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a b s t r a c t

The development of approaches to estimate the vulnerability of biological communities and ecosystems
to extirpations and reductions of species is a central challenge of conservation biology. One key aim of this
challenge is to develop quantitative approaches to estimate and rank interaction strengths and keystone-
ness of species and functional groups, i.e. to quantify the relative importance of species. Network analysis
can be a powerful tool for this because certain structural aspects of ecological networks are good indica-
tors of the mechanisms that maintain co-evolved, biotic interactions. A static view of ecological networks
would lead us to focus research on highly-central species in food webs (topological key players in ecosys-
tems). There are a variety of centrality indices, developed for several types of ecological networks (e.g.
for weighted and un-weighted webs). However, truly understanding extinction and its community-wide
effects requires the use of dynamic models. Deterministic dynamic models are feasible when population
sizes are sufficiently large to minimize noise in the overall system. In models with small population sizes,
stochasticity can be modelled explicitly. We present a stochastic simulation-based ecosystem model for
identification of “dynamic key species” in situations where stochastic models are appropriate. To demon-

strate this approach, we simulated ecosystem dynamics and performed sensitivity analysis using data
from the Prince William Sound, Alaska ecosystem model. We then compare these results to those of purely
topological analyses and deterministic dynamic (Ecosim) studies. We present the relationships between
various topological and dynamic indices and discuss their biological relevance. The trophic group with
the largest effect on others is nearshore demersals, the species mostly sensitive to others is halibut, and

rable
amic
the group of both conside
trophic groups in our dyn

. Introduction

Food web modelling focuses either on the structural analysis
f complex trophic networks (Martinez, 1991; Dunne et al., 2002;
ordán et al., 2007) or on dynamic simulations of smaller, mostly
ypothetical, networks (Abrams, 1999; Jordán et al., 2002). It is
nly recently that dynamic simulation of large food webs has
ecome feasible (Christensen and Walters, 2004; Okey, 2004; Okey
t al., 2004), due to growth in computational capacity and available
ethodology (Walters et al., 1997). Dynamic simulations enable

ew kinds of quantitative measure of the relative importance of
pecies, following the relatively large set of topological importance
ndices that mostly focus on node centrality (Harary, 1961; Jordán
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

nd Scheuring, 2004; Estrada, 2007). These measures are based
n dynamic sensitivity analyses, i.e. the relative responses of the
iological community to simulated perturbations on particular
pecies (Hurlbert, 1997). Some of the species causing large com-

∗ Corresponding author.
E-mail address: jordan.ferenc@gmail.com (F. Jordán).

304-3800/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.ecolmodel.2010.09.025
effect on and sensitivity to others is juvenile herring. The most important
al simulations appear to have intermediate trophic levels.

© 2010 Elsevier B.V. All rights reserved.

munity response may also be keystone species (with large effects
relative to their proportional biomass; Power et al., 1996). The
development of increasingly useful measures (indicators, indices)
is key to improving (1) general understanding of ecosystem func-
tioning, (2) prediction of secondary extinctions and (3) ranking of
conservation priorities.

We find and argue in this paper that stochastic food web
modelling can be more appropriate than deterministic modelling
based on ODEs (ordinary differential equations), under certain
circumstances. However, the latter aims to provide more general
results (Montoya et al., 2009). We present a stochastic dynamic
framework for food web analysis and use it to simulate the dynam-
ics of the Prince William Sound ecosystem in Alaska. Furthermore,
we present dynamic importance metrics adapted to this modelling
framework.

2. Methods
ecosystems with stochastic sensitivity analysis. Ecol. Model. (2010),

2.1. The approach

If the size of a population is relatively small, its temporal
behaviour is noisy. For example, the actual number of sexually

dx.doi.org/10.1016/j.ecolmodel.2010.09.025
dx.doi.org/10.1016/j.ecolmodel.2010.09.025
http://www.sciencedirect.com/science/journal/03043800
http://www.elsevier.com/locate/ecolmodel
mailto:jordan.ferenc@gmail.com
dx.doi.org/10.1016/j.ecolmodel.2010.09.025
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ig. 1. A simple illustration of the BlenX-based representation of biological system
A), while interspecific interactions happen if interaction capabilities match, accord

ature individuals depends on time as a form of demographic
oise. Birth and death also contribute to this form of stochastic-

ty: differential equations describing the biomass of phytoplankton
r herring can be quite accurate, however, the living biomass of
iller whales in a small area changes in a characteristically step-
ise manner (as the number of individuals is an integer). Spatial
eterogeneity (e.g. lekking), individual-level differences among
onspecifics (e.g. different strategies), local rules instead of global
etermination (Okuyama, 2009), priority effect in competition
Doak and Marvier, 2003), and the multiplicity of interactions all
ypically increase the stochastic component of population dynam-
cs.

