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Abstract. Cell pattern formation has an important role in both artificial and natural
development. This paper presents an artificial development model for 3D cell pattern
generation based on the cellular automata paradigm. Cell replication is controlled
by a genome consisting of an artificial regulatory network and a series of structural
genes. The genome was evolved by a genetic algorithm in order to generate 3D
cell patterns through the selective activation and inhibition of genes. Morphogenetic
gradients were used to provide cells with positional information that constrained
cellular replication in space. The model was applied to the problem of growing a
solid French flag pattern in a 3D virtual space.

1 Introduction

In biological systems, development is a fascinating and very complex process that
involves following a sequence of genetically programmed events that ultimately
produce the developed organism. One of the crucial stages in the development of
an organism is that of pattern formation, where the fundamental body plans of the
individual are outlined. Recent evidence has shown that gene regulatory networks
play a central role in the development and metabolism of living organisms [13].
Researchers in biological sciences have confirmed that the diverse cell patterns cre-
ated during the developmental stages are mainly due to the selective activation and
inhibition of very specific regulatory genes.

On the other hand, artificial models of cellular development have been pro-
posed over the years with the objective of understanding how complex structures
and patterns can emerge from one or a small group of initial undifferentiated cells
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[7, 21, 22, 24]. In this paper we propose an artificial cellular growth model that
generates 3D patterns by means of the selective activation and inhibition of devel-
opment genes under the constraints of morphogenetic gradients. Cellular growth is
achieved through the expression of structural genes, which are in turn controlled
by an Artificial Regulatory Network (ARN) evolved by a Genetic Algorithm (GA).
The ARN determines at which time steps cells are allowed to grow and which gene
to use for reproduction, whereas morphogenetic gradients constrain the position at
which cells can replicate. Both the ARN and the structural genes make up the arti-
ficial cell’s genome. In order to test the functionality of the development program
found by the GA, the evolved genomes were applied to a cellular growth testbed
based on the Cellular Automata (CA) paradigm that has been successfully used in
the past to develop simple 2D and 3D geometrical shapes [8]. The model presented
in this work was applied to a 3D version of what is known as the French flag prob-
lem. The 2D version of this problem has traditionally been used in biology —and
more recently in computer science— to model the determination of cell patterns in
tissues, usually through the use of morphogenetic gradients to help determine cell
position.

The paper starts with a section describing the French flag problem with a brief
description of models that have used it as a test case. The next section describes
the cellular growth testbed used to evaluate the evolved genomes in their ability
to form the desired patterns, followed by a section presenting the morphogenetic
gradients that constrain cell replication. The artificial cell’s genome is presented
next, followed by a section describing the GA and how it was applied to evolve the
genomes. Results are presented next, followed by a section of conclusions.

2 The French Flag Problem

The problem of generating a French flag pattern was first introduced by Wolpert in
the late 1960s when trying to formulate the problem of cell pattern development and
regulation in living organisms [30]. This formulation has been used since then by
some authors to study the problem of artificial pattern development. More specifi-
cally, the problem deals with the creation of a pattern with three sharp bands of cells
with the colors and order of the French flag stripes.

Lindenmayer and Rozenberg used the French flag problem to illustrate how a
grammar-based L-System could be used to solve the generation of this particular
pattern when enunciated as the production of a string of the type anbncn over the
alphabet {a,b,c} and with n > 0 [23]. On the other hand, Herman and Liu [18]
developed an extension of a simulator called CELIA [1] and applied it to generate
a French flag pattern in order to study synchronization and symmetry breaking in
cellular development.

Miller and Banzhaf used what they called Cartesian genetic programming to
evolve a cell program that would construct a French flag pattern [25]. They tested the
robustness of their programs by manually removing parts of the developing pattern.
They found that several of their evolved programs could repair to some extent the
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damaged patterns. Bowers also used this problem to study the phenotypic robust-
ness of his embryogeny model, which was based on cellular growth with diffusing
chemicals as signaling molecules [4].

