
Abstraction Level Hierarchy:
the Model and its Significance for Software Engineering

Hanania T. Salzer
School of Education, Tel-Aviv University

Tel-Aviv, Israel
hanania.salzer@013net.net

Abstract—An abstraction level hierarchy models abstraction-
concretization relationships between different types of
specifications. The proposed model combines into a single,
continuous partially ordered set, all types of specifications,
such as requirement specifications, design specifications and
even the program code. Information theoretic definitions were
developed for the concepts of abstraction, concretization and
abstraction level. The paper demonstrates how the model can
be used to reason about software engineering issues. The
purpose of this conceptual paper is to propose an underlying
model for software engineering research.

Keywords-Abstraction; abstraction level hierarchy; atomic
requirement specification; design; entropy; requirements;
requirement specification

I. INTRODUCTION
Longstanding observation obtained during field work in

the software industry suggested that certain outcomes, useful
to software development, result from the use of atomic
requirement specifications (ATRSs) as opposed to the use of
non-atomic requirement specifications [1]. However, even if
the hypothesized properties of using ATRS were accepted,
they would be of little significance before an underlying
formal model would be made available.

A suitable model had to show not only what it meant for
the specification of a requirement to be atomic, but also it
had to show what it meant to be atomic at a certain
abstraction level. This last requirement is because atomicity
is of meaning only when associated with an abstraction level.
The challenge is, therefore, to define the notion of
abstraction level, which in turn requires the definition of
abstraction in the context of software design.

A. Atomic Requirement Specification
The specification of a system, or any of its components,

is a description of its interface [2]. This implies that
specifying the internal design of a system or a component
involves listing its components or subcomponents, and
specifying each one. This insight establishes a recursive
relationship between components along the hierarchy of a
system’s structure: the specifications of a component
residing at a certain level of the hierarchy is, at the very same
time, part of the higher level component’s internal design.
Furthermore, “in software development, decomposition is

implementation” [3]. In other words, every specification
statement is the specification of a requirement relative to a
component at some level, and in the same time it is also an
internal design specification of a higher abstraction level [4],
[5], [6].

Well-formed specifications are abstract, unambiguous,
traceable and validatable [7]. ATRSs are well-formed
specifications that, in addition, are also the result of splitting
complex specifications into elementary, or indivisible,
specifications [1].

The motivation for atomization of requirement
specifications includes the difficulty to assign contractual
liability to non-atomic specifications [8] and the danger of
overlooking information [1]. The term atomic requirement is
used to denote simple specifications in contrast to more
complex ones [9], [10] and requirements expressed in a
single sentence with one “shall”, but without excluding
multiple logical predicates within it [11]. Atomicity is used
in [12] as a dimension for individual specifications, but
without defining the dimension. Harn et al. [13] give
examples of “atomic issues”, but not all of them are
indivisible. Indivisibility is included as the criterion for
atomicity of a specification in [14] and [15].

B. Abstraction
The concept of abstraction is well defined in dictionaries

and encyclopedias and also in the Software Engineering
literature [16] although not formally. The significance of the
skill of abstraction for software engineering has been
discussed by [18]. The definition of abstraction level for
individual specifications received little attention.

The most common use of abstraction in the software
related refereed publications seems to be concerned with the
design of software, such as abstract data types and object
oriented programming, and considerably less to the
abstraction of requirements. Abstraction is used by [17] as a
noun to describe primary conceptual elements within
specifications, and not as an action on a specification or as a
relation between specifications. The amount of information
in an abstraction level is described by [19] as follows “the
quantity of information in a model varies with the LoA
[Level of Abstraction]: a lower LoA, of greater resolution or
finer granularity, produces a model that contains more
information than a model produced at a higher, or more
abstract, LoA.” Yet, no account is given for why is that so.

2010 IEEE International Conference on Software Science, Technology & Engineering

978-0-7695-4061-0/10 $26.00 © 2010 IEEE

DOI 10.1109/SwSTE.2010.11

61

II. THE MODEL OF THE ABSTRACTION LEVEL HIERARCHY
The model has two underlying components: the

specification of a requirement and the parent-child link that
exists between some pairs of specifications.

A. First Component: Requirement Specification
The first underlying component of the Model is the

specification of requirements. The term requirement has a
variety of definitions, such as: “a condition or capability
needed by a user to solve a problem or achieve an objective”
[7]. Well-formed requirement specifications are abstract,
unambiguous, traceable and validatable [ibid.]. An atomic
requirement specification (ATRS) is defined as a well-
formed specification of a requirement that is not possible to
subdivide into more elementary specifications at the
abstraction level at which it is being considered [20]. The
term abstraction level will be brought into context only in
the following section.

A requirement specification consists of a condition,
sometimes implied, and a corresponding operation. An
ATRS is a predicate with an indivisible condition, that is, no
“OR”-s, and an indivisible operation, that is, no “AND”-s. A
practical technique to check a requirement specification for
indivisibility is by a mental experiment; if the tested object,
either software or document text, can come out of a test
against a specification with the conclusion that it has
partially passed the test then the specification is not atomic
[1].

