear systems are Chaotic in nature.  

 

 

Figure 1 Relationship between Dynamic Systems, Nonlinear and Chaotic systems 

Nonlinearity frequently emerges from the collective behavior of even the simplest 

systems, it is insufficient to combine the effects of the components merely linearly. 

Emergent phenomena, including chaos, solitons, fractals, and meta/multi-stability, are 

produced by the interactions between the components. Even if the underlying physics is 

deterministic, the ensuing dynamics can be very unpredictable and result in the formation 

of non-equilibrium patterns. 

Methods of solution or analysis for problems involving nonlinear differential 

equations are situation specific. Lotka–Volterra, Navier–Stokes, Duffing and Van Der 

Pol equations are examples of nonlinear differential equations. One of the most 

challenging aspects of nonlinear issues is that it is typically impossible to combine 

Linear Non-linear 

Chaotic Non-
Chaotic 

Dynamic System 
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existing solutions to create new ones. A family of linearly independent solutions may be 

utilized through the superposition principle to derive generic solutions for linear 

problems, for instance. This is shown by one-dimensional heat transfer with Dirichlet 

boundary conditions, whose solution is represented as a time-dependent linear 

combination of sinusoids with varying frequencies; this makes solutions extremely 

versatile. Identifying several exact solutions to nonlinear equations is feasible, but the 

absence of a superposition principle precludes the creation of additional solutions. A 

further distinction between linear and nonlinear systems is that nonlinear dynamics can 

only be solved by using computers and simulating the dynamics. Nonlinear systems 

dynamics are several, but we present a few examples below, some of which will be 

utilized later in this research. 

1.1.1 Duffing System 

For the purpose of simulating damped and driven oscillators, a nonlinear second-

order differential equation known as the Duffing equation is used. The Duffing system is 

named after Georg Duffing (1861–1944) [2]. In addition to being an example of a highly 

complex chaotic system, the frequency response of the Duffing system also exhibits the 

phenomena of jump resonance, which is a form of frequency hysteresis behavior. The 

Duffing equation describes the nonlinear oscillations of a mass connected to a nonlinear 

spring and a linear damper. Duffing Dynamic Differential Equation is presented in 1. 

                                𝑥̈ + 𝜑𝑥̇ + 𝛿𝑥 + 𝛾𝑥ଷ = 𝑐𝑜𝑠 𝑡 + 𝑢                                          (1) 

1.1.2 Van der pol System 

The Van der Pol oscillator was devised by Balthasar van der Pol, a Dutch 

electrical engineer and scientist at Philips. Van der Pol discovered stable oscillations, 
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which he subsequently termed relaxation oscillations. In addition, Van der Pol and his 

colleague, van der Mark, reported in the September 1927 edition of Nature that, at 

particular driving frequencies, an irregular noise could be heard, which was subsequently 

determined to be the outcome of deterministic chaos. Van der pol Dynamic Differential 

Equation is presented in 2. 

ẍ + φ(1 − xଶ)ẋ + x = cos t + u                                     (2) 

1.1.3 Navier–Stokes Equations in Fluid Dynamics 

The motion of viscous fluid substances may be understood via the use of a set of 

partial differential equations known as the Navier–Stokes equations. Claude-Louis 

Navier, a French engineer and scientist, and George Gabriel Stokes, a mathematician, 

both contributed to the naming of this phenomenon. Over the course of many decades, 

beginning in 1822 and continuing through 1842–1850, the ideas were gradually evolved 

[2, 3]. For Newtonian fluids, the Navier–Stokes equations quantitatively express 

momentum and mass conservation. Occasionally, they are accompanied with a state 

equation that links pressure, temperature, and density. The Navier–Stokes equations are 

valuable because they describe the physics of numerous phenomena that are of 

importance to science and engineering. They can be utilized to represent weather, ocean 

currents, water flow in a pipe, and air flow around a wing. The full and simplified 

Navier–Stokes equations aid in the design of aircraft and automobiles, the study of blood 

flow, the design of power plants, and the analysis of pollution, among several other 

applications. They can be used to research and model magnetohydrodynamics when 

combined with Maxwell's equations. 
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1.1.4 Lotka–Volterra Equations 

In 1910, Alfred J. Lotka was the first person to describe the Lotka–Volterra 

predator–prey model as a component of the concept of autocatalytic chemical processes. 

