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Abstract—An abstraction level hierarchy models abstraction-
concretization relationships between different types of 
specifications. The proposed model combines into a single, 
continuous partially ordered set, all types of specifications, 
such as requirement specifications, design specifications and 
even the program code. Information theoretic definitions were 
developed for the concepts of abstraction, concretization and 
abstraction level. The paper demonstrates how the model can 
be used to reason about software engineering issues. The 
purpose of this conceptual paper is to propose an underlying 
model for software engineering research. 
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I. INTRODUCTION 
Longstanding observation obtained during field work in 

the software industry suggested that certain outcomes, useful 
to software development, result from the use of atomic 
requirement specifications (ATRSs) as opposed to the use of 
non-atomic requirement specifications [1]. However, even if 
the hypothesized properties of using ATRS were accepted, 
they would be of little significance before an underlying 
formal model would be made available. 

A suitable model had to show not only what it meant for 
the specification of a requirement to be atomic, but also it 
had to show what it meant to be atomic at a certain 
abstraction level. This last requirement is because atomicity 
is of meaning only when associated with an abstraction level. 
The challenge is, therefore, to define the notion of 
abstraction level, which in turn requires the definition of 
abstraction in the context of software design. 

A. Atomic Requirement Specification 
The specification of a system, or any of its components, 

is a description of its interface [2]. This implies that 
specifying the internal design of a system or a component 
involves listing its components or subcomponents, and 
specifying each one. This insight establishes a recursive 
relationship between components along the hierarchy of a 
system’s structure: the specifications of a component 
residing at a certain level of the hierarchy is, at the very same 
time, part of the higher level component’s internal design. 
Furthermore, “in software development, decomposition is 

implementation” [3]. In other words, every specification 
statement is the specification of a requirement relative to a 
component at some level, and in the same time it is also an 
internal design specification of a higher abstraction level [4], 
[5], [6]. 

Well-formed specifications are abstract, unambiguous, 
traceable and validatable [7]. ATRSs are well-formed 
specifications that, in addition, are also the result of splitting 
complex specifications into elementary, or indivisible, 
specifications [1]. 

The motivation for atomization of requirement 
specifications includes the difficulty to assign contractual 
liability to non-atomic specifications [8] and the danger of 
overlooking information [1]. The term atomic requirement is 
used to denote simple specifications in contrast to more 
complex ones [9], [10] and requirements expressed in a 
single sentence with one “shall”, but without excluding 
multiple logical predicates within it [11]. Atomicity is used 
in [12] as a dimension for individual specifications, but 
without defining the dimension. Harn et al. [13] give 
examples of “atomic issues”, but not all of them are 
indivisible. Indivisibility is included as the criterion for 
atomicity of a specification in [14] and [15]. 

B. Abstraction 
The concept of abstraction is well defined in dictionaries 

and encyclopedias and also in the Software Engineering 
literature [16] although not formally. The significance of the 
skill of abstraction for software engineering has been 
discussed by [18]. The definition of abstraction level for 
individual specifications received little attention. 

The most common use of abstraction in the software 
related refereed publications seems to be concerned with the 
design of software, such as abstract data types and object 
oriented programming, and considerably less to the 
abstraction of requirements. Abstraction is used by [17] as a 
noun to describe primary conceptual elements within 
specifications, and not as an action on a specification or as a 
relation between specifications. The amount of information 
in an abstraction level is described by [19] as follows “the 
quantity of information in a model varies with the LoA 
[Level of Abstraction]: a lower LoA, of greater resolution or 
finer granularity, produces a model that contains more 
information than a model produced at a higher, or more 
abstract, LoA.” Yet, no account is given for why is that so. 
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II. THE MODEL OF THE ABSTRACTION LEVEL HIERARCHY 
The model has two underlying components: the 

specification of a requirement and the parent-child link that 
exists between some pairs of specifications. 

