
Accepted Manuscript

Modeling Discrete Event Scalable Network Systems

Ahmet Zengin

PII: S0020-0255(10)00522-0

DOI: 10.1016/j.ins.2010.10.023

Reference: INS 8884

To appear in: Information Sciences

Received Date: 15 September 2009

Revised Date: 16 October 2010

Accepted Date: 18 October 2010

Please cite this article as: A. Zengin, Modeling Discrete Event Scalable Network Systems, Information Sciences

(2010), doi: 10.1016/j.ins.2010.10.023

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.ins.2010.10.023
http://dx.doi.org/10.1016/j.ins.2010.10.023

Modeling Discrete Event Scalable Network Systems

Ahmet Zengin1

Department of Computer Science Education, Sakarya University, Turkey E-mail:
azengin@sakarya.edu.tr

Abstract

Scalability in simulation tools is one of the most important traits to measure
performance of software. The reason is that today’s Internet is the main
instance of a large-scale and highly complex system. Simulation of Internet-
scale network systems has to be supported by any simulation tool. Despite
this fact, many network simulators lacks support for building large models.
In this work, in order to propose a new approach for scalability issue in net-
work simulation tools, a network simulator is developed based on behavior
of honeybees and high performance DEVS, modular and hierarchical system
theoretic approach. A biologically-inspired discrete-event modeling approach
is described for studying networks’ scalability and performance traits. Since
natural systems can offer important concepts for modeling network systems,
key adaptive and emergent attributes of honeybees and their societal prop-
erties are incorporated into a set of simulation models that are developed us-
ing the Discrete Event System Specification approach. Large-scale network
models are simulated and evaluated to show the benefits of nature-inspired
network models.

Key words: DEVS Formalism, Modeling and Simulation of Networks,
Routing, Scalability, Honeybees

1. Introduction

Computer based simulation is widely used in almost all areas of network-
ing research for analyzing networked systems. Simulation is also particularly
useful in allowing the network designers to test new protocols or to change the
existing protocols in a controlled and reproducible manner. Treats such as
modeling capability, credibility of simulation models and results, extendibil-
ity, usability and scalability should be taken into account when a new network

Preprint submitted to Information Sciences October 22, 2010

simulation tool is developed. There exist a number of high quality simula-
tion tools which are widely in use, such as ns-2 [21], ns-3 [22], OpNet[23],
Omnet++[37], SSFNet[8], pdns[27], GloMoSim[43] and Ptolemy project[26].
These simulation tools allow researchers and developers to test, compare and
validate new and existing protocols under various conditions. These tools ex-
ploit various discrete event network methodology but have many problems.
Simulators such as OPNET have detailed visualization tools, documenta-
tion and commercial devices such as routers, switches, hubs in both wired
and wireless area however have disadvantages so that modeling capability
is limited to a few hundred nodes in a single machine. Therefore studying
larger models become a challenge due to lack of distributed execution base
in simulator architecture. On the other hand, although ns-2 is fairly easy to
use once you get to know the simulator, it is quite difficult for a first time
user, because there are few user-friendly manuals and it is difficult to install.
Various extensions and parallel and distributed variations are developed to
achieve scalability. Most well-known is pdns. These tools lack system the-
oretic background and therefore difficult to reuse, update and extend their
models.

The design of most network simulators is usually non-formalized. Lack
of any formal definition causes a low performance, bad-scalable and non-
reusable software architecture [6]. Formalization of the simulation design
is required to design large-scale, efficient and distributed complex dynamic
systems because it facilitates verification of optimal system design and effi-
ciency [7]. In other words, because network systems commonly necessitate
stage-by-stage design, verification, validation and a final integration, using a
non-formalized design is not practical.

Formalized design approaches such as DEVS have many important ad-
vantages in system design. Such an approach reduces model development
times and renders possible to recognize critical system design problems at
earlier phases. DEVS based system theoretic model facilitates testing and
improved experimentation and thus leads to higher quality models. This
approach also supports design reusability by using a model repository and
interoperability between simulation models. Another key advantage is that
model verification, validation and accreditation can readily be done during
model development. DEVS can be used as a formal tool for systems develop-
ment and execution which improves model maintainability, multi-formalism
modeling, automated parallel and real-time execution [42].

On the other hand, many network systems supporting inter-connectivity

2

are required to exhibit essential traits such as adaptability, scalability, and re-
liability (survivability) which are already observed in biological systems such
as ants and honeybees. Large-scale biological systems, such as bee colonies,
have advanced mechanisms that are scalable and adaptable under varying
environmental conditions[5]. The desirable characteristics of the bee colony,
scalability, adaptability and survivability, are not present in any single bee.
Rather, they emerge from the collective actions and interactions of all bees
in the large-scale colony. The design of complex and scalable network appli-
cations, therefore, stands to benefit from the power of biological principles
and schemes.

The focus of this paper is on applying biological principles, mechanisms
and DEVS formal system specification to the design and implementation
of large-scale network applications. Swarm-based routing algorithms offer a
number of attractive features including autonomy, robustness and fault tol-
erance. Distributing intelligence on the network provides rapid control over
resources that can dynamically adapt to user’s requirements. Such swarm-
based algorithms adapt well to dynamic topologies. A new class of hierar-
chical routing algorithm is devised based on principles of biological swarms,
which have the potential to address some of the problems in an autonomous
and intelligent fashion. To develop and study dynamic and adaptive swarm-
based large-scale network models as well as various routing protocols, a DEVS
(Discrete Event System Specification)[42] network model is devised in DE-
VSJAVA [30] which is an implementation of the DEVS framework.

In this work, the nodes and links are characterized as the elementary net-
work components. Networks with varying topologies and scales are modeled
and simulator using the DEVS hierarchical model composition concept. For
example, clusters are used to study its impact on reducing communication
and increasing performance. The developed model is applied to comparison
experiments with ns-2 to depict its credibility. The performance of the de-
veloped environment for networks having from tens to several thousands of
components and connections are investigated.

The remainder of this paper, starting in Section 2, presents the State of
Art. In Section 3, the modeling concepts of SwarmNet network simulator are
mapped to a set of adaptable agent-based DEVS modeling constructs. The
nodes and links are elaborated with supporting components. In Section 4,
SwarmNet and ns-2 performance comparison as well as their evaluation are
given. Section 5 is about the technics and ideas behind large models in the
developed simulator. In Section 6, example models in the SwarmNet simula-

3

tion environment are developed and analyzed. In Section 7, evaluation of the
developed environment with some features of SwarmNet network simulator
is presented and some future research directions are summarized in Section
8.