Gordon and Bentley proposed a development model based on a set of rules
evolved by a GA that described how development should proceed to generate a
French flag pattern [16]. The morphogenic model based on a multiagent system de-
veloped by Beurier et al. also used an evolved set of agent rules to grow French
and Japanese flag patterns [3]. On the other hand, Dever et al. proposed a neural
network model for multicellular development that grew French flag patterns [14] .
Even models for developing evolvable hardware have benefited from the French flag
problem as a test case [17, 28].

More recently, Knabe et al. [20] developed a model based on the CompuCell3D
package [12] combined with a genetic regulatory network that controlled cell pa-
rameters such as size, shape, adhesion, morphogen secretion and orientation. They
were able to obtain final 2D patterns with matches of over 75% with respect to a
60×40 pixel target French flag pattern.

3 Cellular Growth Testbed

Cellular automata were chosen as models of cellular growth, as they provide a sim-
ple mathematical model that can be used to study self-organizing features of com-
plex systems [29]. CA are characterized by a regular lattice of N identical cells, an
interaction neighborhood template η , a finite set of cell states Σ , and a space- and
time-independent transition rule φ which is applied to every cell in the lattice at
each time step.

In the cellular growth testbed used in this work, a 13×13×13 regular lattice with
non-periodic boundaries was used. The set of cell states was defined as Σ = {0,1},
where 0 can be interpreted as an empty cell and 1 as an occupied or active cell. The
interaction neighborhoodη considered was a 3D Margolus template (Fig. 1), which
has previously been used with success to model 3D shapes [31]. In this template
there is an alternation of the block of cells considered at each step of the CA al-
gorithm. At odd steps, the seven cells shown to the left and the back in the figure
constitute the interaction neighborhood, whereas at even steps the neighborhood is
formed by the mirror cells of the previous block.

The CA rule φ was defined as a lookup table that determined, for each local
neighborhood, the state (empty or occupied) of the objective cell at the next time
step. For a binary-state CA, these update states are termed the rule table’s “output
bits". The lookup table input was defined by the binary state value of cells in the
local interaction neighborhood, where 0 meant an empty cell and 1 meant an occu-
pied cell and the parity bit p determined which of the two blocks of cells was being
considered for evaluation [8]. The output bit values shown in Fig. 1 are only for
illustration purposes; the actual values for a predefined shape, such as a cube, are
found by a GA.
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Fig. 1 Cellular automaton’s 3D Margolus neighborhood template and the associated lookup
table. The parity bit p in the lookup table determines which block of the neighborhood tem-
plate is being considered for evaluation. The objective cell is depicted as a darker cube in the
middle of the template

4 Morphogenetic Gradients

Ever since Turing’s seminal article on the theoretical influence of diffusing chemical
substances on an organism’s pattern development [27], the role of these molecules
has been confirmed in a number of biological systems. These organizing substances
were termed morphogens, given their involvement in driving morphogenetic pro-
cesses. In the present model, morphogenetic gradients were generated similar to
those found in the eggs of the fruit fly Drosophila, where orthogonal gradients offer
a sort of Cartesian coordinate system [5]. These gradients provide reproducing cells
with positional information in order to facilitate the spatial generation of patterns.
The artificial morphogenetic gradients were set up as suggested in [24], where mor-
phogens diffuse from a source towards a sink, with uniform morphogen degradation
throughout the gradient.

Before cells were allowed to reproduce in the cellular growth testbed, morpho-
genetic gradients were generated by diffusing the morphogens from one of the CA
boundaries for 1000 time steps. Initial morphogen concentration level was set at 255
arbitrary units, and the source was replenished to the same level at the beginning of
each cycle. The diffusion factor was 0.20, i.e. at each time step every grid position
diffused 20% of its morphogen content and all neighboring positions received an
equal amount of this percentage. This factor was introduced to avoid rapid mor-
phogen depletion at cell positions and its value was experimentally determined to
render a smooth descending gradient. The sink was set up at the opposite boundary
of the lattice, where the morphogen level was always set to zero. At the end of each
time step, morphogens were degraded at a rate of 0.005 throughout the CA lattice.
Three orthogonal gradients were defined in the CA lattice, one for each of the main
Cartesian axes (Fig. 2). In the figures presented in this work the following conven-
tions are used: in the 3D insets the positive x axis extends to right, the positive y axis
is towards the back of the page, the positive z axis points to the top, and the axes are
rotated 45 degrees to the left to show a better perspective.
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Fig. 2 Morphogenetic gradients. Positions with highest morphogen concentration are de-
picted in white; darker tones mean lower concentrations. (a) Left to right (x axis); (b) back to
front (y axis); (c) top to bottom (z axis)