A. First Component: Requirement Specification 
The first underlying component of the Model is the 

specification of requirements. The term requirement has a 
variety of definitions, such as: “a condition or capability 
needed by a user to solve a problem or achieve an objective” 
[7]. Well-formed requirement specifications are abstract, 
unambiguous, traceable and validatable [ibid.]. An atomic 
requirement specification (ATRS) is defined as a well-
formed specification of a requirement that is not possible to 
subdivide into more elementary specifications at the 
abstraction level at which it is being considered [20]. The 
term abstraction level will be brought into context only in 
the following section. 

A requirement specification consists of a condition, 
sometimes implied, and a corresponding operation. An 
ATRS is a predicate with an indivisible condition, that is, no 
“OR”-s, and an indivisible operation, that is, no “AND”-s. A 
practical technique to check a requirement specification for 
indivisibility is by a mental experiment; if the tested object, 
either software or document text, can come out of a test 
against a specification with the conclusion that it has 
partially passed the test then the specification is not atomic 
[1]. 

B. Second Component: Rationale-Concretization Link 
1) The Concept of Rationale: For every specification 

stated by a stakeholder, such as R1 in Fig 1, we could ask 
the stakeholder “Why?” [21], [22], [23] because she expects 
us to develop not exactly what she asks for, as much as what 
she really needs [24]. Then the stakeholder may or may not 
be able to tell why she has that requirement. 

Figure 1. Rationale-Concretization links between specifications 

As an arbitrary convention, a graphical representation 
can portray specifications as nodes, and can depict the links 
as edges pointing from the parent specification, or rationale, 
to the child specification, or concretization. 

A specification may have any number of direct parents, 
or none. All direct parents of a specification, combined, are 
the rationales for that specification. A specification may have 
any number of children, including none. The combination of 
the children concretizes their parents. Thus a real life case is 
modeled by a graph far more complex than the one in Figure 
1. 

2) The Concepts of Abstraction and Concretization: R2 
in Figure 1 is more abstract than R1 since R2 could be 
achieved not only with an inventory report, but also with a 
barcode reader. The report (R1) and the barcode reader are 
alternative concretizations of R2. Usually, a parent 
specification may be concretized in more than one, 
alternative way. By the time a system will be developed, 
one of the alternatives will be selected and further detailed. 
For this discussion, the relevant question is not “which one 
was implemented?” but “why specifically this one was 
preferred, and not the other one?” 

According to this model, the reason that the designer 
selected R1 must be that she has had at least one more 
requirement, in addition to R2. In the presence of an 
additional requirement, such as “R7: We hate barcode 
readers”, the designer had had to select the report (R1), and 
had had to drop the barcode option, because only the former 
fulfilled both rationales. In other cases we must assume that 
the selection was affected by at least one rationale that was 
not explicitly specified, hence it is called implicit rationale. 

3) The Concept of Abstraction Level: All specifications, 
by their very nature, carry information that prescribes some 
limitation on the freedom of choice from the set of different, 
alternative implementations of the system. The set of all 
systems that could implement a specification is called here 
the specification’s implementation space. 

A specification carries some information about the 
appropriate, alternative designs of the system. The lower a 
specification is in the abstraction-level path, the more 
specific it is. The more concrete a specification is – the more 
information it carries about the system. 

An abstraction level is defined indirectly, through a set of 
definitions of the inclusion of specifications in abstraction 
levels: 

• Two specifications are said to be at the same 
abstraction level if, and only if, they have a common 
direct parent specification or a common direct child. 
In the former case, the two specifications are 
siblings. 

• One specification is in a higher abstraction level then 
another specification if, and only if, the first 
specification is an ancestor of the other specification. 

• One specification is in a lower abstraction level then 
another specification if, and only if, the first 
specification is a descendant of the other 
specification. 

R5: Net income must be as high as possible

therefore

R4: Loss of money due to loss of stock must be taken care of

therefore

R3: Lost stock must be reported 

therefore

R2: Need to compare actual stock to recorded quantities

therefore

R1: Need an inventory report 
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• When there is no ancestor-descendant relationship 
between two specifications, then the comparison of 
their abstraction levels is meaningless. 

