
Agile Net-centric Systems
Using DEVS Unified Process

Saurabh Mittal

DUNIP Technologies
PO Box 26218, Tempe AZ 85285 USA

saurabh.mittal@duniptechnologies.com

http://www.duniptechnologies.com

Abstract. Industry and government are spending extensively to tran-
sition their business processes and governance to Service Oriented Ar-
chitecture (SOA) implementations for efficient information reuse, inte-
gration, collaboration and cost-sharing. SOA enables orchestrating web
services to execute such processes using Business Process Execution Lan-
guage (BPEL). Business Process Modeling Notation (BPMN) is another
method that outputs BPEL for deployment. As an example, the Depart-
ment of Defenses (DoD) grand vision is the Global Information Grid that
is founded on SOA infrastructure. The SOA infrastructure is to be based
on a small set of capabilities known as Core Enterprise Services (CES)
whose use is mandated to enable interoperability and increased infor-
mation sharing within and across Mission Areas, such as the Warfighter
domain, Business processes, Defense Intelligence, and so on. Net-Centric
Enterprise Services (NCES) is DoDs implementation of its Data Strat-
egy over the GIG. However, composing/orchestrating web services in a
process workflow (a.k.a Mission thread in the DoD domain) is currently
bounded by the BPMN/BPEL technologies. With so much resting on
SOA, their reliability and analysis must be rigorously considered. The
BPMN/BPEL combination neither has any grounding in system theoret-
ical principles nor can it be used in designing net-centric systems based
on SOA in its current state. In this work we present a system theoret-
ical framework using the DEVS Unified Process (DUNIP) that allows
bifurcated model-continuity based life cycle process for simultaneous de-
velopment of the executable system using web-services (including the
model) and the automated generation of Test-suite for Verification and
Validation. The entire net-centric system, which includes artifacts like
the model, the simulation and the real system, is deployed on SOA. The
simulation system is made possible on a recently developed DEVS-based
service framework called DEVS/SOA. We will show the design of DEVS-
agents based on WSDLs and how they are composed towards the systems
specification. We will demonstrate how agility is an inherent character-
istic of such a system founded on DUNIP. We will also present the case
of Department of Defense Architecture Framework (DoDAF) and how
agility can be applied to the design and evaluation process.

Keywords: DEVS, DUNIP, DoDAF, SOA, WSWF, NCES, GIG

2 Saurabh Mittal

1 Introduction

Industry and government are spending extensively to transition their business
processes and governance to Service Oriented Architecture implementations for
efficient information reuse, integration, collaboration and cost-sharing. Service
Oriented Architecture (SOA) enables orchestrating web services to execute such
processes using Business Process Execution Language (BPEL). Business Process
Modeling Notation (BPMN) is another method that outputs BPEL for deploy-
ment. As an example, the Department of Defense’s (DoD grand vision is the
Global Information Grid that is founded on SOA infrastructure. As illustrated
in Figure 1, the SOA infrastructure is to be based on a small set of capabilities
known as Core Enterprise Services (CES) whose use is mandated to enable inter-
operability and increased information sharing within and across Mission Areas,
such as the Warfighter domain, Business processes, Defense Intelligence, and so
on) [16]. Net-Centric Enterprise Services (NCES) [30] is DoD’s implementation
of its Data Strategy over the GIG. NCES provide SOA infrastructure capabilities
such as service and metadata registries, service discovery, user authentication,
machine-to-machine messaging, service management, orchestration, and service
governance.

Fig. 1. Core enterprise services in Global Information Grid [16]

Agile Net-centric Systems Using DUNIP 3

However, composing/orchestrating web services in a process workflow (a.k.a
Mission thread in the DoD domain) is currently bounded by the BPMN/BPEL
technologies. Moreover, there are few methodologies to support such composi-
tion/orchestration. Further, BPMN and BPEL are not integrated in a robust
manner and different proprietary BPMN diagrams from commercial tools fail
to deliver the same BPEL translations. Today, these two technologies are by
far the only viable means whereby executives and managers can devise process
flows without touching the technological aspects. With so much resting on SOA,
their reliability and analysis must be rigorously considered. The BPMN/BPEL
combination neither has any grounding in system theoretical principles nor can
it be used in designing net-centric systems based on SOA in its current state.

In this research work we provide a proof of concept of how Discrete Event
System Specification (DEVS) Formalism can deliver another process work flow
mechanism to compose web services in a SOA. A DEVS System is composed
of events and components/systems that produce and consume those events. An
event is any change in state that merits attention from self/other systems. These
systems can be either a simple atomic black box that perform a single task only
or they may be a complex system of systems that receive the event and delegate
it to one of its sub-components. We will employ DEVS Formalism to a net-
centric system deployed using Web Services. Such an architecture where events
work along with web services is aptly termed as Service Oriented Architecture
(SOA). During this process of designing the net-centric system, we will propose
Web Service Work Flow (WSWF) formalism and show how it is executed on
the recently developed DEVS/SOA [28] distributed modeling and simulation
framework.

In addition to supporting SOA application development, the framework en-
ables verification and validation testing of application. We will also describe
how WSWF can be mapped to high level system descriptive frameworks like
Department of Defense Architecture Framework (DoDAF) [9],[10],[11], and Sys-
tem Entity Structure (SES). We will demonstrate the execution of WSWF in
a complete case-study in which a workflow is composed and executed using
DEVS/SOA framework.

Finally, this paper will establish that the DEVS Unified Process inherently
is agile and that when deployed on SOA makes it a truly interoperable and
testable framework. The paper is organized as follows. Section 2 presents the re-
lated technologies. Section 3 describes the underlying technologies that include
DEVS, DUNIP, Web Services, Abstract DEVS Service Agent, and DEVS/SOA
framework. Section 4 presents layered architecture of Agent-based Test Instru-
mentation System on/using Global Information Grid using SOA (GIG/SOA).
Section 5 deals with Abstract DEVS Service wrapper in detail and also dis-
cusses how statistics gathering is integrated with the wrapper design. Section 6
presents the workflow composition and how high-level specifications, as specified
by frameworks like DoDAF, can be reduced to WSWF formalism. It is discussed
using ontology based System Entity Structure (SES) framework that is targeted
to modeling, simulation, systems design and engineering. Section 7 presents a

4 Saurabh Mittal

complete case study demonstrating the usage of WSWF. Section 8 presents some
ideas on agility inherent in the DEVS Unified Process. Finally, Section 9 lists
conclusions and future work.

2 Related Technologies

In 2003 there were more than 10 recognized groups defining standards for BPM
related activities. 7 of these bodies were working on modeling definitions so its
no wonder that the whole picture got very confused [31]. Fortunately there has
been a lot of consolidation, and currently only 3 key standards to really take
notice:

1. BPMN

2. XPDL

3. BPEL

The Business Process Modeling Notation (BPMN) is a standardized graph-
ical notation for graphically representing business processes workflows. BPMNs
primary goal is to provide a standard notation that is readily understandable
by all business stakeholders. Stakeholders in this definition include business an-
alysts, technical developers and business managers. BPEL is an ”execution lan-
guage” the goal of which is to enable definition of web service orchestrations.
Ultimately, BPEL is all about bits and bytes being moved from place to place
and manipulated. XPDL is described not an executable programming language
like BPEL, but specifically a process design format that literally represents the
”drawing” of the process definition.

XPDL is effectively the file format or ”serialization” of BPMN. More gener-
ally, it can also support any design method or process model that uses the XPDL
meta-model. XPDL is a proven format for process design interchange, and it is
the most practical standard for establishing a Process Design Ecosystem. Sum-
marizing, currently there is no popular means other than BPMN/BPEL to design
a web service workflow orchestration.

3 DEVS Unified Process with DEVS/SOA

3.1 DEVS

Discrete Event System Specification (DEVS) [39] is a formalism, which provides
a means of specifying the components of a system in a discrete event simulation.
In DEVS formalism, one must specify Basic Models and how these models are
connected together. These basic models are called Atomic Models (Figure 2) and
larger models which are obtained by connecting these atomic blocks in meaning-
ful fashion are called Coupled Models (Figure 3). Each of these atomic models
has inports (to receive external events), outports (to send events), set of state

Agile Net-centric Systems Using DUNIP 5

variables, internal transition, external transition, and time advance functions.
Mathematically it is represented as 8-tuple system:

M =< X,S, Y, δint, δext, δcon, λ, ta >

where

X is the set of input values

S is the set of states

Y is the set of output values

δint : S → S is the internal transition function

δext : Q×Xb → S is the external transition function,

where Xbis a set of bags over elements in X,Q is the total state set

δcon : S ×Xb → S is the confluent transition function,

subject to δcon(s, φ) = δint(s)

λ : S → Yb is the output function

ta : S → R(0+,inf) is the time advance function

Fig. 2. Hierarchical components at two levels

The models description (implementation) uses (or discards) the message in
the event to do the computation and delivers an output message on the outport
and makes a state transition. A DEVS-coupled model designates how atomic
models can be coupled together and how they interact with each other to form a
complex model. The coupled model can be employed as a component in a larger
coupled model and can construct complex models in a hierarchical way. The
specification provides component and coupling information. The coupled DEVS
model is defined as follows.

6 Saurabh Mittal

Fig. 3. Hierarchical components for multi-level systems

M =< X,Y,D,Mij , Ij , Zij >

where

X is a set of inputs

Y is a set of outputs

D is a set of DEVS component names

for each i ∈ D,
Mi is a DEVS component model

Ii is the set of influences for I

for each j ∈ Ii,
Zij is the i-to-j output translation function.