5 Genome

Genomes are the repository of genetic information in living organisms. They are en-
coded as one or more chains of DNA, and they regularly interact with other macro-
molecules, such as RNA and proteins. Artificial genomes are typically coded as
strings of discrete data types. The genome used in this model was defined as a bi-
nary string starting with a series of ten regulatory genes, followed by a number of
structural genes (Fig. 3).

5.1 Regulatory Genes

The series of regulatory genes at the beginning of the genome constitutes an Artifi-
cial Regulatory Network. ARNs are computer models whose objective is to emulate
the gene regulatory networks found in nature. ARNs have previously been used to
study differential gene expression either as a computational paradigm or to solve
particular problems [2, 7, 15, 19, 26]. The gene regulatory network implemented in
this work is an extension of the ARN presented in [9], which in turn is based on the
model proposed by Banzhaf [2].

In the present model, each regulatory gene consists of a series of eight in-
hibitor/enhancer sites, a series of five regulatory protein coding regions, and three
morphogen threshold activation sites that determine the allowed positions for cell
reproduction (Fig. 3). Inhibitor/enhancer sites are composed of a 12-bit function
defining region and a regulatory site. Regulatory sites can behave either as an en-
hancer or an inhibitor, depending on the configuration of the function defining bits
associated with them. If there are more 1’s than 0’s in the defining bits region, then
the regulatory site functions as an enhancer, but if there are more 0’s than 1’s, then
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Fig. 3 Genome structure and regulatory gene detail. Regulatory genes make up an artificial
regulatory network, whereas structural genes contain the lookup tables that control cell repro-
duction. The number of structural genes m depends on the pattern to be generated and whether
or not structural genes are duplicated, as explained in Sect. 7. For the final simulations, m = 6

the site behaves as an inhibitor. Finally, if there is an equal number of 1’s and 0’s,
then the regulatory site is turned off [10].

Regulatory protein coding regions “translate” a protein using the majority rule,
i.e. for each bit position in these regions, the number of 1’s and 0’s is counted and
the bit that is in majority is translated into the regulatory protein. The regulatory
sites and the individual protein coding regions all have the same size of 32 bits.
Thus the protein translated from the coding regions can be compared on a bit by
bit basis with the regulatory site of the inhibitor and enhancer sites, and the degree
of matching can be measured. As in [2], the comparison was implemented by an
XOR operation, which results in a “1” if the corresponding bits are complementary.
Each translated protein is compared with the inhibitor and enhancer sites of all the
regulatory genes in order to determine the degree of interaction in the regulatory
network. The influence of a protein on an enhancer or inhibitor site is exponential
with the number of matching bits. The strength of enhancement en or inhibition in
for gene i with i = 1, ...,n is defined as

eni =
1
v

v

∑
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c je
β
(
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)

, (2)

where n is the total number of regulatory genes, v and w are the total number of
active enhancer and inhibitor sites, respectively, c j is the concentration of protein j,
β is a constant that fine-tunes the strength of matching, u+

i j and u−i j are the number
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of matches between protein j and the enhancer and inhibitor sites of gene i, respec-
tively, and u+

max and u−max are the maximum matches achievable (32 bits) between a
protein and an enhancer or inhibitor site, respectively [2].

Once the en and in values are obtained for all regulatory genes, the corresponding
change in concentration c for protein i in one time step is calculated using

dci

dt
= δ (eni− ini)ci , (3)

where δ is a constant that regulates the degree of protein concentration change.
Protein concentrations are updated and if a new protein concentration results in

a negative value, the protein concentration is set to zero. Protein concentrations are
then normalized so that total protein concentration is always the unity. Parameters
β and δ were set to 1.0 and 1.0×106, respectively, as previously reported [11].

