
A General Framework supporting Co-Simulation for
BOM and DEVS

Bin Chen, Xiao-gang Qiu, and Ke-di Huang

Abstract—Domain Specific Modeling brings the problem of sim-
ulator differences in simulation. Model Transformation and Co-
Simulation are used to solve the problem. Compared to Model
Transformation, Co-Simulation integrates the different simulations
without the loss of model features. In this paper, we present a general
framework supporting Co-Simulation for Base Object Model(BOM)
and Discrete EVent System specification (DEVS). The framework
is constituted of BOM-based simulation within the DEVS Proxy
and DEVS-based simulation within the BOM Proxy. The embedded
proxies are used to do the time synchronization and data transfer. The
Time Automata is used to represent the models so that the models
can be checked and verified by UPPAAL. The TimeStamped Atomic
Model and General Simulation Data Collect (GSDC) algorithm are
devised to implement the Co-Simulation framework. The adaptability
and validity of the framework are testified by the Aircraft and Control
Tower example. The experimental results show that the framework
works well in supporting Co-Simulation.

Keywords—Co-Simulation, BOM Proxy, DEVS Proxy, Timed
Automata.

I. INTRODUCTION

Domain Specific Modeling is more and more popular in
modeling and simulation. Lots of formalisms have been pro-
posed to build the precise model in domains. And the large
and complex systems have been asking for the combination
of multi-formalism simulations. Model Transformation and
Co-Simulation are the two appropriate methods to resolve
the simulator differences. Model Transformation syncretizes
differences of formalisms in the modeling view. The transfor-
mation rules are extracted from both the source and target
meta-models[1]. The source models are transformed to the
target models. The unified simulating engine can afford the
whole simulation.
As known, even the most complete transformation rules cannot
fully cover all the models. The generalization is always
constructed at the cost of adaptability. So the source models
is possible to lose some important features during the generic
transformation. As a result we switch to Co-Simulation to find
a well-adapted method.
Lots of work has been done on Co-Simulation. [2] presents a
formal representation of a continuous/discrete synchronization
model. The model is independent of language but the time
synchronization is still a sequential one. [3] presents an Co-
simulation Backbone on the basis of High Level Architecture
(HLA), in which the models have to be wrapped again into
federates. [4] presents the M/CD++ system, the system sup-
ports the simulation using Modelica. The continuous models
in Modelica have to be described in DEVS before the discrete
event simulation.
We propose a General Framework of Co-Simulation for BOM
and DEVS. The customized proxy represents the source
models in the target simulation. We embed the proxies into the
simulations without changing the models and the simulations
at all. The rest of the paper is organized as follows. Section

R
 T

 I

BOM
Component

BOM
Component

BOM
Component

. . .

XSRFrame

BOM
Component

BOM
Component

BOM
Component

. . .

XSRFrame

...

BOM
Component

BOM
Component

BOM
Component

. . .

XSRFrame
...

BOM
Repository

BOM Components Deployer

Simulation Experiment Manager

BOM
Initialization

Simulation
Plan

Fig. 1. BOM-based Simulation System.

2 introduces the DEVS-based and BOM-based simulation.
Section 3 presents the models of BOM Proxy and DEVS
Proxy. Section 4 presents the Co-Simulation framework for
BOM and DEVS. Section 4 gives a case study and shows the
experimental results in the framework. Section 5 concludes the
paper.