A Java-based implementation of DEVS formalism, DEVSJAVA [40], can be
used to implement these atomic or coupled models. DEVS formalism consists of
models, the simulator and the Experimental Frame as show in Figure 4. We will
focus our attention to these two types of models i.e. atomic and coupled.

3.2 Web Services and Interoperability using XML

The Service oriented Architecture (SOA) framework is a framework consisting of
various W3C standards, in which various computational components are made
available as services that interact in an automated manner achieving machine-
to-machine interoperable interaction over the network. The interface is specified
using Web Service Description language (WSDL) [38] that contains information

Agile Net-centric Systems Using DUNIP 7

Fig. 4. DEVS separation of the model, the simulation and the Experimental Frame

about ports, message types, port types, and other relating information for bind-
ing two interactions. It is essentially a client server framework, wherein client
requests a service using a SOAP message that is transmitted via HTTP protocol
in the XML format. A Web service is published by any commercial vendor at a
specific URL is consumed/requested by another commercial application on the
Internet. It is designed specifically for machine-to-machine interaction. Both the
client and the server encapsulate their messages in SOAP wrappers.

The fundamental concept of web services is to integrate software application
as services. Web services allow the applications to communicate with other appli-
cations using open standards. To offer DEVS-based simulators as web services,
they must have the following standard technologies: communication protocol
(Simple Object Access Protocol, SOAP [35]), service description (Web Service
Description Language, WSDL), and service discovery (Universal Description Dis-
covery and Integration, UDDI).

3.3 An abstract DEVS Service Agent

As a crucial part of our workflow, we have designed an Abstract DEVS Ser-
vice Agent to link DEVS models with Web Services and to generate statistics
regarding remote method calls and response times.

Figure 5 depicts an illustrative example. Our proposed model consists of two
DEVS atomic models. The DEVS Web Service Consumer invokes the remote
operation provided by means of an external transition. When the operation is
processed, this atomic model calculates the round-trip-time (RTT) taken by such
operation and directs both the RTT and the received response from the Web
Service to the DEVS Logger atomic model. At the end of the simulation, the
DEVS Logger provides statistics such as operations executed successfully, the
RTT consumed per operation, etc.

The DEVS Web Service Consumer needs to be configured by means of: (a)
the URL of the Web Service, (b) name of the operations offered by the web
service, and (c) the parameters needed by these operations. This information

8 Saurabh Mittal

is specified in the WSDL document. In order to avoid to the user to extract
this information by hand, we have implemented a wrapper which automatically
generates the DEVS Web Service Consumer for a Web Service. Thus, given
a WSDL address, our framework is able to generate the corresponding DEVS
Service Agent. Details on how this wrapper is built are given in Section 5.

Fig. 5. Schematic showing the architecture of DEVS Agent Service Model

3.4 DEVS/SOA framework for Net-centric Modeling and
Simulation

DEVS Modeling Language (DEVSML) is a way of representing DEVS models in
the XML language [22]. The DEVSML is built on JAVAML [3], which is an XML
representation of JAVA. DEVSML takes its power from the underlying JAVAML
that is needed to specify the behavior logic of atomic and coupled models. The
DEVSML models are transformable to JAVA in both forward and reverse direc-
tions. It is an attempt to provide interoperability between various models and
create dynamic scenarios. The layered architecture of this capability is shown in
Figure 6. At the top is the application layer that contains model in DEVSJAVA
or DEVSML. The second layer is the DEVSML layer itself that provides seamless
integration, composition and dynamic scenario construction resulting in portable
models in DEVSML that are complete in every respect. These DEVSML models
can be ported to any remote location using the net-centric infrastructure and
be executed at any remote location. Another major advantage of such capabil-
ity is total simulator transparency. The simulation engine is totally transparent
to model execution over the net-centric infrastructure. The DEVSML model
description files in XML contains meta-data information about its compliance
with various simulation builds or versions to provide true interoperability be-
tween various simulator engine implementations. This has been achieved for at
least two independent simulation engines as they have an underlying DEVS pro-
tocol to adhere to. This has been made possible with the implementation of
a single atomic DTD and a single coupled DTD that validates the DEVSML
descriptions generated from these two implementations. Such run-time interop-
erability provides great advantage when models from different repositories are

Agile Net-centric Systems Using DUNIP 9

used to compose bigger coupled models using DEVSML seamless integration
capabilities. More details about the implementation can be seen at [22].

Fig. 6. Layered architecture of DEVSML towards transparent simulators in net-centric
domain

The DEVS/SOA framework [28] is analogous to other DEVS distributed sim-
ulation frameworks like DEVS/HLA, DEVS/RMI and DEVS/CORBA [13],[36],
[7],[17],[41]. The distinguishing mark of DEVS/SOA is that it uses SOA as the
network communication platform and XML as the middleware and thus acts as
a basis of interoperablity using XML [27]. Furthermore, it uses web-services as
the underlying technology to implement the DEVS simulation protocol.

The complete setup requires one or more servers that are capable of running
DEVS Simulation Service, as shown in Figure 7. The capability to run the simu-
lation service is provided by the server side design of DEVS Simulation protocol
supported by the latest DEVSJAVA Version 3.1 [1].

The numerous modes of DEVS model generation are beyond the scope of this
paper (the interested reader is referred to [24]. Once a DEVS model package is
developed, the next step is simulation as illustrated in Figure 7.The DEVS/SOA
client (Figure 8) takes the DEVS models package and through the dedicated
servers hosting DEVS simulation services, it performs the following operations:

– Upload the models to specific IP locations i.e. partitioning (Figure 9)
– Run-time compile at respective sites
– Simulate the coupled-model
– Receive the simulation output at clients end

10 Saurabh Mittal

Fig. 7. Execution of DEVS models using DEVS/SOA framework

Fig. 8. DEVS/SOA client hosting a distributed simulation

Fig. 9. Server assigned to models using manual model partitioning

Agile Net-centric Systems Using DUNIP 11

This section has laid the foundation of net-centric DEVS framework called
DEVS/SOA that allows deployment of DEVS models to specific IP addresses
and allows interoperability between DEVS models using DEVSML. It provides
a layered framework in which the models are transparent to their simulators. In
the next section we will see how the net-centric DEVS is applicable to testing of
Global Information Grid based on Service Oriented Architecture (GIG/SOA).
A sample movie of DEVS/SOA in action is available at [34].

3.5 DEVS Unified Process a.k.a DUNIP

This section describes the bifurcated Model-Continuity process [24] and how var-
ious elements like automated DEVS model generation, automated test-model
generation (and net-centric simulation over SOA are put together in the pro-
cess, resulting in DEVS Unified Process (DUNIP) [24],[12]. The DEVS Unified
Process (DUNIP) is built on the bifurcated Model-continuity based life-cycle
methodology. The design of simulation-test framework occurs in parallel with
the simulation-model of the system under design. The DUNIP process consists
of the following elements:

1. Automated DEVS Model Generation from various requirement specification
formats

2. Collaborative model development using DEVS Modeling Language (DE-
VSML)

3. Automated Generation of Test-suite from DEVS simulation model

4. Net-centric execution of model as well as test-suite over SOA

Considerable amount of effort has been spent in analyzing various forms
of requirement specifications, viz, state-based, Natural Language based, UML-
based, Rule-based, BPMN/BPEL-based and DoDAF-based, and the automated
processes which each one should employ to deliver DEVS hierarchical models
and DEVS state machines [24],[15]. Simulation execution today is more than
just model execution on a single machine. With Grid applications and col-
laborative computing the norm in industry as well as in scientific community,
a net-centric platform using XML as middleware results in an infrastructure
that supports distributed collaboration and model reuse. The infrastructure
provides for a platform-free specification language DEVS Modeling Language
(DEVSML) [22] and its net-centric execution using Service-Oriented Architec-
ture called DEVS/SOA [23]. Both the DEVSML and DEVS/SOA provide novel
approaches to integrate, collaborate and remotely execute models on SOA. This
infrastructure supports automated procedures for test-case generation leading
to test models.

Using XML as the system specifications in rule-based format, a tool known
as Automated Test Case Generator (ATC-Gen) was developed which facilitated
the automated development of test models [18],[42],[19]. DUNIP (Figure 10) can
be summarized as the sequence of the following steps:

12 Saurabh Mittal

1. Develop the requirement specifications in one of the chosen formats such as
BPMN, DoDAF, Natural Language Processing (NLP) based, UML based or
simply DEVS-based for those who understand the DEVS formalism.

2. Using the DEVS-based automated model generation process, generate the
DEVS atomic and coupled models from the requirement specifications using
XML

3. Validate the generated models using DEVS W3C atomic and coupled schemas
to make them net-ready capable for collaborative development, if needed.
This step is optional but must be executed if distributed model development
is needed. The validated models which are Platform Independent Models
(PIMs) in XML can participate in collaborative development using DE-
VSML.

4. From step 2, either the coupled model can be simulated using DEVS/SOA
or a test-suite can be generated based on the DEVS models.

5. The simulation can be executed on an isolated machine or in distributed
manner (using SOA middleware if the focus is net-centric execution). The
simulation can be executed in real-time as well as in logical time.