2. Background And Related Work

2.1. Network Simulation Tools

Tools such as ns-2 [21], ns-3 [22], OPNET [23], OMNET++ [37], Glo-
MoSim [43] and SSFNet [8] are used to reveal the inner workings of computer
networks in virtual settings. A key emphasis has been on enabling design
and testing of routing algorithms, MAC layers, and end-to-end queuing. Al-
though the capabilities of these simulation tools support describing (wired
and wireless) computer and device network protocols and communications in
great detail, their underlying foundations lack support for developing models
in system theoretic manner. The conceptual models of these tools are derived
from computer network hardware and software abstractions. These models
are mostly implemented in object-oriented programming languages and sim-
ulated in virtual and/or emulated in physical testbeds. But these tools have
some disadvantages in terms of underlying methodology, implementation and
scalability [15]. Summary of the network simulators and their strengths and
weaknesses are presented in Table 1.

2.2. Discrete Event System Specification (DEVS)

The dynamics of network systems can be described using discrete event
modeling. This is because the dynamics of network systems can be charac-
terized in terms of components that can process and generate events. Among
discrete event modeling approaches, the Discrete Event Systems Specification
(DEVS) [42] is well suited for formally describing concurrent processing and
the event-driven nature of arbitrary configuration of nodes and links form-
ing network systems. This modeling approach supports hierarchical modular
model construction, distributed execution, and therefore characterizing com-
plex, large-scale systems with atomic and coupled models. Atomic models
represent the structure and behavior of individual components via inputs (X),
outputs (Y), states (S), and functions. An atomic model can be described
with

Atomic model= (X, S, Y, δext, δint, δconf , λ, ta).

4

Table 1: Network simulators comparison

Aspect Ns-2 pdns OPNET OMNET++ J-Sim SSFNET GloMoSim SwarmNet

Object-orientation M M S M VS VS M VS
Network Models Library S S S S M W M W

Analysis of the results M M VS W W W S VS
Extendibility M M S VS VS VS VS VS

Expertise need VS VS W S W S W M
Deployment W W S M VS S S VS

Documentation M M VS S W W M M
Availability VS S W VS VS VS W VS

Visualization W W S S M VS VS S
User base VS W S S M W W W

Scalability W VS M M S VS VS VS
Performance S VS M M S VS M VS
Randomness VS VS W S W W W VS

Failure modeling VS VS VS M W M W VS
Web access - - - - S - - VS

M - medium S - strong VS - very strong W - weak

The external (δext), internal (δint), confluent (δconf), output (λ), and
time advance functions (ta) define a component’s behavior over time. In-
ternal and external transition functions describe autonomous behavior and
response to external stimuli, respectively. The time advance function repre-
sents the passage of time. The output function is used to generate outputs.

Atomic models can be coupled together in a strict hierarchy to form more
complex models. Parallel DEVS, which extends the classical DEVS, is capa-
ble of processing multiple input events and concurrent occurrences of internal
and external transition functions. The Parallel DEVS confluent transition
function provides local control by handling simultaneous internal and exter-
nal transition functions. A coupled model can be constructed by composing
models into hierarchical tree structures. A coupled model is defined in terms
of its constituent atomic and/or coupled models.

Computational realizations of the DEVS formalism and its associated
simulation protocols are executed using simulation engines such as DEVS-
Suite[19] and DEVSJAVA[1]. DEVS-Suite and DEVSJAVA are an object ori-
ented realization of Parallel DEVS. They support describing complex struc-
tures, behaviors of network systems using object-oriented modeling tech-
niques and advanced features of the Java programming language. The formal
foundation of DEVS, its efficient execution, and the availability of sequen-

5

tial, parallel, or distributed simulation engines using alternative computa-
tional environments such as CORBA, HLA, and Web-services are important
considerations. Furthermore, discrete event models are extended with other
kinds of models such as fuzzy logic[29] [20].

DEVS-Suite is an open source, discrete event, general-purpose simula-
tion environment [19]. It is a new generation extended from the DEVS-
JAVA simulator and DEVS Tracking Environment. The main modules of
the DEVS-Suite are DEVSJAVA [1], DEVS tracking Environment [31], and
timeview [19]. DEVS-Suite can simulate models specified using the DEVS
formalism [42]. The architecture of the DEVS-Suite simulator environment
is Model Facade View Control (MFVC) [31] by which simulation data can be
displayed with its animation and viewing of time trajectories generated by
the parallel DEVS abstract simulator. Soft synchronization among timeviews
and animation is supported based on the simulator’s logical (or real-time)
execution speed [16].

2.3. Swarm Intelligence-based Network Management Schemes and Honeybee
Colony

Swarm intelligence (SI) is a kind of collective intelligence observed on
social insects such as ants and bees[4]. SI is emerged from complex and
collective intelligent behavior through interactions of autonomous swarm in-
dividuals from tens to thousands[18]. SI systems are composed of interacting
locally with one another and with their environment[40]. The constituent
members use very simple intelligence but resultant emerged intelligence is
highly complex and collective without any central authority [34]. The social
insect examples of SI are exemplified such as ant and bee colonies, bird flock-
ing, animal herding, bacterial growth, and fish schooling[40]. SI has many
appropriate properties for routing problem in distributed systems. These
properties can be listed as scalability, fault tolerance, adaptation, speed,
modularity, autonomy and parallelism[5]. In order to exploit these prop-
erties in network routing, some algorithms and protocols are developed by
researchers such as ant colony optimization (ACO)[11], particle swarm op-
timization (PSO)[24] [38], mobile agents[3], [39], [32], [10] and [17]. Some
works are also based on honeybees such as [36], [25], [12] and [46].