II. BOM-BASED AND DEVS-BASED BASED SIMULATION

A. BOM-based Simulation

The Base Object Model Template Specification defines a
template for representing BOM Components. It provides a
component framework to facilitate the interoperability, com-
posability and to help enable rapid development of models,
simulations and federations. A BOM Component is composed
of four elements: Model Identification, Conceptual Model
Definition, Model Mapping and Object Model Definition, as
described detailedly in [5].
A BOM-based simulation system has all its simulation models
implemented in the BOM Component. Figure 1 shows a
BOM-based simulation framework which consists of BOM
Repository, BOM Components Deployer, Simulation Ex-
periments Manager, XSRFrame and Runtime Infrastructure
(RTI)[6].
The BOM Repository stores the Atomic and Composed BOM
Components. These components can be downloaded to the
BOM Components Deployer which assembles the components
and deploys them to the simulation nodes. The XSRFrame
loads and manages the life cycle of the BOM assemblies, and
it is plugged into the RTI to interchange the data during the
simulation. The RTI clock is the unique time in the whole
simulation system.
The components are initialized when the BOM Components
Deployer generates the BOM assemblies. The behavior of
each BOM assembly during the simulation is decided in the
initialization phase. The Simulation Experiment Manager is
responsible for the management of all the BOM assemblies

2010 Second International Conference on Computer Modeling and Simulation

978-0-7695-3941-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCMS.2010.225

446

2010 Second International Conference on Computer Modeling and Simulation

978-0-7695-3941-6/10 $26.00 © 2010 IEEE

DOI 10.1109/ICCMS.2010.225

450

School of Mechatronics and Automation,
National University of Defense Technology, Changsha,

nudtcb9372@gmail.com

Authorized licensed use limited to: Carleton University. Downloaded on March 24,2010 at 14:04:55 EDT from IEEE Xplore. Restrictions apply.

in the simulation nodes. The Simulation Plan is a collection
of the time stamped instructions that control the simulation.
The Simulation Experiment Manager controls and observes
the simulation according to the instructions in the Simulation
Plan.
The simulation experiments can be done automatically with
the help of these tools. Users only need to work out the BOM
Initialization and Simulation Plan based on the simulation
objective.

B. The DEVS formalism and DEVS-based Simulation
The DEVS formalism was introduced in the late seventies

by Zeigler as a rigorous basis for the compositional modeling
and simulation of discrete event systems[7]. It has been
successfully applied to the design, performance analysis, and
implementation of a plethora of complex systems.
DEVS provides a theoretic base of modeling the discrete event
models. The formalism specifies the discrete event model in
a hierarchical, modular manner. The Atomic Model, AM, is
specified as follows:

AM = 〈X, Y, S, δint, δext, λ, ta〉 (1)

X is the set of inputs and Y is the set of outputs;
S is the set of sequential states;
δint : S → S is the external state transition function;
δext : Q×X → S is the external state transition function;
λ : S → Y is the output function;
ta : S →
mathbbR+

0 ∪∞ is the time advance function;
Q = (s, e)|s ∈ S, 0 = e = ta(s) is the set of total sets.
Several atomic models could be coupled in the coupled
model. The coupled model could also be added into a larger
coupled model according to the closure of it. The hierarchy is
constructed by building coupled models. The Coupled Model,
CM is defined as follows:

CM = 〈X, Y,D,Md, Id, Zi,d, Select〉 (2)

X: a set of input events and Y : a set of output events;
D: a set of component references;
Md: a Classic DEVS model;
Id: a set of influences of d;
For each i in Id

Zi,d : Yi → Xd to d output translation function;
Select is the subsets of D → D : tie-breaking function.
The semantics for a coupled model is, informally, the parallel
composition of all the sub-models. A priori, each sub-model
in a coupled model is assumed to be an independent process,
concurrent to the rest. There is no explicit method of synchro-
nization between processes. Blocking does not occur except if
it is explicitly modeled by the output function of a sender, and
the external transition function of a receiver. There is however
a serialization whenever there are multiple sub-models that
have an internal transition scheduled to be performed at the
same time. The modeler controls which of the conflicting sub-
models undergoes its transition first by means of the select
function.
The protocols of simulator and coordinator are devised to
support the simulation for DEVS models. The typical sequen-
tial DEVS-based simulation is constructed in Root Coupled
model that couples all the atomic and coupled models. The life
circle of the simulation depends on the termination checking

in Root Coupled model. But the sequential simulation cannot
satisfy the requirements of large scale simulation. Thus we
implement the parallel techniques on DEVS to improve the
simulation efficiency. DEVS Simulator is modified to imple-
ment Time Warp algorithm, the newly simulator supports State
Storage, Fault Detection and Fossil Collection. The models are
loaded in local simulators in every node. The events are sent
and received between simulators on different nodes with the
help of parallel communication mechanism. The independent
model advances arbitrarily until meets the Global Virtual Time
(GVT). Simulation is rolled back if a straggler event or an anti-
event is received. The approximate Time window is used to
improve simulation when the rollback happens very often. As
a result, in Co-Simulation, we select the parallelized DEVS-
based Simulation in discrete event side.

