
20lO IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

Blue Banana: resilience to avatar mobility in distributed MMOGs

Sergey Legtchenko Sebastien Monnet Gael Thomas

LIP6IUPMC/CNRSIINRIA

104 avo du President Kennedy, 75016 Paris - France

Firstname.N ame@lip6.fr

Abstract

Massively Multiplayer Online Games (MMOGs) re
cently emerged as a popular class of applications with mil
lions of users. To offer acceptable gaming experience, such
applications need to render the virtual world surrounding
the player with a very low latency. However, current state
of-the-art MMOGs based on peer-to-peer overlays fail to
satisfy these requirements. This happens because avatar
mobility implies many data exchanges through the overlay.
As state-of-the-art overlays do not anticipate this mobil
ity, the needed data is not delivered on time, which leads
to transient failures at the application level. To solve this
problem, we propose Blue Banana, a mechanism that mod
els and predicts avatar movement, allowing the overlay to
adapt itself by anticipation to the MMOG needs. Our eval
uation is based on large-scale traces derived from Second
life. It shows that our anticipation mechanism decreases by

20% the number of transient failures with only a network
overhead of2%.

1. Introduction

The past few years witnessed the emergence of a new

class of distributed, highly collaborative applications called

Massively Multiplayer Online Games (MMOGs). The main

aim of an MMOG application is basically to provide a large

virtual universe, or NVE for Networked Virtual Environ

ment. In NVEs, users represented by their avatars can

freely move and interact with each other [29]. NVE ap

plications involve millions of active participants all over the

world and generate substantial financial revenue [2]. Such

applications need to be highly scalable to support the colos

sal number of players and to be reactive with almost real

time constraints to provide a satisfying gaming experience.

Current popular NVEs are based on the client-server

paradigm [35,36]. This necessarily implies poor scalability

for NVE applications and expensive financial cost for the

978-1-4244-7501-8/lO/$26.00 ©20lO IEEE

NVE provider [2, 16]. To face these limitations, a new gen

eration of decentralized NVEs based on peer-to-peer over

lays has emerged [3,4,11,12,15]. In these NVEs, the load

and the applicative data is fairly divided between all the

nodes of the overlay. Therefore, each node stores a local
knowledge of the NVE: a set of data-blocks describing some

objects of the virtual world. In order to correctly render the

virtual world surrounding its avatar, a node must acquire the

set of data-blocks representing the area in the NVE where

its avatar is located. We define these set of data-blocks as

the playing area of the node. To build a playing area, a node

must find other nodes that have the required data-blocks in

their local knowledge. We define these other nodes as the

elders of the playing area.

One of the main problems that a distributed NVE must

face is the construction and the update of an avatar's play

ing area when it moves. Indeed, the playing area of a mov

ing avatar changes and its node has to quickly retrieve the

data-blocks of the new playing area from new elders. Vir

tual movement of an avatar thus involves real data exchange

through the underlying overlay network. Moreover, the

faster the avatar moves, the lesser time its node has to down

load missing data-blocks. If a node is unable to retrieve

the data composing its current playing area in a reasonable

time, i.e, in a time that does not degrade the gaming expe

rience, we say that the node transitory fails. The threshold

delay is typically of a few hundreds of milliseconds [5]. Ba

sically, this notion of failure depends on the quantity of in

formation needed to correctly render a playing area, which

is highly application-dependent.

State-of-the-art overlays for NVEs try to deal with the

problem by continuously adapting their logical graph in re

action to virtual mobility. When an avatar moves across

the NVE, its node changes its neighbor set in order to re

cover all needed data in a small number of hops in the over

lay [3,6, 15]. However, these overlays only react to move

ment: a node changes its neighbor set after the movement

of its avatar. This lets only a few hundreds of milliseconds

to find the new elders and to retrieve the needed data from

171 DSN 2010: Legtchenko et al.

20lO IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

them. If the movement is too fast, or if the amount of data

to download is too large, the overlay is unable to adapt itself

on time, causing transient failures. Moreover, the problem

is symmetric for non moving avatars: if a moving avatar en

ters in the playing area of a non moving avatar too quickly,

the non moving avatar will not see the entering one in its

playing area.

To solve this problem, we propose a new mecha

nism called Blue Banana 1 that anticipates movement and

searches the elders of the forthcoming playing areas when

an avatar moves. Concretely, the algorithm tries to predict

avatar movement and, if it has a stable movement during

a sufficiently long period of time, its node prefetches el

der nodes of the playing areas in the direction of its move

ment with respect to the avatar speed. Our algorithm de

creases the number of transient failures of a moving avatar:

the loading of the data composing the forthcoming playing

areas begins earlier, allowing the prompt construction of a

correct playing area image when the avatar effectively en

ters inside it.

The key challenge to design our algorithm is an accu

rate understanding of avatar mobility. Indeed, if our algo

rithm fails to correctly predict avatar movement, it will load

useless data. The problem is particularly important if the

avatar has erratic movement: our algorithm must not try to

prefetch the forthcoming elders and the data of the forth

coming areas at each direction shift. The load of this use

less data would overload the node and therefore generate

new transient failures.

The contributions of this paper are thus: 1) an analysis

and a model of mobility to qualify and detect predictable

player movement; 2) the implementation of Blue Banana,

our anticipation mechanism in one of the state-of-the-art

peer-to-peer overlay networks: Solipsis; 3) a generator of

realistic movement traces to evaluate Blue Banana; and 4)

a complete evaluation of Blue Banana with our generated

movement traces in the PeerSim simulator [14]. We choose

to test our algorithm on top of Solipsis because it already

selects and updates its overlay neighbors based on avatar

virtual positions in the NVE. However, like other current

NVE overlays, Solipsis does not anticipate the movement

of the avatars: it fetches elders indifferently in all the direc

tions and therefore fails to build playing areas in a reason

able time when the movement increases.

The main lessons learned from our work are:

• Our model of mobility provides the ability to predict

avatar movement. By adding an anticipation mechanism

in Solipsis, the number of transient failures decreases by

20% while the network bandwidth is only increased by 2%.