In the case of a rationale and one of its concretizations, 
R1 R3, it is conceivable to create another specification, say 
R2 such that R1 R2 R3. This mental exercise can be 
generalized into what seems to be a rule: for any two 
specifications, where one is the direct ancestor of the other, it 
is possible to insert between them a new specification. If 
indeed this is so, then the length of path between two 
specifications, a predecessor and a descendent, is of no 
quantitative meaning. 

We define natural abstraction level as the location of a 
specification within an abstraction level hierarchy, when: 

• all of its parents are its rationales, and 
• all of its rationales are its ancestors, and 
• all of its children are its concretizations, and 
• all of its concretizations are its descendents. 

III. PROPERTIES OF THE MODEL 
The abstraction level hierarchy has a number of 

properties that can be delineated even before a formal 
account is established. 

A. Stakeholders 
Requirement specifications are stated by stakeholders 

who might, advertently or inadvertently, affect or be affected 
by the intended system. It is accepted by the trade that only 
clients, key users and the like define requirements [16]. The 
proposed model allows extending the concretization process 
below the specifications stated by clients, thus it allows 
including all stakeholders among those whose declarations, 
wishes and needs count as requirements. 

Once all types of stakeholders, including designers and 
programmers, may concretize the existing requirement 
specifications, thus adding more specific requirements, the 
nature of the specifications of requirements becomes more 
versatile. 

B. Abstraction Sequence and Concretization Sequence 
Abstraction and concretization are two processes on the 

same specification, and they create sequences of 
specifications in opposite directions. Adding a rationale to an 
existing specification is an act of abstraction. Selecting one 
out of several alternative specifications that comply with the 
same rationales is an act of concretization. As stated above, 
detailed design specifications are concretizations of client 
requirements within the hierarchy of abstraction levels. 
Similarly, statements of program source code are 
concretizations of design specifications. 

Every specification may be the rationale, or the “what”, 
for a more concrete specification and in the very same time 
also the concretization, or the “how”, of another, higher-level 
rationale [5], [25]. Therefore, all specifications, at all 
abstraction levels are the specifications of requirements [1], 
[3]. 

We define executable source code as a software artifact 
that is created directly by a human being and can be 
executed, usually after compilation, with the objective to 

exhibit the intended functionality. In contrast, executable 
machine code is not created directly by humans but by 
automatic processes such as the compilation of executable 
source code. Note that executable machine code is at a lower 
abstraction level than executable source code. For that to 
happen, the source code cannot be the sole rationale for the 
machine code. Other rationales, specified by humans, are the 
choice of software development environment, the choice of 
compiler arguments, the choice of operating system, and 
more. A formal specification is created directly by humans, 
and might be executable. If, in addition, it exhibits all of the 
intended functionality then, indeed, it is an executable source 
code. 

The underlying properties of the abstraction level 
hierarchy do not predict any stopping point, or upper 
binding, in the sequence of successive abstraction. On the 
other hand, the sequence of successive concretization stops 
at the point of executable source code implementation. 
Because of this wide range, the model is not limited to 
requirements specified by clients or to any other arbitrary 
level of abstraction. On the contrary, it spans from the most 
abstract specifications to the most concrete specifications, 
namely the executable source code. 

C. Arbitrary Abstraction Levels and Categories 
Different authors advocate different numbers of 

abstraction levels, such as three [26], four [3], [27], five [28] 
and three to five [29]. Interestingly, the IEEE SWEBOK [30] 
and the SEI SWE-BOK [31] are mute about abstraction 
levels. 

All of the above models have in common 
• a similar underlying idea of abstraction levels 
• a finite number of abstraction levels 
• a very small number of abstraction levels, and 
• abstraction levels that are arbitrary. 
Of all the above properties, the models of fixed or 

arbitrary abstraction levels have only the first property in 
common also with the model presented by this paper. 