III. THE MODELS OF PROXY FOR CO-SIMULATION

A. Time Synchronization
BOM-based simulation is usually used to simulate contin-

uous model(ı.e. dynamics of vehicles, climate change). And
the simulation time advances by steps. DEVS is inherent used
to simulate the discrete event models. In order to obtain the
high performance, we parallelize the DEVS-based simulation
by partitioning coupled models onto different machines. As a
result, the BOM-based and DEVS-based Co-Simulation is a
typical case of Discrete and Continuous Co-Simulation. Gheo-
rghe et al. had introduced the time synchronization interfaces
for the Co-Simulation[8]. However the sequential algorithm
does not support Parallel simulation. Thus we give a novel
method to parallelly synchronize simulation time in DEVS-
based and BOM-based simulation. The method devises the
BOM Proxy and DEVS Proxy. The proxies are responsible
for the data transfer and time synchronization between two
simulations. The principles of the proxies are list as below:

• The DEVS Proxy is seemed as a Local Process(LP)
in DEVS-based simulation. The current time in DEVS
Proxy is the Local Virtual Time(LVT) of this LP.

• BOM-based simulation uses conservative time synchro-
nization algorithm. The BOM Proxy is a constrained
and control federate, in consequent the time in proxy is
consistent to all the models in BOM-based simulation.

• The time from BOM Proxy is kept less than LVTs of
all the coupled models. The frequency of Time Synchro-
nization is determined by the time step of BOM Proxy.
GVT is calculated just before BOM Proxy’s advancing.

• The lookahead of BOM-based simulation is identical
to the Time Window of DEVS-based simulation. The
timestamps of messages and events are restricted in a
limited range.

• BOM Proxy transforms messages into two types of
events: Regular Event and Rollback Event, while DEVS
Proxy transforms events into time stamped messages.

• The data transition is needed to match the data formats
from messages to events, or vice versa.

Figure 2 describes the time synchronization for Co-Simulation.
Coupled DEVS Models are distributed on different machines.
A Time Warp algorithm is realized here for time synchroniza-
tion. The time stamps of activities are limited inside the Time
Window from GVT. The synchronization happens periodi-
cally, the LVT from BOM simulation is used to calculate the
GVT. Messages are divided into Regular Event and Rollback

447451

Authorized licensed use limited to: Carleton University. Downloaded on March 24,2010 at 14:04:55 EDT from IEEE Xplore. Restrictions apply.

. . .

DEVS Coupled Model 1

. . .

DEVS Coupled Model n

BOM Simulation Model
LVT

LVT

LVT

GVT

Time WindowRollback TimeStamp

Regular Event

Rollback Event

Time Step Time Step

Rollback

Synchronization Adcanced TimeStamp Event TimeStamp Regular/Rollback Event

Fig. 2. Time Synchronization for DEVS and BOM Co-Simulation.