Insect societies such as honeybees have fundamental mechanisms that
allow them to preserve their survivability in the presence of alterations on
their environment. For example, even though nectar availability in honey-
bees’ ecological setting may change rapidly and unpredictably, honeybees are

6

able to cope with such critical changes and grow their population to record
numbers[33]. Honeybees’ sophisticated regulation mechanisms allow them to
grow very large colonies by adapting to fluctuating and ephemeral resources.
Foraging behavior in honeybees is a good example for investigating social
insect metaphors such as self-organization. Honeybees collectively decide se-
lection of nectar and pollen resources and allocation of workers (foragers and
scouts) to various tasks through self-organization. These selection and allo-
cation processes among honeybees of a hive are performed in the absence of
any central management authority. In a decentralized and concurrent way,
each bee obeys to a set of simple rules based on some metrics such as nectar
concentration, and distance and travel time to food source. These metrics,
including parameters such as the number of bees responsible for storing food
in the hive, determine profitability of a nectar source. If the colony encoun-
ters more than one nectar source, the most profitable one is preferred by
foragers relative to other sources with less profitability. Foragers are dis-
tributed among nectar sources using profitability criterion during the course
of nectar collecting process. If the amount of a nectar at a given location
changes, then the importance of the nectar source is reduced for the whole
colony. Furthermore, the colony deploys a relatively small number of its
population called scouts to search for nectar. Scouts locate rich sources and
monitor nectar availability in the environment[2]. The assignment of forager
bees to food sources according to the profitability criterion is known as the
scout-recruit process. One of the most well-known mathematical models of
the honeybee system was developed by [33].

3. SwarmNet Network Modeling Framework

In this work, to develop a framework for modeling and research of network
protocols, a set of basic network simulation model components are defined
including nodes which communicate with one another via links as detailed
next (see Figures 1). Framework is developed based on a previous work called
SwarmNet of which background is designed using the concepts from swarm
intelligence[46]. A detailed definition of its modeling and simulation con-
cepts as well as its swarm intelligence based design can be found in [45, 44].
By coupling basic model components in DEVSJAVA, a variety of network
configurations can be developed and their characteristics can be investigated
(see Figure 1). Since it is assumed that only nodes and links of a network are
able to cause bottleneck, they are modeled as parallel DEVS atomic models

7

Figure 1: The model components making up the network and data link layers.

so that their dynamics are in focus and only their states as well as input and
output variables are of interest. Other network components such as pack-
ets, queues and routing tables are realized and modeled as stateless entities.
In the following sections these models and their associated components are
defined briefly.

SwarmNet network simulator is designed to simulate of distributed sys-
tem components. A distributed system is typically composed of static and
dynamic parts, such as IP addresses and messages interchanging between
atomic models. In this section, a brief information is given for some parts of
the network system.

3.1. Basic Atomic Model Components

3.1.1. Router nodes

The poly-functional nodes and links in the network are modeled as DEVS
atomic components. All nodes have several inputs and outputs through which
messages among nodes can be received and sent (see Figure 1). Each input
and output port pairs constitute a network interface card (NIC) which pro-
vides fundamental inter-networking services. The NIC corresponds to physi-
cal layer of the network system, but detailed MAC protocol is not modeled.
A higher level of abstraction is selected due to the need for performance for
large-scale experiments. An IP address as a unique id, unique name or code
identifying each computer and user is assigned to every node in the network
so that a packet can be directed to a specific destination. IP addresses also

8

specify the location of a router in the network. At each node, packets are
forwarded to their destination by using information stored in its Routing
Module, which defines a node’s routing capability and intelligence. Also,
router model is supported with a beehive. Beehive can generate and deploy
any kind of control packets such as Hello, LSA and RIP messages and even
artificial bees and ants for agent-based swarm intelligence applications. In
SwarmNet approach a beehive is configured to launch scouts, foragers and
drones to monitor and reconfigure network resources[45].

3.1.2. Border nodes

In large-scale modeling and simulation applications, in order to implement
a clustering scheme for hierarchic routing, some concepts such as size of
the clusters and organization of them have to be defined. By this reason,
a mechanism for hierarchic large-scale routing is defined and modeled. A
border node implementation is adopted for colonization or clustering. In
the SwarmNet environment, border nodes are same as regular nodes and
routers except border nodes have additional routing databases for distant
autonomous systems and their protocols are different than regular nodes i.e.,
different agent bees such as drone bees are deployed for and protocol similar
to BGP[35] interior gateway protocol. A routing module of a border node
includes a routing table for local network as well as a global routing table
which can be used to manage the routing between the autonomous systems
and other parts of the global network (see Figure 2). A border node makes
communications possible for outside of its autonomous system .

3.1.3. Large-scale traffic model

It is important to generate the user traffic for networks and observing
how the network dynamics evolve. An event generator atomic model that
can generate data packets was devised. The event generator atomic model
generates packets with fixed time intervals by randomly choosing source and
destination addresses. The number of packets, their lengths and frequency
are determined by selected probability or traffic models such as uniform,
random and Poisson. The generator model can also create and schedule spe-
cific events for the network model such as ’link down’ and ’node congestion’,
as well as parameter variation, called bursts, to test algorithms in highly
dynamic conditions.

A transducer atomic model was devised to collect and analyze the net-
work dynamics. The observed data is stored in trace (CSV) files. The trans-

9

Figure 2: Border nodes is used for establishing connection between autonomous systems.

ducer atomic component computes network raw data to information which is
meaningful for one or more user-defined experiments. As mentioned earlier,
parameters such as network throughput and average latency are observed.
Measured data is stored in trace files and can be converted to graphs.

3.1.4. Databases and stacks

In the developed simulator Java implementation, a Routing Table object,
which consists of a collection of Route objects, is an instance variable of the
Routing Module class which in turn is an instance variable of the Node class.
The Routing Table class is a vector containing references to Route objects
for all routes.

Each node in the network is represented a routing table storing neigh-
boring nodes to which traffic should be routed. Each node has a routing
table for every possible destination in the network, and each table has an
entry for every neighbor (see Figure 3). Data packets can be systematically
routed through the network by using routing table. According to the routing
algorithm, these routing tables are constructed previously (in static algo-
rithms), dynamically adapted to network load state (in dynamic algorithms)
or based on node’s (insect’s) next node selection probabilities to its destina-
tion - e.g., using swarm based algorithms. During simulation execution new
entries may be added to table or current entries may be removed or adjusted
according to network traffic. All the values of the entries in the routing table

10

Figure 3: A Routing Table view in SwarmNet, rows corresponds to destinations and
columns to neighbors

range between 0 and 1, a probabilistic value. These entries are referred to
as profitability values through which most profitable routes can be chosen.
This approach balances the network traffic load by routing the packets to
alternative routes.