B. Second Component: Rationale-Concretization Link
1) The Concept of Rationale: For every specification

stated by a stakeholder, such as R1 in Fig 1, we could ask
the stakeholder “Why?” [21], [22], [23] because she expects
us to develop not exactly what she asks for, as much as what
she really needs [24]. Then the stakeholder may or may not
be able to tell why she has that requirement.

Figure 1. Rationale-Concretization links between specifications

As an arbitrary convention, a graphical representation
can portray specifications as nodes, and can depict the links
as edges pointing from the parent specification, or rationale,
to the child specification, or concretization.

A specification may have any number of direct parents,
or none. All direct parents of a specification, combined, are
the rationales for that specification. A specification may have
any number of children, including none. The combination of
the children concretizes their parents. Thus a real life case is
modeled by a graph far more complex than the one in Figure
1.

2) The Concepts of Abstraction and Concretization: R2
in Figure 1 is more abstract than R1 since R2 could be
achieved not only with an inventory report, but also with a
barcode reader. The report (R1) and the barcode reader are
alternative concretizations of R2. Usually, a parent
specification may be concretized in more than one,
alternative way. By the time a system will be developed,
one of the alternatives will be selected and further detailed.
For this discussion, the relevant question is not “which one
was implemented?” but “why specifically this one was
preferred, and not the other one?”

According to this model, the reason that the designer
selected R1 must be that she has had at least one more
requirement, in addition to R2. In the presence of an
additional requirement, such as “R7: We hate barcode
readers”, the designer had had to select the report (R1), and
had had to drop the barcode option, because only the former
fulfilled both rationales. In other cases we must assume that
the selection was affected by at least one rationale that was
not explicitly specified, hence it is called implicit rationale.

3) The Concept of Abstraction Level: All specifications,
by their very nature, carry information that prescribes some
limitation on the freedom of choice from the set of different,
alternative implementations of the system. The set of all
systems that could implement a specification is called here
the specification’s implementation space.

A specification carries some information about the
appropriate, alternative designs of the system. The lower a
specification is in the abstraction-level path, the more
specific it is. The more concrete a specification is – the more
information it carries about the system.

An abstraction level is defined indirectly, through a set of
definitions of the inclusion of specifications in abstraction
levels:

• Two specifications are said to be at the same
abstraction level if, and only if, they have a common
direct parent specification or a common direct child.
In the former case, the two specifications are
siblings.

• One specification is in a higher abstraction level then
another specification if, and only if, the first
specification is an ancestor of the other specification.

• One specification is in a lower abstraction level then
another specification if, and only if, the first
specification is a descendant of the other
specification.

R5: Net income must be as high as possible

therefore

R4: Loss of money due to loss of stock must be taken care of

therefore

R3: Lost stock must be reported

therefore

R2: Need to compare actual stock to recorded quantities

therefore

R1: Need an inventory report

62

• When there is no ancestor-descendant relationship
between two specifications, then the comparison of
their abstraction levels is meaningless.

In the case of a rationale and one of its concretizations,
R1 R3, it is conceivable to create another specification, say
R2 such that R1 R2 R3. This mental exercise can be
generalized into what seems to be a rule: for any two
specifications, where one is the direct ancestor of the other, it
is possible to insert between them a new specification. If
indeed this is so, then the length of path between two
specifications, a predecessor and a descendent, is of no
quantitative meaning.

We define natural abstraction level as the location of a
specification within an abstraction level hierarchy, when:

• all of its parents are its rationales, and
• all of its rationales are its ancestors, and
• all of its children are its concretizations, and
• all of its concretizations are its descendents.

III. PROPERTIES OF THE MODEL
The abstraction level hierarchy has a number of

properties that can be delineated even before a formal
account is established.

A. Stakeholders
Requirement specifications are stated by stakeholders

who might, advertently or inadvertently, affect or be affected
by the intended system. It is accepted by the trade that only
clients, key users and the like define requirements [16]. The
proposed model allows extending the concretization process
below the specifications stated by clients, thus it allows
including all stakeholders among those whose declarations,
wishes and needs count as requirements.

Once all types of stakeholders, including designers and
programmers, may concretize the existing requirement
specifications, thus adding more specific requirements, the
nature of the specifications of requirements becomes more
versatile.

B. Abstraction Sequence and Concretization Sequence
Abstraction and concretization are two processes on the

same specification, and they create sequences of
specifications in opposite directions. Adding a rationale to an
existing specification is an act of abstraction. Selecting one
out of several alternative specifications that comply with the
same rationales is an act of concretization. As stated above,
detailed design specifications are concretizations of client
requirements within the hierarchy of abstraction levels.
Similarly, statements of program source code are
concretizations of design specifications.