This model was developed by Lotka and Volterra [4]. It is common practice to utilize 

first-order nonlinear differential equations when attempting to describe the dynamics of 

biological systems involving the interaction of two species, one of which acts as a 

predator while the other acts as prey. These equations are sometimes referred to as the 

predator–prey equations since they are generally recognized by that name. When 

attempting to represent the dynamics of natural populations of predators and prey, many 

models, including the Lotka–Volterra model and the Rosenzweig–MacArthur model, 

have been used.  

Concerning the reliability of models that are dependent on prey or ratios, there has 

been a great deal of disagreement. It is generally accepted that Richard Goodwin carried 

out the first application of the Lotka–Volterra Equations 3 in either 1965 or 1967 [4]. In 

the hypothetical system, predators thrive so long as there is an ample supply of prey, but 

they run out of their food supply and finally die out. The number of animals that are 

hunted will eventually increase since there will be fewer predators. These activities 

continue in a cycle of population growth followed by population decrease. 

ୢ୶

ୢ୲
= αx − βxy

ୢ୷

ୢ୲
= δxy − γy

                                                           (3) 

1.1.5 Lorenz Chaotic System 

Edward Lorenz, a mathematician, and meteorologist initially explored the Lorenz 

system, a set of ordinary differential equations. The model is known for having chaotic 
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solutions for parameter values and beginning circumstances. An accumulation of chaotic 

solutions to the Lorenz system is what is known as the Lorenz attractor. The "butterfly 

effect" originates from the real-world implications of the Lorenz attractor, which state 

that in a chaotic physical system, in the absence of perfect knowledge of the initial 

conditions, even a disturbance in the air caused by a butterfly flapping its wings, our 

ability to predict its future course will always fail[5, 6]. This idea has made its way into 

popular culture, where it is used to describe the inability to accurately forecast the 

behavior of a system. This illustrates that physical systems may be completely 

predictable while yet keeping the unpredictability that is fundamental to their nature. 

When plotted in phase space, the shape of the Lorenz attractor itself looks like a butterfly. 

This resemblance is most apparent when looking at the attractor in its entirety. In its 

current form, the model may be represented by a set of three ordinary differential 

equations that are collectively referred to as the Lorenz equations. 

 

1.2 An Overview of Nonlinear Control 

Two frequent characteristics of novel control challenges are that the system's 

attractive operating range is not always close to equilibrium, necessitating explicit 

consideration of nonlinear effects in order to build a good controller. Even though 

physical modeling enables the precise identification of well-defined nonlinear systems 

the controller must contend with a large degree of uncertainty, owing mostly to due to a 

lack of familiarity with the system's specifications and an inability to measure the status 

of the entire system. This issue demonstrates the critical requirement for the development 

of controller tools that take on unpredictable nonlinear system behavior. When 
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considered conceptually, they may be generally categorized into Analytically and 

computationally oriented. An analytical model of the system, and controller design is the 

result of a methodical procedure that ensures a desired behavior. Because stability is a 

necessary but not sufficient requirement for this technique, it is commonly referred to as 

robust stabilization. It encompasses Lyapunov-based approaches, gain-assignment 

methods, and conventional robust and adaptive tools. On the other hand, computationally 

focused approaches do not require an analytical model and may be built based on a 

numerical model of the system to be controlled—for example, produced by the collection 

of vast quantities of data to approximate its behavior. The most visible examples of this 

school include neural network-based control, fuzzy control, and intelligent control. 

Recently, a second class of computationally focused methodologies has gained 

prominence, which is based on analytical models of the system. To attempt to replicate 

the evolution of linear systems. To account for nonlinear effects in theory, piecewise 

linear models are offered. Typically, an optimal control objective is defined, and the 

controller design challenge is to demonstrate that the optimization is possible for the 

given numerical values of the system model, e.g., that it can be translated into linear 

matrix inequalities and a control signal can be numerically produced. Two disadvantages 

exist with the optimum control strategy. To begin, the solutions are vulnerable to plant 

uncertainty, such as a lack of complete state measurement and parametric uncertainty, 

which are prevalent concerns in the majority, if not all, actual applications. Second, 

calculation of the optimal control law is only achievable for low-dimensional systems, 

casting doubt on the method's application to nonlinear systems. Additionally, there is not 

necessarily a compelling rationale, other than mathematical convenience, for expressing 
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the intended behavior of a dynamical system in terms of an optimization scalar criteria. 