In Figure 3, the simview viewer shows the content of the routing table for
the router called Router4. This is important in order to follow the formation
of routing table in the execution mode for teaching network protocols logic.

As already mentioned, detailed component definitions of the SwarmNet
simulator can be found in [45].

3.2. Coupled Models

Using basic components and tools which have been described above, net-
works can be built by coupling them under developed simulation environment
(see Figure 1). Furthermore, by linking these coupled networks, larger net-
works can be systematically developed. Some applications have been created

11

Figure 4: Three networks (a cluster) coupled together in a ring topology

in SwarmNet to simulate routing algorithms over varying network traffic
patterns. In the experiments, large-scale networks with increased complexity
and connectivity are built. They have been designed for testing the model
design as well as testing the framework itself (e.g., scalability). Large-scale
and complex networks are used for uncovering dynamics and performance
measurements of the models in the SwarmNet environment. In Figure 4,
three coupled models connected in ring topology. Coupled models can be
considered as autonomous systems.

3.3. Clustering and Colonization

One of the main criteria for appreciating the network simulators is scal-
ability. A network or simulator model is considered scalable with respect
to network size, if simulation deserves its run properly while the number of
network components such as nodes and links grows constantly. In this study,
a clustering approach is employed to support scalability and implemented
when coupling the models (see Figure 4). Clustering provides manageable
network sizes by abstracting a subnet to a single node in a higher level net-
work. By considering a coupled model as an atomic model, DEVS coupled
model concept has a resemblance with clustering. There exists a hierarchy
of networks within the total of all nodes and routers (see Figure 5). Each
coupled model has a number of border nodes which are used for connect-
ing it to other coupled networks (see Figure 2). In the approach, clustering
is done in addressing level of nodes. Hierarchical and modular structure of
DEVS formalism facilitates implementation of clustering approach. Border
nodes have an additional routing table consisting of the cluster names. This
approach substantially decreases the information stored in routers.

12

Figure 5: Modular and hierarchical design of DEVS network models

4. SwarmNet and NS-2 performance comparison

To highlight the key differences between modeling DEVS and ns-2, that
relate to the goal of this paper, a sample network consisting of a small number
of routers and links is used (see Figure 6). In Figure 6, the Network Animator
(Nam) screenshot of the sample network is shown. Simulation experiments
were performed both in ns-2 and SwarmNet.

Parameters are selected commonly for comparison purposes and listed
within Table 2. Data packets in both simulation environments are config-
ured to almost same variables, for example their sizes are set to 330 bytes and
generation frequency are selected as same. In ns-2, packet events are gener-
ated via traffic agents, while SwarmNet uses a separate generator called event
generator. All packets including control and data packets are modeled as a
standard IP packet with 20 byte header and data fields. SwarmNet traffic
model has an event generator and a transducer which generates data packets
in order to mimic behavior of users and measures outcomes, respectively.

4.1. Structural differences of SwarmNet and ns-2

The simulation parameters for the SwarmNet and ns-2 environments have
some relational differences which have a direct effect on simulation results.
SwarmNet is a packet-level simulator, focused just only on routing, has higher

13

Figure 6: NAM screenshot of the simple network consisting of router nodes and duplex
links

Table 2: Simulation Model Parameters of ns-2 and SwarmNet
Simulation Model Parameters

SwarmNet NS-2
Topology 11 routers, 11 routers,

18 bidirectional links 18 duplex links
Protocol Routing Information Protocol Distance Vector
Processing speed 1 msec/event N/A
Event frequency 1000 events/sec. 28388 events/sec
Packet sizes 330 bytes 330 bytes
Node’s buffers 1 MB Infinity
Link bandwidth 1.2 Mbps 1.2 Mbps
Link delay 2 msec. 2 msec.
Traffic type Uniformly random FTP over TCP
Simulation time 1 sec. 1 sec.

14

(a)

(b)

Figure 7: SwarmNet and ns-2 throughput comparison

15

level of abstraction than ns-2, finally more suitable in high performance de-
manding applications. In following sections, it is tried to identify the reasons
behind the differences in a more comprehensive manner. Simulation results
for validation purposes are shown in Figure 7 in which SwarmNet approxi-
mately yields same throughput values.

The SwarmNet and ns-2, provide different abstractions for links. In ns-2,
two-way channels called full-duplex are defined such that a node can transmit
and receive packets simultaneously [21]. Since simultaneous receive and send
is impossible for serial processor, in SwarmNet links are defined to be bi-
directional - i.e. at each point in time, a node can either send or receive
data.

The ns-2 provides detailed models for state-of-the-art routing protocols
such as link state and distance vector to study network protocols, based on
link state and distance vector concepts, specific protocol such as OSPF and
RIP can be simulated in ns-2. The RIP which corresponds to distance vector
protocol is developed for the SwarmNet environment.

In SwarmNet, the router model is designed based on a basic processor
with a queue. The router model incorporates a routing table and with a
routing scheme that complies with the RIP protocol. Modeler selects the
router model’s processing time. Switching or routing delay is a time period
that router takes to switch or route a packet. This time represents the total
time needed for evaluating the packet header, checking the routing table
which varies with table size, and assigning the packet to its intended output
port of the router model. It is noted that although new hardware in IP
switches can only take microseconds to route and forward packets, the router
model delay time is set to 1 ms.

Unlike SwarmNet, ns-2 uses a single virtual clock to execute events that
scheduled in a list. The scheduler maintains a list of events and processes
ordered by time and selects next closest given the current simulation time,
advances the clock to time of the event, and then executes the event to
completion. The ordering of execution of events is arbitrary (see Figure 8).

Since ns-2 has supports for realistic simulation of packets and their process-
ing, a large number of events is necessary. In SwarmNet, the router and link
model behaviors are primarily determined in terms of routing algorithm not
events. Consequently, after completion of the simulation, the total number
of events (event frequency) in ns-2 is greater than SwarmNet by a factor of
30.

In SwarmNet, the size of the event queue is set to 1MB. With each packet

16

60

70

80

SwarmNet and NS 2 Actual Execution(10 runs)

20

30

40

50

60

70

80

Ti
m
e(
se
c.
)

SwarmNet and NS 2 Actual Execution(10 runs)

0

10

20

30

40

50

60

70

80

Ns 2 SwarmNet

Ti
m
e(
se
c.
)

SwarmNet and NS 2 Actual Execution(10 runs)

Figure 8: Wall-clock execution times of the simulators

size set to 330 bytes, approximately 3030 packets can be buffered in a node.
This number of packets is more than necessary for avoiding packet losses.
In the ns-2 TCP application, there is no limitation in terms of queue size.
However, queue size can be set to a finite value to study network bottleneck
effects.