Moreover, while the average of several stochastic simulations is
enerally similar to the outcome of deterministic simulations, the
ormer also describes the variability of different runs. In analysing
he states of a dynamic system, the “width” of the possible tra-
ectories can be at least as important as the shape of the average
rajectory. In conservation biology, there is emerging interest in
sing variability as an indicator for evaluating biodiversity (Feest
t al., 2010). In fact, variability can be the key to adaptability and
volvability. For example, during climate change, successful species
re characterized by phenotypes that are not necessarily “good” but
exible enough.

Finally, stochastic simulation makes it possible to explicitly
odel extinction. In the typically used continuous, deterministic
odels, extinction is impossible: it can only be modelled as popula-

ion size decreasing below a certain critical threshold value. In case
f small populations, local extinction (and possible recolonization)
s a realistic scenario.

.2. The BlenX modelling framework

BlenX is a process algebra-based programming language
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

Dematté et al., 2007), supported by the Beta Workbench environ-
ent (Dematté et al., 2008). In BlenX, individuals are represented

y boxes with internal dynamics (e.g. reproduction) and exter-
al interaction capabilities (Fig. 1a) abstracted by binders. The
ropensity of communication between boxes is quantified by the
gle populations are represented by internal dynamics and interaction capabilities
well-defined rates and actual densities of the two species (B).

affinity (rate) between the different types of binders, measur-
ing interaction strength. An important feature of process algebras
is compositionality: the meaning of the model depends on the
features of its components and how they depend on each other
(how it is composed). Wise composition has several advantages:
model development can be modular, standardization is relatively
easy and the evaluation can be rigorous. Over a certain level
of model complexity, developing the model does not become
more complicated. Model development requires adding simple
elements instead of rewriting major parts of the code. An initial
model can be easily fine-tuned according to pilot studies or sen-
sitivity analyses, or can be simply extended and modified. These
features are advantageous for recurrent application and standard-
ization. The first ecological applications addressed social insect
colonies (Tofts, 1993) and epidemiology (Norman and Shankland,
2004).

Fig. 1b presents a predator–prey interaction representation
(Dematté et al., 2007, 2008; Livi, 2009). Both the predator (B1)
and the prey (B2) are represented as biological processes depicted
as boxes. Binders are identified by names and types (for instance,
B1 has one binder of type “A1”, named “eat”). For simplicity, we
only indicate the name of the set processes describing the inter-
nal behaviour of the box (for instance, the set of processes in B1 is
called “Predator”). A predator–prey interaction can be represented
as a communication between B1 and B2 through the binders (eat,
A1) and (eaten, A2), being realized when the affinity between A1
and A2 is non-zero.

Since it is an event-based description, combinatorial explosion
in parameter-rich, complex models can be efficiently reduced by its
use. BlenX is an efficient tool to implement the Gillespie algorithm
(Gillespie, 1977) for stochastic simulations of biosystems. In biol-
ogy, this has already been richly used for simulating the stochastic
behaviour of molecules in the cell (Dematté et al., 2008). Ecologi-
ecosystems with stochastic sensitivity analysis. Ecol. Model. (2010),

cal applications were also suggested recently: indirect effects and
cycling (Finn, 1976) were measured by the particle tracking method
of Kazanci et al. (2009), while hypothetical food webs were gen-
erated and studied by Powell and Boland (2009). Here we use an
inherently stochastic model, instead of an inherently deterministic

dx.doi.org/10.1016/j.ecolmodel.2010.09.025
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Table 1
The list of species (or trophic groups) in the Prince William Sound model, after
omitting the three non-living components (Okey, 2004).

1 Transient Orca
2 Salmon sharks
3 Resident Orca
4 Sleeper sharks
5 Halibut
6 Pinnipeds
7 Porpoise
8 Lingcod
9 Adult Atooth
10 Adult Salmon
11 Pac. Cod
12 Sablefish
13 Juv. Atooth.
14 Spiny dogfish
15 Avian predators
16 Octopods
17 Seabirds
18 Deep demersals
19 Pollock 1+
20 Rockfish
21 Baleen Whales
22 Salmon Fry 0-12
23 Nshore demersal
24 Squid
25 Eulachon
26 Sea otters
27 Deep Epibent
28 Capelin
29 Adult Herring
30 Pollock 0
31 Invert-eat Bird
32 Sandlance
33 Shal Lg Epibent
34 Juv. Herring
35 Jellies
36 Deep sm infauna
37 Near Omni-zoo
38 Omni-zooplankto
39 Shal sm Infauna
40 Meiofauna
41 Deep Lg Infauna
42 Shal Sm Epibent
43 Shal lg infauna
44 Near Herbi-zoo
45 Herbi-zooplankt

the reproduction of A individuals. This is a very simplistic descrip-
tion of a prey–predator interaction but simple kinetic rules seem
to apply quite well in several ecological situations: for example,
the number of shark-bitten pinnipeds is proportional to shark and