6. The test-suite generated from DEVS models can be executed in the same
manner as laid out in Step 5.

7. The results from Step 5 and Step 6 can be compared for verification and
validation process.

Fig. 10. The complete DEVS Unified Process

Agile Net-centric Systems Using DUNIP 13

4 Multi-layered Agent-based Test Instrumentation
System using GIG/SOA

A DEVS distributed federation is a DEVS coupled model whose components re-
side on different network nodes and whose coupling is implemented through mid-
dleware connectivity characteristic of the environment, e.g., SOAP for GIG/SOA,
The federation models are executed by DEVS simulator nodes that provide the
time and data exchange coordination as specified in the DEVS abstract simulator
protocol. The DEVS Agent Monitoring System or Test Instrumentation System
(TIS) is a DEVS coupled system that observes and evaluates the operation of the
DEVS coupled system model. The DEVS models used to observe other partici-
pants are the DEVS test-agents. The TIS should provide a minimally intrusive
test capability to support rigorous, ongoing, repeatable and consistent testing
and evaluation (T&E). Requirements for such a test implementation system in-
clude ability to

1. deploy agents to interface with SoS component systems in specified assign-
ments

2. enable agents to exchange information and coordinate their behaviors to
achieve specified experimental frame data processing

3. respond in real-time to queries for test results while testing is still in progress
4. provide real-time alerts when conditions are detected that would invalidate

results or otherwise indicate that intervention is required
5. centrally collect and process test results on demand, periodically, and/or at

termination of testing.
6. support consistent transfer and reuse of test cases/configurations from past

test events to future test events, enabling life-cycle tracking of SoS perfor-
mance.

7. enable rapid development of new test cases and configurations to keep up
with the reduced SoS development times expected to characterize the reusable
web

8. service-based development supported on the GIG/SOA.

Many of these requirements are not achievable with current manually-based
data collection and testing. Instrumentation and automation are needed to meet
these requirements. Net-centric Service Oriented Architecture (SOA) provides a
currently relevant technologically feasible realization of the concept. As discussed
earlier, the DEVS/SOA infrastructure enables DEVS models, and test agents in
particular, to be deployed to the network nodes of interest. [26],[43] provides
complete detail on how such observers can be autogenerated and be executed
using DEVS/SOA.

4.1 Deploying Test Agents over the GIG/SOA

Figure 11 depicts a logical formulation test federation that can observe a System
Under Test (SUT) to verify the message flow among components as derived from

14 Saurabh Mittal

information exchange requirements. In this context, a mission thread is a series
of activities executed by operational nodes. In playing out this thread, DEVS
test models are informed of the current activities (or see to detect their onset)
as well as the operational nodes that execute these messages. These test models
watch messages sent and received by the components that host the participating
operational nodes. The test models check whether such messages are the ones
that should be sent or received under the current function.

The test-agents are contained in DEVS Experimental Frames (EF) are im-
plemented as DEVS models, and distributed EFs are implemented as DEVS
models, or agents as we have called them, reside on network nodes. Such a fed-
eration, illustrated in Figure 12, consists of DEVS simulators executing on web
servers on the nodes exchanging messages and obeying time relationships un-
der the rules contained within their hosted DEVS models. This DEVS Agent
Monitoring System that contains DEVS models interacts with real world web
services, as we shall in Section 7 case study.

Fig. 11. Multi-layered Agent-based Test Instrumentation Framework

4.2 Implementation of Test Federations

A test federation observes an orchestration of web-services to verify the message
flow among participants adheres to information exchange requirements. A good
way to specify these requirements is through Department of Defense Architecture
Framework (DoDAF) that have specific documents (OV-3 and SV-6) to localize
these information exchanges [9]. These documents very well define the input
and output messages for the constituent system and operational components. As
derived from DoDAF inputs, a mission thread is a series of activities executed by
operational nodes and employing the information processing functions of web-
services. As discussed in [26],[43], test agents watch messages sent and received
by the services that host the participating operational nodes. Depending on

Agile Net-centric Systems Using DUNIP 15

the mode of testing, the test architecture may, or may not, have knowledge of
the driving mission thread under test. If thread knowledge is available, DEVS
test agents can be aware of the current activity of the operational nodes it is
observing. This enables it to focus more efficiently on a smaller set of messages
that are likely to provide test opportunities. A DEVS distributed federation is a
DEVS coupled model whose components reside on different network nodes and
whose coupling is implemented through middleware connectivity characteristic of
the environment, e.g., SOAP for GIG/SOA, The federation models are executed
by DEVS simulator nodes that provide the time and data exchange coordination
as specified in the DEVS abstract simulator protocol.

To help automate set-up of the test we use a capability to inter-covert be-
tween DEVS and XML. DEVSML allows distributing DEVS models in the form
of XML documents to remote nodes where they can be coupled with local ser-
vice components to compose a federation [23],[24]. The layered middleware ar-
chitecture capability is shown earlier in Figure 6. Such run-time interoperability
provides great advantage when models from different repositories are used to
compose models using DEVSML seamless integration capabilities. Finally, the
test federation is illustrated in Figure 12 where different models (federates) in
DEVSML collaborate for a simulation exercise over GIG/SOA.

Fig. 12. Protypical DEVS Test Federation

This section has laid out the framework on the creation and execution of
a DEVS-based test instrumentation system. More details on the TIS design
aspects can be seen in [26]. In the next section we will demonstrate how it can
be applied to web services framework.

16 Saurabh Mittal

5 Abstract DEVS Service Wrapper

This section will provide details about the role of DEVS interface with a live
web service. This is the most crucial step as it links a live web service with a
modeling and simulation framework. It is the seat of model-continuity [52] where
a DEVS atomic model performs the dual role of a model as well as a wrapper
for a real software application utilizing web services.

Web services are utilized using web service clients that are created by var-
ious open source and commercially available tools such as Eclipse Web Service
Toolkit (WST), Netbeans IDE, Websphere etc.. All of them use the WSDL as
the input to generate the web service client. In our implementation we utilize
the Axis2 framework to generate clients. Our choice of Axis2 plugin is driven by
the implementation platform of DEVS/framework which is Axis/Java. However,
it doesnt matter which method is used to generate the client.

Fig. 13. DEVS Wrapper implementation over an Axis Web Service client

A DEVS model has two modes of operation: an internal behavior represen-
tation and an external behavior representation. In developing a DEVS wrapper,
which would be effectively a DEVS web service client, we will implement the
external behavior. The concept is shown in the top half of Figure 13. The detail
is shown in the lower half of the same Figure 13. It shows the mapping between
the Axis layers, specifically the Axis binding layer and the DEVS elements. It
describes the external event that is triggered whenever there is message exchange
through the Axis client. This triggered event informs the DEVS atomic model

Agile Net-centric Systems Using DUNIP 17

that wraps this Axis client. Such an arrangement does not create any bottle-
neck or any pipe between the actual Axis client and the network. The DEVS
wrapper is informed of the round-trip-time (RTT) when the actual service has
been executed its completion. Consequently, it is a passive observer and offers
no interference to the true communication between the client and the live web
service. By inserting a specific set of code in any Axis generated client, we can
create a DEVS wrapper that is ready to become a part of a test-agent federation
coupled system, as described in the previous section.

Having described the basic DEVS Web service wrapper, the next task in line
is the creation of a coupled model, a web service workflow to be more specific to
actually utilize the DEVS modeling and simulation capabilities.

6 Workflow composition and DoDAF-based Mission
Threads

Web service workflows and orchestration is generally done using BPEL or BPMN
or hard-coded in a language specific platform implementation such as Java or
.NET. However, to create a DEVS coupled model there are numerous ways [24].
For example the most recent XML-Based Finite Deterministic DEVS (XFD-
DEVS) [25] uses XML as the preferred means to develop a Platform Indepen-
dent Model for both atomic and coupled models. Providing another method to
create a web service workflow is beneficial for both the communities. Not only
does it provide modeling and simulation capabilities to the existing Web Service
architecture, it also establishes DEVS as a production environment that can
effectively create application level code using system theoretical concepts.

Another mode of system level design is made possible by System Entity
Structure (SES) [44]. The SES is a high level ontology framework targeted to
modeling, simulation, systems design and engineering. Its expressive power, both
in strength and limitation, derive from that domain of discourse. An SES is a
formal structure governed by a small number of axioms that provide clarity and
rigor to its models. The structure supports hierarchical and modular compo-
sitions allowing large complex structures to be built in stepwise fashion from
smaller, simpler ones. Tools have been developed to transform SESs back and
forth to XML allowing many operations to be specified in either SES directly
or in its XML guise. The axioms and functionality based semantics of the SES
promote pragmatic design and are easily understandable by data modelers. To-
gether with the availability of appropriate tool support, it makes development of
XML Schema transparent to the modeler. Finally, SES structures are compact
relative to equivalent Schema and automatically generate associated executable
simulation models.

The most recent Department of Defense Architecture Framework (DoDAF)
application to GIG/SOA is another contender to compose web service work-
flows for mission-thread design and evaluation. DoDAF, as applicable to mission-
thread testing, consists of three views: Operational View (OV), Systems View
(SV) and Technical View (TV). It comprises of 26 documents1 to describe a

18 Saurabh Mittal

mission thread. Wrapping head around such documents require sufficient level
of understanding and experience with C4ISR frameworks. The main documents
are listed in Table 1.

Table 1. Relevant DoDAF products

Description DoDAF Type

Overview and Summary Information AV-1
High-Level Operational Concept Description OV-1
Operational Node Connectivity Description OV-2
Operational Information Exchange Matrix OV-3
Organizational Relationships OV-4
Operational Activity Model OV-5
Operational Event Trace Description OV-6b,c
Systems Interface Description SV-1
Communication Description SV-2
Systems to Systems Matrix SV-3
Functionality Description SV-4
Operational Activity to Function Traceability
Matrix

SV-5

Data Exchange Matrix SV-6
Technical Standards Profile TV-1

For more detailed analysis of DoDAF, refer [20],[21]. Figure 14 shows the
various DoDAF views map into the SES framework.