Moreover, our mechanism does not decrease the robustness

1 The Blue Banana is the pattern of one of the highest concentration of
population of the world and the relationship with our work is discussed in
Section 4.

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

of the original protocol: when movement is erratic, transient

failures do not increase. Blue Banana also increases the ro

bustness of the NVE because in average, a node knows 7.5

times more elders in the direction of the avatar's movement,

allowing a node to prefetch 20 times more data on time.

• The traces of movement generated from our model

are realistic and an evaluation shows that they clearly co

incide with the real traces collected in Second Life [31].

They permit the construction of larger traces and therefore

the evaluation of our protocol.

The rest of this paper is organized as follows. First

Section 2 studies the mobility in real existing NVEs and

presents our mobility model that allows the overlay to pre

dict movement. Section 3 presents the implementation of

Blue Banana on top of Solipsis. Section 4 describes our

trace generator, then Section 5 presents the evaluation en

vironment and the evaluation results. Section 6 describes

related works before Section 7 concludes.

2. Mobility pattern and movement prediction

Avatars connected to NVEs usually have a total freedom

of movement. Resulting NVEs are then very dynamic: data

representing objects and avatars may not be uniformly dis

tributed all over the universe. Recent studies of existing

popular NVEs like Second Life [35] and World of War

craft [36] have shown that the distribution of avatars was

extremely disparate [17, 25]: most of the avatars are gath

ered around a few hotspots of interest, while large parts of

the NVE are almost desert. In addition to that, the mo

bility pattern of the avatars has been shown to be highly

non-uniform: avatars move slowly and chaotically within

the hotspots, whereas the movement between the hotspots

is straight and fast [19].

2.1. The state machine

These observations have a consequence on the design

of our anticipation algorithm: the anticipation mechanism

must discriminate chaotic from straight avatar movement.

Therefore, in order to ensure reasonable prediction accu

racy, each node of the overlay handles a state machine that

describes its avatar mobility. According to the observed mo

bility pattern, an avatar has two states: (t)ravelling, the

avatar is rapidly moving on the map and its trajectory is

straight, (E)xploring, the avatar is exploring an area, its tra

jectory is chaotic and its speed is low.

As the user is interacting with the NVE, its node locally

analyzes the state of the avatar. If it detects a behavioral

modification, it switches the state machine to the appropri

ate state. The behavior of an avatar is defined by its speed.
If the speed of an avatar reaches a threshold, the state ma

chine is switched to the state t, otherwise, it is switched to

172 DSN 20lO: Legtchenko et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

the state it. This simple model is a first attempt to describe

avatar movement and can be refined: it could take into ac

count the acceleration of the avatar, or try to predict player

behavior by analyzing its movement history. However, this

simple model already provides a sufficient prediction accu

racy to decrease the number of transient failures.

If the state machine is in the state t (the avatar is trav

eling), its trajectory is highly predictable. Therefore, our

algorithm tries to prefetch the forthcoming elders, i.e, the

nodes that have data of the forthcoming playing area in their

local knowledge.

If the avatar is exploring a zone (state it) its trajectory is

chaotic and its speed is low. In this case, its path is difficult

to predict, therefore the Blue Banana module does not an

ticipate the loading of the forthcoming elders. Notice that

because of the slow speed, the native algorithm of an NVE

is likely to adapt itself on time anyway.

2.2. Movement anticipation

To maximize the prediction accuracy, we make two as

sumptions: (i) only short term prediction is accurate, (ii)

the faster an avatar is moving, the more it is likely to con

tinue on its current trajectory. The first assumption implies

that future probable positions calculated from the avatar's

present location and movement vector form a cone. Indeed,

the more a position prediction is far in the future, the more

it is likely to diverge from the real path. The second met

ric implies that the prediction accuracy increases with the

avatar speed: the sharpness of the cone is proportional to

the speed.

If all elders of the playing area located inside the cone

are prefetched on time and if the avatar stays in the cone,

the node of the moving avatar will then instantly adapt to

the mobility.

3. Implementation of Blue Banana on top of

Solipsis

We have implemented our Blue Banana prefetching al

gorithm over Solipsis [15]. We chose Solipsis because it al

ready takes into account avatar proximity to build the over

lay.

3.1. Solipsis overview

Solipsis is an overlay designed to sustain a distributed

NVE. Each node of the Solipsis overlay is responsible for

one avatar. In Solipsis, the knowledge of a playing area is

distributed on the nodes that manage the avatars of this play

ing area: the elders of a playing area are exactly the nodes

which avatars are in this playing area. Solipsis maintains a

978-1-4244-7501-8/10/$26.00 ©201O IEEE

set of direct neighbors for each node. Nodes communicate

by message passing through the overlay: the more the dis

tance in the overlay in number of hops increases, the more

the latency increases. To enhance the responsiveness, Solip

sis tries to maintain the elders of the current playing area of

a node in its neighborhood to communicate efficiently. If

two avatars A and B are neighbors in the NVE, the Solip

sis overlay adapts itself so that B will eventually be in A's

neighborhood and vice versa. In order to ensure that behav

ior, Solipsis is based on two fundamental rules:

1. Local awareness rule. An avatar a has a circular play

ing area IDa centered on the avatar. If another avatar b is

inside IDa, the nodes of a and b must be neighbors in the

overlay. The size of IDa is adjusted to ensure that a has a

number of neighbors contained between a minimum and a

maximum bound.

2. Global connectivity rule. Let Ne be the neighbor set

of a node e in the overlay. The avatar of e must be located

inside the convex hull of the set formed by avatars of Ne.
This property aims that an avatar will not "tum its back" to

a portion of the NVE, causing inconsistent views or possibly

partitioning the Solipsis overlay graph.

To ensure these rules, Solipsis implements a mechanism

called spontaneous collaboration. At each moment, thanks

to periodic updates, a node is aware of the coordinates and

the awareness area sizes of all nodes in its neighbor set. As

it locally detects that one of its neighbors enters the aware

ness area of another of its neighbors, it sends a message to

both entities to warn them that the local awareness rule is

about to be broken. As they receive that message, the two

entities become neighbors. Our simulations showed that

this technique is very efficient: most of the time, a node

receives a warning message and does not have to initiate a

costly new-neighbor query. The global connectivity rule en

sures that a node is always surrounded by its neighbor set,

making spontaneous collaboration more efficient.