Table 2
Community-based importance measures used in this study. Degree, weighted
degree and betweenness measure the centrality of graph nodes in networks. Trophic
level measures the distance from producers in the directed food web. Interaction
strength measures species importance based on deterministic dynamic sensitivity
analysis, while the Hurlbert response-based importance measure was used in the
stochastic dynamic sensitivity analysis.

Formula Measure of Importance

Topology
D Degree
wD Weighted degree
BC Betweenness
TL Trophic level
ig. 2. An illustrative part of one simulation run. Curves of different colours repre-
ent the population size (Y axis) of four species in time (X axis).

ystem with some added stochastic component (e.g. Jordán et al.,
003).

.3. The model

.3.1. Data
The Ecopath with Ecosim (EwE) model of the Prince William

ound (Alaska) food web has been described and analysed in
etail (Okey and Pauly, 1999; Okey, 2004; Okey and Wright, 2004).
he network model contains 48 living components (Table 1). The
on-living components (#49, #50, #51) as well as self-loops (“can-
ibalistic” trophic flows) have been omitted from the model. The
riginal network model is a weighted graph, assigning trophic flow
alues to each link.

.3.2. Implementation
We have translated the EwE-model (Okey, 2004) to BlenX (Livi,

009). Biomass values of trophic groups have been translated to
umbers of individuals, based on species-specific body size data
from www.fishbase.org and literature data). For simplicity, we
ave used the logarithm of number of individuals and then mul-
iplied by 10. Trophic flows were directly translated to interaction
ates. We excluded all external effects (e.g. material flows) and sup-
osed that the system is close to equilibrium. Thus, death rates
ere chosen from a realistic range (from 0.001 to 0.1, typically 0.01)

o fine-tune the model to quasi-equilibrium (note here that some
uthors use mortality as a sum of natural mortality and predation,
ike Okey (2004), and it is not easy to separate them).

We describe the dynamics in a way that is similar to (and
dopted from) modelling molecular kinetics in the cell. Simple rates
re assigned to single-individual (cf. mono-molecular) interactions
like reproduction, birth, death), while the kinetics of pairwise (bi-

olecular) interactions follow mass-action:

+ B
k1−→2A (1)

nd

+ B
k2−→A (2)
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

eaning that there is a rate for “eat and reproduce” (k1) and another
or “eat” (k2). In the first case, the predator eats the prey and pro-
uces another predator individual, while the prey disappears. In
he second case, the predator eats the prey and the prey disappears.
he k1/k2 ratio determines how many items of prey B are needed for
46 Near phytoplktn
47 Offshore Phyto.
48 Macroalgae/gras
ecosystems with stochastic sensitivity analysis. Ecol. Model. (2010),

Dynamics (deterministic)
ISI Interaction strength

Dynamics (stochastic)
IH Effect
IH* Sensitivity

dx.doi.org/10.1016/j.ecolmodel.2010.09.025
http://www.fishbase.org/
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Table 3
The rank of trophic groups based on stochastic dynamic sensitivity analysis. IH and
I∗
H quantify species importance based on effect on others mean population size and

the effect of others on the studied group’s mean population size, respectively.