Every specification may be the rationale, or the “what”,
for a more concrete specification and in the very same time
also the concretization, or the “how”, of another, higher-level
rationale [5], [25]. Therefore, all specifications, at all
abstraction levels are the specifications of requirements [1],
[3].

We define executable source code as a software artifact
that is created directly by a human being and can be
executed, usually after compilation, with the objective to

exhibit the intended functionality. In contrast, executable
machine code is not created directly by humans but by
automatic processes such as the compilation of executable
source code. Note that executable machine code is at a lower
abstraction level than executable source code. For that to
happen, the source code cannot be the sole rationale for the
machine code. Other rationales, specified by humans, are the
choice of software development environment, the choice of
compiler arguments, the choice of operating system, and
more. A formal specification is created directly by humans,
and might be executable. If, in addition, it exhibits all of the
intended functionality then, indeed, it is an executable source
code.

The underlying properties of the abstraction level
hierarchy do not predict any stopping point, or upper
binding, in the sequence of successive abstraction. On the
other hand, the sequence of successive concretization stops
at the point of executable source code implementation.
Because of this wide range, the model is not limited to
requirements specified by clients or to any other arbitrary
level of abstraction. On the contrary, it spans from the most
abstract specifications to the most concrete specifications,
namely the executable source code.

C. Arbitrary Abstraction Levels and Categories
Different authors advocate different numbers of

abstraction levels, such as three [26], four [3], [27], five [28]
and three to five [29]. Interestingly, the IEEE SWEBOK [30]
and the SEI SWE-BOK [31] are mute about abstraction
levels.

All of the above models have in common
• a similar underlying idea of abstraction levels
• a finite number of abstraction levels
• a very small number of abstraction levels, and
• abstraction levels that are arbitrary.
Of all the above properties, the models of fixed or

arbitrary abstraction levels have only the first property in
common also with the model presented by this paper.

Small, fixed number of abstraction levels is criticized by
[32], for example on the ground that the connections
between abstraction levels lack meaning. The arbitrary
abstraction levels, which are suggested by the models of
fixed abstraction levels type, were not derived from the
needs of an abstraction-concretization process, but from the
need to aggregate [3] specifications in categories.
Categorization was expected to meet such needs as
associating specifications with stages in the workflow,
grouping specification by the different types of stakeholders,
grouping specifications into different document types,
organizing specifications to meet the standards in different
software development methods or the capabilities of
computer-aided software engineering tools. So, the models
of fixed abstraction levels are motivated primarily by a need
to categorize specifications; the perceived abstraction levels
emerging from categories are only a byproduct.

63

Figure 2. Aggregates (shading) and abstraction-concretization links
(arrows) as two orthogonal properties of ATRSs (rectangles)

D. Comparison between Arbitrary and Continuous
Abstraction Levels
Figure 2 illustrates the relationship between the hierarchy

of requirement specifications and aggregates of requirement
specifications in documents. Only two subsets, highlighted in
gray and black, are documented. The figure shows that
abstraction-concretization links and traditional aggregation
can live together.

The arbitrary abstraction levels’ approach has
advantages, but also limitations in practical use. There is no
doubt that some intermediate levels do exist in the mind of
the designer, but a method of an arbitrarily limited number of
abstraction levels results either in the loss of that
information, or in different abstraction levels squeezed into
and mixed up in a single document.

The Software Engineering industry attributes much
importance to tracing back from specifications and from
source code to their rationales [30], [33], [34], [35], [36],
[37], [38]. Real path lengths from documented specifications
back to their rationales may be larger than the limited
number of arbitrary abstraction levels compelled on a
development project. A hierarchy with an unlimited number
of abstraction levels supports sequences of rationales with
any length.

IV. A FORMAL ACCOUNT OF THE MODEL
Of all specifications that are written by a human, the

most concrete set of specifications is the executable source
code. It is the hierarchy’s lower binding. Although it is the
endpoint of the design process, it offers a useful starting
point for a formal analysis of the abstraction level hierarchy
model.

A. The Quantity of Implementation Information in
Specifications
Assume a small piece of source code picked out of a

large system. It concretizes a specification statement, R20,
picked out of the system’s body of specifications, as in
Figure 3.

Figure 3. A piece of executable source code with a corresponding
requirement specification

R20 carries some information that is necessary, but is not
sufficient for implementation. The programmer must add to
it from her knowledge and personal preferences: how to
compute the VAT, what names to give to variables, and
more. The line of code in the above example could have
been written in several different ways. It is due only to some
arbitrary decisions made by the programmer that of all
alternatives this particular executable line of code was
implemented. For a set of specifications we use the term
alternative implementation for any one of the different,
potential implementations that fulfill that set of
specifications. Each alternative, has it been implemented, it
would have successfully passed the tests against the said set
of explicit specifications.

We define implementation information in a specification
as the information in a specification that is available for
predicting what executable source code will eventually
implement that specification.