Event because the different LVTs in coupled models. The
Regular Event only changes the next external time stamp, but
the Rollback Event triggers off the rollback. The current states
are canceled and the model is rolled back to the last state with
the time stamp less than the Rollback Event. Consequently,
the LVT is recalculated and it is worth to note that the GVT
guarantees that the rollback in DEVS-based simulation will
not lead to the rollback of BOM-based simulation.
B. Timed Automata

Timed Automata is a formalism for modeling and verifi-
cation of the real time systems. It is well-adapted to high-level
models for the design of software specification. A variety of
formal methods have been developed to prove that a Timed
Automaton satisfies basic correctness properties and timing
properties. The verification covers not only continuous but
discrete event systems[9].
A timed automaton can be considered as a classical finite
state automata with clock variables and logical formulas on
the clock. The behavior of the automaton is restricted by
the constraints on the clock. The clock constraints are the
guards and transitions, and the actions are used for syn-
chronization. Bengtsson et al. give a simple example of a
timed automaton[10]. A Guard is the condition decided by the
limited ranges of clocks. The transitions are triggered when
the guard is satisfied. The actions are executed during the
transitions and after the transition the clocks are reset.
The models of BOM Proxy and DEVS Proxy are designed
using Timed Automata. The proxies are responsible for the
time synchronization and data transfer between the two sim-
ulations. The Safety properties, the Liveness and the Reacha-
bility properties of proxy models are checked by UPPAAL.
UPPAAL is an integrated tool environment for modeling,
simulation and verification of Timed Automata [11].
C. BOM Proxy Model

BOM Proxy is embedded in DEVS-based simulation. It
works on data transfer and synchronization with BOM-based
simulation. The behavior of BOM Proxy is described as
below:

1) Detect the time advance in BOM-based simulation.
2) Reflect the simulation time of BOM-based simulation.

The time is used to send to DEVS Proxy.
3) Identify and groups the messages from BOM-based

simulation. Messages are transformed to events in target
format.

4) Send the translated events to DEVS Proxy.

Start NextTimeReceived MsgReceived

FindRollbackMsg FindRegularMsg

EventGotWaitMsgFromBOM

tbpn=NextTime

U

TimeAdvance DataFromBOM

RollbackMsg RegularMsg NoMsg

Event=RollbackMsg

DataToDEVS

NextTime=MsgTimeNextTime=MsgTime

Event=RgularMsg

NextTime=tb+timesteptbp=tb

Fig. 3. BOM Proxy Model.

Start

DataFromBOM

EventsGot

td=NextTime

ReceiveEventsFromBOM

ReceiveRollbackEvent ReceiveRegularEvent

ReceiveEventWaitEventFromDEVS

UDataToBOM

RollbackEvent
EventTime=tro

RegularEvent
EventTime=LVT

NoEvent

Event=RollbackEvent Event=RegularEvent

EventsFromDEVS

EventsToDEVS

Fig. 4. DEVS Proxy Model.

5) Receive messages from DEVS Proxy and sends them
to BOM-based simulation.

Figure 3 illustrates the BOM Proxy model represented in
Timed Automata. The transition from location Start to
NextTimeReceived is triggered by the TimeAdvance. The
synchronization action helps ensure time tbp in BOM Proxy
consistent with tb, the current time of BOM-based simulation.
We initially set tb to be 0 at the starting point. The location
is changed to MsgReceived by the transition with action
DataFromBOM. The NextTime is increased by the tb plus
time step brought by the advance action.
The location will be changed to EventGot, with the NextTime
is set to be the translated event time. The middle locations
FindRollbackMsg and FindRegularMsg are referred to on the
condition that the transition is triggered by receiving Roll-
backMsg or RegularMsg. The transition with DataToDEVS
synchronizes the time between BOM Proxy and DEVS-based
simulation. The last change from WaitMsgFromBOM to Start
reset the BOM proxy to restart another cycle.

D. DEVS Proxy Model

DEVS Proxy is similar to BOM Proxy, it is used to do the
time synchronization and data transfer in BOM-based simula-
tion for DEVS-based simulation. The behavior is summarized
as below:

1) Receives time stamp from BOM Proxy and sets it to be
the LVT for DEVS Proxy.

2) Receives events from BOM Proxy and sends them to
designated DEVS models via ports connections.

448452

Authorized licensed use limited to: Carleton University. Downloaded on March 24,2010 at 14:04:55 EDT from IEEE Xplore. Restrictions apply.