IH I∗
H

Nshore 230,3824 Halibut 985,93
Adarrowtooth 147,4819 Juvherring 271,61
Herbizoo 141,3665 Adsalmon 254,60
Seabird 119,7005 Shaligepi 237,64
Sleepershark 107,3609 Inverteat 126,30
Salmonshark 106,6122 Pinniped 112,05
Juvherring 105,6032 Pacificcod 103,69
Juvpollock 103,555 Omnizoo 98,94
Juvatooth 103,0092 Sablefish 93,86
Adpollock 98,07455 Adpollock 93,29
Nearphyto 97,64756 Deepepi 86,59
Capelin 93,63991 Capelin 86,42
Shalsminf 92,28596 Spiny 85,88
Deeplginf 91,28188 Jellies 81,16
Pacificcod 90,8476 Octopod 79,82
Jellies 88,49004 Seaotter 73,60
Lingcod 86,63624 Nearomnizoo 70,96
Pinniped 85,45055 Lingcod 68,47
Macroalge 84,65765 Offshorephyto 64,40
Adherring 84,5612 Deeplginf 62,50
Resorca 82,71365 Deepsminf 60,99
Porpoise 81,85864 Macroalge 60,65
Deepsminf 79,39852 Adarrowtooth 57,55
Salmonfry 79,31558 Nearherbizoo 56,24
Baleen 78,1507 Salmonfry 54,75
Seaotter 78,06681 Seabird 54,30
Sandlance 77,67761 Sleepershark 49,15
Adsalmon 76,01381 Shalsmepi 48,94
Inverteat 75,63834 Eulachon 48,45
Nearomnizoo 75,61472 Avian 47,59
Deepdemfish 75,17384 Nearphyto 47,50
Octopod 75,02065 Salmonshark 42,38
Shaliginf 72,4026 Juvatooth 39,88
Spiny 69,01359 Baleen 36,01
Shaligepi 68,32205 Nshore 32,21
Rockfish 66,4884 Resorca 28,61
Shalsmepi 66,0483 Adherring 27,43
Nearherbizoo 63,47351 Shalsminf 23,47
Deepepi 61,13831 Meiofauna 21,90
Meiofauna 60,15124 Rockfish 20,46
Omnizoo 58,75869 Herbizoo 18,73
Sablefish 58,54705 Juvpollock 13,92
Halibut 56,25068 Porpoise 9,78
Eulachon 56,17952 Squid 8,94
Avian 54,91904 Transorca 5,68
ig. 3. The Prince William Sound food web: size of nodes is proportional to the
ean-based IH value of species or trophic groups (figure drawn by CoSBiLab Graph,

ee Valentini and Jordán, 2010). Producers are at the bottom and top predators are
t the top, following conventions.

inniped abundance, while community shift in exploitative com-
etition is proportional to prey availability, relative competitive
bilities and the relative densities of consumers (Stevens et al.,
000). These parameters correspond to kinetic rates and concen-
rations in simple chemical reactions: if two molecules A and B have
ompatible functional groups, they may react and the probability
f the reaction depends on the concentration of both molecules
nd the reaction rate (also on the concentration of products if the
eaction is reversible). The simplest kinetics for an interspecific
nteraction may follow the same logic: prey density, predator den-
ity and the prey preference of the predator are three parameters
escribing the probability of feeding.

Our approach makes it possible to define a number of details in
rder to realistically describe eco-dynamics at the level of the indi-
iduals. The most essential biological detail here is what determines
he k1/k2 ratio and how to describe the state of the individual. For
xample, Powell and Boland (2009) assume that only sated indi-
iduals (A*) can reproduce and only hungry individuals (A′) can
e eaten. One challenge here is to integrate ecological stoichiome-
ry (Sterner and Elser, 2002) with our model. It needs to specify
ow many feeding events, of exactly which prey, is enough for
eproduction (this could also be expressed in rates). More com-
licated dynamical scenarios (e.g. various non-linear functional
esponses) are not considered in this paper but are possible future
xtensions. As reference, 20 simulations were run in 40,000 steps,
orresponding to a 30 years period (Fig. 2 shows a small fragment
f the simulation). Based on these runs with the same initial con-
itions and parameters, we can measure the variability of system
ehaviour.

.4. Sensitivity analysis

.4.1. Perturbation
We performed pulse perturbations, reducing the population size

f each functional group by half, one by one, in different runs. We
lso made perturbations where population sizes were divided by 4,
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

ultiplied by 2 and multiplied by 4. The chosen mode of perturba-
ion is comparable with the one in deterministic sensitivity analysis
onducted by Okey (2004), but note that a variety of perturbation
echniques have been used in the study of other systems (e.g. halv-
ng reproduction rates, Okey, 2004). Here we have not performed
Transorca 52,8482 Shaliginf 4,05
Squid 52,25344 Deepdemfish 0,88
Offshorephyto 48,0378 Sandlance 0

sensitivity analysis where combinations of parameters have been
changed simultaneously.