Operational and System perspectives are considered two different decomposi-
tions of the system under consideration. They are represented by corresponding
nodes called aspects labeled by the names, Operational View and System View,
respectively. The Operational View aspect has entities labeled opNodes (oper-
ational nodes) and activities. The various operational views of DoD AF (other
than OV-4) are easily interpreted as describing the entities and their interac-
tions. Likewise, the System View aspect has entities labeled functions with DoD
AF views that are associated with the functions and their interactions. The one
exception is SV-5 which is a relation between the functions of the System View
and the activities of the Operational View. This view describes how the activities
are implemented via executable functions supplied by the system.

Although the current DoDAF specification provides an extensive methodol-
ogy for system architectural development, it is deficient in several related di-
mensions absence of integrated modeling and simulation support, especially for
model-continuity throughout the development process, and lack of associated
testing support [20]. To overcome these deficiencies, we described an approach to
support specification of DoDAF architectures within a development environment
based on DEVS-based modeling and simulation. The authors [20],[45] enhanced
the DoDAF specification to incorporate M&S as a means to develop executable
architecture [2] from DoDAF specifications and provided detailed DoDAF to
DEVS mapping leading to simulation, and feasibility analysis.

Agile Net-centric Systems Using DUNIP 19

Fig. 14. Mapping of DoDAF documents to System Entity Structure (SES)

6.1 Web Service Work Flow Formalism

So, after providing an overview of various frameworks that can compose a web
service workflow, or simply a process workflow based on certain goals, objectives
or requirements, we can deduce the information we need to compose a workflow
and develop an automated procedure towards DEVS based design and analysis.
The information set for a Web Service workflow formalism can be described in
a four element tuple as:

WSWF :< W,M,F,X >

where,

W : Set of Web service definitions (WSDLs) or Agents each with a valid URL

M : Set of web service methods

F : defined as < C,L,D >

where,

C is a set of W-M pairs with each pair as a source or destination

L is a set of partner links with each link containing a

src and dest pair defined in C

D is a type of workflow mode which can either be a

sequence, while, holdSend or concurrent type which are

corresponding to the BPEL specifications

X is a Set of messages,

where,

each Message contains Data and is defined by time of entry in system,

20 Saurabh Mittal

rate, whether it is periodic or stochastic and can be either an Input

message or an Output message

The WSWF is expressed in SES as shown in Figure 15 and Figure 16:

Fig. 15. SES representation of Web Service Work Flow Formalism

Fig. 16. SES representation of Workflow entity from Figure 15

The WSWF is represented using natural language as shown in Figure 17.
By expressing the SES for WSWF formalism in restricted natural language,

it is made executable using SES-DEVS methodology as elaborated in Zeiglers
recent book [43]. Using the SES builder [33], we can very well extract the DTD
and/or schema for WSWF. The generated DTD for WSWF is provided below.

<?xml version=’1.0’ encoding=’us-ascii’?>

Agile Net-centric Systems Using DUNIP 21

Fig. 17. WSWF SES expressed in natural language for automated schema and DEVS
code generation

22 Saurabh Mittal

<!-- DTD for a WSWF -->

<!ELEMENT WSWF (aspectsOfWSWF)>

<!ELEMENT aspectsOfWSWF (WSWF-FORMALISMDec | WSWF-INFODec)>

<!ELEMENT WSWF-FORMALISMDec (Workflow , ServiceMethods ,

SystemDefinitions)>

<!ELEMENT Workflow (aspectsOfWorkflow)>

<!ELEMENT aspectsOfWorkflow (Workflow-WorkflowStructureDec)>

<!ELEMENT Workflow-WorkflowStructureDec

(PartnerLinks , WorkflowMode , ComponentServiceMethodPairs)>

<!ELEMENT PartnerLinks (aspectsOfPartnerLinks)>

<!ELEMENT aspectsOfPartnerLinks

(PartnerLinks-PartnerLinkContainerMultiAsp)>

<!ELEMENT PartnerLinks-PartnerLinkContainerMultiAsp (PartnerLink*)>

<!ELEMENT PartnerLink (aspectsOfPartnerLink)>

<!ELEMENT aspectsOfPartnerLink (PartnerLink-PartnerLinkStructureDec)>

<!ELEMENT PartnerLink-PartnerLinkStructureDec

(ComponentServiceMethodPair , Ports)>

<!ELEMENT ComponentServiceMethodPair (#PCDATA)>

<!ELEMENT Ports (aspectsOfPorts)>

<!ELEMENT aspectsOfPorts (Ports-PortContainerMultiAsp)>

<!ELEMENT Ports-PortContainerMultiAsp (Port*)>

<!ELEMENT Port (Port-PortTypeSpec)>

<!ELEMENT Port-PortTypeSpec (Inport | Outport)>

<!ELEMENT Inport (#PCDATA)>

<!ELEMENT Outport (#PCDATA)>

<!ATTLIST Ports-PortContainerMultiAsp

numContainedInPorts CDATA #IMPLIED>

<!ATTLIST PartnerLinks-PartnerLinkContainerMultiAsp

numContainedInPartnerLinks CDATA #IMPLIED>

<!ATTLIST PartnerLinks

PortCount CDATA "unknown"

ComponentCount CDATA "unknown">

<!ELEMENT WorkflowMode (WorkflowMode-WorkflowTypeSpec)>

<!ELEMENT WorkflowMode-WorkflowTypeSpec

(While | HoldSend | Sequence | Concurrent)>

<!ELEMENT While (aspectsOfWhile)>

<!ELEMENT aspectsOfWhile (While-WhileStructureDec)>

<!ELEMENT While-WhileStructureDec (Condition)>

<!ELEMENT Condition (#PCDATA)>

<!ELEMENT HoldSend (#PCDATA)>

<!ATTLIST HoldSend

holdTime CDATA "unknown">

<!ELEMENT Sequence (#PCDATA)>

<!ATTLIST Sequence

count CDATA "unknown"

Agile Net-centric Systems Using DUNIP 23

order CDATA "unknown">

<!ELEMENT Concurrent (#PCDATA)>

<!ATTLIST Concurrent

List CDATA "unknown">

<!ELEMENT ComponentServiceMethodPairs

(ComponentServiceMethodPairs-ComponentTypeSpec,

aspectsOfComponentServiceMethodPairs)>

<!ELEMENT ComponentServiceMethodPairs-ComponentTypeSpec (Src | Dest)>

<!ELEMENT Src (#PCDATA)>

<!ELEMENT Dest (#PCDATA)>

<!ELEMENT aspectsOfComponentServiceMethodPairs

(ComponentServiceMethodPairs-

ComponentSMPairContainerMultiAsp)>

<!ELEMENT ComponentServiceMethodPairs-ComponentSMPairContainerMultiAsp

(ComponentServiceMethodPair*)>

<!ATTLIST ComponentServiceMethodPairs-ComponentSMPairContainerMultiAsp

numContainedInComponentServiceMethodPairs CDATA #IMPLIED>

<!ELEMENT ServiceMethods (aspectsOfServiceMethods)>

<!ELEMENT aspectsOfServiceMethods

(ServiceMethods-MethodContainerMultiAsp)>

<!ELEMENT ServiceMethods-MethodContainerMultiAsp (ServiceMethod*)>

<!ELEMENT ServiceMethod (aspectsOfServiceMethod)>

<!ELEMENT aspectsOfServiceMethod (ServiceMethod-InfoStructureDec)>

<!ELEMENT ServiceMethod-InfoStructureDec (InfoExchanges)>

<!ELEMENT InfoExchanges (#PCDATA)>

<!ATTLIST ServiceMethod

messageCount CDATA "unknown"

parameters CDATA "unknown"

methodName CDATA "unknown">

<!ATTLIST ServiceMethods-MethodContainerMultiAsp

numContainedInServiceMethods CDATA #IMPLIED>

<!ELEMENT SystemDefinitions (aspectsOfSystemDefinitions)>

<!ELEMENT aspectsOfSystemDefinitions

(SystemDefinitions-SystemContainerMultiAsp)>

<!ELEMENT SystemDefinitions-SystemContainerMultiAsp (SystemComponent*)>

<!ELEMENT SystemComponent

(SystemComponent-SystemTypeSpec,aspectsOfSystemComponent)>

<!ELEMENT SystemComponent-SystemTypeSpec (USERAGENT | WSDL)>

<!ELEMENT USERAGENT (#PCDATA)>

<!ELEMENT WSDL (#PCDATA)>

<!ELEMENT aspectsOfSystemComponent

(SystemComponent-SystemStructureDec)>

<!ELEMENT SystemComponent-SystemStructureDec (URL)>

<!ELEMENT URL (#PCDATA)>

<!ATTLIST SystemDefinitions-SystemContainerMultiAsp

24 Saurabh Mittal

numContainedInSystemDefinitions CDATA #IMPLIED>

<!ELEMENT WSWF-INFODec (Messages)>

<!ELEMENT Messages (aspectsOfMessages)>

<!ELEMENT aspectsOfMessages (Messages-MessageContainerMultiAsp)>

<!ELEMENT Messages-MessageContainerMultiAsp (Message*)>

<!ELEMENT Message (Message-MessageTypeSpec,aspectsOfMessage)>

<!ELEMENT Message-MessageTypeSpec (InputMsg | OutputMsg)>

<!ELEMENT InputMsg (#PCDATA)>

<!ATTLIST InputMsg

SystemComponent CDATA "unknown">

<!ELEMENT OutputMsg (#PCDATA)>

<!ELEMENT aspectsOfMessage (Message-MessageStructureDec)>

<!ELEMENT Message-MessageStructureDec (DATA)>

<!ELEMENT DATA (#PCDATA)>

<!ATTLIST Message

timeOfStart CDATA "unknown"

is_Random CDATA "unknown"

is_Periodic CDATA "unknown"

period CDATA "unknown">

<!ATTLIST Messages-MessageContainerMultiAsp

numContainedInMessages CDATA #IMPLIED>

6.2 Mapping of DEVS, BPEL and DoDAF artifacts with WSWF
Formalism

The WSWF information set can very well be extracted from the DoDAF in-
formation set. WSWF formalism has also been mapped to XML-Based Finite
Deterministic DEVS (XFDDEVS) [25],[46] atomic and coupled models. XFD-
DEVS is defined by the following tuple:

Atomic XFDDEV S = < incomingMessageSet,

outgoingMessageSet,

StateSet,

T imeAdvanceTable,

InternalTransitionTable,

ExternalTransitionTable,

OutputTable >

Coupled XFDDEV S = < ModelSet,

CouplingSet >

Agile Net-centric Systems Using DUNIP 25

The table below shows the mapping with BPEL as well. Although mapping
to WSWF to BPEL is in early stages, WSWF does have the information set
that is required to generate a BPEL file and the associated WSDL file as well.
The code to DEVS models has been autogenerated using technologies like JAXB
and XSLT. The autogenerated code provides us the DEVS skeleton in platform
independent implementation in XML which could be transformed to platform
specific implementation in Java, C++ or C#. More information on platform
independent DEVS model generation can be seen at [25]. This skeleton can be
easily augmented for any run-time capabilities. Providing detailed code imple-
mentations have been retained for brevity.

Table 2. WSWF Mapping with DoDAF, FDDEVS, and BPEL

WSWF DoDAF XFDDEVS BPEL

W OV-2, OV-4,
SV-4

ModelSet Process

M OV-5, OV-6 StateSet, ExternalTransi-
tionTable

Basic Activities,
PartnerLink-PortType
definitions

F
C W, M, OV-2,

OV-8
ExternalTransitionTable
paramss, InternalTransi-
tionTable params

PartnerLink params, source
and target specs in both ba-
sic and structured activities

L SV-2 CouplingSet PartnerLinks
D SV-5, OV-5,

OV-6
ExternalTransitionTable,
InternalTransitionTable

StructuredActivities

X SV-6, OV-3 ExternalTransitionTable,
OutputTable

Messages in accompanying
WSDL

The WSWF formalism is a new way to compose web service workflows that
is expressed in SES-XML methodology. Since it is expressed in XML, it can be
mapped easily to XPDL and possibly BPEL too. Since it is largely textual, it
can retrieve information from static DoDAF documents as per Table 1. This
detailed mapping, however, is not the focus of the current research and will be
reported in our forthcoming publication. Going further in our development and
execution of this workflow, the following sequential process provide the needed
steps in order to do performance evaluation using DEVS test models [26],[24]
or execution using DEVS/SOA framework as a real application. In terms of
net-ready capability testing, what is required is the communication of live web
services with those of test-models designed specifically for them. The approach
is:

1. Specify the scenario using WSWF
2. Develop the DEVS model (or generate DEVS workflow)
3. Auto-generate the test-models from DEVS models (using DUNIP as de-

scribed in [26])

26 Saurabh Mittal

4. Run the model and test-model over SOA (as per DUNIP)
5. Execute as a real-time simulation with live web services embedded in DEVS
6. Execute the test-models with real-world web services (live)
7. Compare the results of steps 5 and 6 to perform verification and validation.

7 Case Study

This case study is divided into two parts:

1. The first study demonstrates the execution of a web service encapsulated in
a DEVS wrapper Agent and the associated obtained statistics.

2. The second study extends the first study by developing a workflow that
utilizes more than one web services in a workflow manner. It demonstrates
the following:
– Observe user activity with DEVS Agent via WSDL-based access to col-

laborative service
– Deploy DEVS virtual user models to simulate humans in collaboration

scenario with human user in the loop
– Show how DEVS agent observers communicate with other DEVS agent

via DEVS/SOA infrastructure

7.1 DEVS Wrapper Agent

In this most basic demonstration, we use only one web service. This web service
executes a chat session between two users. The schematic is shown in Figure 17.
In our example, we execute the session with a live person and a DEVS agent.
The live person here is Jim Client that connects to the CHAT service via an
Internet browser at [6]. The chat session is executed using the GUI as shown in
Figure 18.

Fig. 18. Schematic showing basic execution of DEVS Wrapper Agent

The DEVS agent is defined according to the WSWF formalism as follows:

Agile Net-centric Systems Using DUNIP 27

Fig. 19. Chat service client engaged with another chat particpant

<W>: CHAT:

<W1:CHAT>:http://150.135.220.240:8080/ChatServiceCollaboration

/services/ChatService?wsdl

<A1:Jim>: Jim:localhost:8080

<M>: Methods:

<M1> postMessage()

<M2> getAllMessages()

<M3> getLastMessageId()

<M4> registerAuthor()

<M5> getUsers()

<M6> getAllMessagesForAuthor()

<F>:"Flow specifications"

<C>

<C1:Src>A1-M1

<C2:Src>A1-M2

<C3:Src>A1-M4

<C4:Src>A1-M5

<C5:Dest>W1-M1

<C6:Dest>W1-M2

<C7:Dest>W1-M4

<C8:Dest>W1-M5

<L>

<L1>C1-C5

<L2>C2-C6

<L3>C3-C7

<L4>C4-C8

<D>

<D1>M1-HoldSend

<D2>M2-While-infinity

28 Saurabh Mittal

<D3>M4-HoldSend

<D4>M5-While-infinity

<X>: Set of Messages

<InputMsg>

<I1>W1-M1{string:T1:0:false:false}

<I2>W1-M4{string:T0:0.1:true:false}

<OutputMsg>

<O1>M2{string:T2:1:true:false}

<O2>M5{string:T2:1:true:false}

<W> tag contains description of the Chat Web Service as W1 and the agent descrip-
tion as A1 along with their URL. <M> contains the list of service methods that
may be used in the process flow. <F> contains the flow description categorized
into <C,L,D> as per the WSWF. <C> provides the source and destination specifi-
cation for a W/A defined in <W> with <M>. <L> specifies the coupling between the
sources and destinations as defined in <C>. <D> contains the execution of meth-
ods in <M> in logic implementation. For example, <D1>M1-HoldSend implies that
the method M1 is to executed in HoldSend manner. Similarly, <D2>M2-While-
infinity implies that M2 will be executed indefinitely when invoked or bounded
by any condition. <X> specifies the input and output message structures in
<InputMsg, OutputMsg> tags. The structure of <InputMsg> as specified in WSWF

SES is <SystemComponent-Method{Data: time of Start: R+: isPeriodic:

isRandom>. For example, the specification <I1>W1-M1string:T1:0:false:false

implies that the message I1 is an input to W1, method M1 with data as string.
It starts at T1 with period 0. Any non-zero value means that the message will
be incoming at a periodic rate. The next boolean variable false implies that
it is not periodic. The last variable false implies that it is not random either.
Similary, <I2>W1-M4string:T0:0.1:true:false implies that M4 at W1 is to be
invoked by string data message with a periodic rate of 0.1. The <OutputMsg>

has a similar structure except the fact that it does not contain any information
about the system component. It only contains information about the method
in <M> as it is just an output message. Whenever method <Mx> is invoked, it
returns with the parametric details as in <O1>M2string:T2:1:true:false.

It is worth stressing here that the messages flow through the linkages as
specified in <L>. This acts as a coupling for the DEVS models. There are
two DEVS models in the WSWF instance described above, viz. W1 and A1.
Based on the coupling information for ex. <L4>C4-C8 implies that the source
is Agent <C4:Src>A1-M5 and the destination is Web service <C8:Dest>W1-M5.
The source sends a message invoking method M5 at the destination. If there is
a specification on how M5 should be invoked in <InputMsg> listing, then the
source has to ensure that it conforms to that specification. In this example
there is no specification for M5. This implies that there are no parameters to
be passed, but just the invocation. At the destination side, M5 has a specifica-
tion <O2>M5string:T2:1:true:false, which implies that whenever M5 returns
a value, it will according to this <OutputMsg> specification.

Agile Net-centric Systems Using DUNIP 29

The statistics for each of the methods in <M> is gathered according to the
autogenerated agent GUI monitor at the agents end. The statistics are largely
the round trip time (RTT) for each of <M>. The GUI in Figure 20 also shows
the SOAP messages that are exchanged between the pairs as specified in <W>.

Fig. 20. Associated statistics GUI for an encapsulated Web Service in DEVS Atomic
Model

7.2 Workflow design, Analysis and Execution

The previous demonstration has established that we can encapsulate a live web
service within a DEVS atomic model using an XML based formalism such as
WSWF. It also establishes that we can create virtual users as DEVS agents
that input and communicate with live users. Having such capability allows us to
build upon the advances of DEVS hierarchical component based modeling and
simulation. In the next demonstration, we will build a workflow with two live
web services and all the clients as virtual users.

DEVSJAVA execution on a single machine The first service is the same
CHAT service and the second service is a weather service [37]. In this demon-
stration, we will show that virtual users are engaged in chat session and one
user requests weather from another user. The second user (Jim Client) shown in
Figure 21 requests the weather from the Weather web service and reports it back
to the first user using the CHAT service. We will then also execute the entire
scenario as a self-contained coupled model on DEVS/SOA with these virtual
agents deployed at different IP addresses. The schematic is shown in Figure 21.