The morphogen threshold activation sites provide reproducing cells with posi-
tional information as to where they are allowed to grow in the CA lattice. There
is one site for each of the three orthogonal morphogenetic gradients described in
Sect. 4. These sites are 9 bits in length, where the first bit defines the allowed direc-
tion (above or below the threshold) of cellular growth, and the next 8 bits code for
the morphogen threshold activation level, which ranges from 0 to 28− 1 = 255. If
the site’s high order bit is 0, then cells are allowed to replicate below the morphogen
threshold level coded in the lower order eight bits; if the value is 1, then cells are al-
lowed to reproduce above the threshold level. Since in a regulatory gene there is one
site for each of the orthogonal morphogenetic gradients, for each set of three mor-
phogen threshold activation levels, the three high order bits define in which of the
eight relative octants cells expressing the associated structural gene can reproduce.

5.2 Structural Genes

Structural genes code for the particular shape grown by the reproducing cells and
were obtained using the methodology presented in [8]. Briefly, the CA rule table’s
output bits from the cellular growth model described in Sect. 3 were evolved by a GA
in order to produce predefined 3D shapes. A structural gene is interpreted as a CA
rule table by reading its bits as output bits of the CA rule. As mentioned in Sect. 3,
at each time step of the CA run, an empty objective cell position can be occupied
by an active cell (output bit = 1) depending on the configuration of the cells in the
Margolus neighborhood block (η0, ...,η6) and on the value of the parity bit p.

A structural gene is always associated with a corresponding regulatory gene, i.e.
structural gene number 1 is associated with regulatory gene number 1 and its related
translated protein, and so on. However, in a particular genome there can be less
structural genes than regulatory genes; as a result, some regulatory genes are not
associated with a structural gene and their role is only to participate in the activation
or inhibition of other regulatory genes without directly activating a structural gene.

A structural gene was defined as being active if and only if the regulatory pro-
tein translated by the associated regulatory gene was above a certain concentration
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threshold. The value chosen for the threshold was 0.5, since the sum of all protein
concentrations is always 1.0, and there can only be a protein at a time with a con-
centration above 0.5. As a result, at most one structural gene can be expressed at
a particular time step in a cell. If a structural gene is active, then the CA lookup
table coded in it is used to control cell reproduction. Structural gene expression is
visualized in the cellular growth model as a distinct external color for the cell.

6 Genetic Algorithm

Genetic algorithms are search and optimization methods based on ideas borrowed
from natural genetics and evolution. A GA starts with a population of chromosomes
representing vectors in search space. Each chromosome is evaluated according to a
fitness function and the best individuals are selected. A new generation of chromo-
somes is then created by applying genetic operators on selected individuals from the
previous generation. The process is repeated until the desired number of generations
is reached or until the desired individual is found.

For the present work, chromosomes represent either the output bits from a CA
rule table to be evolved to generate a simple form such a cube, or an ARN whose ob-
jective is to activate structural genes in a particular order to produce a multicolored
shape such as a French flag pattern.

The GA in this paper uses tournament selection with single-point crossover and
mutation as genetic operators. As in a previous report, we used the following pa-
rameter values [11]. The initial population consisted of 1000 binary chromosomes
whose bit values were chosen at random. Tournaments were run with sets of 3 indi-
viduals randomly selected from the population. Crossover and mutation rates were
0.60 and 0.15, respectively. Finally, the number of generations was set at 50, as there
was no significant improvement after this number of generations.

The fitness function used by the GA was defined as

Fitness =
1
k

k

∑
i=1

insi− 1
2 outsi

desi
, (4)

where k is the number of different colored shapes, each corresponding to an ex-
pressed structural gene, insi is the number of active cells inside the desired shape i
with the correct color, outsi is the number of active cells outside the desired shape
i, but with the correct color, and desi is the total number of cells inside the desired
shape i. The range of values for this function is [0,1] with a fitness value of 1 repre-
senting a perfect match.

7 Results

The GA described in Sect. 6 was used in all cases to obtain the CA’s rule tables that
made up the structural genes for specific simple patterns and to evolve the ARNs for
the desired multicolored pattern. After an evolved genome was obtained, an initial
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active cell containing it was placed in the center of the CA lattice and was allowed
to reproduce for 60 time steps in the cellular growth testbed described in Sect. 3,
controlled by the gene activation sequence found by the GA. In order to grow the
desired structure with a predefined color and position for each cell, the regulatory
genes in the ARN had to evolve to be activated in a precise sequence and for a
specific number of iterations. Not all GA experiments produced a genome capable
of generating the desired pattern.