2.4.2. Response
We used several response functions but, for simplicity, present

only results based on a metric very similar to the Hurlbert response
index (Hurlbert, 1997; the only difference is that we compare the
population sizes in the reference interval for the control and the
perturbed simulation runs instead of two states in the same simu-
lation, before and after perturbation). The Hurlbert response-based
importance of species i (IH(i)) is calculated by:

IH(i) =
48∑

j=1

∣∣Pi
j − P∗

j

∣∣ (3)
ecosystems with stochastic sensitivity analysis. Ecol. Model. (2010),

where P∗
j

is the number of individuals of species j at time t in the

reference simulation (without perturbation), and Pi
j

is the mean
number of individuals of j in time t based on 20 simulations when
species i was perturbed. We have excluded self-effects realized

dx.doi.org/10.1016/j.ecolmodel.2010.09.025
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Table 4
The rank of trophic groups based on stochastic dynamic sensitivity analysis. IH and
I∗
H quantify species importance based on effect on the variance of others population

size and the effect of others on the variance of the studied groups population size,
respectively.

IH I∗
H

Nshore 332,9215 Halibut 5356,806
Herbizoo 218,7412 Seabird 417,1032
Sleepershark 208,7874 Deepepi 108,0029
Macroalge 202,7006 Shaligepi 100,3646
Nearherbizoo 198,4092 Capelin 81,57298
Pacificcod 195,6622 Juvherring 80,12305
Salmonshark 191,774 Spiny 56,47612
Offshorephyto 190,7102 Pacificcod 38,93173
Juvpollock 186,4349 Macroalge 37,53366
Pinniped 181,288 Octopod 36,24754
Deepdemfish 180,2726 Seaotter 35,26956
Adsalmon 176,1529 Pinniped 34,27198
Salmonfry 175,6586 Jellies 34,21654
Nearphyto 169,333 Lingcod 33,9076
Baleen 169,1709 Adsalmon 31,44734
Sablefish 166,4515 Nshore 28,9631
Adherring 165,5893 Nearherbizoo 27,9367
Resorca 164,802 Inverteat 27,69864
Seaotter 161,5243 Adpollock 26,43388
Adpollock 157,8397 Salmonshark 25,01807
Eulachon 157,6989 Nearomnizoo 19,39001
Lingcod 155,7288 Omnizoo 19,07195
Inverteat 155,2152 Sablefish 18,96375
Octopod 151,4581 Shalsmepi 18,15814
Omnizoo 151,2922 Avian 17,61466
Adarrowtooth 147,9595 Deeplginf 17,21663
Avian 147,296 Offshorephyto 16,339
Shaliginf 147,2926 Deepsminf 16,2753
Nearomnizoo 144,4721 Eulachon 15,58031
Meiofauna 135,7082 Shaliginf 15,42056
Juvherring 132,9509 Sleepershark 15,03125
Deeplginf 128,9505 Salmonfry 14,50267
Deepsminf 128,2209 Shalsminf 14,08329
Shalsminf 123,8591 Herbizoo 13,98601
Porpoise 118,5254 Baleen 13,49651
Transorca 112,7393 Nearphyto 13,43305
Spiny 112,2389 Rockfish 13,31296
Shalsmepi 106,4931 Meiofauna 12,39792
Deepepi 105,246 Juvatooth 12,27955
Capelin 104,2345 Adarrowtooth 12,21726
Shaligepi 95,27019 Adherring 10,03192
Squid 87,56856 Resorca 8,94861
Rockfish 85,72298 Juvpollock 4,810008
Sandlance 77,03046 Transorca 4,206301
Juvatooth 69,99225 Porpoise 3,992915
ig. 4. The mean-based species importance quantified as the effect on other species
IH, a), the effects of other species on the studied species (I∗

H, b), and their relationship
c). The distribution is uniform in (a) and shows a keystone pattern-like distribution
n (b).

hrough indirect pathways (let i /= j). This measure quantifies how
arge the community-wide response is, following some relatively
ig perturbation on a particular species.

We have used another version of IH, named I∗H, where we quan-
ify the overall response of species i, following the perturbation of
ny of the species.

∗
H(i) =

48∑

j=1

∣∣∣Pj
i
− P∗

i

∣∣∣ (4)

here P∗ is the number of individuals of species i at the reference
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

i

imulation (without perturbation), and Pj
i

is the mean number of
ndividuals of i based on 20 simulations when all species j were
erturbed. We have excluded self-effects also here (i /= j). This
easure quantifies how sensitive species i is to perturbing any
Jellies 35,67209 Squid 2,375242
Halibut 27,46907 Deepdemfish 0
Seabird 20,93072 Sandlance 0

other species in the ecosystem. In the matrix of |P − P*| response
values (where perturbing in row x will result in a response in col-
umn y), IH corresponds to row sums and I∗H corresponds to column
sums.