Looking at a specification, and considering its
implementation space, we see that the potential manifestation
of each one of the alternative implementations is a possible
event. Whether we look at the executable source code written
with a finite alphabet or at the executable machine code on a
binary storage – these events are discrete. By their definition,
all alternative implementations equally fulfill the
specification. Therefore, if one is asked to predict, based
strictly on the information in the specification, “what is the
probability of the event that in the end a particular alternative
implementation will be selected for actual implementation?”
then the answer must be that all the events have the same
probability. With no further information available, one can
assume that this is a random event. It is also assumed that a
real system is realized by software that was coded directly by
human beings; hence the software has a finite size. Written
with a finite alphabet, such software may have only a finite
number of alternative implementations, thus making the
events’ probability finite too. This follows that the amount of
implementation information available in any given
specification is a case of a random variable of discrete
events. Consequently, Shannon entropy [39], [40] can be
used to model the information, or uncertainty, regarding to
which of the alternative implementations will eventually be
implemented. In an analogy to [39], the uncertainty in a
specification may be regarded as the equivalence class of all
translations of the same specification information into
different, alternative implementations, thus reinforcing the
current definition for implementation information in a
specification.

Let n be the size, or the number of alternative
implementations, of X, a specification’s implementation
space, then the entropy of that specification is H(X)=log2(n)
bits. H(X) is a measure of how little the specification’s text

R20: All purchases must include VAT

therefore

TotalReceivabel=SubTotal*(100+VatPercentage)/100

64

reveals about its eventual implementation. Thus entropy is a
quantification of the implementation information, which was
defined above qualitatively. The larger is n, that is the larger
is the number of alternative implementations of a
specification, the larger is its entropy, that is, the lower is
that specification’s capability to predict, or to provide
information of what implementation will eventually prevail.

Suh [25] computes entropy of specifications at lower
abstraction levels by the estimated probability that they will
satisfy the specifications at the highest abstraction level. This
paper makes no attempt counting the number of alternative
implementations; hence, it cannot compute concrete values
of entropy.

The implementation by an executable source code is a
special set of specifications in regards to its entropy. Given
that a certain line of code has been implemented, the
probability that that line of code will be implemented is 1,
and the entropy of that line of code is zero. Similarly, the
entropy of any implementation of executable source code is
zero.

B. Implementation Information in an Information
Theoretical View
A specification can be viewed as an encoded message,

and the set of alternative implementations can be viewed as
its alphabet. The implementation, which is the executable
source code, can be viewed as the decoded message. The
message is encoded by means of the specification’s
utterance, which is usually non-formal. The decoded
message is exactly one character of the alphabet. To reveal
this single character, that is, to find out what is the
executable source code, the message has to be decoded.
Conversely, to abstract means to encode. This view allows
reasoning about the implementation information in system
specifications along the lines of Shannon entropy.

The text of a specification encodes some information
about the program code that will eventually implement it.
Encoding is non-algorithmic even in the case of formal
specifications, except the program code itself. Decoding is
the non-algorithmic, creative task of human designers.

C. Abstraction Levels and their Relationships
The implementation space of a specification must be a

proper subset of the implementation space of each
specification that is its rationale. It follows that the
implementation space of a specification in the abstraction
level of the concretization must be a proper subset of the
intersection of all implementation spaces of all specifications
in the abstraction level of rationales. This agrees with the
intuitive idea that designers specify multiple specifications
with the intention that the system will comply with all of
them, as illustrated by Figure 4.

Figure 4. Reduction of implementation space with concretization

The intersection of the implementation spaces of all
specifications in the abstraction level of the rationales
contains less alternative implementations than is associated
with any of the specifications in that abstraction level.
Therefore, as one would expect, the entropy of this
intersection is less than the entropy of each specification
alone. We call the intersection of implementation spaces at
the abstraction level of rationales the implementation space
that is bestowed by the rationales to the concretization.
Similarly, we call the entropy of the above intersection the
entropy, or implementation information, bestowed by the
rationales to the concretization.

Every specification in the abstraction level of the
concretization must have its implementation space to be not
only a subset of the bestowed implementation space, but it
has to be smaller than that, otherwise no concretization has
occurred. Since the implementation space of every
specification in the abstraction level of concretization is
smaller than the bestowed implementation space, it follows
that the entropy in every concretizing specification is less
than the entropy inherited from the abstraction level of
rationales. Thus, concretization keeps decreasing the
entropy.

V. PRACTICAL CONSEQUENCES OF THE ABSTRACTION LEVEL
HIERARCHY

The abstraction level hierarchy model has a number of
consequences that might be considered by practitioners and
theorists.

A. Analysis and Design
We define analysis as a process that facilitates the

identification of the design space and the set of possible
alternative designs within it. We define design as the action
of choosing specifications from among valid alternatives.
Therefore, an analyst is also a designer, and vice versa.

Requirements engineers on the one extreme and
programmers on the other extreme follow the same
underlying principles of analysis and design activities. Both
work on the same abstraction level hierarchy, but differ in
taking responsibility for different regions of that hierarchy.