In order to grow a solid 3D French flag pattern, three different structural genes
were used. Expression of the first gene creates the white central cube, while the
other two genes drive cells to extend the lateral walls to the left and to the right
simultaneously, expressing the blue and the red color, respectively. These two last
genes do not necessarily code for a cube, since they only extend a wall of cells
to the left and to the right for as many time steps as they are activated and when
unconstrained, they produce a symmetrical pattern along the x axis. The independent
expression of these three genes is shown in Fig. 4. The two genes that extended the
lateral walls were activated after a central white cube was first produced. In order
to generate the desired French flag pattern, cells expressing one of these two genes
should only be allowed to reproduce on each side of the white central cube (left for
the blue cube and right for the red cube). This behavior was to be achieved through
the use of genomes where the morphogen threshold activation sites evolved to allow
growth only in the desired portions of the 3D CA lattice.

Fig. 4 Expression of the three genes used to create a 3D French flag pattern. (a) Create central
white cube; (b) extend blue lateral walls; (c) extend red lateral walls. The last two genes were
activated after the creation of a white central cube

However, when trying to evolve a genome to produce the 3D French flag pattern,
it was found that the GA could not easily evolve an activation sequence that pro-
duced the desired pattern. Using the same approach as in [6], in order to increase
the likelihood for the GA to find an appropriate genome, instead of using one series
of three structural genes, a tandem of two identical series of three structural genes
was used, for a total of six structural genes. In that manner, for creating the central
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white cube, the genome could express either structural gene number 1 or gene num-
ber 4, and for the left blue and right red cubes, it could use genes 2 or 5, or genes 3
or 6, respectively. Thus, the probability of finding an ARN that could express a 3D
French flag pattern was significantly increased.

Figure 5 shows a 9×3×3 solid French flag pattern grown from the expression of
the three different structural genes mentioned above. The graph of the corresponding
ARN protein concentration change is shown in Fig. 5(e). Starting with an initial
white cell (a), a white central cube is formed from the expression of gene number
4 (b), the left blue cube is then grown (c), followed by the right red cube (d). The
evolved morphogenetic fields where cells are allowed to grow are depicted in the
figure as a translucent volume for each of the three structural genes.

Fig. 5 Growth of a 3D French flag pattern. (a) Initial cell; (b) central white cube with
morphogenetic field for gene 4 (cube); (c) central white cube and left blue cube with mor-
phogenetic field for gene 2 (extend blue lateral walls); (d) finished flag pattern with morpho-
genetic field for gene 6 (extend red lateral walls); (e) graph of protein concentration change
from the genome expressing the French flag pattern; the unlabeled lines correspond to pro-
teins from regulatory genes that are not associated with structural genes

It is clear from the figure that for the genes that extend the wall of cells to the
sides, the corresponding morphogenetic fields limited growth to the desired direc-
tion (left for blue cells and right for red cells). It should also be noted that the left
blue cube is formed from the activation of the second gene from the first series of
structural genes, while the other two genes are expressed from the second series of
the tandem.

8 Conclusions

The results presented in this paper show that a GA can give reproducible results
in evolving an ARN to grow predefined simple 3D cellular patterns starting with a
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single cell. In particular, simulations showed that the combination of a GA and CA
with a 3D Margolus interaction neighborhood was a feasible choice for modeling
3D pattern generation.

In general, the framework developed proved to be suitable for generating simple
patterns, but more work is needed to explore generation of more complex structures.
It is also desirable to study cellular structure formation allowing cell death and cell
displacement, as in actual cellular growth. Furthermore, in order to build a more ac-
curate model of the growth process, the use of a more realistic physical environment
may be necessary. The long-term goal of this work is to study the emergent prop-
erties of the artificial development process. It is conceivable that highly complex
structures will one day be built from the interaction of myriads of simpler entities
controlled by a development program.
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