We also have calculated both IH and I∗H based on variance instead
of mean. Here, we calculated the variance of the number of indi-
viduals of each species in the 20 runs of each situation (e.g. either
reference run or a perturbation run with species i perturbed). Vari-
ance was divided by the mean values (used before) and the Hurlbert
response measure was calculated for the coefficient of variation.
Thus, the focus here is not on changed population size but, instead,
on changed variability in population size (for several stochastic
simulations). This variance-based approach may tell less about
actual effects but more about control.
ecosystems with stochastic sensitivity analysis. Ecol. Model. (2010),

Other response measures have also been tested (e.g. considering
(Pi

j
− P∗

j
)/P∗

j
but here we present only the Hurlbert response-based

measures, for simplicity. In summary, IH and I∗H are used as stochas-
tic dynamic sensitivity analysis-based importance measures of
trophic groups in the studied ecosystem (Table 2). IH is more like

dx.doi.org/10.1016/j.ecolmodel.2010.09.025


ARTICLE IN PRESSG Model

ECOMOD-5984; No. of Pages 10

6 C.M. Livi et al. / Ecological Modelling xxx (2010) xxx–xxx

Fig. 5. The variance-based species importance quantified as the effect on other
species (IH, a), the effects of other species on the studied species (I∗ , b), and their
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importance (CI), community longevity support (CLS), and the key-
H
elationship (c). The distribution is unimodal in (a) and shows a strong keystone
attern-like distribution in (b).

global response to a local change, while I∗H is more like a local
esponse to global changes.

.5. Other measures of importance

.5.1. Topology
One of our goals is to study the topological position of trophic

roups most important in stochastic sensitivity analysis. For sim-
licity, we use only three indices here (Table 2). Node degree (D) is
he number of direct interacting partners: in a food web, this is the
um of preys and predators. Weighted node degree (wD) is the sum
f carbon flows coming from preys and going to predators (i.e. the
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

um of weights on incoming and outgoing links in the network).
inally, betweenness centrality (BC; see Wassermann and Faust,
994) measures how frequently a node i is incident to all shortest
Fig. 6. The relationship between the mean-based and the variance-based impor-
tance of species, for IH (a) and I∗

H (b). Note that halibut (#5) is not shown in (b) for
clarity.

paths between two other nodes in the same network:

BCi =
∑

i>k

gjk(i)
gjk

(5)

where i /= j, k, gjk is the number of equally shortest paths between
nodes j and k, and gjk(i) is the number of these shortest paths to
which node i is incident.

D is studied, because it is the simplest measure of positional
importance. Earlier studies have shown that wD fits well to simu-
lated behaviour (Jordán et al., 2008), thus our use of it here. Finally,
BC characterizes a fairly different aspect of centrality, apart from
the number of neighbours (Jordán et al., 2007), so it was chosen to
quantify other kinds of key nodes. Apart of these centrality indices,
we have also studied the relationship between dynamic importance
and trophic level (TL, that equals one plus the distance from produc-
ers in a food web digraph), with TL = 1 for producers and TL = 5.41
for the highest top predator (transient orca, #1).

2.5.2. EwE dynamics
Here we only use the interaction strength index (ISI, Table 2), as

this is the most similar one to the Hurlbert response measure we
use in stochastic simulations. We have also calculated community
ecosystems with stochastic sensitivity analysis. Ecol. Model. (2010),

stoneness index of Okey (KI) (Okey, 2004) and the keystone index
of Libralato et al. (KN, Libralato et al., 2006), but they do not serve
the present deterministic/stochastic comparison well.

dx.doi.org/10.1016/j.ecolmodel.2010.09.025
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H in b) and trophic

evel (TL).

. Results

The community remained close to equilibrium during the sim-
lations, even if some minor extinction events occurred (just

ike in EwE models, see the extinction of pepino in Okey et al.,
004).

In Fig. 3, the size of graph nodes is proportional to their stochas-
ic dynamic importance (measured as the effect on the mean
opulation size of other species, i.e. mean-based IH). Based on
his sensitivity analysis, the importance rank of species is led by
earshore demersals (#23), followed by adult arrowtooth (#9) and
erbivorous zooplankton (#45, see IH in Table 3). Apart of this rank-

ng, based on effects on others (IH), we also provide the ranking of
pecies based on how much they are influenced by disturbing other
embers of the community (I∗H): here, halibut (#5) is of outstanding

mportance, followed by juvenile herring (#34) and adult salmon
#10) as the three most sensitive species (Table 3). The rank order of
alues is shown for both IH (Fig. 4a) and I∗H (Fig. 4b). The relationship
etween the two used stochastic dynamic importance measure is
hown in Fig. 4c (see also Table 3). It seems like a hyperbolic curve,
uggesting that a species has either a strong effect on others (large
H) or is strongly influenced (I∗H). The trophic group with relatively
igh index value in both is juvenile herring (#34).