Designers, let alone programmers, add a huge amount of
explicit specifications, many of which do not concretize
explicit client requirements.

B. Ambiguous Specifications and Specifications of Non-
functional Requirements
Requirements Engineering’s current best practice

condemns ambiguous specifications [41], [42], [43], [44],

Rationale-2

Rationale-1

Concr-3
Concr-1

Concr-2

65

and for a very good reason. The requirements engineering
books tell us that we must replace the relics of raw, fuzzy
specifications with less ambiguous ones, repeating the
process until only the unambiguous specifications remain.
We must document the latter in places such as a Software
Requirement Specifications (SRS) document [41].

While a specification is ambiguous, from the point of
view of an SRS, it still could be the most specific statement
at the point of time when it emerged. In other words it is
unambiguous at its natural abstraction level. Instead of
replacing specifications, the abstraction level hierarchy
model allows newer specifications to be added to the older
specifications, thus maintaining a trace of rationales. It
supports even the specifications that are not likely to be ever
documented, such as a hidden agenda [36].

Vagueness and uncertainty emerge also while doing
design and even during detailed design. The only really non-
ambiguous construct is the executable source code.

C. Specifications and Program Code
The code written by a programmer is at the lowest

abstraction level created by a human being during the
development of a software system. From this point on, down
the abstraction level in the direction of concretization, no
more human concretization takes place, since a compiler or
an interpreter takes over and creates an executable machine
code.

Preprocessors, compilers, interpreters, linkers, database
handlers, etc. implement a wealth of requirements. In a large
project, only one or a few technical stakeholders specify
which of these infrastructures to use for the system. The
executable machine code concretizes these project-wide
specifications together with the program code written by
programmers.

Program code constitutes a very special case in the
abstraction level hierarchy. No code is further concretized by
human action, except starting off the compilation. Thus from
the point of view of human creative action, program coding
is the last step in the concretization process, and program
code is the most concrete specification.

D. Testing and Bugs
The definition of testing relies on the definition of bug.

The latter, in turn, relies on the definition of expected result.
Therefore, they are discussed here in reverse order.

1) Expected Results: Before a scientist puts a hypothesis
to the test, she predicts a-priori the outcome that the
hypothesis and accepted theories predicts and the outcome
that should be expected in the case that the hypothesis is
false. By the experiment she compares the behavior of the
set of real laws of nature with that of the set of accepted
theories and her hypothesis. It is safe to say that the two sets
are independent. This is not the case with software testing.

Oracle is a means that provides information about the
correct, expected behavior of a component [45]. Software
programmers have explicit and implicit information in the
role of oracle: a subset of the abstraction level hierarchy of
specifications and any implicit specifications maintained by

the programmer herself. The software tester should have
exactly the same explicit specifications. As a result, and in
harsh contrast to scientific experiments, the oracle of the
tester and the computation made by the program are
dependent.

2) Bugs: Since the design space of a concretization must
be contained within the design space of its rationales, we
define bug as a contradiction between the information that
exists in each one of two sets of specifications where one set
is the ancestor of the other. The definition does not pretend
to know which one of the two sets of specifications has the
bug, and which one, if any, is correct. Furthermore, if a set
of specifications in an abstraction level has an internal
inconsistency, then the information bestowed by that
abstraction level is null, which automatically renders it
useless for being the source of information for any lower
abstraction level.

Harwell et al. [4] define a specification’s quality as the
extent to which it reproduces in the mind of a reader the
intellectual content that was in the mind of the writer, that is,
how well it survives a handoff.

As we think up a specification it is in the form of a
mental model. When we tell it to somebody, or write it
down, the spoken and the written specifications are
conceptual models. In the mind of the person who listens to
or reads the conceptual model, a new mental model is being
created. Both processes, from mental to conceptual model
and from conceptual to mental model, are handoffs. Along
the course of the system design process, specifications are
handed off many times, alternating between mental and
conceptual models.

Norman [46] describes mental models as incomplete, not
accurate, and containing errors and contradictions; still,
people will keep using a mental model even when they know
that it is deficient. Therefore, it is reasonable to assume, that
every time a model passes through a mental model, it
emerges in a conceptual model after, potentially, attracting
bugs.

Every act of concretization on a specification statement
involves handoffs, making their number proportional to the
number of links in an abstraction level hierarchy. Each
handoff is a potential source of bug. This leads to the
proposition that, after all, all bugs are specification bugs.

3) Tests: We define testing as the act of looking for
information that exists in one set of specifications, called the
oracle, but is absent from a second set of specifications
when the oracle is at a higher abstraction level. A more
practical definition says that a test tries to identify in the
design space of the tested set of specifications a point that is
outside the design space of the oracle, which is the set of
specifications at the higher abstraction level. Note that the
design space of the oracle should include the design space
of the lower abstraction level, while the information in the
oracle should be a subset of the information of the lower
abstraction level.