Small, fixed number of abstraction levels is criticized by 
[32], for example on the ground that the connections 
between abstraction levels lack meaning. The arbitrary 
abstraction levels, which are suggested by the models of 
fixed abstraction levels type, were not derived from the 
needs of an abstraction-concretization process, but from the 
need to aggregate [3] specifications in categories. 
Categorization was expected to meet such needs as 
associating specifications with stages in the workflow, 
grouping specification by the different types of stakeholders, 
grouping specifications into different document types, 
organizing specifications to meet the standards in different 
software development methods or the capabilities of 
computer-aided software engineering tools. So, the models 
of fixed abstraction levels are motivated primarily by a need 
to categorize specifications; the perceived abstraction levels 
emerging from categories are only a byproduct. 
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Figure 2. Aggregates (shading) and abstraction-concretization links 
(arrows) as two orthogonal properties of ATRSs (rectangles) 

D. Comparison between Arbitrary and Continuous 
Abstraction Levels 
Figure 2 illustrates the relationship between the hierarchy 

of requirement specifications and aggregates of requirement 
specifications in documents. Only two subsets, highlighted in 
gray and black, are documented. The figure shows that 
abstraction-concretization links and traditional aggregation 
can live together.  

The arbitrary abstraction levels’ approach has 
advantages, but also limitations in practical use. There is no 
doubt that some intermediate levels do exist in the mind of 
the designer, but a method of an arbitrarily limited number of 
abstraction levels results either in the loss of that 
information, or in different abstraction levels squeezed into 
and mixed up in a single document. 

The Software Engineering industry attributes much 
importance to tracing back from specifications and from 
source code to their rationales [30], [33], [34], [35], [36], 
[37], [38]. Real path lengths from documented specifications 
back to their rationales may be larger than the limited 
number of arbitrary abstraction levels compelled on a 
development project. A hierarchy with an unlimited number 
of abstraction levels supports sequences of rationales with 
any length. 

IV. A FORMAL ACCOUNT OF THE MODEL 
Of all specifications that are written by a human, the 

most concrete set of specifications is the executable source 
code. It is the hierarchy’s lower binding. Although it is the 
endpoint of the design process, it offers a useful starting 
point for a formal analysis of the abstraction level hierarchy 
model. 

A. The Quantity of Implementation Information in 
Specifications 
Assume a small piece of source code picked out of a 

large system. It concretizes a specification statement, R20, 
picked out of the system’s body of specifications, as in 
Figure 3. 

 
Figure 3. A piece of executable source code with a corresponding 
requirement specification 

R20 carries some information that is necessary, but is not 
sufficient for implementation. The programmer must add to 
it from her knowledge and personal preferences: how to 
compute the VAT, what names to give to variables, and 
more. The line of code in the above example could have 
been written in several different ways. It is due only to some 
arbitrary decisions made by the programmer that of all 
alternatives this particular executable line of code was 
implemented. For a set of specifications we use the term 
alternative implementation for any one of the different, 
potential implementations that fulfill that set of 
specifications. Each alternative, has it been implemented, it 
would have successfully passed the tests against the said set 
of explicit specifications. 

We define implementation information in a specification 
as the information in a specification that is available for 
predicting what executable source code will eventually 
implement that specification. 