Variance-based dynamic species importance measures suggest
he same species in the first ranks (nearshore demersals, #23, for
H and halibut, #5, for I∗H, see Table 4) but somewhat different rank
rders later (Table 4, Fig. 5a and b): followed by herbivorous zoo-
lankton (#45) and sleepershark (#4) if being influenced in mean
nd followed by seabirds (#17) and epibenthos groups (#27 and
33) if being influenced in variance. The IH − I∗H relationship is
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

yperbolic here too, and juvenile herring (#34) is one of the trophic
roups of relatively large importance in both (Fig. 5c). Note that
alibut (#5) and seabirds (#17) are the worst in the IH rank but the

eading groups in the I∗H rank.
Fig. 8. The relationship between mean-based IH and three topological indices,
degree (D, a), weighted degree (wD, b) and betweenness (BC, c).

The correlation between effects (IH) on the mean and effects on
the variance of other species is seen in Fig. 6a, while the correlation
between being influenced (I∗H) in mean versus being influenced in
variance is presented on Fig. 6b.

Different indices suggest somewhat different distributions for
importance values of species (Mills et al., 1993). Fig. 4 shows that
in some cases a keystone pattern-like distribution (i.e. a few species
with outstanding importance values and the majority with much
lower ones) appears (e.g. Fig. 4b), while in other cases the distribu-
tion is closer to uniform (Fig. 4a) or unimodal (see Fig. 5a below).

Both IH and I∗H are higher in the middle of the trophic scale (Fig. 7a
and b). Note that in deterministic simulations either top-predators
or phytoplankton seem to be of highest importance: transient orca
(#1) by CI and KI (Okey, 2004), offshore phytoplankton (#47) by CLS
and ISI (Okey, 2004) and orca followed by offshore phytoplankton
ecosystems with stochastic sensitivity analysis. Ecol. Model. (2010),

by the keystone index of Libralato et al. (2006).
Fig. 8 shows the relationship between IH and three topolog-

ical indices. Dynamically important species have higher degree
(Fig. 8a), high or low weighted degree (Fig. 8b) and low between-

dx.doi.org/10.1016/j.ecolmodel.2010.09.025
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Fig. 10. The relationship between species importance (IH in a, I∗
H in b) and the

interaction strength index (ISI) based on deterministic dynamic simulations.

Fig. 11. Effect of disturbing sablefish (#12) on the mean population size of each

and their understanding frequently calls for individual-based mod-
ig. 9. The relationship between mean-based I∗
H and three topological indices,

egree (D, a), weighted degree (wD, b) and betweenness (BC, c).

ess centrality values (Fig. 8c). Fig. 9 shows the same for I∗H. For the
ostly sensitive species, D is about the average and shows poor

orrelation (Fig. 9a), while wD and BC are small (Fig. 9b and c). The
ossibility of having a large effect on the community with only a
ew interacting partners is supported by other studies as well (see

ontoya et al., 2009). Among the several deterministic dynamics-
ased importance indices, ISI is the most similar to our stochastic
nes. Fig. 10 shows negative correlation for both IH and I∗H, stronger
or the latter.

In this modelling exercise, deep demersal fish (#18) and sand-
ance (#32) frequently went extinct, but their survival depended
n which other species were perturbed. For example, perturbing
ablefish (#12), i.e. dividing its population size by two, does help
eep demersals (#18) to survive (however their population size
emains very small, see Fig. 11) but not sandlance (#32). Another
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

articular interaction between jellies (#35) and juvenile pollock
#30) was also studied. The strength of mutual effects between
hem is around the average strength (but see Purcell et al., 2000).
other species (functional group) in the community (based on 20 runs). Light points
show data for each species when sablefish was disturbed, while dark points show
the reference simulation, when no species was disturbed. Their difference is the
basis of the response measure (IH).

4. Discussion

Stochastic processes and internal and external noise are impor-
tant elements of biological systems, not just a sign of imperfection
(cf. Simberloff, 1980). Dynamics of small populations can be noisy
ecosystems with stochastic sensitivity analysis. Ecol. Model. (2010),

els. Here, we presented an individual-based, stochastic, data-rich
simulation of a large real ecosystem model.