To sum up, if the local awareness rule is violated for a

node n, it means that an avatar has arrived into the playing

area of n and is not yet included to the local knowledge of

n, causing a transient failure. If the global connectivity rule

is violated for a node n, it means that n is not surrounded by

its neighbor set. It will then not receive spontaneous data

updates for a part of its playing area, which will mandatorily

lead to transient failures.

An avatar keeps breaking fundamental rules as long as

it moves because the spontaneous collaboration mechanism

is not always able to react on time. For that reason, a more

efficient anticipation mechanism is required.

173 DSN 2010: Legtchenko et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

3.2. Implementation of the anticipation
mechanism

Blue Banana, our anticipation mechanism, is built on top

of Solipsis. However, it could be implemented on top of

any overlay that adapts itself in reaction to avatar move

ment. Blue Banana's main aim is to provide each node

with a prefetched node set (the size of the set is user de

fined). For this purpose, it finds nodes in the direction of

the avatar's movement. Once the moving avatar approaches

a prefetched node, the prefetched node is added in the regu

lar neighbor set managed by Solipsis. Hence, Blue Banana

substantially helps Solipsis native algorithms to restore the

fundamental rules, minimizing resulting transient failures.

Important properties of the algorithm. The first im

portant quality of the algorithm is the consideration of

avatar movement during message transfer time. Indeed,

during a message transfer, the NVE changes, and so do in

teresting prefetched neighbors. For example, if A and B are

2 meters apart and if A runs toward B, B is probably an in

teresting prefetched neighbor. But if the network latency is

around 200ms and if A runs at 36km/h (lOm/s), the time to

transfer a message from A to B is exactly the time to reach B
for A in the NVE: the communication time between A and

B makes B an uninteresting prefetched neighbor. To take

into account message transfer time, each node estimates a

low and a high bound of the network latency by using the

last observed round trip times with its neighbors. When

a prefetching message arrives, the algorithm uses these la

tency bounds to roughly estimate the new avatar-position of

the node that emitted the message. Even if this estimation

is clearly rough, it permits to send more accurate responses.

The second important quality of the algorithm is the

number of messages generated to prefetch the neighbors:

a node receiving a prefetching request answers for all its

neighbors whose avatars are in the probability cone (see

Section 2). As a consequence, each candidate does not have

to answer to the request.

•

• • •

•
• •

•

•

Movement vector

• •

Figure 1. Propagation algorithm: the request is transmit

ted to nodes ahead of the movement.

978-1-4244-7501-8/101$26.00 ©2010 IEEE

Algorithm description. Technically, if the algorithm

observes that the avatar of a node B (for Blue Banana) is

in the state t (i.e, it reaches the speed threshold) and if the

prefetched neighbor set is not full, B starts searching for

new prefetched neighbors: it sends a message to its neigh

bor which is closest to its movement vector as illustrated by

Figure 1. The message contains the number of prefetched

neighbors that B is willing to retrieve (called the TTL) and

the description of the probability cone (the apex of the cone,

the direction of the movement and the speed).

Algorithm 1: Upon reception of a prefetching request

Result: gathering of prefelching candidates and prefelching requesl
propagation.

1 emitterPosition = estimateCurrentEmitterPosition (msg);

2 ttl = msg.getTTL 0;

3
4
5
6
7
8
9

10

if (emitterPosition, myPosition) ::0: minDist then
trajectoryClosestNodes = chooseClosest (neighborSet, msg);

size = trajectoryClosestNodes.getSize 0-1;

if size> ttl then
size = ttl;

trajectoryClosestNodes = trajectoryClosestNodes [I .. size I;

end
if size> 0 then

ttl = ttl -size + I ; 11
12
13

response.addSet (trajectoryClosestNodes);
send (response, msg.emit ter 0);

14 end
15 end
16 if ttl > 0 then
17 msg.setTTL (ttl -I);
18 send (msg. findNextNodelnTrajectory (msg));

19 end

Upon the reception of a prefetching request on a node

R (for Receptor), R first estimates the current position of B
by using the estimated network latency, the initial position

and the speed of the avatar (line 1 of Algorithm 1). Then,

Algorithm 1 checks if B is not too close from R (line 3): if

B overpasses R during the message exchange, R is located

behind of B when the response is received by B, making

the prefetched information useless. Then, if R is located

far enough (lines 3 to 13), R analyzes its neighbor set and

selects nodes located inside the new estimated prefetching

cone of B (line 4) to send them to B (lines 11 to 13). If

the size of this set of candidates exceeds the TTL, only the

first TTLs are selected (line 5 to 9) and if R does not have

interesting neighbors, R does not send its response to B (line

10). While the TTL has not expired, R forwards the request

to its neighbor that is closest to the movement vector of B
(lines 16 to 19). At the end, if no message have been lost

and if messages arrive on time, B retrieves TTL prefetched

neighbors located inside its probability cone.

Network overhead. Blue Banana does not interfere with

the maintenance protocol of Solipsis: the pre fetched neigh

bors are not placed in the regular Soli psis neighbor set, but

in a separated one. Therefore, Solipsis does not use net

work resources to maintain links with prefetched neighbors.

174 DSN 2010: Legtchenko et al.

20lO IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

We prefer not to spend network resources to maintain a link

with a node which is useless in the present since it is not yet

in the playing area.

As a consequence, once inserted in the prefetched neigh

bor set, the position of a node's avatar is not updated, while

it can move outside the probability cone. Blue Banana au

tomatically removes useless prefetched neighbors (i) when

they have been overtaken by the moving avatar, (ii) when

the avatar changes its direction or (iii) when it changes its

state. It is possible to consider another policy by periodi

cally updating the state of the prefetched neighbors. How

ever, the risk is to spend network resources to update possi

bly useless nodes. The comparison of these two policies is

part of a future work.