Looking at a specification, and considering its 
implementation space, we see that the potential manifestation 
of each one of the alternative implementations is a possible 
event. Whether we look at the executable source code written 
with a finite alphabet or at the executable machine code on a 
binary storage – these events are discrete. By their definition, 
all alternative implementations equally fulfill the 
specification. Therefore, if one is asked to predict, based 
strictly on the information in the specification, “what is the 
probability of the event that in the end a particular alternative 
implementation will be selected for actual implementation?” 
then the answer must be that all the events have the same 
probability. With no further information available, one can 
assume that this is a random event. It is also assumed that a 
real system is realized by software that was coded directly by 
human beings; hence the software has a finite size. Written 
with a finite alphabet, such software may have only a finite 
number of alternative implementations, thus making the 
events’ probability finite too. This follows that the amount of 
implementation information available in any given 
specification is a case of a random variable of discrete 
events. Consequently, Shannon entropy [39], [40] can be 
used to model the information, or uncertainty, regarding to 
which of the alternative implementations will eventually be 
implemented. In an analogy to [39], the uncertainty in a 
specification may be regarded as the equivalence class of all 
translations of the same specification information into 
different, alternative implementations, thus reinforcing the 
current definition for implementation information in a 
specification. 

Let n be the size, or the number of alternative 
implementations, of X, a specification’s implementation 
space, then the entropy of that specification is H(X)=log2(n) 
bits. H(X) is a measure of how little the specification’s text 

R20: All purchases must include VAT

therefore

TotalReceivabel=SubTotal*(100+VatPercentage)/100
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reveals about its eventual implementation. Thus entropy is a 
quantification of the implementation information, which was 
defined above qualitatively. The larger is n, that is the larger 
is the number of alternative implementations of a 
specification, the larger is its entropy, that is, the lower is 
that specification’s capability to predict, or to provide 
information of what implementation will eventually prevail. 

Suh [25] computes entropy of specifications at lower 
abstraction levels by the estimated probability that they will 
satisfy the specifications at the highest abstraction level. This 
paper makes no attempt counting the number of alternative 
implementations; hence, it cannot compute concrete values 
of entropy. 

The implementation by an executable source code is a 
special set of specifications in regards to its entropy. Given 
that a certain line of code has been implemented, the 
probability that that line of code will be implemented is 1, 
and the entropy of that line of code is zero. Similarly, the 
entropy of any implementation of executable source code is 
zero. 

B. Implementation Information in an Information 
Theoretical View 
A specification can be viewed as an encoded message, 

and the set of alternative implementations can be viewed as 
its alphabet. The implementation, which is the executable 
source code, can be viewed as the decoded message. The 
message is encoded by means of the specification’s 
utterance, which is usually non-formal. The decoded 
message is exactly one character of the alphabet. To reveal 
this single character, that is, to find out what is the 
executable source code, the message has to be decoded. 
Conversely, to abstract means to encode. This view allows 
reasoning about the implementation information in system 
specifications along the lines of Shannon entropy. 

The text of a specification encodes some information 
about the program code that will eventually implement it. 
Encoding is non-algorithmic even in the case of formal 
specifications, except the program code itself. Decoding is 
the non-algorithmic, creative task of human designers. 

C. Abstraction Levels and their Relationships 
The implementation space of a specification must be a 

proper subset of the implementation space of each 
specification that is its rationale. It follows that the 
implementation space of a specification in the abstraction 
level of the concretization must be a proper subset of the 
intersection of all implementation spaces of all specifications 
in the abstraction level of rationales. This agrees with the 
intuitive idea that designers specify multiple specifications 
with the intention that the system will comply with all of 
them, as illustrated by Figure 4. 

 
Figure 4. Reduction of implementation space with concretization 

The intersection of the implementation spaces of all 
specifications in the abstraction level of the rationales 
contains less alternative implementations than is associated 
with any of the specifications in that abstraction level. 
Therefore, as one would expect, the entropy of this 
intersection is less than the entropy of each specification 
alone. We call the intersection of implementation spaces at 
the abstraction level of rationales the implementation space 
that is bestowed by the rationales to the concretization. 
Similarly, we call the entropy of the above intersection the 
entropy, or implementation information, bestowed by the 
rationales to the concretization. 

Every specification in the abstraction level of the 
concretization must have its implementation space to be not 
only a subset of the bestowed implementation space, but it 
has to be smaller than that, otherwise no concretization has 
occurred. Since the implementation space of every 
specification in the abstraction level of concretization is 
smaller than the bestowed implementation space, it follows 
that the entropy in every concretizing specification is less 
than the entropy inherited from the abstraction level of 
rationales. Thus, concretization keeps decreasing the 
entropy. 