30 Saurabh Mittal

Fig. 21. Schematic of Workflow scenario with two virtual DEVS agents

The workflow according to WSWF formalism is defined as follows:

<W>: CHAT-and-WEATHER:

<W1:CHAT>:<http://150.135.220.240:8080/ChatService Collaboration/

services/ChatService?wsdl>

<W2:WEATHER>: http://www.webservicex.net/WeatherForecast.asmx.

<A1:JIM>: Jim:localhost:8080

<A2:USER>: User:localhost:8080

<M>: Methods:

<M1> postMessage()

<M2> getAllMessages()

<M3> getLastMessageId()

<M4> registerAuthor()

<M5> getUsers()

<M6> getWeather()

<F>:"Flow specifications"

<C>

<C1:Src>{A1,A2}-M1

<C2:Src>A1-M2

<C3:Src>{A1,A2}-M4

<C4:Src>A1-M5

<C5:Src>A2-M6

<C6:Dest>W1-M1

<C7:Dest>W1-M2

<C8:Dest>W1-M4

<C9:Dest>W1-M5

<C10:Dest>W2-M6

<L>

<L1>C1-C6 //notice that both A1 and A2 are coupled to W1-M1

<L2>C2-C7

<L3>C3-C8 //notice that both A1 and A2 are coupled to W1-M4

<L4>C4-C9

<L5>C5-C10

<D>

Agile Net-centric Systems Using DUNIP 31

<D1>M1-HoldSend:5

<D2>M2-While-infinity

<D3>M4-HoldSend

<D4>M5-While-infinity

<D5>M6-HoldSend

<X>: Set of Messages

<InputMsg>

<I1>W1-M1{string:T1:5:true:false}

<I2>W1-M4{string:T0:0.1:true:false}

<I3>W2-M6{string:T3:0:false:false}

<I4>A2-M1(string:T4:0:false:false)

<OutputMsg>

<O1>M2{string:T2:1:true:false}

<O2>M5{string:T2:1:true:false}

<O3>M6{string:T3:0:false:false}

where, T0 > 0, T1&T2 > 0, and T3,T4>T1,T2.

The description of WSWF instance above is on the same lines as of previous
example. However, instead of just one, there are two services in this instance
as specified by <W1> and <W2>. The two services are: the Chat Service and
the publically available Weather service. There is an addition method <M6>

that invokes the Weather service. There are two agents viz., Jim and USER.
The USER is a virtual user and is modeled as a DEVS Agent and Jim is a live
person. A DEVS agent is a computer program implemented as a DEVS model.
It is engaged in chat session with Jim and reports back the results of Weather

service when the request to invoke comes from Jim, the real user.
The demonstration has been structured in a manner that it be executed in a

single machine. To execute it on remote machines we will be using DEVS/SOA
which is described in the next sub-section. To execute it on a single machine,
DEVSJAVA platform is sufficient. Figure 22 shows the virtual user USER in
black console and the Jim real user in the Chat window. Notice that the Jim client
also has the monitor running that invokes method <M4> and <M5> at the Chat

Web service. The GUI also shows the DEVSJAVA simulation viewer which
shows that DEVSJAVA is being used to run the scenario. The Jim client requests
weather from USER client. The USER invokes <W2> web service, and reports back
the result by method <M1> to the Chat Service.

To provide complete performance analysis of the workflow as per the GUI in
Figure 22 is outside the scope of the paper and has been retained.

Execution on DEVS/SOA Framework The scenario remains the same as
in preview sub-section. However, the execution is made on DEVS/SOA platform
(Figure 23). The real user Jim has now been replaced by another virtual client.
The only modification in the WSWF instance is the following:

<W>: CHAT-and-WEATHER:

32 Saurabh Mittal

Fig. 22. Snapshot of execution of workflow case study as depicted in Figure 21

<W1:CHAT>:<http://150.135.220.240:8080/ChatService Collaboration/

services/ChatService?wsdl>

<W2:WEATHER>: http://www.webservicex.net/WeatherForecast.asmx.

<A1:USER1>: User1:150.135.218.205:8080

<A2:USER2>: User2:150.135.220.240:8080

Fig. 23. Execution of Workflow scenario with DEVS/SOA framework

The generated Java code is fed to the DEVS/SOA client GUI as repro-
duced again in Figure 24. USER2 in the generated code is given the Class name

Agile Net-centric Systems Using DUNIP 33

Fig. 24. Models package being executed using DEVS/SOA client

Fig. 25. IP assignment of models for Workflow scenario

34 Saurabh Mittal

PerfMonitor for differentiation. The Class VirtualUser is USER1. The USER1 is
assigned an IP address 150.135.218.205:8080 and USER2 at 150.135.220.240:
8080. These virtual users are then sent to these respective IP addresses. These
IP addresses provide the DEVS Simulation service and Apache Tomcat servers
are used as containers at these IPs. The other dependent files are also uploaded
at corresponding IPs. The assignment can be done manually as shown in Fig-
ure 25. Once uploaded, the files are compiled at run-time at the servers end
and a distributed simulation is executed between these remote machines. Once
the simulation is over, the result is communicated back into the console win-
dow as shown in Figure 24. The detailed output of the simulation run is shown
below. As can be seen from the output below, VirtualUser sent three requests
and got responses with different delays. The responses are communicated by the
other USER2 after invoking the Weather service. The result is also sent back
to VirtualUser, as,

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5.

Models assigned specifically to respective Server IP:

--Component Model: SimUserDemo --> 150.135.218.205:8080

--Component Model: VirtualUser --> 150.135.218.205:8080

--Component Model: PerfMonitor --> 150.135.220.240:8080

--Component Model: WeatherDataServer --> 150.135.220.240:8080

Uploading in progress... please wait...

Initiating UPLOAD...

Uploading files to server 150.135.220.240:8080

Files uploaded.

Uploading files to server 150.135.218.205:8080

Files uploaded.

Compilation in progress....please wait....

Starting compilation at remote servers.....

Compiling project at 150.135.220.240:8080...

Success: true

Project compiled.

Compiling project at 150.135.218.205:8080...

Success: true

Project compiled.

Waiting to start SIMULATION....

Simulation in Progress....please wait...

Running simulation ...

21 iterations.

Simulators output:

150.135.220.240 output:

VirtualUser: sent a request

Avg. delay = 375.0 milliseconds

Spurious response count = 0

Agile Net-centric Systems Using DUNIP 35

Outstanding requests = 0

VirtualUser: response length 48

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5

VirtualUser: sent a request

Avg. delay = 355.25 milliseconds

Spurious response count = 0

Outstanding requests = 0

VirtualUser: response length 48

Place Name:HILLSIDE MANOR;MinTempC:-4;MaxTempC:5

SIMULATION over!

Hybrid execution using DEVS/SOA and DEVSJAVA Once we have such
DEVS coupled workflow system, we can extend this system by replacing any vir-
tual user with a live user. Figure 26 below shows the schematic of such operation
and a demonstration is made available as an .avi file at [8]. In the schematic below
the DEVS coupled system is augmented with other DEVS agents for reporting
statistics etc, basically the idea being, such DEVS enabled workflows can now
participate in live modeling and simulation exercises in real-time.

Fig. 26. WSWF formalism based workflow using DEVS as middleware for live modeling
and simulation exercises

8 Agility in DEVS Unified Process

Agile software methodologies have taken quite a notice these recent years pri-
marily due to the factors such as volatile ever-changing requirements, dynamic
technological landscape, high employee turnover, and most importantly, satisfy-
ing the business needs. [50] summarizes it as:

Agile development is not defined by a small set of pratices and techniques
but defines a strategic capability, a capability to create and respond to
change, a capability to balance flexibility and structure, a capability
to draw creativity and innovation out of a development team, and a
capability to lead organizations through turbulence and certainty.

36 Saurabh Mittal

There is a fundamental shift in the approach of delivering the product by
hard-line requirements specifications supported by methodologies like Capability
Maturity Model (CMM) and CMM Integration (CMMI) and the Agile practices.
While the former delineates defined repeatable processes so that the performance
can be measured within very close tolerances, the latter is more geared towards
employing the latest advancement in technologies, to explore, and to deliver the
product as soon as possible. The key point of agile practices is the inclusion of
software engineering life cycle in each iteration so that the features delivered
are production ready at the end of each iteration. While the vision of most
projects are clear, what remains fuzzy are the exact requirement specifications
that the developers are faced with. With agile practices, a constant dialogue
with the customer, repeatable testing procedures, incremental development and
using the latest technology, the requested feature can be delivered in the next
iteration without changing the entire project vision. The DEVS Unified Process,
similarly is based on agile methodology. Table 3 lists the similarities with each
phase of agile development methodology [51].

Table 3 establishes that DEVS Unified Process has all the needed phases
of being agile and the model continuity [52] enables any DEVS artifiact to be
a real software. With DUNIP’s SOA edge, we have any DEVS model that is
available as a web service. Modeling and Simulation in today’s world is more
than just a software. It is an enabling technology that has far reaching impact
on any nations’ progress and advance the forefront of various technologies in
many domains such as biology, chemistry, phyiscs, space science, etc. While there
are customized M&S software for different problem sets and different domains,
an agile methodology is another ace that when employed could incorporate the
latest advancements in software engineering discipline and apply it to the M&S
solution at hand.