66

The objects to be tested are software components as well
as specification documents. The oracles are specification
documents. Both items, the tested object and the oracle, are
items in the same abstraction level hierarchy. Not only that
but also the specifications that provide the oracle are always
ancestors of the tested object.

Because oracles are ancestors of the tested objects, the
bugs that were injected above the oracle, are included in the
oracle, and were handed off, down the abstraction level
hierarchy to the descended object under test. There is no way
that the oracle will help exposing these bugs. The closer is
the oracle to the tested object in terms of abstraction — the
larger is the proportion of the handoffs that are common to
both, hence the larger is the proportion of the bugs that the
oracle cannot help discovering. On the other hand, the farther
away is the oracle from the tested object in terms of
abstraction — the less is the information that it carries about
the tested object, and hence the weaker is its capability to act
as an oracle.

Thus, the model shows that software testers must make a
tough decision: how much information to trade for how
much chance to catch bugs.

E. Source of Link
We used to think of the source of a requirement as an

identification of the stakeholder who specified the
requirement. We would assume that the source is an attribute
of the specification.

With the proposed model, a stakeholder not only
specifies that she has this-and-this requirement, but also she
can point out what is her rationale for that specification. A
specification may have multiple rationales, or it may have
none. Different stakeholders may support the same link
between a specification and its rationale, but for different
reasons.

That being the case, the source of a requirement is not an
attribute of a specification, but an attribute of a link between
a specification and one of its rationales. A link may have
multiple instances of the source attribute.

F. Lexicons and Information Hiding
The lexicon, or set of terms, used by the specifications in

an abstraction level reflects information in that abstraction
level. Because the information in an abstraction level is
always less than the information in any abstraction level that
is more concrete, an abstraction level cannot use information
that will be a future contribution of a lower abstraction level.
In practical terms, a specification must use terms only from
the lexicons of the abstraction levels above it, and terms
introduced by its own abstraction level, including itself.

The last statement sounds as tautology, but the following
will show that this is not the case. The concretization of a
specification, say R1, requires that the next abstraction level
will introduce into its lexicon several new terms. Should the
abstraction level of R1 itself refer to those terms, it would
expand its own information to include the information of the
next abstraction level, and by that making the next
abstraction level redundant. Merging adjacent abstraction
levels is possible, but then we could as well merge the whole

abstraction level hierarchy into a single level, which is the
executable source code. This is what hasty programmers do
when they start coding before planning.

The restriction on the terms that specifications may use is
an extension of information hiding from the description of
modules [47] to the specifications at abstraction levels where
modules, let alone their interfaces, have not yet been
decided. Lexicon terms of an abstraction level are its secret,
and they are hidden not only from higher abstraction levels
but also from any abstraction level that is not on the same
path. Information hiding is supported, therefore, by the
abstraction level hierarchy not only vertically along paths of
the hierarchy, but also sideways. The model expands the
traditional notion of information hiding beyond the
implementation, covering also the early specifications.

VI. DISCUSSION
A model is proposed, which is formally based on a single

relationship attribute, the abstraction-concretization relation
that exists between pairs of specifications, providing a partial
order over sets of specifications. It is visualized by a directed
graph. The prevalent activity of design is concretization.
Still, it was felt that the notion of abstraction already
established a foothold in this context, and therefore the
model is named the abstraction level hierarchy.

Partial order relates the specifications vertically. But still
there was the need to define the inclusion of several
specifications in the same abstraction level, by means of a
horizontal relationship. Without that, we could talk only
about the abstraction level of individual specifications, and
were not able to speak of a set of specifications that
comprised an abstraction level. The inclusion of two
specifications in each other’s abstraction level depends on
the temporal nature of their direct parent specifications and
their direct child specifications. These relations are
circumstantial, because they may change as the design of a
system proceeds.

Current Software Engineering practice views the
rationale and the specification as two different entities, while
in the abstraction level hierarchy model there is only one
entity for both. On the other hand, traceability is separated
into two, the abstraction-concretization link among
specifications, and the source for each link, such as people
and documents.

Testing is sustained by the abstraction level hierarchy
beyond the support of requirements-based testing. The model
shows that there is a vicious tradeoff between two factors,
the ability to predict expected results and the ability to
expose bugs.

Harel [48] advances the prospect of Visual Formalisms
for specifications. Its visual facet makes specifications
communicative for humans. Its formal facet makes
specifications communicative with machines, but not only
for the extent of consistency checking but actually to execute
on machines. Harel’s vision includes this: “We will …
formulate and reformulate our conceptions as a series of
increasingly more comprehensive models …”. Still, the act
of formulation and reformulation remains the very same non-
algorithmic task as with non-formal and non-visual

67

specifications. Design is non-algorithmic even when its work
product is a formal construct.

The sum of information entropy in a closed system is
assumed to be constant [49]. However, a set of emerging
system specifications is an open system; information enters it
by the creative process of design, hence its entropy
progressively decreases until, as it is fully decoded into the
program code, it reaches zero.