V. PRACTICAL CONSEQUENCES OF THE ABSTRACTION LEVEL 
HIERARCHY 

The abstraction level hierarchy model has a number of 
consequences that might be considered by practitioners and 
theorists. 

A. Analysis and Design 
We define analysis as a process that facilitates the 

identification of the design space and the set of possible 
alternative designs within it. We define design as the action 
of choosing specifications from among valid alternatives. 
Therefore, an analyst is also a designer, and vice versa. 

Requirements engineers on the one extreme and 
programmers on the other extreme follow the same 
underlying principles of analysis and design activities. Both 
work on the same abstraction level hierarchy, but differ in 
taking responsibility for different regions of that hierarchy. 

Designers, let alone programmers, add a huge amount of 
explicit specifications, many of which do not concretize 
explicit client requirements. 

B. Ambiguous Specifications and Specifications of Non-
functional Requirements 
Requirements Engineering’s current best practice 

condemns ambiguous specifications [41], [42], [43], [44], 

Rationale-2          

Rationale-1

Concr-3
Concr-1

Concr-2
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and for a very good reason. The requirements engineering 
books tell us that we must replace the relics of raw, fuzzy 
specifications with less ambiguous ones, repeating the 
process until only the unambiguous specifications remain. 
We must document the latter in places such as a Software 
Requirement Specifications (SRS) document [41]. 

While a specification is ambiguous, from the point of 
view of an SRS, it still could be the most specific statement 
at the point of time when it emerged. In other words it is 
unambiguous at its natural abstraction level. Instead of 
replacing specifications, the abstraction level hierarchy 
model allows newer specifications to be added to the older 
specifications, thus maintaining a trace of rationales. It 
supports even the specifications that are not likely to be ever 
documented, such as a hidden agenda [36]. 

Vagueness and uncertainty emerge also while doing 
design and even during detailed design. The only really non-
ambiguous construct is the executable source code. 

C. Specifications and Program Code 
The code written by a programmer is at the lowest 

abstraction level created by a human being during the 
development of a software system. From this point on, down 
the abstraction level in the direction of concretization, no 
more human concretization takes place, since a compiler or 
an interpreter takes over and creates an executable machine 
code. 

Preprocessors, compilers, interpreters, linkers, database 
handlers, etc. implement a wealth of requirements. In a large 
project, only one or a few technical stakeholders specify 
which of these infrastructures to use for the system. The 
executable machine code concretizes these project-wide 
specifications together with the program code written by 
programmers. 

Program code constitutes a very special case in the 
abstraction level hierarchy. No code is further concretized by 
human action, except starting off the compilation. Thus from 
the point of view of human creative action, program coding 
is the last step in the concretization process, and program 
code is the most concrete specification. 

D. Testing and Bugs 
The definition of testing relies on the definition of bug. 

The latter, in turn, relies on the definition of expected result. 
Therefore, they are discussed here in reverse order. 

1) Expected Results: Before a scientist puts a hypothesis 
to the test, she predicts a-priori the outcome that the 
hypothesis and accepted theories predicts and the outcome 
that should be expected in the case that the hypothesis is 
false. By the experiment she compares the behavior of the 
set of real laws of nature with that of the set of accepted 
theories and her hypothesis. It is safe to say that the two sets 
are independent. This is not the case with software testing. 

Oracle is a means that provides information about the 
correct, expected behavior of a component [45]. Software 
programmers have explicit and implicit information in the 
role of oracle: a subset of the abstraction level hierarchy of 
specifications and any implicit specifications maintained by 

the programmer herself. The software tester should have 
exactly the same explicit specifications. As a result, and in 
harsh contrast to scientific experiments, the oracle of the 
tester and the computation made by the program are 
dependent. 