In SwarmNet, a basic traffic model is implemented which generates data
packets uniformly random sources and destinations. In ns-2, applications
such as FTP which is based on TCP are supported. The traffic model be-
havior is comparable to that of the TCP - i.e., the traffic generated in ns-2
and SwarmNet are indistinguishable except for the hello and acknowledge-
ment packets.

5. Large-Scale Simulation Models

To show the capability (applicability) of the biologically inspired network
system modeling approach, it is started with well-known routing algorithms.
For instance, static link state algorithm is modeled to initialize network and
distance vectors to calculate distances between nodes and autonomous sys-
tems. Design details of these routing protocols can be found in [46] and
[45].

Each simulation run consisted of an adaptation to topology phase (initial-
ization) and a test phase under user traffic. During the initialization phase,

17

Table 3: Simulation Parameters of Large Models in SwarmNet
Simulation Model Parameters

Topology core(11 routers and 18 links)
recursive (up to 4000 components)

Protocol OSPF, RIP, BEE
Processing speed 1 msec/event
Event frequency 200 events/sec.
Packet sizes from 1 to 100 KB random
Node’s buffers 1 MB
Link bandwidth 1.2 Mbps
Link delay 2 msec.
Traffic type Uniformly random
Simulation time 10 sec.

system runs without load and initial routing tables are formed according to
the number of hops (i.e., Dijkstra [9] shortest path estimation algorithm).
During the test phase, the network performance was measured and recorded
in terms of average packet delay, throughput, convergence time, and packet
loss ratio. In Table 3, simulation parameters are summarized. All values
are chosen according to algorithm test framework in which a representative
network is used to see algorithm behavior in large networks. In the follow-
ing section, in order to test the algorithm across weighted conditions, all
parameters are incremented.

Simulations were executed in the DEVSJAVA environment for a period
of ten seconds. Using a Windows computer with 2.4GHz processor and 2GB
RAM, the smallest network took a few minutes to execute whereas the largest
network simulation took less than a hour to complete.

6. Performance Results

6.1. The effect of clustering on increased size networks

Network systems today are faced with increasing data and service re-
quirements. The ability to quickly and securely access, manipulate, transfer
and analyze service and maintenance of data and routing information is very
important for any efficient network system. Clearly, it is impossible to store
all router and link’s information in a router’s buffer. In other words, there
is a need for design and implementation of clustering technologies because

18

Table 4: Simulation results of clustered versus cluster-less networks
Initialization Phase Online Phase under Traffic
iteration duration clock generated packets solved packets lost packets average TA

cluster-less network 230 0.215 10 1999 1995 4 (% 0.2) 0.011
clustered network 101 0.087 10 1999 1999 0 0.013

large size and connectivity is far beyond of management and organization
capability of current network schemes. Therefore, an approach is needing to
shrink routing data and management information. This approach is called
clustering which provides a fault-tolerant, scalable, and reliable network sys-
tem [35]. Clustering enables network design to the modular and hierarchical
and overlapping with DEVS modular approach.

In order to show the effect of clustering on a network system, a simple
experimentation is done in DEVSJAVA. First, a network with 50 routers is
designed and measured its performance. Later, it is divided into 5 colonies
and the results are compared. The border nodes are used in each clusters for
communicating autonomous system with other networks. These two different
network models are shown in Figures 9(a) and 9(b).

In Table 4, results are summarized. First effect of clustering is on ini-
tialization phase of the network which is tightly coupled with convergence
of the routing protocol. As depicted in the Table 4, iteration number and
convergence time of the clustered network are twice less than network with-
out clustering. The reason is that clustering brings a kind of parallelism
on network execution, and thus total process time is decreasing. Remain-
ing values in Table 4 belong to network run under traffic. There is no lost
packet in the clustering, while cluster-less case has some lost packets. This
shows that clustering is more fault-tolerant as mentioned before. Finally, av-
erage turnaround values remain almost same but clustered value little bigger.
In clustered network, packets are routed to destinations one step more, i.e.
packets first are routed to autonomous systems in which destination router
is included, therefore this decision creates little delay.

In Figure 10, throughput curves of the networks can be seen. Clustering
yields two times better throughput than networks without clusters. Clus-
tering also provides a manageable networks in which just border nodes have
information about autonomous systems. In other words, routing tables of
routers in an autonomous system includes entries of their neighbor routers
not all routers in the whole network. This approach gradually shrinks the
routing information stored in routers.

19

(a) 50 routers coupled network model without clustering and its experimental frame

(b) 50 routers and 5 clusters network model

Figure 9: Network model clustering

20

Figure 10: Comparison of the throughput values from clustered and cluster-less networks

6.2. Simulation results of large-scale network models

A primary benefit of a network-based modeling approach is its degree of
support for large-scale model development and efficient simulation. Due to
both scale and complexity of current network systems such as the Internet,
modeling and simulation of these systems is non-trivial[13]. While scalability
issue is due to the routing databases of the nodes increasing with the network
size, which can cause some routers’ databases to exceed their capacities,
complexity comes from variety of communication media, communications
equipment, protocols, and hardware and software platforms found in the
network. To allow simple redesign of the routing database for large-scale
networks, the above clustering approach was developed.

In order to study the scalability of the proposed approach, models for
networks ranging from small networks in 28 routers to large ones in 3520
routers and links in that number are developed. Small networks were cre-
ated manually while large networks were produced using a recursive topology-
generating algorithm. To verify and validate the approach on larger models,
a set of experiments are carried out and the results have been evaluated in
a comparative manner. In these experiments, the key independent variables
are the degree of network connectivity and the number of network compo-
nents. Networks were modeled and their simulation results were analyzed.
The relation between the network throughput and the number of nodes is

21

(a) (b)

(c) (d)

Figure 11: Large-scale network (a) throughput, (b) average delay, (c) convergence time,
and (d) packet loss measurements using the BEE algorithm.

shown in Figure 11(a). The throughput gradually decreases as the number
of components increases since the packet loss ratio increases in accordance
with the size of the models. However, performance losses for large networks
remain acceptable. Another observation is that for all network sizes, the
average delay across the networks is increasing but not asymptotically (see
Figure 11(b)). In implementation, the average delay or turnaround time is
defined as a packet’s life-span time which starts from the packet generator
and ends at the packet transducer while going through the nodes and links
of the network mode.