Receive Messages
Send Messages

MsgToEvent

C
on

fig
ur

at
io

n

Receive Events

Send Events

DEVS Proxy

Time Advance

Events Indentification

Inpupt Ports

Output Ports

NextTime

Stamp Messages

Translate Data Format

BOM Models

R T I

BOM-based Simulation

Root Coupled Model

Coordinator

DEVS-based Simulation

Coupled

Coordinator

Coupled
. . .

EventToMsg Translate Data Format

BOM Proxy

TimeStampedAtomics

Fig. 5. Co-Simulation Framework for DEVS and BOM.

3) Receives the events from DEVS models and transforms
them to messages with time stamp.

4) Sends the messages to BOM Proxy.
Figure 4 illustrates the model of DEVS Proxy with Timed
Atutomata. The initial location Start changes to EventsGot
by transition with DataFromBOM and reset td by NextTime
from BOM Proxy. The clock td is seemed as the LVT of
DEVS Proxy. The location changes to ReceiveEventsFrom-
BOM following the transition with action EventsToDEVS.
There exists 3 possible sub-locations after ReceiveEvents-
FromBOM. The location movement depends on the receiving
events. The RollbackEvent leads to the ReceiveRollback-
Event while the RegularEvent to the ReceiveRegularEvent.
The locations are all changed to ReceiveEvent. DEVS models
are synchronized by resetting the event time. The location
moves to WaitEventFromDEVS by the transition of action
to receive events from DEVS models. Finally, the location
changes to Start and the cycle restarts.
The next section details the implementation of the proxy
models verified by UPPAAL.

IV. CO-SIMULATION FRAMEWORK FOR BOM AND DEVS

We give the simulation framework of BOM and DEVS in
Figure 5. The DEVS Proxy and BOM Proxy are actually
combined to do the Co-Simulation. DEVS Proxy is embedded
into RTI, the global simulation in BOM-based simulation, to
join the Federation as shown. Messages are sent from RTI and
received by DEVS Proxy, Time Advance is also controlled
by the Time Management in RTI. The transformation from
DEVS events to BOM messages is decided by the Configu-
ration which gives the mapping instructions.
BOM Proxy is connected with Root Model in DEVS-based
simulation, thus the events can be sent to designated DEVS
models. The time interface and Event transfer interface are
used to synchronize time and exchange events with DEVS
Proxy. Events Identification groups events into Regular
Events and Rollback Events. We devise TimeStammped
Atomic Models to model the time delay. These models are
supplied to the events translated from time stamped messages.
BOM Proxy is a sub component in Root Coupled model, the
proxy LVT is added into the calculation of the GVT. So that
the time is synchronized with DEVS Proxy. By this approach,
the time are consistent to the BOM-based simulation.
The GSDC algorithm and TimeStamped Atomic Model are
described in detail in the next section.

A. GSDC Algorithm in Data Distribution

The objective of GSDC algorithm is to construct the map-
ping from events to messages by Configuration. The events
come from DEVS models and messages are defined in FOM
(Federation Object Model). On the basis of mapping, The
DEVS Proxy declares the publish and subscribe relationship
in RTI. GSDC algorithm falls into 4 steps:

1) Configuration. Select a message in FOM for each possi-
ble DEVS event that will be sent to BOM components.
Likewise, map every message to DEVS model to an
event. These mappings are maintained in Configuration
settings.

2) Subscribe and Publish. Declare the Subscribe and Pub-
lish relationship for receiving and sending messages.

3) Receive messages and Parse data. Receive messages
from RTI and parse the data according to the description
of format in Configuration. The parsed data is trans-
formed to event.

4) Pack data and Send messages. The data translated
from event is packed in the format needed by BOM
Component, then the data is sent to RTI.

Time Management and Data Distribution are implemented
in a flexible manner because of the configuration step. The
publish and subscribe declaration in RTI changes with the
Configuration. The parse and pack match the data format in
different models. It is very convenient with GSDC algorithm
to make DEVS Proxy communicate with the BOM Compo-
nents.