Our approach, using a process algebra-based language is eco-
logically reasonable, as it can capture the inherent variability of

dx.doi.org/10.1016/j.ecolmodel.2010.09.025
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iological systems, as opposed to ODE-based simulations consider-
ng a homogeneous set of components. While the latter represents

view focusing on equations providing strong laws with some
mostly external) noise, the former describes a situation where
ariability is inherent and influential.

The sensitivity analysis performed in our simulation framework
rovides information on the behaviour and importance of indi-
idual species, pairwise interactions, and the whole community.
oreover, we have gained some insight also into the comparison

f modelling techniques. For the distribution of relative importance
alues in the whole community, most indices show a keystone
attern-like distribution, while some support unimodal or close
o uniform importance distributions. The identity of key species
epends on the index chosen. Nearshore demersals (#23) seem
o be the most important species in influencing others, both in

ean population size and in its variance. The result is totally dif-
erent if we quantify which species are most sensitive to changes
n others. Halibut (#5) leads both lists, with huge advantage. The
ig difference between “influence others” and “being influenced”

n the same simulations raises big questions about how to mea-
ure species importance and how to understand sensitivity (also
n the context of environ analysis, Patten, 1981, 1991). The func-
ional group that seems to be most important according to both
pproaches is juvenile herring (#34, being both effective and sen-
itive). The correlation between indices based on the mean and
ased on the variance of effect values is weak, i.e. if a species has
large effect on the mean population size of others, it does not

uarantee that it will have a large effect also on the corresponding
ariances. Strongly interacting groups appear at each trophic level,
ostly around the middle of the food web. This may refine the ear-

iest paradigm (keystones are top predators) and support recent
ndings on species of high importance in the middle of the trophic
cale (Cury et al., 2000; Stibor et al., 2004) or at least below the
ighest top-predators (like bonito, Coll et al., 2009). All determin-

stic dynamic importance indices suggest either top-predators or
roducers to be of highest importance (Okey, 2004; Libralato et al.,
006). Static topology was relatively poor in predicting the identity
f dynamic key species in these simulations. Betweenness is nega-
ively correlated with stochastic dynamic importance, while degree
hows some weak positive correlation. Weighting the network by
rophic flows is important, as weighted degree shows a correlation
ifferent from that of (binary) degree. Surprisingly, another kind of
ynamic community importance index (ISI), based on deterministic
odelling, shows a clear negative correlation to stochastic impor-

ance measures. Further research is needed here to clarify whether
he difference is of technical or biological nature.

The effect of sablefish (#12) on deep demersals (#18) and
andlance (#32) can be explained by looking at the weights on
etwork links: sablefish (#12) feeds on both preys to a different
xtent. Trophic flow from deep demersals (#18) to sablefish (#12) is
.0903, while it is only 0.0019 to sandlance (#32; mass transfer data
re expressed in t/km2, Okey, 2004). Larger flows are responsible for
tronger effects in this case. In case of the relationship between jel-
ies (#35) and juvenile pollock (#30) their well-documented strong
nteraction is not seen in our simulation, probably because the dom-
nant effect is of non-trophic or spatial nature (like amensalism or
ggregation, see also Purcell et al., 2000).

Other directions of future research may focus on making the
odel more complete, as this is a first version. First of all, a hybrid
odel describing abundant species (zooplankton) in a determinis-

ic and rare ones (orca) in a stochastic way would be logical. Other
Please cite this article in press as: Livi, C.M., et al., Identifying key species in
doi:10.1016/j.ecolmodel.2010.09.025

irections could be considering spatial dynamics (see Ciocchetta
nd Jordán, 2010), multiple interaction types (e.g. facilitation in
igned graphs, see (Purcell et al., 2000), demographical details (cf.
ize-overfishing, Okey et al., 2004) and refining the basic structure
f the model (in order to model diverse functional responses more
 PRESS
lling xxx (2010) xxx–xxx 9

realistically). Finally, more research is needed on comparing the
same simulation outcomes analysed by different response mea-
sures (see Harley, 2003). As a further complication, the effect of
species i on the effect of species j on species k could also be analysed
(see Yodzis, 2000).

Applications of stochastic, individual-based modelling seem to
be helpful in situations where there are big differences between the
behaviour of individuals, i.e. population dynamics are not homo-
geneous. An example is size-overfishing (e.g. “bacalao”, Okey et al.,
2004), where a deterministic model of the homogeneous popula-
tion can be misleading. Here, individual-based, stochastic models
may eventually shed light on poorly understood findings. Gener-
ally, the very hottest problems of conservation practice call for
individual-based, stochastic modelling (considering the rarity and
noisy behaviour of the smallest populations to protect). Here,
there is a need for better integrating theory and empirical data
(Simberloff, 2003).
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