The present work does not suggest that practitioners
should document all rationales for all specifications in a
mammoth abstraction level hierarchy. Such an attempt
would be impossible and of little practical value. Neither
does it suggest a new methodology; it can be applied to the
current methodologies. The aim of this paper is to propose a
necessary, underlying model for the toolbox of software
engineering researchers.

ACKNOWLEDGMENT
This work was supported in part by a grant from the

Constantiner family.

REFERENCES
[1] Salzer, H. (1999). “ATRs (Atomic Requirements) Used throughout

development lifecycle.” 12th International Software Quality Week
(QW99), 1, (6S1), San Jose, CA.

[2] Britton, K. H., & Parnas, D. L. (1981). “A-7E software module
guide.” (NRL Memorandum Report 4702): Naval Research
Laboratory (NRL).

[3] Wieringa, R. J. (1996). Requirements Engineering: Frameworks for
Understanding. John Wiley & Sons Inc.

[4] Harwell, R., Aslaksen, E., Hooks, I., Mengot, R., & Ptack, K. (1993).
“What is a requirement?” Proceedings of the Third International
Symposium of the NCOSE.

[5] Kilov, H., & Ross, J. (1994). Information Modeling. Prentice-Hall.
[6] Ghezzi, C., Jazayeri, M., & Mandrioli, M. (2003). Fundamentals of

Software Engineering, 2nd Ed., Upper Saddle River, New Jersey:
Prentice Hall.

[7] IEEE. (1998). IEEE Std 1233: “Guide for Developing System Re-
quirements Specifications” in IEEE Standards, Software Engineering,
Volume One, Customer and Terminology Standards (IEEE,
Computer Society). NY, USA: The IEEE, Inc., IEEE-SA Standards
Board

[8] Hunt, L. B. (1997). “Getting the requirements right–a professional
approach.” Eighth International Workshop on Software Technology
and Engineering Practice (STEP '97) (including CASE '97), 464-472.
IEEE Computer Society.

[9] Bolton, D., Jones, S., Till, D., Furber, D., & Green, S. (1992).
“Know-ledge-based support for requirements elicitation: A progress
review.” Technical Report TCU/CS/1992/23 and GMARC Project
Report R44. City University.

[10] Sistla, P., Yu, C. T., & Venkatasubrahmanian, R. (1997). “Similarity
based retrieval of videos.” Proceedings of IEEE ICDE 181-190.
Birmingham, UK.

[11] Mannion, M., Keepence, B., & Harper, D. (1998). “Using viewpoints
to define domain requirements.” IEEE Software, 95-102.

[12] Maiden, N., Minocha, S., Manning, K., & Ryan, M. (1997). “A Soft-
ware Tool and Method for Scenario Generation and Use” in
Proceedings of the Third International Workshop on Requirements
Engineering: Foundations of Software Quality (REFSQ'97), 223-238.

[13] Harn, M., Berzins, V., Kemple, W., & Luqi (1999). “Evolution of C4I
systems.” Monterey, CA 93943: Computer Science Department,
Naval Postgraduate School.

[14] Loconsole, A., & Börstler, J. (2003). “Theoretical validation and case
study of requirements management measures.” (Report UMINF
03.02), Sweden: Umea Universitet, Faculty of Science and
Technology, Dep. of CS.

[15] Ozkaya, I., & Akin, Ö. (2007). “Tool support for computer-aided
requirement traceability in architectural design: the case of De-
signTrack.” Automation in Construction, 16, 674-684.

[16] IEEE. (1990). IEEE Std 610.12-1990: “Standard Glossary of
Software Engineering Terminology” in IEEE Standards, Software
Engineering, Volume One, Customer and Terminology Standards
(IEEE, Computer Society). NY, USA: The IEEE, Inc., IEEE-SA
Standards Board.

[17] Goldin, L., & Finkelstein, A. (2006). “Abstraction-based
requirements management.” ROA '06: Proceedings of the 2006
International Workshop on Role of Abstraction in Software
Engineering (Shanghai, China) 3-9. New York, NY, USA: ACM.

[18] Kramer, J. (2007). “Is abstraction the key to computing?”
Communica-tions of the ACM, 50(4), 36-42.

[19] Floridi, L. (2008). “The method of levels of abstraction.” Minds &
Machines, 18, 303-329.

[20] Salzer, H., & Levin, I. (2004). “Atomic requirements in teaching
logic control implementation.” International Journal of Engineering
Education, 20(1), 46-51.

[21] Van Lamsweerde, A., & Willemet, L. (1998). “Inferring declarative
requirements specifications from operational scenarios.” IEEE
Transactions on Software Engineering, 24(12), 1089–1114.

[22] Van Lamsweerde, A. (2001). “Goal-oriented requirements engineer-
ing: a guided tour.” Fifth IEEE International Symposium on
Requirements Engineering (RE'01), 249-263.