B. TimeStamped Atomic Model

There are two kinds of messages in BOM-based simulation:
Receive Order(RO) messages and Time Stamp Order(TSO)
messages. In the RO case, messages are sent directly to a target
just when they are generated. The delivery has nothing to do
with the simulation time. Hence, the port-to-port event transfer
mechanism of DEVS satisfy the RO message delivery. In the
TSO case however, it is not efficient to just re-use the DEVS
mechanism. The time stamp in TSO messages will be lost
in this case. To solve the problem, a Timestamped Atomic
Model used to model network delay is proposed here. We use
it as a middle ware to retain the ordering of TSO messages.
The principle of a Timestamped Atomic Model is illustrated
in Figure 6. The input port is connected to the model port
outputting time stamped events. The extTransition puts the
events into the Timestamped Event List. The list is sorted by
the time stamps of arriving events. The timeadvance running
after the extTransition retrieves the minimal time stamp tm
from Event List to calculate the δ. When the Timestamped
Atomic Model advances to tm, the internal transition is
activated to pass the events stamped by tm to outputFunc.
Then, these events are popped to the output port in outputFunc.
The construction of Timestamped Atomic Models breaks
down into two steps: Search time stamped ports and Construct
Timestamped Atomic Models. Time stamped ports are the
ports used to input or output time stamped events. All the
Atomic-CKs are traversed to collect the time stamped ports.
Timestamped Atomic Models are constructed to model the
necessary time delay for behavior equivalence. They are in-
serted into every pair of output and input time stamped ports.
The output port of a user model is connected to the input

449453

Authorized licensed use limited to: Carleton University. Downloaded on March 24,2010 at 14:04:55 EDT from IEEE Xplore. Restrictions apply.

TimeStamped Atomic Model

Output

Input

TimeStamped
Event List

 0.0 Msg 2
 5.5 Msg 3
 8.0 Msg 1
 ...
 10.0 Msg n
 10.5 Msg n+1
 ...

timeAdvance
t=PopTime(EList)
Δt=curTime-t

exTransition intTransition

outputFunc

PopEvent

Fig. 6. The Principle of Timestamped Atomic Model.

Landing Command

Hover Command
Track Available

The first Turn

The Seond Turn

Fig. 7. The Altitude of Aircraft in Landing.

port of a Timestamped Atomic Model, and vice versa. These
models help store the TSO events and send them to the target
at related time stamp times. Consequently, the data distribution
in BOM-based simulation can be replaced consistently by the
DEVS framework with the help of Timestamped Atomic
Models.

V. CASE STUDY

A. Model Description

The Aircraft and Control Tower (A/CT) models are simu-
lated in the Co-Simulation framework. The A/CT models are
the appropriate example for the Co-Simulation, in which the
Aircraft model is a continuous model and the Plane Tower
model is a typical discrete event model.
In our case, the Aircraft is composed by 3 BOM Compo-
nents: Dynamics, Communicator and Controller. Dynamics
calculates Aircraft’s flight profile, Communicator outputs the
Aircraft information and receives the commands from Control
Tower. The Controller interprets commands and executes them
in Dynamics. Likewise, We build Control Tower using DEVS.
The CT model guides Aircraft to take off and land on the
airport. CT model watches the trace of the flight and sends
the command events accordingly in a discrete manner. It is
obviously that the A/CT models generate at lease two types of
events communicated between models in different simulation
architectures:

• The positions of Aircraft calculated by Dynamics com-
ponent. The outputting messages are transformed to the
events in DEVS Proxy.

• The command events from CT model, the events are sent
to DEVS Proxy by BOM Proxy. And DEVS Proxy
transforms them to the time stamped messages.