9 Conclusions and Future Work

Service Oriented Architecture (SOA) have come a long way and many of the
businesses are seriously considering migration of their IT systems towards SOAs.
DoDs initiative towards migration of GIG/SOA and NCES requires reliability
and robustness, not only in the execution but in the design and analysis phase as
well. Web service orchestration is not just a research issue but a more practical
issue for which there is dire need. Further, Service Oriented Architecture must
be taken as another instance of system engineering for which there must be
a laid out engineering process. Modeling and Simulation provides the needed
edge. Lack of methodologies to support design and analysis of such orchestration
(except BPEL related efforts) cost millions in failure. This research has proposed
that Discrete Event Formalism can be used to compose and analyze Web service
workflows. The DEVS theory, which is based on system theoretic concepts, gives
solid grounding in the modeling and simulation domain.

The prime motivation of applying DEVS system theoretical principles to
these emerging net-centric systems comes from an editorial by Carstairs [53]

Agile Net-centric Systems Using DUNIP 37

Table 3. Agile Methodology and DEVS Unified Process

Phase Agile Methodology DEVS Unified Process (DUNIP)

Model Identify the domain
and business use-case
requirements and spec-
ify in domain specific
languages such as UML,
etc.

DUNIP begins by taking requirements
in different formats like DoDAF, UML,
State-based, NLP and transform them
into platform independent XML mod-
els

Implementation Transform your mod-
els into executable code
with running unit-tests

From PIMs, the DUNIP engine gen-
erates code in platfrom specific mod-
els (PSMs) such as Java, C++, C#
etc. With strong DEVS theory un-
derlying each of the atomic models,
the models can be verified mathemati-
cally, as well as graphical with various
DEVS toolsets such as DEVSJAVA.
Unit-testing for each transition or an
event is inherent in DEVS.

Test Identify defects, ensure
quality and verify re-
quirements

With DUNIP, the development of test
suite is done in parallel with that of the
model. Test models are generated from
the XML-based PIMs. The test models
verify the atomic model’s operation at
various levels of system specifications,
such as I/O pair, I/O function, etc. The
Experimental Frames are also designed
at this stage that ensure the require-
ments are met through the test models.

Deployment Plan the delivery and
make it available to end
users

With ready deployment capabilities per
model-continuity principles to SOA in-
frastructure, and zero transition times,
the model is the actual software and is
readily moved to the production servers

Configuration
Management

Managed access to
project artifacts

DUNIP is very well positioned to
reuse and contribute to Model repos-
itory. PIMs are a strong contender for
such tracking and version management.
PSMs can very well be source versioned
using tools like Subversion etc.

Project Manage-
ment

Manage people, project,
iterations and budget

These qualities are universal and due to
the component nature of DEVS tech-
nology, the project plan can very well
be partitioned into iterative cycles and
milestones

Environment Ensure that proper pro-
cess, guidance, and tools
are available for the team

DEVS has been in existence for over
30 years and there is a large commu-
nity that is available for support in ba-
sic theory and toolsets.

38 Saurabh Mittal

that demands a M&S framework at higher levels of system specifications where
System of systems interact together using net-centric platform. At this level,
model interoperability is one of the major concerns. The motivation for this
work stems from this need of model interoperability and the characterists of
net-centric systems that are easier to simulate, test and deploy with an under-
lying foundation of systems engineering principles. DEVS, which is known to be
component-based system, based on formal systems theoretical framework is the
preferred means. Table 4 outlines how it could provide solutions to the challenges
in net-centric design and evaluation.

Table 4. Solutions provided with DEVS Technology in support of M&S for T&E

Desired M&S capability for
Test and Evaluation (T&E)

Solutions provided by DEVS M&S technology

Support for DoDAF need for
executable architectures using
M&S such as mission based test-
ing for GIGSOA

DEVS Unified Process [24],[29] provides methodology
and SOA infrastructure for integrated development
and testing, extending DoDAF views [20].

Interoperability and cross-
platform M&S using GIG/SOA

Simulation architecture is layered to accomplish the
technology migration or run different technological
scenarios [54]. Provide net-centric composition and
integration of DEVS ’validated’ models using Simu-
lation Web services [22].

Automated test generation and
deployment in distributed simu-
lation

Separate a model from the act of simulation itself,
which can be executed on single or multiple dis-
tributed platforms [39]. With its bifurcated test and
development process, automated test generation is in-
tegral to this methodology [42].

Test artifact continuity and
traceability through phases of
system development

Provide rapid means of deployment using model-
continuity principles and concepts like ’simulation be-
comes reality’ [52].

Real-time observation and con-
trol of test environment

Provide dynamic variable structure component mod-
eling to enable control and reconfiguratin of simula-
tion on the fly [55],[56]. Provide dynamic simulation
tuning, interoperability testing and benchmarking

The net-centric DEVS framework as laid out in this chapter required en-
hancement to these basic DEVS capabilities. Furthermore, this work describes
distributed simulation using the web service technology. After the development
of World Wide Web, many efforts in the distributed simulation field have been
made for modeling, executing simulation and creating model libraries that can
be assembled and executed over WWW. By means of XML and web services
technology these efforts have entered upon a new phase. The proposed DEVS
Modeling Language (DEVSML) is built on eXtensible Markup Language (XML)
as the preferred means to provide such transparent simulator implementation. A
prototype simulation framework called DEVS/SOA has been implemented us-

Agile Net-centric Systems Using DUNIP 39

ing web services technology. It is currently at the forefront of DEVS net-centric
research platform [47]. The central point resides in executing the simulator as
a web service. The development of these kind of frameworks will help solve
large-scale problems and guarantees interoperability among different networked
systems and specifically DEVS-validated models. This chapter focused on the
overall approach, and the symmetrical SOA-Based architecture that allows for
DEVS execution as a Simulation SOA.

We have shown how a web service can be encapsulated into a DEVS atomic
model and can be put towards a coupled DEVS system with other live web
services as well as other DEVS models. We also have demonstrated the proposed
use of Web Service Work Flow (WSWF) formalism in composing SOA, much like
the same functionalities of BPEL. We have also described how WSWF can be
mapped to DoDAF elements using the System Entity Structure (SES) and could
achieve creation of DEVS net-centric coupled systems based on SOA. We have
also shown how the developed DEVS coupled system can be simulated using
the basic DEVSJAVA framework as well as distributed DEVS/SOA framework.
Further, on the basis of our earlier work on DEVS/SOA we have basis for:

– Agent-Implemented Test Instrumentation
– Net-centric Execution using Simulation Services
– Distributed Multi-level Test Federations
– Analysis that can help optimally tune the instrumentation to provide confi-

dent scalability predictions.
– Mission Thread testing and data gathering:
• definition and implementation of military-relevant mission threads to

enable constructing and/or validating models of user activity.
• Comparison with current commercial testing tools shows that by repli-

cating such models in large numbers it will be possible to produce more
reliable load models than offered by conventional use of scripts.

We have taken the challenge of constructing net-centric systems as one of
designing an infrastructure to integrate existing Web services as components,
each with its own structure and behavior with DEVS components and agents.
The net-centric system is analogous to a System of System (SoS) where in hier-
archical coupled models could be created. Various workflows can be integrated
together using component based design. The net-centric system can be specified
in many available frameworks such as DoDAF, SES, BPMN/BPEL, UML, or by
using an integrative systems engineering-based framework such as DEVS. The
proposed Web Service Work Flow formalism binds various frameworks like SES,
BPEL, DoDAF and DEVS.

In this research, we have discussed the advantages of employing an M&S-
integrated framework such as DEVS Unified Process (DUNIP) and its supporting
DEVS/SOA infrastructure. We illustrated how M&S can be used strategically to
provide early feasibility studies and aid the design process. We have established
the capability to develop a live workflow example with complete DEVS interface.
In this role, DEVS acts as a full net-centric production environment. Being
DEVS enabled, it is also executable as a system under test (SUT) model towards

40 Saurabh Mittal

various verification and validation analysis that can be performed by coupling
this SUT with other DEVS test models. Last but not the least, the developed
DEVS system can be executed by both real and virtual users to the advantage
of various performance and evaluation studies. We also summarized how DUNIP
is agile and each of its modules fit to the agile practices.

As components comprising SoS are designed and analyzed, their integration
and communication is the most critical part that must be addressed by the
employed System of System (SoS) M&S framework. We discussed DoDs Global
Information Grid (GIG) as providing an integration infrastructure for SoS in the
context of constructing collaborations of web services using the Service Oriented
Architecture (SOA). The DEVS Unified Process (DUNIP), in analogy to the
Rational Unified Process based on UML, offers a process for integrated develop-
ment and testing of systems that rests on the SOA infrastructure. The DUNIP
perspective led us to formulate a methodology for testing any proposed SOA-
based integration infrastructure, such as DISAs Net-Centric Enterprise Services.
The present research is being considered and refined for standardization with the
DEVS Standardization group [47],[48],[49]. Clearly, the theory and methodology
for such net-centric SoS development and testing are at their early stages.

References

1. ACIMS software site: http://www.acims.arizona.edu/SOFTWARE/software.shtml
Last accessed Sep. 2010

2. Atkinson, K, ”Modeling and Simulation Foundation for Capabilities Based Plan-
ning”, Simulation Interoperability Workshop Spring 2004

3. Badros, G. ”JavaML: a Markup Language for Java Source Code”, Proceedings of
the 9th International World Wide Web Conference on Computer Networks: the
international journal of computer and telecommunication networking, pages 159-
177

4. Business Process Execution Language
http://www.ibm.com/developerworks/library/specification/ws-bpel/

5. Business Process Modeling Notation http://www.bpmn.org

6. CHAT SOA web service at http://www.saurabh-mittal.com/demos/ChatClient

7. Cheon, S, Seo, S, Park, S, Zeigler, BP, ”Design and Implementation of Distributed
DEVS Simulation in a Peer to Peer Networked System”, Advanced Simulation Tech-
nologies Conference, Arlington, VA, 2004

8. Chat-Weather Service Demo as .avi file at http://duniptechnologies.com/

training/demos/DEVS_CHAT_Weather_RealUserDemo.avi

9. DoDAF Working Group , DoD Architecture Framework Ver. 1.0 Vol. III: Deskbook,
DoD, Aug. 2003.

10. DOD Instruction 5000.2 Operation of the Defense Acquisition System, 12 May
2003.

11. DoD Architecture Framework Working Group 2004, DOD Architecture Framework
Ver. 1.0 Volume 1 Definitions and Guidelines, 9 February 2004, Washington, D.C.