In order to compensate the small network overhead, Blue

Banana nodes take advantage of the high predictability of

the avatar movement in desert zones. In Solipsis, a node

periodically propagates the coordinates of its avatar to all

the members of its neighbor set, so the neighbor-nodes can

update their view of the NVE. Blue Banana doubles the pe

riod of such updates for nodes when the state machine is

in state t. The neighbors of that node simply predict the

position of the avatar between two updates by using its ini

tial position and its speed. This technique is a simple form

of dead reckoning2, but it could easily be enhanced with

more sophisticated mechanisms widely used in online gam

ing [7,23,24].

4. Realistic movement trace generation

The evaluation of Blue Banana requires realistic traces of

avatar movements. However, all existing commercial NVE

projects are based on a client-server architecture which

usually implies poor scalability: constraints are generally

added to artificially limit the scale, hiding this defect [16].

For instance, the Second Life world [35] is partitioned into

separate regions called "islands", each of them being lim

ited in number of simultaneous users and the World of War

craft game [36] is split into separated realms. Therefore,

because of these scaling limitations, each trace simultane

ously involves at most a few hundreds of avatars. Moreover,

the number of available real traces is small because they are

difficult to obtain [17]. Therefore current real traces are

not sufficiently numerous and not sufficiently large-scaled

to measure the efficiency and scalability of Blue Banana.

To evaluate Blue Banana, we therefore need to accu

rately model avatar movements in order to generate realistic

large-scale traces. This section presents our model of mo

bility.

Because all current existing popular NVEs are central

ized and thus limited in scale, we believe that our trace gen-

2Dead reckoning is the process of estimating one's current position
based upon a previously determined position.

978-1-4244-7501-8/lO/$26.00 ©2010 IEEE

erator can also be reused to evaluate other NVEs.

As presented in section 2, most of the avatars are gath

ered inside a few density hotspots. Most of the time,

hotspots are towns or interesting locations of the NVE. This

kind of distribution with hotspots also corresponds to real

density distribution of human populations such as the Euro

pean blue banana [8] that covers one of the world highest

concentrations of population around the cities of London,

Brussels, Amsterdam, Cologne, Frankfurt and Milan with

approximately 20% of the European population.

Moreover, as presented in Section 2, movements of

avatars are chaotic in hotspots and straight between

hotspots. Regarding the player mobility in NVEs, studies

have shown that it is quite similar to human mobility in the

real world [17,26]. This mobility pattern is most of the time

modeled with Levy flights [17,26], however, we propose

our own model because Levy flights do not take into ac

count the specific density of hotspots. Indeed, Levy flights

are particular sort of random walks in which the increments

are distributed according to a "heavy-tailed" probability dis

tribution [9] with short and chaotic movements and some

times long and straight ones. Therefore, Levy flights nat

urally differentiate the two observed behaviors of avatars:

periods of travel and periods of exploration with chaotic

movements. But Levy flights do no help to model hotspots

because they do not ensure that avatars stay grouped around

hotspots and that density around hotspots remains the same

despite avatar mobility.

Instead, we choose to model the density and the move

ments of avatars in NVEs with a model based on an automa

ton to discriminate the periods of exploration from the pe

riods of travel. We define hotspots, i.e, high density zones,

and by opposition, the desert. The trace generation is de

composed in two phases. During the first one, all the avatars

are placed on their initial positions on the map. The gen

erator ensures that most of the avatars are grouped in the

hotspots. During the second phase, step by step, the gener

ator computes new maps from the previous ones by moving

avatars. The model of movements ensures that avatars re

main principally grouped in hotspots during time.

To generate movements, at each step, each avatar is in

one of the following states: (H)alted, the avatar does not

move at this step; (E)xploring, the avatar is exploring the

map; (T)raveling, the avatar is moving to a new location on

the map. Each state has its own maximal speed value Smax.
Once Smax is reached, the acceleration drops. Otherwise, we

consider that an avatar has a constant application-defined

acceleration during the movement (states E and T). The

acceleration value is a parameter of the model generator. As

an avatar moves from a position to another, at each step, its

speed increases. When an avatar reaches its final position,

it suddenly stops and its state machine enters the H state.

The trace generator is configurable and takes the follow-

175 DSN 20lO: Legtchenko et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

ing parameters: 1) the number of avatars; 2) the size of

the map; 3) the number of hotspots and the radius of each

hotspot; 4) the proportion of avatars inside hotspots; 5) the

maximal speeds for states E and T; 6) the acceleration; 7)
the probabilities associated to transitions between the dif

ferent states.

Generation of the initial map. During the first phase,

the trace generator randomly chooses the positions of the

hotspots. Then, for each avatar, the generator decides if it

should be placed in a hotspot accordingly to the proportion

of avatars inside hotspots. If this is not the case, the avatar

is randomly placed on the map using a uniform probabil

ity law (it can therefore be placed in a hotspot or in the

desert). Otherwise, the generator randomly chooses one of

the hotspots using a uniform law and computes the polar

coordinates of the avatar from the center of the hotspot: the

angle is chosen using a uniform law and the distance to the

hotspot center with a Zipf's law [34]. The Zipf's law en

sures a very high density in the center of the hotspot, com

parable to the ones observed in both NVEs and real life.

Initially, all avatars are in the state H.

HtaH: pl

Figure 2. State machine and transition probabilities.

Generation of movements. During the second phase,

the trace generator moves the avatars step by step. The fig

ure 2 presents the automaton used for state transition with

the associated state transition probabilities. At each step,

the generator reevaluates the state of all the avatars thanks

to the state transition probabilities:

State H: If an avatar enters or stays in the state H (tran

sitions TtoH, EtoH and HtoH), the avatar does not move

at this step.

State E: If the avatar takes one of the transitions HtoE,
TtoE or EtoE2, the avatar picks a new position on the map.

To ensure that the density remains globally the same during

the trace, if the avatar is in a hotspot its new position is cho

sen inside the same hotspot with the Zipf's law, otherwise,

its position is chosen randomly on the map. If the avatar is

in the state E and takes the transition EtoE 1 it continues its

movement to its new position. We differentiate the two tran

sitions EtoEI and EtoE2 to ensure that an avatar regularly

978-1-4244-7501-8/10/$26.00 ©2010 IEEE

changes its direction and therefore has a chaotic movement.