Rapid convergence is a main feature of any efficient routing algorithm. A
routing algorithm must show how quickly it can construct and update the
nodes’ routing tables given different scales of networks. Figure 11(c) shows
that the convergence time of the biologically inspired routing algorithm is
scalable. Although larger networks exhibit a relatively long time to converge

22

as compared with smaller sized networks, their convergence times are in mil-
liseconds. A stationary trait can be recognized in the convergence trajectory
as the scale of the network approaches a thousand components. The rea-
son is attributed to the network being composed of similar networks since
larger models are recursively and automatically constructed. This approach
together with the parallelism in the DEVSJAVA simulation engine causes
convergence time to increase less while the number of components increases.

Finally, as shown in Figure 11(d), the packet loss ratio gradually increases
with the increase in the number of components. The packet loss is shown to
be linear or better as the scale of the network is increased.

7. Discussion And Evaluation

The link-state, distance-vector and swarm intelligence algorithms are used
in modeling and simulation of large networks. Large network models with the
BEE algorithm reach the steady state throughput, the throughput remains
nearly constant to the end of the simulation. Therefore, the load balancing
provided by the BEE approach is reached rapidly and evenly in the presence
of heavy network traffic conditions, as well as in increasing connectivity and
scale.

The ecological approach has better load balancing in large models since
the probabilistic routing used in the BEE algorithm forwards the packets to
alternative routes and finally balances the load. Furthermore, the network
resources and the network traffic load are better utilized and evenly distrib-
uted across nodes and links even if they are large-scale. This reduces network
congestions and results in the packets reaching their destinations faster. The
simulation experiments show improved precision, stabilization and consis-
tency of the hierarchical BEE routing and clustering scheme. Also, the use
of random traveling of the agents (scouts) increases the robustness of the
network operation.

The developed approach supports modeling and simulating adaptive, ro-
bust, and survivable network applications. Since the DEVSJAVA environ-
ment is developed using the DEVS formalism and it supports modeling
of networks using the biologically derived rules instead of complex formu-
las, simulation models can be developed systematically and simulated effi-
ciently. Given that the need to better understand the Internet characteristics
in terms of its topology, alternative configurations, and unpredictability of

23

network traffic, researchers continue to develop greater capabilities to simu-
late large-scale models [14] and [13]. For example, simulations having more
than 100,000 routers and nodes have been developed using dozens of parallel
processors [27], [41] and [8].

7.1. The Key Features of the SwarmNet Network Simulator
Following treatment summarizes key features of the SwarmNet network

mode which is packet-level discrete event network simulator based on DEVS
Formalism. It utilizes DEVS formalism for describing network components
and inherits DEVS hierarchical and modular design concepts.

7.1.1. DEVS Simulation Engine

One of the main advantages of the DEVSJAVA is its discrete event mod-
eling infrastructure. Since the dynamics of network systems can be charac-
terized in terms of components that can process and generate events, dis-
crete event modeling become most appropriate approach for modeling the
dynamics of network systems. Among discrete event modeling approaches,
the Discrete Event Systems Specification (DEVS) is well suited for formally
describing concurrent processing and the event-driven nature of arbitrary
configuration of nodes and links forming network systems. This modeling
approach supports hierarchical modular model construction, distributed exe-
cution, and therefore characterizing complex, large-scale systems with atomic
and coupled models. DEVS is suitable approach for modeling dynamic sys-
tems with intelligent parts such as biologically-inspired computer networks.

7.1.2. Network Modeling Approach

Level of abstraction have to be implemented in any modeling effort due
to impossibility of bringing all parts of the nature to the computer system. It
is selected to model just nodes and links as atomic models due to facts that
just their states are in focus and increasing the number of atomic models
and states can decrease the performance. A high level abstraction is used in
which routing behavior of the network is concerned. Therefore packets such
as acknowledgement and hello are ignored.

DEVS makes modeling effort systematic so that complex behavior is
formed by coupling simple structured primitive models (e.g. atomic model).
In other words, behavior of an atomic model does not exhibit a high level in-
telligence; nevertheless coupled model shows fascinating emergent behavior.
Atomic models in a compact model interact via messages to form complex
collective behavior.

24

7.1.3. Modular and Hierarchical Design

A coupled model specifies constructs for composing modular models into
hierarchical structures. Behavior of a coupled model is defined by its con-
stituent atomic (and/or coupled) models. With closure under coupling fea-
ture of DEVS, coupled models can be used as atomic models in a larger
model. Coupled models can be constructed systematically using the concepts
of ports and couplings between them. When a component sends messages via
its output ports, the couplings relay the messages to their designated input
ports. Upon receipt of messages by atomic models, they immediately process
these messages which may result in new states and generation of outputs. Hi-
erarchical and modular nature of the DEVS facilitates the implementation
of both modeling the network and cluster scheme.

7.1.4. Separated, manageable, robust and accurate analysis and testing frame-
work

To define simulation objectives, the concept of experimental frame is uti-
lized to define the conditions under which a model can be experimented with
and observed. Topologies of network models or Internet core networks can be
evaluated in terms of their critical network components and their dependen-
cies. Defined experimental frame is used for testing the model under various
conditions and observing its behavior. Having been equipped with an exper-
imental frame, simulation is run under specific experimental conditions and
results are observed. The results are then evaluated in terms of whether or
not they are within an acceptable range; otherwise, the model parameters
are changed and simulation experiments are repeated. All statistical data
from all models are collected to transducer model, therefore evaluation of
the results can be done easily. Separated design of the experimental frame
facilitates the tracing and analyzing the simulation results.

7.1.5. Bio-inspired robust, adaptive, scalable and collaborative design

A biologically inspired swarm routing approach is derived based on hon-
eybees and their interactions during foraging called honeybee scout-recruit
mechanism. In this framework, the movement of specialized packets such as
artificial bees (called scouts) can be used to balance network loads. Given
the similarity of this and agent-based approaches, each node is capable of
accommodating an ensemble of scouts for controlling congestion in a distrib-
uted environment. In implementation, analogous to honeybee scout-recruit
system, each network node is considered as a beehive so that bees leave their

25

hives for gathering nectar. Computer networks correspond to the colonies
of honeybees whose goal is to find paths to profitable nectar sources. The
network links correspond to the scout-recruit system where honeybees leave
their hives to gather food.