2) Bugs: Since the design space of a concretization must 
be contained within the design space of its rationales, we 
define bug as a contradiction between the information that 
exists in each one of two sets of specifications where one set 
is the ancestor of the other. The definition does not pretend 
to know which one of the two sets of specifications has the 
bug, and which one, if any, is correct. Furthermore, if a set 
of specifications in an abstraction level has an internal 
inconsistency, then the information bestowed by that 
abstraction level is null, which automatically renders it 
useless for being the source of information for any lower 
abstraction level. 

Harwell et al. [4] define a specification’s quality as the 
extent to which it reproduces in the mind of a reader the 
intellectual content that was in the mind of the writer, that is, 
how well it survives a handoff. 

As we think up a specification it is in the form of a 
mental model. When we tell it to somebody, or write it 
down, the spoken and the written specifications are 
conceptual models. In the mind of the person who listens to 
or reads the conceptual model, a new mental model is being 
created. Both processes, from mental to conceptual model 
and from conceptual to mental model, are handoffs. Along 
the course of the system design process, specifications are 
handed off many times, alternating between mental and 
conceptual models. 

Norman [46] describes mental models as incomplete, not 
accurate, and containing errors and contradictions; still, 
people will keep using a mental model even when they know 
that it is deficient. Therefore, it is reasonable to assume, that 
every time a model passes through a mental model, it 
emerges in a conceptual model after, potentially, attracting 
bugs. 

Every act of concretization on a specification statement 
involves handoffs, making their number proportional to the 
number of links in an abstraction level hierarchy. Each 
handoff is a potential source of bug. This leads to the 
proposition that, after all, all bugs are specification bugs. 

3) Tests: We define testing as the act of looking for 
information that exists in one set of specifications, called the 
oracle, but is absent from a second set of specifications 
when the oracle is at a higher abstraction level. A more 
practical definition says that a test tries to identify in the 
design space of the tested set of specifications a point that is 
outside the design space of the oracle, which is the set of 
specifications at the higher abstraction level. Note that the 
design space of the oracle should include the design space 
of the lower abstraction level, while the information in the 
oracle should be a subset of the information of the lower 
abstraction level. 
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The objects to be tested are software components as well 
as specification documents. The oracles are specification 
documents. Both items, the tested object and the oracle, are 
items in the same abstraction level hierarchy. Not only that 
but also the specifications that provide the oracle are always 
ancestors of the tested object. 

Because oracles are ancestors of the tested objects, the 
bugs that were injected above the oracle, are included in the 
oracle, and were handed off, down the abstraction level 
hierarchy to the descended object under test. There is no way 
that the oracle will help exposing these bugs. The closer is 
the oracle to the tested object in terms of abstraction — the 
larger is the proportion of the handoffs that are common to 
both, hence the larger is the proportion of the bugs that the 
oracle cannot help discovering. On the other hand, the farther 
away is the oracle from the tested object in terms of 
abstraction — the less is the information that it carries about 
the tested object, and hence the weaker is its capability to act 
as an oracle. 

Thus, the model shows that software testers must make a 
tough decision: how much information to trade for how 
much chance to catch bugs. 

E. Source of Link 
We used to think of the source of a requirement as an 

identification of the stakeholder who specified the 
requirement. We would assume that the source is an attribute 
of the specification. 

With the proposed model, a stakeholder not only 
specifies that she has this-and-this requirement, but also she 
can point out what is her rationale for that specification. A 
specification may have multiple rationales, or it may have 
none. Different stakeholders may support the same link 
between a specification and its rationale, but for different 
reasons. 

That being the case, the source of a requirement is not an 
attribute of a specification, but an attribute of a link between 
a specification and one of its rationales. A link may have 
multiple instances of the source attribute. 