[23] Leveson, N. G. (2000). “Intent specifications: an approach to building
human-centered specifications.” IEEE Transactions on Software
Engineering, 26(1), 15–35.

[24] Beizer, B. (1984). Software System Testing and Quality Assurance.
NY, USA: Van Nostrand Reinhold electrical/computer science and
engineering series.

[25] Suh, N. P. (1998). “Axiomatic design theory for systems.” Research
in Engineering Design, 10, 189-209.

[26] Eden, A. H., Kazman, R., & Hirshfeld, Y. (2006). “Abstraction
classes in software design.” IEEE Software, 153(4), 163-182.

[27] Wainer, G. A., Daicz, S., de Simoni, L. F., & Wassermann, D. (2001).
“Using the Alfa-1 simulated processor for educational purposes.”
ACM Journal of Educational Resources in Computing, 1(4), 111-151.

[28] Ye, N., & Salvendy, G. (1996). “Expert-novice knowledge of
computer programming at different levels of abstraction.”
Ergonomics, 39(3), 461-481.

[29] Gorschek, T., & Wohlin, C. (2006). “Requirements abstraction
model.” Requirements Engineering, 11(1), 79-101.

[30] Abran, A., & Moore, J. W. (executive editors). (2004). Guide to the
Software Engineering Body of Knowledge (SWEBOK). IEEE
Computer Society.

[31] Hilburn, T. B., Hirmanpour, I., Khajenoori, S., Turner, R., & Qasem,
A. (1999). A Software Engineering Body of Knowledge Version 1.0.
(Technical Report CMU/SEI-99-TR-004 ESC-TR-99-004), Carnegie
Mellon University, Software Engineering Institute.

[32] Lind, M. (1999). “Making Sense of the Abstraction Hierarchy.”
CSAPC99. Villeneuve dAscq, France.

[33] Leveson, N. G.. (2000). “Intent Specifications: An Approach to
Build-ing Human-Centered Specifications.” IEEE Transactions on
Software Engineering, 26(1), 15-35.

[34] Cleland-Huang, J., Settimi, R., Duan, C., & Zou, X. (2005).
“Utilizing Supporting Evidence to Improve Dynamic Requirements
Traceability.” Proceedings of the 2005 13th IEEE International
Conference on Requirements Engineering (RE05). IEEE Computer
Society.

68

[35] Ibrahim, S., Munro, M., & Deraman, A. (2005). “A Requirements
Traceability to Support Change Impact Analysis.” Asian Journal of
Information Technology, 4(5), 345-355.

[36] Dutoit, A. H., McCall, R., Mistrik, I., & Paech, B. (Eds.). (2006).
Rationale Management in Software Engineering. Berlin Heidelberg:
Springer-Verlag.

[37] Tang, A., Jin, Y., & Han, J. (2007). “A rationale-based architecture
model for design traceability and reasoning.” The Journal of Systems
and Software, 80, 918-934.

[38] Fogarty, K., & Austin, M. (2008). “System Modeling and
Traceability Applications of the Higraph Formalism.” Systems
Engineering, electronic publication, DOI: 10.1002/sys.20113.

[39] Shannon, C. E. (1953). “The lattice theory of information.”
Transactions of the IRE professional Group on Information Theory,
1(1), 105-107.

[40] MacKay, D. J. (2005). Information Theory, Inference, and Learning
Algorithms. Cambridge University Press.

[41] IEEE. (1998). IEEE Std 830-1998: “IEEE Recommended Practice for
Software Requirements Specifications” in IEEE Standards, Software
Engineering, Volume One, Customer and Terminology Standards
(IEEE, Computer Society). NY, USA: The IEEE, Inc., IEEE-SA
Standards Board.

[42] Robertson, J., & Robertson, S. (Template). (2000). Volere Require-
ments Specification Template (Edition 13). Atlantic Systems Guild.

[43] Berry, D. M., Kamsties, E., & Krieger, M. M. (2003). “From Contract
Drafting to Software Specification: Linguistic Sources of Ambiguity,
A Handbook.” (Technical report, version 1.0), University of
Waterloo: Canada.

[44] Wiegers, K. E. (2003). Software Requirements (2nd Edition). Red-
mond, Washington, USA: Microsoft Press.

[45] Beizer, B. (1990). Software Testing Techniques, 2nd edition. London:
International Thomson Computer Press.

[46] Norman, D. (1983). Some Observations on Mental Models. In Gent-
ner, D.; Stevens, Albert, Mental Models (7-14).

[47] Parnas, D. L. (1972). “On the Criteria to be used in decomposing
Systems into Modules.” Communications of the ACM, 15(12), 1053-
1058.

[48] Harel, D. (1992). “Biting the Silver Bullet, Toward a Brighter Future
for System Development.” Computer, January, 8-20.

[49] Wang, Y. (2004). “On the Cognitive Informatics Foundations of Soft-
ware Engineering.” Proceedings of the Third IEEE International
Conference on Cognitive Informatics (ICCI04): IEEE Computer
Society.

69