12. DUNIP: A Prototype Demonstration http://duniptechnologies.com/training/

demos/dunip.avi

13. Fujimoto, RM, ”Parallel and Distribution Simulation Systems”, Wiley, 1999

Agile Net-centric Systems Using DUNIP 41

14. Joint Interoperability Test Command, a Defense Information Systems Agency
http://jitc.fhu.disa.mil/

15. Martin, JLR, Mittal, S, Zeigler, BP, Manuel, J, From UML Statecharts to DEVS
State Machines using XML, IEEE/ACM conference on Multi-paradigm Modeling
and Simulation, Nashville, September 2007

16. Department of Defense GIG Architectural Vision, Ver. 1.0, prepared by
DoD CIO, June 2007, available at: http://www.defenselink.mil/cio-nii/docs/
GIGArchVision.pdf

17. Kim, K, Kang, W, ”CORBA-Based Multi-threaded Distributed Simulation of Hier-
archical DEVS Models: Transforming Model Structure into a Non-hierarchical One”,
International Conference on Computational Science and Its Applications, ICCSA,
Italy 2004

18. Mak, E, Automated Testing using XML and DEVS, Thesis, University of Arizona,
http://www.acims.arizona.edu/PUBLICATIONS/PDF/Thesis_EMak.pdf

19. Mak, E, Mittal, S, Hwang, MH, Automating Link-16 Testing using DEVS and
XML, Journal of Defense Modeling and Simulation, 2008

20. Mittal, S, ”Extending DoDAF to Allow DEVS-Based Modeling and Simulation”,
Special issue on DoDAF, Journal of Defense Modeling and Simulation JDMS, Vol
3, No. 2.

21. Mittal, S, Mak, E, Nutaro, JJ, ”DEVS-Based Dynamic Modeling & Simulation
Reconfiguration using Enhanced DoDAF Design Process”, special issue on DoDAF,
Journal of Defense Modeling and Simulation, Dec 2006

22. Mittal, S, Martin, JLR, Zeigler, BP, DEVSML: Automating DEVS Simulation over
SOA using Transparent Simulators, DEVS Syposium, 2007

23. Mittal, S, Martin, JLR, Zeigler, BP, DEVS-Based Web Services for Net-centric
T&E, Summer Computer Simulation Conference, 2007

24. Mittal, S, ”DEVS Unified Process for Integrated Development and Testing of Ser-
vice Oriented Architectures”, Ph. D. Dissertation, University of Arizona

25. Mittal, S, Hwang, MH, Zeigler, BP, XFD-DEVS: An Implementation of W3C
Schema for XML-Based Finite Deterministic DEVS, in progress, Demo available
at: http://duniptechnologies.com/research/xfddevs

26. Mittal, S, Zeigler, BP, Martin, JLR, Sahin, F, Jamshidi, M, Modeling and Simula-
tion for System of systems Engineering, chapter in Systems of Systems engineering
for 21st Century, 2008

27. Mittal, S, Zeigler, BP, Martin, JLR, ”Implementation of Formal Standard for In-
teroperability in M&S/System of Systems Integration with DEVS/SOA”, Interna-
tional Command and Control C2 Journal, Special Issue: Modeling and Simulation
in Support of Network-Centric Approaches and Capabilities, 2008

28. Mittal, S, Martin, JLR, Zeigler, BP, ”DEVS/SOA: A Cross-Platform Framework
for Net-Centric Modeling and Simulation in DEVS Unified Process”, SIMULA-
TION: Transactions of SCS, 2008

29. Mittal S, Zeigler BP, ”DEVS Unified Process for Integrated Development and Test-
ing of System of Systems”, Critical Issues in C4I, AFCEA-George Mason University
Symposium, May 2008

30. Net-Centric Enterprise Service http://www.disa.mil/nces/ last accessed Sep.
2010

31. Jon, P, ” XPDL: The Silent Workhorse of BPM” , April 2007 online article http:

//www.bpm.com/FeatureRO.asp?FeatureId=232 last accessed Sep. 2010
32. Sarjoughian, HS, Zeigler, BP, ”DEVS and HLA: Complimentary Paradigms for

M&S?” Transactions of the SCS, (17), 4, pp. 187-197, 2000

42 Saurabh Mittal

33. SESBuilder, An Integrated Tool to utilize System Entity Structure, 2007, http:
//www.sesbuilder.com/

34. DEVS/SOA sample demonstration in .avi format http://duniptechnologies.

com/training/demos/demoSOADEVS.avi

35. Simple Object Access Protocol http://www.w3.org/TR/soap/

36. Seo, C, Park, S, Kim, B, Cheon, S, Zeigler, BP, ”Implementation of Distributed
High-performance DEVS Simulation Framework in the Grid Computing Environ-
ment”, Advanced Simulation Technologies conference (ASTC), Arlington, VA, 2004

37. Weather web service at: http://www.webservicex.net/WeatherForecast.asmx

38. Web Services Description Language http://www.w3.org/TR/wsdl

39. Zeigler, BP, Kim, TG and Praehofer, H, ”Theory of Modeling and Simulation”
New York, NY, Academic Press, 2000

40. DEVSJAVA: http://www.acims.arizona.edu/SOFTWARE/devsjava_licensed/

CBMSManuscript.zip

41. Zhang, M, Zeigler, BP, Hammonds, P, ”DEVS/RMI-An Auto-Adaptive and Re-
configurable Distributed Simulation Environment for Engineering Studies”, ITEA
Journal, July 2005

42. Zeigler, BP, Fulton, D, Hammonds P, and Nutaro, J, ”Framework for M&SBased
System Development and Testing In a Net-Centric Environment”, ITEA Journal of
Test and Evaluation, Vol. 26, No. 3, 21-34, 20

43. Zeigler, BP, and Hammonds, P, Modeling& Simulation-Based Data Engineer-
ing: Introducing Pragmatics into Ontologies for Net-Centric Information Exchange,
2007, New York, NY: Academic Press.

44. Zeigler, BP and Zhang, G, ”The System Entity Structure: Knowledge Representa-
tion for Simulation Modeling and Design”, in Artificial Intelligence, Simulation and
Modeling, L. E. Widman, K. A. Loparo, and N. R. Nielsen, Eds. Wiley, p.47-73,
New York, 1989.

45. Zeigler, BP, Mittal, S Enhancing DoDAF with DEVS-Based System Life-cycle
Process, IEEE International Conference on Systems, Man and Cybernetics, Hawaii,
October 2005

46. Martin, JLR, Mittal, S, Mendel, J, Zeigler, BP, ”eUDEVS: Executable UML Us-
ing DEVS Theory of Modeling and Simulation”, invited paper to SIMULATION,
accepted 2009.

47. Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin, JLR, Sarjoughian,
H, Touraille, L, Traore, M, Zeigler, BP, ”Chapter 15: DEVS Standardization: Ideas,
Trends and Future”, Book: Discrete Event Modeling and Simulation: Theory and
Applications, CRC Press, 2010.

48. Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin, JLR, Sarjoughian,
H, Touraille, L, Traore, M, Zeigler, BP, ”Chapter 17: Standardizing DEVS Model
Representation”, Book: Discrete Event Modeling and Simulation: Theory and Ap-
plications, CRC Press, 2010.

49. Wainer, G, Al-Zoubi, K, Dalle, O, Hill, D, Mittal, S, Martin, JLR, Sarjoughian,
H, Touraille, L, Traore, M, Zeigler, BP, ”Chapter 18: Standardizing DEVS Simu-
lation Middleware”, Book: Discrete Event Modeling and Simulation: Theory and
Applications, CRC Press, 2010.

50. Highsmith, J., ”What is Agile Software Development?”, STSC Crosstalk, Journal
of Defense Software Engineering, 2002

51. Ambler, SW, ”The Agile Unified Process”, http://www.ambysoft.com/

unifiedprocess/agileUP.html

Agile Net-centric Systems Using DUNIP 43

52. Hu, X, Zeigler, BP, ”Model Continuity in the Design of Dynamic Distributed Real-
Time System”, IEEE Transactions on Systems, Man and Cybernetics - Part A, Vol.
35, 6, pp. 867-878, Nov. 2005

53. Carstairs, DJ, ”Wanted: A New Test Approach for Military Net-centric Opera-
tions”, Guest Editorial, ITEA Journal, Vol. 26, No. 3, Oct. 2005

54. Sarjoughian H, Zeigler BP, Hall, S, ” A Layered Modeling and Simulation Archi-
tecture for Agent-Based System Development”, Proceedings of IEEE Vol. 89, No.2;
pp. 201-213, 2001

55. Mittal S, Zeigler, BP, Hammonds, P, Veena, M, ”Network Simulation Environ-
ment for Evaluation and Benchmarking HLA/RTI Experiments”, JITC report, Fort
Huachuca, Dec. 2004

56. Hu, X, Zeigler, BP, Mittal, S, ”Dynamic Configuration in DEVS Component-based
Modeling and Simulation”, SIMULATION: Transaction of the Society of Modeling
and Simulation International, Nov. 03