State T: If the avatar enters in state T (HtoT or EtoT),
the avatar picks a new position on the map by using the

initial placement function to ensure that the density remains

roughly the same. It also begins its movement to its new po

sition. If it takes the transition TtoT, it continues its move

ment to its new position.

Evaluation of generated traces. Due to lack of space,

the evaluation of the trace generator is presented in [18]. It

compares generated traces to real traces collected by La and

Michiardi [17] from Second Life. These real traces have

been collected by crawling two Second Life islands called

"Dance" and "Isle Of View" which were chosen to be rep

resentative of the Second Life players' behavior. The eval

uation uses metrics that do not depend neither on the size of

the map nor of the avatars' number.

The results show that the traces generated from this

model are similar to the real ones.

5. Evaluation

This section presents a detailed evaluation of Blue Ba

nana. The evaluation compares Solipsis with and without
Blue Banana to measure the performance of the anticipa

tion mechanism. Both Solipsis and Blue Banana are imple

mented on top of the PeerSim discrete event simulator [14].

5.1. Description of the simulations

The PeerSim simulator is a widespread platform for test

ing distributed applications [1, 10, 13]. It has been designed

for scalability and is simple to use. It is composed of two

simulation engines, a simplified (cycle-based) one and an

event driven one. The simulation is realized with the event

driven engine which performs more accurate simulations.

At the beginning of the simulation, the initial map of the

trace (described in Section 4) is injected in the simulator.

The simulator, based on this map, initializes the Solipsis

overlay and then waits until every node respects the two

Solipsis rules (see Section 3.1). After the convergence, mo

bility of avatars is simulated by injecting the rest of the

trace. Evaluating Blue Banana with the real traces is irrele

vant because the benefits are not significant with small-scale

NVEs.

The parameters of the simulations are: 1) 1000 avatars,

2) A surface equivalent to 9 Second Life maps, 3) 3 high

density hotspots, 4) Hotspot density: 9549 avatars per

square kilometer (24720 avatars per sq. mile), which is,

for example, just below the density of New York City, 5)
The constant acceleration of avatars during movement is 5
m.s-2, 6) Nodes have an ADSL connection with a IOMbit

download and IMbit upload bandwidth, 7) The network la

tency between nodes is randomly set between 80 and 120

176 DSN 2010: Legtchenko et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

ms with an uniform distribution. Notice that with the con

stant acceleration, the maximum speed of avatars between
hotspots can reach the speed of a helicopter (100 m.s). This

speed may seem exaggerated, but MMOG participants need

to be provided with a fast mean of transportation3. More

over, the constant acceleration is 5 m.s-2, so the avatars do

not instantly reach the maximal speed. In fact this speed is

only reached in the worst case: when an avatar moves from

a hotspot in a corner of the map to a hotspot in the opposite

corner. The actual speed of most avatars is much lower: Fig

ure 3.a shows that 99% of overall movements have a length

inferior to 4Om, which means that the speed of 99% of the

avatars does not exceed 20 m.s.

5.2. Evaluation metrics

To highlight the qualities and the drawbacks of Blue Ba

nana, each experiment depends on the mobility rate of the

NVE: the proportion of avatars that have a straight and high

speed movement, i.e, that are in the state (T)raveling of

the mobility state machine (see Section 4). Indeed, these

avatars are the ones that need to quickly download data

to maintain their continuously and rapidly changing play

ing areas. The higher the NVE mobility rate is, the faster

the underlying overlay has to adapt, which means that high

mobility rates are likely to cause a lot of transient fail

ures. The mobility model, tweaked to be close to Second

Life traces (see Section 4), has a mobility rate of approx

imatively 55%0 (which means that the average number of

avatars simultaneously in the state T is around 55 per thou

sand at each moment of the simulation). Therefore, we vary

the mobility rate between 5%0 and 110%0 during the eval

uation. To achieve that, we vary the probabilities of the

transitions that lead to the T state of the trace generator.

The following metrics are used to evaluate mobility re

silience of Blue Banana:

• Violation of Solipsis fundamental rules. The failure

of the global connectivity rule or the local awareness rule

leads to transient failures (see the description of Solipsis in

Section 3.1).

• Knowledge of nodes ahead of the movement. This

metric measures, for fast-moving avatars (in state t of the

Blue Banana state machine), the average knowledge time

of elders: for how long time, in average, a node knows an

other node ahead of its movement. The number of nodes

known ahead of the movement is also measured. These

measures are important because the NVE application con

stantly needs to download new information about the play

ing area of a moving avatar. These measures therefore give

an indication of the quantity of information an avatar can

retrieve about its future playing area before reaching it.

3For example, Second Life players are able to fly.

978-1-4244-7501-8/10/$26.00 ©201O IEEE

• Exchanged messages count. This metric measures the

impact of Blue Banana on the network. The measures only

count the number of messages because Blue Banana mes

sages and Solipsis maintainance messages are small: they

only contain the coordinates of the prefetched/maintained

nodes (a Solipsis identifier, geographic coordinates of its

avatar and the IP address of the node).

The evaluation of the second metric only takes in ac

count the subset of avatars in state t of the Blue Banana

state machine. This specificity is due to the fact that Blue

Banana sends prefetching requests only when an avatar is

in this state. Yet, the proportion of that subset of avatars

is extremely small: at maximal mobility rate, there are si

multaneously only about 110 avatars in the state t for 1000
avatars. The avatars that are not moving do not often change

their playing area, thus knowing their elders for a long time.

If they were all considered for that metric, the mean values

would have been skewed, and the benefits of Blue Banana

would have been difficult to evaluate.

5.3. Result analysis

Figure 3 presents the evaluation for the three metrics for

Blue Banana (solid lines) compared with Solipsis (dashed

lines). The most interesting results for a realistic mobil

ity rate of 55%0 shows that Blue Banana (i) decreases the

number of transient failures by 20%, (ii) increases the av

erage knowledge time of forthcoming elders by 270% and

(iii) generates a network overhead of only 2%. This positive

results are analyzed in detail in the rest of this section.