Since insect societies such as bees are complex, flexible, adaptive, robust,
scalable, decentralized and self-organized, approaches inspired from these so-
cieties inherit and exploit these properties. All of them are desirable features
for any engineering solution.

7.1.6. Cluster-based hierarchical routing

One of the main criteria for appreciating the network simulators is scal-
ability. A network or simulator model is considered scalable with respect
to network size, if simulation deserves its run properly while the number of
network components such as nodes and links grow constantly. Because In-
ternet should be designed in a hierarchical manner for a better management,
hierarchy is needed for scalability. In SwarmNet, a cluster-based hierarchi-
cal routing is invented for making memory usage lesser of simulations over
very large topologies. A network topology is composed of several layers in a
hierarchical manner, thus shrinking routing table size. To be able to make
use of hierarchical routing for the simulations, there is a need for defining
hierarchical topology and hierarchical addressing. In this study, a clustering
approach is employed to support scalability and implemented when coupling
the models. Clustering provides manageable network sizes by abstracting a
subnet to a single node in a higher level network.

7.1.7. Visualization

Visualization support in DEVSJAVA includes tracking the creation and
update of neighbor tables, routing databases and finally routing table. Al-
though tools are provided to track the changes on routing tables, this level
of visualization is not supported for example by ns-2 and difficult to code its
open source design with duality of C++ and Tcl. It is possible to track and
view the logic behind the routing protocol as well as discrete event-based run
of the network system in DEVSJAVA environment, and therefore teaching
and training of the network protocols in demanding level is done.

7.1.8. Suitability for distance education

Distance education, or distance learning, is some sort of education that fo-
cuses on technology, and web-based instructional systems design that aim to

26

deliver education to geographically distributed students. Distance education
is an emerging field in the last decades in the world as parallel with growing
network technologies. Since DEVSJAVA environment is purely Java based
software, it can be employed for distance learning applications. Distance
learning of network systems education can be supported via Web Start[28]
application, online version of the DEVSJAVA[1] by exploiting Java Web Start
technology. By this fact, students can get access to simulation environment
from distant locations. DEVSJAVA yields great advantages to traditional
on-campus network systems and protocol courses and provides a key func-
tionality to courses offered in a distance-education.

Furthermore, distributed capability of DEVSJAVA makes support for the
concepts like interoperability, model repository and reusability which are not
supported in most of the frameworks.

7.1.9. Reusability

Code reuse of models and components is a very good way to increase
model development productivity and application maintainability. Instead of
developing the all things, one should always look for well-designed models,
application frameworks and customizable components. Reusability of de-
veloped models in DEVSJAVA environment allows modeler to make rapid
changes, exploit new features globally, and spend less time testing and de-
bugging in course practices.

8. Conclusions And Future Marks

In this paper, biologically inspired modeling constructs are incorporated
into the general-purpose DEVS modeling framework for large-scale experi-
ments. The resulting DEVSJAVA modeling approach affords scalable and
efficient simulation of computer network systems. The proposed approach
shows better response time for discovery and deployment of new routes and
affords higher robustness. The use of the control (scouts) packets does not
play a significant role in the total network load due to their lightweight de-
sign, therefore it is possible to manage large amount of routers and links. In
the case of network malfunction such as link unavailability or node congestion
(i.e., node has reached the maximum number of packets it can process), the
network remains functional since the probabilistic routing adapts faster to
fluctuations in the network and can find alternative paths for destinations at

27

run-time. Based on these observations, the network has higher survivability
against surges.

From the perspective of model specification, the node and link models can
be extended to use probabilistic timing and include security features. From
the application vantage point, it would be interesting to apply this approach
to modeling crowd behaviors since existing simulation environments lack the
underlying formal theory provided by DEVS. Finally, this DEVSJAVA mod-
eling approach can support design of emergent and scalable network systems
and can be simulated in distributed and/or service-oriented computing tech-
nologies.

References

[1] ACIMS. DEVSJAVA modeling and simulation tool.
http://www.acims.arizona.edu/SOFTWARE, 2010.

[2] C. Anderson. The adaptive value of inactive foragers and the scout-
recruit system in honey bee apis mellifera colonies. Behavioral Ecology,
12(1):111–119, 2001.

[3] S. Appleby and S. Steward. Mobile software agents for control in
telecommunications networks. BT Technology Journal, 12(2), 1994.

[4] G. Beni and J. Wang. Swarm intelligence in cellular robotic systems.
In Proceeding of NATO Advanced Workshop on Robots and Biological
Systems, pages 122 –129, Tuscany, Italy, June 2630 1989.

[5] E. Bonabeau, M. Dorigo, and G. Thraulaz. Swarm intelligence: from
natural to artificial systems. Oxford University Press, 1999.

[6] A. Boukerche, Z. Ming, and A. Shadid. DEVS Approach to Real-time
RTI Design for Large-scale Distributed Simulation Systems. Simulation-
Transactions of The Society For Modeling And Simulation International,
84(5):231–238, 2008.

[7] K.-Y. Cai and B.-B. Yin. Software execution processes as an evolv-
ing complex network. Information Sciences, 179(12):1903 – 1928, 2009.
Special Section: Web Search.

[8] J. Cowie, A. Ogielski, and D. Nicol. The SSFNet network simulator.
http://www.ssfnet.org/homePage.html, Renesys Corporation, 2002.

28

[9] E. Dijkstra. A note on two problems in connexion with graphs. Nu-
merische Mathematik, 1:269–271, 1959.

[10] M. Dorigo, V. Maniezzo, and A. Colorni. The ant system: Optimization
by a colony of cooperating agents. IEEE Transactions on Systems, Man
and Cybernetics Part B, 26(1):1–13, 1996.

[11] M. Dorigo and T. Sttzle. Ant Colony Optimization. MIT Press, 2004.
ISBN 0-262-04219-3.

[12] U. Farooq, G. Wainer, and B. Balya. DEVS modeling of mobile wireless
ad hoc networks. Simulation Modelling Practice and Theory, 15(3):285
– 314, 2007.