F. Lexicons and Information Hiding 
The lexicon, or set of terms, used by the specifications in 

an abstraction level reflects information in that abstraction 
level. Because the information in an abstraction level is 
always less than the information in any abstraction level that 
is more concrete, an abstraction level cannot use information 
that will be a future contribution of a lower abstraction level. 
In practical terms, a specification must use terms only from 
the lexicons of the abstraction levels above it, and terms 
introduced by its own abstraction level, including itself. 

The last statement sounds as tautology, but the following 
will show that this is not the case. The concretization of a 
specification, say R1, requires that the next abstraction level 
will introduce into its lexicon several new terms. Should the 
abstraction level of R1 itself refer to those terms, it would 
expand its own information to include the information of the 
next abstraction level, and by that making the next 
abstraction level redundant. Merging adjacent abstraction 
levels is possible, but then we could as well merge the whole 

abstraction level hierarchy into a single level, which is the 
executable source code. This is what hasty programmers do 
when they start coding before planning. 

The restriction on the terms that specifications may use is 
an extension of information hiding from the description of 
modules [47] to the specifications at abstraction levels where 
modules, let alone their interfaces, have not yet been 
decided. Lexicon terms of an abstraction level are its secret, 
and they are hidden not only from higher abstraction levels 
but also from any abstraction level that is not on the same 
path. Information hiding is supported, therefore, by the 
abstraction level hierarchy not only vertically along paths of 
the hierarchy, but also sideways. The model expands the 
traditional notion of information hiding beyond the 
implementation, covering also the early specifications. 

VI. DISCUSSION 
A model is proposed, which is formally based on a single 

relationship attribute, the abstraction-concretization relation 
that exists between pairs of specifications, providing a partial 
order over sets of specifications. It is visualized by a directed 
graph. The prevalent activity of design is concretization. 
Still, it was felt that the notion of abstraction already 
established a foothold in this context, and therefore the 
model is named the abstraction level hierarchy. 

Partial order relates the specifications vertically. But still 
there was the need to define the inclusion of several 
specifications in the same abstraction level, by means of a 
horizontal relationship. Without that, we could talk only 
about the abstraction level of individual specifications, and 
were not able to speak of a set of specifications that 
comprised an abstraction level. The inclusion of two 
specifications in each other’s abstraction level depends on 
the temporal nature of their direct parent specifications and 
their direct child specifications. These relations are 
circumstantial, because they may change as the design of a 
system proceeds. 

Current Software Engineering practice views the 
rationale and the specification as two different entities, while 
in the abstraction level hierarchy model there is only one 
entity for both. On the other hand, traceability is separated 
into two, the abstraction-concretization link among 
specifications, and the source for each link, such as people 
and documents. 

Testing is sustained by the abstraction level hierarchy 
beyond the support of requirements-based testing. The model 
shows that there is a vicious tradeoff between two factors, 
the ability to predict expected results and the ability to 
expose bugs. 

Harel [48] advances the prospect of Visual Formalisms 
for specifications. Its visual facet makes specifications 
communicative for humans. Its formal facet makes 
specifications communicative with machines, but not only 
for the extent of consistency checking but actually to execute 
on machines. Harel’s vision includes this: “We will … 
formulate and reformulate our conceptions as a series of 
increasingly more comprehensive models …”. Still, the act 
of formulation and reformulation remains the very same non-
algorithmic task as with non-formal and non-visual 
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specifications. Design is non-algorithmic even when its work 
product is a formal construct. 

The sum of information entropy in a closed system is 
assumed to be constant [49]. However, a set of emerging 
system specifications is an open system; information enters it 
by the creative process of design, hence its entropy 
progressively decreases until, as it is fully decoded into the 
program code, it reaches zero. 

The present work does not suggest that practitioners 
should document all rationales for all specifications in a 
mammoth abstraction level hierarchy. Such an attempt 
would be impossible and of little practical value. Neither 
does it suggest a new methodology; it can be applied to the 
current methodologies. The aim of this paper is to propose a 
necessary, underlying model for the toolbox of software 
engineering researchers. 
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