Violation of Solipsis rules. The first metric evalua

tion presented in Figure 3.a shows that the Blue Banana

prefetching technique helps the Solipsis overlay to adapt

itself on time, significantly reducing the number of viola

tions of the Solipsis fundamental rules. With a mobility rate

lower than 80%0, Blue Banana decreases the number of tran

sient failures. For the mobility rate observed in real traces

(55%0), the Blue Banana algorithm decreases the number

of transient failures by 20%. For low mobility rates, Blue

Banana helps avoiding approximatively half of the rule

violations. As the mobility rate increases, the efficiency of

Blue Banana decreases. This is due to the fact that when

the mobility rate increases, the avatars of the prefetched

nodes are more likely to move fast and thus to become use

less when the avatar reaches their supposed position. For

very dynamic NVEs (mobility rate greater than 80%0), Blue

Banana stops helping the overlay. Most of the prefetched

neighbors are also moving and when they are injected in

the regular neighbor set of Solipsis they are useless, forcing

Solipsis to find new interesting neighbors. However, this

kind of dynamicity is far above the mobility rates observed

in real Second Life traces (mobility rate equals 55%0). To

177 DSN 2010: Legtchenko et al.

2010 IEEE/IFIP International Conference on Dependable Systems & Networks (DSN)

3000

2800

2600

2400

2200

2000

1800

1600

1400

" -
-;;
.§.
ID
.� "
ID '" "
2!
•
0
c '"

500 230

450
220

210
400 200

00
350 ID 190 '" '" 180 00
300 00

170 ID
:>:

250 160

200
150

1200

150

140 - - - - - - - - - - -
1000 130

20 40 60 80 100

Mobility rate (per thousand)

120 20 40 60 80 100 120

Mobility rate (per thousand)

20 40 60 80 100 120

Mobility rate (per thousand)

(a) (b) (c)

Figure 3. Dashed lines: Solipsis, Solid lines: Blue Banana. (a) Average number of overlay transient failures per second (lower is

better), (b) Average knowledge time of nodes ahead of movement (higher is better), (c) Average number of messages sent per node

per second (lower is better).

summarize, this first experiment shows that Blue Banana

decreases the number of transient failures and suggests that

the mobility of prefetched nodes should be taken into ac

count when responding to a prefetching request.

Knowledge time of forthcoming elders. The second

metric evaluation presented in Figure 3.b shows that, for

fast moving avatars, the knowledge of nodes ahead of the

movement is far greater with Blue Banana than with the ba

sic Soli psis overlay: a node knows every neighbor ahead

of its movement between 2 and 3 times longer than with

Solipsis (2.7 times longer for a real-trace-like mobility rate

of 55%0). Moreover, subsidiary measures show that with

Blue Banana, the node of an avatar in state T is in average

aware of 7.5 nodes located ahead of its movement. On the

other hand, a basic Solipsis node is in average only aware of

one node ahead of its movement. These two results permit

the evaluation of the average quantity of information that

a fast-moving avatar can download ahead of its movement.

By using Blue Banana with the Second-Life-like mobility

rate of 55%0, a node has time to download up to about 430

KBytes of information (with a lOdownilup ADSL connec

tion) about its playing area, versus only 20 KBytes without

prefetching. This means that the NVE application can dis

play substantially more information (about 20 times more)

about the playing area on time, thus clearly limiting applica

tive transient failures.

Network overhead. The last important result of the ex

perimental evaluation is the low network overhead induced

by Blue Banana. Figure 3.c shows that this overhead is

around five messages per node per second, which is almost

negligible compared to the number of messages generated

by the Solipsis overlay. Indeed, a basic Solipsis node sends,

depending on the mobility of its neighbors, between 130

and 230 maintenance messages per second, thus the net

work overhead of Blue Banana is approximatively between

1 and 3%. Moreover, these are maintenance messages, with

a small, constant size (see the Exchanged messages count

978-1-4244-7501-8/101$26.00 ©2010 IEEE

metric description). This overhead is low thanks to the fact

that the prediction technique of Blue Banana is sufficiently

accurate. In most of the cases, the prefetching requests pro

vide information about nodes that will be requested in the

near future: as these nodes are actually needed, the overlay

simply takes them in the pre fetched set, without emitting

additional messages (see Section 3.2). The little overhead

comes then from the wrongly prefetched nodes that are not

reused by the overlay. In addition to that, the update interval

for rapidly moving avatars is doubled (see also Section 3.2),

which also lowers the overhead. This optimization explains

that beyond a mobility rate of 80%0, the basic Solipsis over

lay generates more messages than Blue Banana: as the mo

bility rate grows, the proportion of rapidly moving avatars

increases. Therefore, the number of economized messages

due to the relaxed updating proportionally grows.

6. Related work

Un-adaptable overlays. Considerable research effort

has been conducted in the last decade in the field of peer

to-peer overlay networks. However, most of existing over

lays do not take specific application needs into account at

all [20,22,27,28]. Therefore, building a distributed NVE

on top of such an overlay is a hard task: the nodes sharing

a same playing area (or a part of a playing area) have no

reason to be close in the overlay, and yet they need to com

municate a lot because they share a consequent common

knowledge. The main reason for this is historical: these

overlays have been designed for one specific target appli

cation: large-scale read-only file-sharing. Therefore, they

are supposed to build a graph that connects all the nodes to

gether and permits efficient search operations. Blue Banana

anticipation algorithm is not compatible with these over

lays.

Overlays reacting to application needs. Recent works

have focused on dynamically adapting the overlay to better

178 DSN 2010: Legtchenko et aL

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

satisfy the application needs. For instance, semantic over

lays [32] build links between semantically close peers. This

allows semantically close peers to be close in the overlay,

which is a good point because they are likely to interact,

for instance to exchange data. Few recent overlays are able

to gracefully adapt themselves to the applications [21, 33]:
they react to the application evolution, generally by detect

ing communication between nodes. Solipsis [15] is part of

this class of overlays. However, if the application is too dy

namic, the reaction of the overlay may come too late which

may lead to inconsistencies or at least inefficiencies at the

application level. These works differ from ours because

the overlay adapts itself by reacting to the detected applica

tion needs, while we propose to predict and anticipate those

needs by adapting the overlay in advance. Nevertheless, our

work can easily be implemented on top of any of these over

lays.