[13] S. Floyd and V. Paxson. Difficulties in simulating the internet.
IEEE-ACM Transactions on Networking, 9(4):392–403, August 2001.
http://www.icir.org/floyd/papers.html.

[14] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and G. Riley.
Large-scale network simulation: how big? how fast? In MASCOTS 2003
11th IEEE/ACM International Symposium on Modeling, Analysis and
Simulation of Computer Telecommunications Systems, pages 116–123,
2003.

[15] R. M. Fujimoto, W. Lunceford, E. H. Page, and A. Uhrma-
cher. Grand challenges for modelling and simulation.
http://www.dagstuhl.de/Reports/02351.pdf, 2002.

[16] E. Helser. Design and analysis of view syncrhonization in DEVS-Suite.
Master’s thesis, Computer Science and Engineering Department, Ari-
zona State University, Tempe, AZ, USA, 2009.

[17] M. Heusse, D. Snyers, S. Gurin, and P. Kuntz. Adaptive agent-driven
routing and load balancing in communication networks. In Advances in
Complex Systems, pages 15–16, 1998.

[18] I. Kassabalidis, M. El-Sharkawi, I. Marks, R.J., P. Arabshahi, and
A. Gray. Swarm intelligence for routing in communication networks. In
Global Telecommunications Conference, 2001. GLOBECOM ’01. IEEE,
volume 6, pages 3613–3617 vol.6, 2001.

29

[19] S. Kim, H. Sarjoughian, and V. Elamvazhuthi. DEVS-Suite: A simula-
tor supporting visual experimentation design and behavior monitoring.
In Proceedings of the Spring Simulation Conference, pages 29–36, San
Diego, CA, March 2009.

[20] F. Lin, H. Ying, R. MacArthur, J. Cohn, D. Barth-Jones, and L. Crane.
Decision making in fuzzy discrete event systems. Information Sciences,
177(18):3749 – 3763, 2007.

[21] ns 2. The ns-2 network simulator. http://www.isis.edu/nsnam/ns/,
2010.

[22] ns 3. The ns-3 network simulator. http://www.nsnam.org/, 2010.

[23] OPNET. OPNET simulator. http://www.opnet.com/, 2010.

[24] K. Parsopoulos and M. Vrahatis. Recent approaches to global optimiza-
tion problems through particle swarm optimization. Natural Computing,
1(2-3):235–306, 2002.

[25] D. Pham, A. Ghanbarzadeh, E. Koc, S. Otri, S. Rahim, and M. Zaidi.
The bees algorithm. Technical Note, UK, 2005.

[26] Ptolemy. Ptolemy project. http://ptolemy.eecs.berkeley.edu/ptolemyII/,
2010.

[27] G. F. Riley, R. M. Fujimoto, and M. H. Ammar. A generic framework for
parallelization of network simulations. In MASCOTS, pages 128–135,
1999.

[28] H. Sarjoughian. DEVS-Suite WebStart.
http://acims1.eas.asu.edu/WebStarts/, 2010.

[29] H. Sarjoughian and F. Cellier. Discrete Event Modeling & Simulation
Technologies: A Tapestry of Systems and AI-based Theories and Method-
ologies for Modeling and Simulation. Springer Verlag, 2001.

[30] H. Sarjoughian and B. Zeigler. DEVSJAVA: Basis for a DEVS-based
collaborative M&S environment. In SCS Western Multi-Conference,
volume 5, pages 29–36, San Diego, CA, 1998.

30

[31] H. S. Sarjoughian and R. Singh. Building simulation modeling envi-
ronments using systems theory and software architecture principles. In
Proceedings of the Advanced Simulation Technology Conference, pages
99–104, Washington DC, April 2004.

[32] R. Schoonderwoerd. Collective intelligence for network control. Master’s
thesis, Delft University of Technology, Faculty of Technical Informatics,
1996.

[33] T. Seely. The Wisdom of the Hive. Harvard University Press, Cam-
bridge, 1995.

[34] Y. Shi, H. Liu, L. Gao, and G. Zhang. Cellular particle swarm optimiza-
tion. Information Sciences, In Press, Corrected Proof:–, 2010.

[35] M. Steenstrup. Routing in Communications Network. Prentice-Hall,
1995.

[36] C. Tovey. The honey bee algorithm: A biological inspired approach to
internet server optimization. Engineering Enterprise, the Alumni Mag-
azine for ISyE at Georgia Institute of Technology, pages 13–15, Spring
2004.

[37] A. Varga. The OMNeT++ discrete event simulation system.
http://www.omnetpp.org/, 2010.

[38] Y. Wang, B. Li, T. Weise, J. Wang, B. Yuan, and Q. Tian. Self-adaptive
learning based particle swarm optimization. Information Sciences, In
Press, Corrected Proof:–, 2010.

[39] T. White, B. Pagurek, and F. Oppacher. Connection management us-
ing adaptive agents. In International Conf. on Parallel & Distributed
Processing Techniques & Applications, pages 802–809, 1998.

[40] Wikipedia. Swarm intelligence. http://en.wikipedia.org/wiki/Swarm intelligence,
2009.

[41] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee. How
to model an internetwork. In IEEE Infocom, volume 2,
pages 594–602, San Francisco, CA, March 1996. IEEE. URL
http://www.cc.gatech.edu/fac/Ellen.Zegura/papers/howto.ps.gz.

31

[42] B. P. Zeigler, H. Praehofer, and T. G. Kim. Theory of Modeling and
Simulation. Academic Press, New York, 2000.

[43] X. Zeng, R. Bagrodia, and M. Gerla. GloMoSim: A library for the
parallel simulation of large scale wireless networks. In In Proceedings of
Parallel and Distributed Simulation Conference, page 154, 1998.

[44] A. Zengin, H. Sarjoughian, and H. Ekiz. Study of biologically-inspired
network systems: Mapping colonies to large-scale networks. In European
Modeling & Simulation Symposium (EMSS), pages 537–545, Campora
S. Giovanni, Italy, September 17 - 19 2008.

[45] A. Zengin, H. Sarjoughian, and H. Ekiz. Discrete event modeling of
swarm intelligence based routing in network systems. A Revision Sub-
mitted to Information Sciences Journal, 2010.

[46] A. Zengin, H. S. Sarjoughian, and H. Ekiz. Honeybee inspired discrete
event network modeling. In 16th European Simulation Symposium, pages
176–182, Budapest, Hungary, 2004.

32