B. Experiments and Analysis

We choose the altitude of Aircraft to show the experimental
results in Figure 7. The altitude changes with time from
cruising altitude to ground. The attached red line means

the events from CT model. It is shown that the Landing
Command, Hover Command and Track Available events
are received respectively at 1:25:30, 1:26:30 and 1:32:00. The
Aircraft reacts to the events by lowering the Altitude.
In summary, the A/PT models benefits from the Co-Simulation
architecture. The BOM Proxy and DEVS Proxy work well to
synchronize the logical time and data transfer. Although the
DEVS models lose some efficiency in case of the synchro-
nization with BOM-based simulation, the models in different
formalisms are simulated together without any modification in
this Co-Simulation framework.

VI. CONCLUSION

The objective of Domain Specific Modeling is to avoid the
accidental complexity. The multi-formalisms brings not only
convenience in modeling, but also the problem of simulator
difference at run-time. The model transformation may lose
some model features, therefore we switch to Co-Simulation.
The BOM Proxy and DEVS Proxy are customized for Co-
Simulation between BOM-based simulation and DEVS-based
simulation.
The Timed Automata models of proxies are used to check
the Safety, Liveness and Reachability of the proxy models.
A general Co-Simulation framework for BOM and DEVS
is constructed on the implementation of the proxies. The
Timestamped Atomic Model and GSDC algorithm are de-
signed to solve the problems exists in data transfer and
time synchronization. Finally the case study gives a typical
example. According to the experimental results, the framework
within proxies is testified to be successful in the Co-Simulation
for BOM and DEVS.

REFERENCES

[1] K. Czarnecki and S. Helsen, “Classification of Model Transformation
Approaches,” in Proceedings of the 2nd OOPSLA Workshop on Gener-
ative Techniques in the Context of MDA, 2003.

[2] L. Gheorghe, F. Bouchhima, G. Nicolescu, and H. Boucheneb, “A
Formalization of global simulation models for Continuous/Discrete sys-
tems,” in SCSC: Proceedings of the 2007 summer computer simulation
conference. San Diego, CA, USA: Society for Computer Simulation
International, 2007, pp. 559–566.

[3] B. A. d. Mello and F. R. Wagner, “A Standardized Co-simulation
Backbone,” in VLSI-SOC ’01: Proceedings of the IFIP TC10/WG10.5
Eleventh International Conference on Very Large Scale Integration of
Systems-on/Chip. Deventer, The Netherlands, The Netherlands: Kluwer,
B.V., 2002, pp. 181–192.

[4] M. D’Abreu and G. Wainer, “M/CD++: modeling continuous systems
using Modelica and DEVS,” in Modeling, Analysis, and Simulation of
Computer and Telecommunication Systems, 2005. 13th IEEE Interna-
tional Symposium on, Sept. 2005, pp. 229–236.

[5] SISO, Base Object Model (BOM) Template Specification. SISO-STD-
003-2006: Simulation Interoperability Standards Organization, 2006.

[6] J. Gong, “Research on System Framework of Extensible BOM-based
Simulation,” Ph.D. Thesis, School of Mechatronics and Automation,
National University of Defense Technology, Changsha, China, 2007.

[7] P. B. Zeigler, P. Herbert, and K. T. Gon., Theory of Modeling and
Simulation, Second Edition. Academic Press, 2000.

[8] B. H. G. L. B. F. Nicolescu, G., “Methodology for efficient Design
of Continuous/Discrete-events Co-Simulation tools,” in Anderson, J.,
Huntsinger, R. (eds.) High Level Simulation Languages and Applications
- HLSLA, San Diego, CA, 2007, p. 172C179.

[9] H. P. Dacharry and N. Giambiasi, “A formal verification approach for
DEVS,” in SCSC: Proceedings of the 2007 summer computer simulation
conference. San Diego, CA, USA: Society for Computer Simulation
International, 2007, pp. 312–319.

[10] J. Bengtsson and W. Yi, “Timed Automata: Semantics, Algorithms and
Tools,” 2004, pp. 87–124.

[11] G. BEHRMANN, “A Tutorial on UPPAAL,” Proc, of SFM-RT’04, 2004.

450454

Authorized licensed use limited to: Carleton University. Downloaded on March 24,2010 at 14:04:55 EDT from IEEE Xplore. Restrictions apply.