Overlays for distributed MMOGs. Last years, some

research efforts have focused on building overlays tailored

for NVEs, but without anticipating application needs. The

constraints imposed by the NVE applications are extremely

hard to sustain. In particular, the overlay has to be very re

sponsive in order to ensure mobility resilience. Varvello

et al. implemented an NVE over a distributed hash ta

ble [31]. The authors show that the responsiveness of the

DHT is acceptable with light virtual mobility but not if vir

tual mobility increases. In this case, implementing a re

verse binary trie on top of a DHT could help to lower the

latency [30]. Colyseus [6], a decentralized architecture to

support MMOGs with tight latency constraints (First Per

son Shooters) is also based on a DHT for virtual object

discovery. At storage level, Colyseus prefetches objects.

However, this prefetching mechanism is built on top of the

DHT's overlay. The overlay itself does not adapt to bring

closer the elders from which the object prefetching is done.

Blue Banana's main goal is precisely to help an adaptive

overlay to support such prefetching mechanisms. Donny

brook, the sequel of Colyseus, takes advantage of elabo

rated approximations and dead reckoning techniques to de

crease the network load [7].

Another approach uses flexible peer-to-peer overlays. In

such systems, the logical neighborhood of a node in the

overlay is determined by the virtual neighborhood of its

avatar in the NVE: for each node, the overlay tries to keep

the elders of the playing area in the node's neighbor set.

As that avatar moves in the virtual environment, the logical

neighborhood of its node evolves: the overlay adapts itself

in reaction to the application. Thanks to that, the logical

neighborhood of every node in the overlay will eventually

be adapted to the virtual neighborhood of its avatar: each

node will know the elders of its playing area. Several over

lays of that kind have been designed in the past few years:

this is the case for Solipsis [15] on which we have exper-

978-1-4244-7501-8/10/$26.00 ©201O IEEE

imented Blue Banana, and of Voronoi tessellations-based

overlays like VoroNetlRayNet or VON [3, 4, 12].
However, to our knowledge, none of these overlays an

ticipate the application needs. There again, our algorithm

can be implemented on top of any of these overlays to allow

them to anticipate application needs and adapt in advance.

7. Conclusions and perspectives

This paper presents a study of avatar mobility in exist

ing NVEs and proposes a model that provides the ability to

generate arbitrary-scale traces. We then show that even if

the overlay tries to remain adapted to the application by re

acting to avatar movement, the NVE suffers many transient

failures due to the lateness of the overlay adaptation. Thus,

we propose Blue Banana: a mechanism that predicts avatar

movement and anticipates it by adapting the overlay in ad

vance. We show that our anticipation mechanism cuts down

by more than 20% the number of transient failures affect

ing the state-of-the-art Solipsis overlay without degrading

its network performance. Moreover, we show that our an

ticipation mechanism permits to load 20 times more data

about playing areas in case of mobility. We believe that our

study can be used in the design of future MMOG overlays.

As a perspective, we plan to study more accurate antic

ipation mechanisms, and particularly to explore the possi

bility to anticipate the relative movement between avatars,

independently from their position. This study should lower

the number of transient failures, even in case of high mobil

ity rates.

References

179

[1] M. Agosti, F. Zanichelli, M. Amoretti, and G. Conte.

P2pam: a framework for peer-to-peer architectural model

ing based on peersim. In S. Molnar, J. Heath, O. Dalle, and

G. A. Wainer, editors, SimuTools, page 22. ICST, 2008.

[2] R. T. Alves and L. Roque. Because players pay: The busi

ness model influence on mmog design. In B. Akira, editor,

Situated Play: Proc. of the 2007 Digital Games Research

Association Conference, pages 658-663, Tokyo, September

2007. The University of Tokyo.

[3] O. Beaumont, A.-M. Kermarrec, L. Marchal, and E. Riviere.

Voronet: A scalable object network based on voronoi tessel

lations. In 21th International Parallel and Distributed Proc.

Symposium (IPDPS 2007), Long Beach, USA, pages 26-30.

IEEE, March 2007.

[4] O. Beaumont, A.-M. Kermarrec, and E. Riviere. Peer to

peer multidimensional overlays: Approximating complex

structures. In E. Tovar, P. Tsigas, and H. Fouchal, editors,

OPODIS, volume 4878 of LNCS, pages 315-328. Springer,

2007.

[5] T. Beigbeder, R. Coughlan, C. Lusher, J. Plunkett, E. Agu,

and M. Claypool. The effects of loss and latency on user

DSN 2010: Legtchenko et al.

2010 IEEEIIFIP International Conference on Dependable Systems & Networks (DSN)

performance in unreal tournament 2003. In W. chang Feng,

editor, NETGAMES, pages 144--151. ACM, 2004.

[6] A. Bharambe, J. Pang, and S. Seshan. Colyseus: a dis

tributed architecture for online multiplayer games. In

NSDI'06: Proceedings of the 3rd conference on Networked

Systems Design & Implementation, pages 12-12, Berkeley,

CA, USA, 2006. USENIX Association.

[7] A. R. Bharambe, J. R. Douceur, J. R. Lorch, T. Moscibroda,

J. Pang, S. Seshan, and X. Zhuang. Donnybrook: enabling

large-scale, high-speed, peer-to-peer games. In V. Bahl,

D. Wetherall, S. Savage, and I. Stoica, editors, SIGCOMM,

pages 389-400. ACM, 2008.

[8] R. Brunet. Lignes de force de l'espace Europeen. Mappe

monde, 66:14--19, 2002.

[9] A. Chechkin, V. Gonchar, J. Klafter, and R. Metzler. Fun

damentals of levy flight processes. Advances in Chemical

Physics, 133B:439-496, 2006.