While computationally oriented techniques benefit from rapidly developing computer 

technology, they focus on providing answers to specific issues rather than on explaining 

why, how, and when these solutions work. Therefor in this research we aim to 

comprehend the underlying process by which the system operates. The information is 

contained in the dynamics of the nonlinear system and disclosed by a thorough nonlinear 

analysis.  

1.2.1 Gain Scheduling 

Gain scheduling is a typical method for regulating nonlinear systems whose 

dynamics vary across operating conditions. Gain scheduling is utilized when a single set 

of controller gains does not offer the necessary performance and stability throughout the 

whole range of plant operating circumstances. 

1.2.2 Adaptive Control 

Adaptive control is an active field in the design of control systems to account for 

uncertainty. The major distinction between adaptive controllers and linear controllers is 

the adaptive controller's capacity to change itself to deal with unforeseen model 

uncertainties. Direct and indirect adaptive control are the two primary classifications. 

Indirect approaches estimate the plant's parameters and then utilize the predicted model 

data to calibrate the controller. Direct techniques are those in which the estimated 

parameters are utilized directly by the adaptive controller. 

1.2.3    Model Predictive Control 

MPC models anticipate the change in the system's dependent variables that will 

result from changes in the independent variables. The setpoints of regulatory PID 
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controllers (pressure, flow, temperature, etc.) or the final control element are often 

controller-adjustable independent variables (valves, dampers, etc.). We make use of 

independent variables that are not subject to the influence of the controller here in the 

role of disturbances. The dependent variables in these processes are additional 

measurements that either represent control goals or process constraints. 

Model predictive control may be broken down into many subtypes, one of which 

is known as nonlinear model predictive control, or NMPC for short. NMPC makes use of 

nonlinear system models for prediction. The iterative solution of optimal control 

problems with a limited prediction horizon is required in NMPC, just as it is in linear 

MPC. In linear MPC, these problems have a convex solution, however in nonlinear MPC, 

the convexity of these problems is not guaranteed. Both the theoretical framework of 

NMPC stability and the numerical solution face challenges as a result of this[7]. 

Typically, the numerical solution of NMPC optimum control problems is based 

on direct optimal control techniques employing Newton-type optimization procedures in 

one of the following variants: direct single shooting, direct multiple shooting, or direct 

collocation. 

NMPC algorithms often make use of the similarity between successive optimum 

control problems. This allows for an efficient initialization of the Newton-type solution 

approach by a properly shifted estimate from the previously calculated optimum solution. 

As a result, a significant amount of computation time may be saved as a result of this. 

Path following algorithms are algorithms that never attempt to iterate any optimization 

problem to the point where it converges, but instead only take a few iterations towards 
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the solution of the most recent NMPC problem, before proceeding to the next one, which 

is suitably initialized; see, exploit the similarity of subsequent problems even further[8]. 

NMPC is increasingly being applied to applications with high sampling rates, 

such as in the automotive industry, or even when the states are spread in space, thanks to 

the breakthroughs that have been made in controller hardware and computational 

algorithms, such as preconditioning. In the past, NMPC applications were predominantly 

used in the process and chemical industries, which had relatively slow sampling rates 

(Distributed parameter systems). 

Recent aerospace applications of NMPC include tracking optimum terrain-

following/avoidance trajectories in real time[9]. 

Model predictive control algorithm utilizes the following functions: 

 An optimization algorithm 

 A cost function J 

 A dynamic model of the process 

 Sliding mode control 

Sliding Mode Control is an approach to nonlinear control that modifies the 

dynamics of a nonlinear system by applying a discontinuous control signal [10]. This 

control signal causes the system to slide over a cross-section of the system's normal 

behavior, which in turn modifies the dynamics of the system. Legislation to govern the 

input received from the state is not a time-continuous function. Instead, it can transition 

from one continuous structure to another in accordance with the position it now occupies 

in the state space. Control using a sliding mode is thus an example of control using a 

variable structure. The sliding-mode-control rule toggles between states according to the 
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