[10] C. Comito, S. Patarin, and D. Talia. A semantic overlay net

work for p2p schema-based data integration. In P. Bellav

ista, C.-M. Chen, A. Corradi, and M. Daneshmand, editors,

ISCC, pages 88-94. IEEE Computer Society, 2006.

[11] D. Frey, J. Royan, R. Piegay, A. Kermarrec, E. Anceaume,

and F. L. Fessant. Solipsis: A decentralized architecture for

virtual environments. In The Second International Work

shop on Massively Multiuser Virtual Environments at IEEE

Virtual Reality (MMVE' 09), Lafayette, USA, March 2008.

[12] S.-Y. Hu, J.-F. Chen, and T.-H. Chen. Von: A scalable peer

to-peer network for virtual environments. IEEE Network,

20(4):22-31, Jully 2006.

[13] C. Jacob, M. L. Pilat, P. J. Bentley, and J. Timmis, editors.

Artificial Immune Systems: 4th International Conference,

ICARIS 2005, Banff, Alberta, Canada, August 14-17, 2005"

volume 3627 of LNCS. Springer, 2005.

[14] M. Je1asity, A. Montresor, G. P. Jesi, and S. Vou1garis. The

Peersim simulator. http://peersim.sourceforge . net!.
[15] J. Keller and G. Simon. Solipsis: A massively multi

participant virtual world. In H. R. Arabnia and Y. Mun,

editors, PDPTA, pages 262-268. CSREA Press, June 2003.

[16] S. Kumar, J. Chhugani, C. Kim, D. Kim, A. Nguyen,

P. Dubey, C. Bienia, and Y. Kim. Second life and the new

generation of virtual worlds. Computer, 41(9):46-53, 2008.

[17] C.-A. La and P. Michiardi. Characterizing user mobility in

Second Life. In SIGCOMM 2008, ACM Workshop on Online

Social Networks, August 18-22, 2008, Seattle, USA, August

2008.

[18] S. Legtchenko, S. Monnet, and G. Thomas. Blue Banana:

resilience to avatar mobility in distributed MMOGs. Tech

nical Report 7149, INRIA, December 2009.

[19] H. Liang, I. Tay, M. F. Neo, W. T. Ooi, and

M. Motani. Avatar mobility in networked virtual environ

ments: Measurements, analysis, and implications. CoRR,

abs/0807.2328,2008.

[20] J. Liang, R. Kumar, and K. Ross. The kazaa overlay: A mea

surement study. In Proc. of the 19th IEEE Annual Computer

Communications Workshop, 2004.

[21] S. Monnet, R. Morales, G. Antoniu, and I. Gupta. Move:

Design of an application-malleable overlay. In Symposium

on Reliable Distributed Systems 2006 (SRDS 2006), pages

355-364, Leeds, UK, October 2006.

978-1-4244-7501-8/10/$26.00 ©201O IEEE

[22] A. Oram. Peer-to-Peer: Harnessing the Power of Disruptive

Technologies, chapter Gnutella, pages 94--122. O'Reilly,

May 2001.

[23] J. Pang, F. Uyeda, and J. R. Lorch. Scaling peer-to-peer

games in low-bandwidth environments. In IPTPS '07: Proc.

of the 6th International Workshop on Peer-to-Peer Systems,

Feb. 2007.

[24] L. Pantel and L. C. Wolf. On the suitability of dead reckon

ing schemes for games. In L. C. Wolf, editor, NETGAMES,

pages 79-84. ACM, 2002.

[25] D. Pittman and C. GauthierDickey. A measurement study of

virtual populations in massively multi player online games.

In NetGames '07: Proc. of the 6th ACM SIGCOMM work

shop on Network and system support for games, pages 25-

30, New York, NY, USA, 2007. ACM.

[26] I. Rhee, M. Shin, S. Hong, K. Lee, and S. Chong. On the

levy-walk nature of human mobility. In INFOCOM, pages

924-932. IEEE, 2008.

[27] A. I. T. Rowstron and P. Druschel. Pastry: Scalable, De

centralized Object Location, and Routing for Large-Scale

Peer-to-Peer Systems. In Proceedings of the 18th IFIPIACM

International Conference on Distributed Systems Platforms

(Middleware '01), volume 2218 of LNCS, pages 329-250,

Heidelberg, Germany, November 2001. Springer.

[28] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal

akrishnan. Chord: A scalable peer-to-peer lookup service

for Internet applications. In Proceedings of the Sympo

sium on Communications Architectures and Protocols (SIG

COMM 'OJ), pages 149-160, San Diego, USA, August

2001.

[29] D. Thalmann, N. Magnenat-Thalmann, and I. S. Pandzic.

Avatars in Networked Virtual Environments. John Wiley &
Sons, Inc., New York, NY, USA, 1999.

[30] M. V arvello, C. Diot, and E. W. Biersack. A walkable

kademlia network for virtual worlds. In Infocom 2009, 28th

IEEE Conference on Computer Communications, April 19-

25, 2009, Rio de Janeiro, Brazil, 04 2009.

[31] M. V arvello, C. Diot, and E. W. Biersack. P2P Second Life:

experimental validation using Kad. In Infocom 2009, 28th

IEEE Conference on Computer Communications, pages 19-

25, Rio de Janeiro, Brazil, April 2009.

[32] S. Voulgaris, A. M. Kermarrec, L. Massoulie, and M. van

Steen. Exploiting semantic proximity in peer-to-peer con

tent searching. In 10th International Workshop on Future

Trends in Distributed Computing Systems (FTDCS 2004),

Suzhou, China, May 2004.

[33] S. Voulgaris, E. Riviere, A.-M. Kermarrec, and M. van

Steen. Sub-2-sub: Self-organizing content-based publish

and subscribe for dynamic and large scale collborative net

works. In Proceedings of the 5th International Workshop on

Peer-to-Peer Systems (IPTPS), Santa Barbara, USA, Febru

ary 2006.

[34] G. K. Zipf. Human Behaviour and the Principle of Least

Effort. Addison-Wesley, Cambridge MA, 1949.

[35] Second Life. http://secondlife.com/ .
[36] World of War craft. http://www.worldofwarcraft.com/.

180 DSN 2010: Legtchenko et al.

